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Abstract. A key characteristic of mobile applications is the need for up-to-date location-
dependent information, while the physical location changes frequently. Recent 
improvements in wireless communication and hardware technology and Internet-based 
data exchanged created a new type of mobile applications whose requirements are not 
met by traditional relational and object database systems. In this paper we describe 
MAGNET, a tuplespace-based framework for dynamic information storage and retrieval 
addressing the needs of application in frequently changing mobile environment and 
discuss how this approach could enable flexible data exchange. In addition to type-free 
data storage and user-customized requests for data records, MAGNET enables adaptation 
to a changed environment by supporting constant monitoring of selected information. 

1 Introduction 
 
In the business climate, an increasing number of people are expected to perform complex work-related 
tasks while on the move. Change  in physical location results in the volatility of location-dependent 
information (e.g., the local time, the nearest library). Therefore, a key requirement of mobile users1 is the 
retrieval of dynamically updated location-dependent information. The need for database support for mobile 
applications2 has become important since frequent travelling has become commonplace. Only recently 
have improvements in hardware support for wireless computing enabled mobile application requirements to 
be fulfilled. Key advances in hardware technologies allowing the current boom in mobile computing 
include: improvements in reliability, speed and coverage of wireless communication, decreasing hardware 
size, the invention of the colour LCD display, the track-ball and the touch-pad, and, the rapidly decreasing 
size and weight of mobile phones (frequently used for dialling-up). The timely combination of these 
achievements has enabled the widespread of PDAs – small lightweight transportable (portable) computers 
designed  for specific mobile applications running  specialized software. Also, the Internet phenomenon has 
become ubiquitous as it enables format-free data storage, retrieval, search and dynamic exchange without 
restrictive data modelling and with the freedom to query its content by looser means than relational algebra 
could offer.  
 That is, as a result of the combination of the availability of the Internet and the affordability of wireless 
communications, new type of applications have emerged requiring a new type of database support. 
Traditional database applications are still commonplace at enterprises and organizations where there is a 
need for relational data modelling, SQL-type of processing, traditional strong consistency and two-phase 
transactions, however, there is also a need for support of the new type of applications which find traditional 
relational and object databases too restrictive. 
 
In this paper, we focus on the problem of retrieving dynamically updated location-aware information, 
rather than “classical” mobile problems dealing with the fluctuation in quality of a wireless communication 
network, or change in the degree of connectivity. This paper describes an information exchange model, 
MAGNET, which supports dynamically updated information among mobile users who frequently change 
location. MAGNET is investigating a different approach to information storage and queries, and is not 

                                                           
1 By 'mobile users' we mean weakly-connected (dialing -in) users frequently changing their location (e.g. ,taxi-drivers, tourists)  
typically  using portable computers or PDAs. 
2 A 'mobile application' we define as a distributed application run by mobile users (e.g., users with portables working while in transit, 
tourists while sightseeing, taxi-drivers etc.) dealing with location-dependent information (e.g., a local resource, local 'data', a location-
based request) in a changing environment. 



based on a traditional database framework. It is based on a shared information pool permitting operations 
for data insertion and their user-customized location-aware withdrawal – a query.  In addition, it supports 
the monitoring of information placed in the pool, and user-defined adaptations to changes in the 
environment. 
 
In the next section, we discuss our motivations, and define the requirements for a dynamic information-
sharing infrastructure. Section 3 presents an overview of the MAGNET model. Section 4 describes the 
support for information monitoring in greater depth and section 5 demonstrates the use of MAGNET using 
an example of a taxi navigation system. Section 6 summarizes work relevant to MAGNET; section 7 
discusses the project's current status and directions for future research. Finally, section 8 contains 
concluding remarks. 

2 Motivations  
 
In this section, we start with summarizing current problems of traditional database systems, then give a 
brief outline of the mobile environment typical for the applications requesting up-to-date location-
dependent data. Then, we discuss characteristics of this class of applications, and elaborate on the 
requirements for database support. 

2.1 Shortcomings of traditional DBMS 
DBMS have matured to become large, expensive and lumbering pieces of systems software.. Consequently, 
as closed systems, a DBMS not only has sole ownership of the data, but data access is restricted to the 
DBMS through either query-languages  or programming interfaces. Below we list a set of DBMS 
shortcomings, which were mostly highlighted by participants of a recent ICDE conference [1]: 
 

1. multi-media and its content searching cannot be carried out by DBMS 
2. information retrieval techniques are not incorporated into current DBMS systems 
3. once a query is issued the user cannot make changes during processing 
4. self administration and self tuning are currently unfeasible 
5. data structures for mining need to be evaluated 
6. improved data structures for model migration are needed 
7. deeper internet integration e.g. compile once run everywhere 
8. extensibility and reconfigurability could then provide e.g. 24 x 7 runtime support. 

 
This list did spur on some research into DBMS flexibility, however to enhance a DBMS, historically new 
features were simply added to the kernel. This combination of shoehorning and wrapping-up of add-on 
services reduces not only performance [2, 3] but impairs core DBMS flexibility. 

2.2 Characteristics of Location-aware Applications 
Typical location-aware applications include: mobile portable users requiring local resources in different 
offices, tourists running guide-like information software on PDAs [4], or taxi-drivers using PDAs to 
navigate to the next destination. 
 
The support for mobile computing can be investigated from various angles and at different levels, regarding 
the particular class of applications that are targeted. For mobile applications requiring dynamically updated 
location and time-dependent information, the crucial problem is the absence of service support for 
information sharing and run-time update. These applications, cannot be satisfied by traditional database 
engines, as currently these offer a too restrictive format, that is, relational algebra-based queries are too 
rigid, typically not providing any means for location and time based awareness and adaptation.  
 
Owing to recent significant improvements in wireless communication, weakly connected applications no 
longer suffer from unreliability of the communication infrastructure (in terms of higher error-rate, frequent 
disconnections, or limited coverage). In addition, for some mobile users it is essential to be provided with 
local information (`local' in the term of the user's current location, e.g., `the nearest library', `the closest 
taxi'). The high volatility of the local information encountered by mobile users’ moving location 
necessitates specialised database support which is able to be tailored to their new requirements and needs as 



they change. The primary role of the database support should be enabling type-free information to be stored 
and exchanged, and different type of queries to be supported which allow wider user-customized location 
and time aware searching. 

2.3 Tuplespace-based Database  
In order to design the information exchange framework, we need to define the high-level requirements of 
mobile applications. The primary role of the database in this type of application is to enable the sharing of 
dynamic information (both local and location-independent). We term such an information-sharing 
infrastructure an information pool. That is, in order to avoid the confusion with the term database which is 
commonly used for a relational or object databases. The information pool, described above, holds data 
items termed tuples (i.e., structured records) which express information to be requested by mobile users. To 
achieve full generality, the information pool should not constrain the format or semantics of tuples it 
contains. This permits virtually unrestricted extensibility of existing services, data formats, in order to adapt 
application behaviour to changes in environment, or dynamically extend system functionality. In addition, 
dynamic information update (based on manual altering of information or automated monitoring) is required 
in order to adaptation to frequent changes in the mobile environment. 
 
To query the pool, we use a mechanism we term tuple matching. Again, as the matching process 
semantically differs from traditional database queries, we would stick to the term matching to avoid 
confusion. In order to achieve generality, user-customisation of the requests for data stored in the pool is 
required. An addition, to distinguish our framework from other systems, we use the term binding  refers to 
the result of the tuple match (1:1 relation, by default).  In other words, when the match function has found a 
tuple satisfying the request, a binding between the two components which inserted the matching tuples is 
established.  
To satisfy the crucial requirement of mobile applications – dynamic information exchange and update, a 
mechanism for automated monitoring is required in order to announce updates of monitored information 
provided by components themselves. Finally, updated information is fully utilized if the system can 
dynamically adapt to a new environment. This process is called rebinding.  

3 Overview of the MAGNET Architecture 
 
MAGNET is a high-level framework enabling applications in mobile frequently changing environments to 
store, update and query location-depended information. The full description of the architecture and its 
usage in dynamic resource management and other application areas could be found in [5]. Ideally 
MAGNET  would be placed within a component-based systems architecture. This architecture would also 
reconfigure on demand and this too can be controlled by MAGNET (i.e., components can be activated and 
bound to other components at runtime). However in this paper we focus on information mapping mainly.  
The key component of the framework is a Trader that collects information on services, records and all 
application data and dynamically matches requests against demands, in other words, performs user-
customized search. One of the key features of the tuplespace is not to constrain the format or the semantics 
of stored information to allow type-free dynamically defined data to be stored and searched by a user-
customized matching process. This provides extensibility in terms of enabling new records, service requests 
and actual services to be dynamically generated but also in terms of customizing the matching process 
itself. Further, to support runtime adaptation and system reconfiguration dynamic rebinding is required. 
That is, the old binding is dropped and a new binding is established in order to better meet application 
requirements. This may be as a result of client, server or a third party initiation. For example, a mobile 
client currently using its local disk may wish to join a new, more stable environment in an office to upload 
data. Therefore it will unbind from its current disk and rebind to the office disk. Information on client 
demands and service capabilities is maintained either manually (i.e., carried out by the components 
themselves) or automatically  (by a monitoring process). The stateless nature of tuples saves the pool from 
having to provide a state-maintaining scheme, for example, check-pointing or recovery procedures. In 
addition, it improves the generality and reliability of the system. If state is required, it can be incorporated 
as a parameter of tuples. Finally, decoupling the server from the client (servers produce tuples of interest to 
any client) permits communication to proceed anonymously. 



3.1 The Trader  
The Trader is the key component in the MAGNET architecture. The Trader accesses a shared data 
repository available to all applications and objects represented by components. We call this data structure 
an information pool, its structure is similar to the tuplespace3. The Trader consists of three distinctive 
elements:  
 

1. The information pool (a tuplespace-like data structure),  
2. The Trader operations on tuples for their manipulation, and  
3. The tuple matching function (an operation providing the actual querying or communication).  

 

Advert

Trader

WithdrawSWithdrawC

Bind

Information Pool

Server Tuple

Tuple Matching 

Client Tuple

Figure 1 illustrates the structure of the Trader, and its three components. Darwin, an architecture-
description language [6], provides a convenient formalism for defining bindings in distributed systems. 
 
 

 
Figure 1: The Trader Structure 

3.2 The Information Pool and the Matching Function 
The information pool is a distributed data structure accessible by all components using MAGNET. Tuples 
can be inserted in, or withdrawn from, the tuplespace by a set of clearly defined operations. Tuples 
describing data of mobile components often contain additional information, such as interface references for 
accessing the component. These are all expressed as tuple elements. Therefore, the tuple distinguishes 
between the number of all tuple elements n and the number of matching elements m. This extension, which 
we have incorporated into traditional tuple matching, enables the restriction of the matching process to 
matching the first m elements.  
We define a tuple as follows: 
 
A tuple T is an ordered set of (n+2) elements  T=(n, m, p1,  p2, …,p n), n>m where n represents the number of 
tuple elements and m is the number of “matchable” tuple elements pi are the values of tuple elements i.e., 
the actual parameters. 
 
For example, to describe a component book Romeo and Juliet by William Shakespeare we may use the 
following server tuple: 
 

A = (6, 5, 12345, William, Shakespeare, Romeo and Juliet, Penguin, ISBN 654321) 
 
That is 6 tuple elements, 5 of which can be matched: 12345 (Author ID), William, Shakespeare, Romeo and 
Juliet, Penguin (publisher).  ISBN is a reference to the book (service) described by this tuple. Naming for 
interface references is derived from the naming scheme used in the computing or application environment, 
e.g., ISBN, library identification. 
An equivalent client tuple looking up Romeo and Juliet would be: 

                                                           
3The information pool is actually a tuplespace. However, the term “tuplespace” is often associated with the Linda distributed 
programming language [17]; therefore, we decided to call our data structure `information pool' to avoid confusion. 



 
B = (6, 5, *, William, Shakespeare, Romeo and Juliet, *, reader ID) 

 
requesting this book published by any publisher (* sign) and ignoring the Author ID. This tuple definition 
incorporates advanced operators, such as *. These are defined in details in [5]. 

3.3 The Matching Function 
By matching, querying the data structure, as was explained above, we mean an equality of tuple elements, 
or a user-defined “match” enabling quality of service to be taken into account. (However, this is beyond the 
scope of this paper, further details can be found in [5]).  
 
A client tuple T1 = (n1, m1, p1,  p2, …,p n), n1 > m1 and a server tuple T2 = (n2, m2, q1,  q2, …,q n), n2 > m2  match 
iff  m1 = m2   and  (pi = qi  ) for all i ∈ {1, m1}. 
 
As incorporating non-matching values into tuples is optional, and may differ between a client and a server-
tuple, the equality of tuple size (n1 = n2  ) is not a required matching condition. Similar to SQL forms, in 
MAGNET the condition (WHERE) would be given as a value in particular column and the sign * would 
indicate that values of this column are irrelevant. As the information pool is shared by all components in 
the system, potentially of different applications, the notion of table (FROM statement) would have to be 
expressed as a column in a tuple. Finally, SELECT statement and the condition to return all, not just one 
matching tuple (as is the default) would have to be implemented as user-customized matching function. For 
example, 
 
SELECT BookName  
FROM Books  
WHERE AuthorSurname = Shakespeare AND  AuthorName = William  
 
(following the example above) would be defined as: 
 

T = (6,5, *, William, Shakespeare, *, *, ReaderID) 
 
And the customized matching function would return all BookName of relevant tuples to ReaderID 
component. 
As SQL query is not the goal of the architecture, it is obvious that this implementation is far less efficient, 
however, the example demonstrates that relational algebra could be built into the framework, if necessary. 
Nevertheless, the key focus of the architecture is to provide flexible dynamic matching of format-free 
records for mobile applications. For example, here, the request (client tuple) could be “waiting” in the pool 
for a server record to arrive, which is impossible in traditional databases. Above all, the user-customized 
matching function enabling an extra flexibility and framework extensibility is a powerful mechanism 
needed in dynamic frequently changing environments.  

3.4 The Trader Operation  
A set of predefined operations exist to manipulate tuple data, e.g., insert and delete.  MAGNET's Trader 
includes the operations: Bind, Advert, WithdrawC, and WithdrawS. These are described below in more 
detail. 
 
Operation Bind (T), T is a client-tuple. The Trader searches the information pool for a complementary 
matching tuple. If such a tuple is found, T is returned to the server component (which inserted the matching 
tuple) without being withdrawn from the pool. If no such tuple exists, the operation results in inserting 
tuple T into the information pool until a match becomes available and the request is fulfilled. 
Operation Advert (T), T is a server-tuple, which is inserted into the information pool. The trader also 
searches the pool for all complementary matching tuples. If such tuples are found, they are removed from 
the pool, and returned to the calling server component. 
Operation WithdrawC (T), where T is a client-tuple, results in removing tuple T from the information 
pool; while operation WithdrawS (T), where T is a server-tuple, results in removing tuple T from the 
information pool.  



3.5 Components for the MAGNET Architecture 
Figure 2 illustrates the structure of the MAGNET architecture. The system consists of four classes of 
component: the Trader, Client, Server and Tree (components performing the matching process). There is 
only a single instance of the Trader component per physical computing node, in contrast to multiple 
instances of Client, Server and Tree. In addition there are two types of subcomponent performing dedicated 
functions: these are a pair of Binders (the Client-Binder and the Server-Binder) present in all Clients and 
Servers; and the GlueFactory included in all Trees. The GlueFactory hands over a client tuple to the Server 
to initialise the establishment of the binding carried out by the Binders. Therefore, Binders in cooperation 
with the GlueFactory establish the resultant client-server binding. In order to provide scalability of the 
framework, it could be distributed into federations. However, in this paper, we focus on a single federation 
as a discussion on scalability is beyond the scope of this work. More details could be found in [5, 7, 8]. 

4 Support for Information Monitoring 
 
In order to enable adaptation to changes in system characteristics, service definitions, which are placed in 
the Trader, must be kept up-to-date. Therefore, MAGNET must monitor resource characteristics.  For this 
reason, the framework presented in this paper is equipped with two additional components providing 
monitoring: the Monitor (monitoring server provisions), and the Updater  (monitoring changing client 
requirements).  In this section, we will describe the semantics of these two components and the actual 
monitoring process. 
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Figure 2: The Architecture with the Monitor and the Updater 

4.1 Components for Monitoring 
As the MAGNET framework distinguishes between the roles of the client and server, it is necessary to 
approach their monitoring differently. Therefore, MAGNET has two monitoring components providing this 
functionality – the Monitor and the Updater – both these application-level components are attached to 
server or client respectively.  They are created together with the components they serve, and are instructed 



by them to provide component-tailored functionality.  Here we discuss their interface to MAGNET and 
expected functionality. The components are illustrated in Figure 2. 

4.1.1 The Monitor 
The task of the Monitor component is to observe changing characteristics of the server it is attached to, and 
keep the server tuple up-to-date. Tight cooperation with the server enables the Monitor to be informed 
about current service characteristics, so that it can periodically update relevant tuples in the pool (by 
removing them and replacing with updated ones). The granularity of this operation depends on the server 
strategy, in particular on the actual feature being updated, and on the overall character of an application (for 
example, real-time applications rely on finer-grained updates).  However, in accordance with our 
assumptions, we expect the monitoring to be performed with frequency of minutes, rather than seconds and 
milliseconds.  

4.1.2 The Updater 
As there are not many clients require rebinding after having found a requested service, the monitoring of 
client requirements is less crucial. Also, client-tuples do not reside in the pool (once a match was found), 
and therefore there is no need to keep them up-to-date. However, clients in systems with frequently 
changing characteristics may rely on a guaranteed level of service (e.g., network throughput). For those, 
adaptation to change in conditions are unavoidable (e.g., switching to lower-quality audio and video, etc.) 
For these reasons, the framework must also provide equivalent support for monitoring clients. 
The Updater is a dedicated component instructed by the client it is attached to. It searches the pool for a 
tuple meeting the client's current requirements more precisely, or looks for a different tuple if the client's 
requirements have changed (e.g., mobile users on the move need to update a requirement for the nearest 
server, etc.) The monitoring of the information pool is not the only function of the Updater. As changes 
might result in rebinding the client to a new server, the primary functionality of the Updater is to assist in 
third party rebinding.  

4.2 Monitoring 
In this section we describe the monitoring process, as provided by the dedicated components: the server-
attached Monitor, and the client-attached Updater. Server-Monitor and Client-Updater interactions are 
established statically in advance by a system administrator, not using MAGNET. 

4.2.1 Monitoring Server Provisions 
The Monitor component is attached to the server by a binding established between service interfaces dataS 
and dataM. The server keeps the Monitor informed about relevant changes. Then, according to the 
granularity of update (how often it is performed), and the `out-of-dateness' accepted (how much can a tuple 
in the pool differ from current characteristics), the Monitor decides when to perform the operations 
WithdrawS and Advert. That is, the actual update in the pool (through service interfaces cp and wp). From 
the Trader's point of view, monitoring is performed transparently, indistinguishable from a sequence of 
operations WithdrawS  and Advert performed by the server itself. 

4.2.2 Monitoring Client Requirements 
The Updater component is instructed by a client about service requirements it should search for. These two 
components communicate through a statically established binding between service interfaces new and 
rebindC. In this case, the initiative is on the Updater component, in contrast to the Monitor that acts only 
when invoked by the server. The Updater calls the operation Bind on a tuple with higher requirements 
(through service interface cp), or performs WithdrawC and Bind operations when the requirements of the 
client have changed. The bind-tuple, inserted by the Updater, waits in the pool until it finds a match. 
According to the Updater protocol and the `stage' of client interaction, the Updater decides if rebinding is 
beneficial (rebinding of a client close to finishing might not be beneficial, taking the overhead of the 
rebinding process into account). Therefore, the new server tuple can be ignored, or client rebinding can be 
performed.  Details of the rebinding issues are beyond the scope of this paper. 

4.3 Efficiency: Discussion 
Data monitoring efficiency is an important issue. For applications requiring only course-grained monitoring 
strategies (with frequency of minutes), tuple updates performed by a withdrawal and reinsert (as discussed 



in this section) are sufficient. However, for applications requiring finer-grained updates of their data in the 
pool (with frequency of seconds and milliseconds), the complexity of the Trader operations must be added 
to the complexity of the update operation. In order to improve efficiency, specific trusted Monitors and 
Updaters might be authorized to have direct access to the Tree holding their tuples. However, this solution 
fundamentally violates protection of the information pool (encapsulating Trees behind the public Trader's 
operations). For the reason of protection of other data in the pool, and protection of Trees that might be 
misused by untrustworthy Monitors, this approach is not a part of the framework design. 

5 Example: The Taxi Navigation System 
 
In this section, we illustrate the use of MAGNET on a typical mobile application – a   taxi navigation 
system.  This simplistic example illustrates MAGNET’s functionality in terms of the applications’ 
dependency on dynamically updated location-dependent information, requiring monitoring and support for 
adaptations to the changed situations. 

5.1 The Application Description 
The taxi navigation system consists of a number of taxis that are characterized by their location [X,Y], and 
passengers, characterized by their location – place where they are  waiting for a taxi. Passengers can hail a 
taxi on the street, call for it by phone, or wait for it at a city taxi-rank. After a taxi drops off a passenger at 
the destination, it returns to the nearest taxi-rank, if not directed to another pick-up location. If there are no 
waiting passengers, taxis remain at the taxi-ranks.  We can imagine that information about the length of the 
queue and passengers waiting at the taxi-rank  is provided by a camera placed above the taxi-rank recording 
the queue and updating the information pool accordingly. All taxis are equipped with small PDAs and 
GPSs and are directed to their destination by a special component called the Navigator which transmits 
directions to the destination. The Navigator  to select the best route at runtime, according to the city plan, 
and in response to dynamic changes, such as traffic jams, road-works, road closures due to accidents, etc. 
Figure 3 illustrates the situation.  
 

 

  Figure 3: Components in the Dynamic Taxi Navigation System 

5.2 MAGNET Support for Dynamic Taxi Allocation 
We will describe MAGNET functionality on a simple scenario. MAGNET is used to find the best matches 
between available taxis (expressed by placing their offer into the pool) and waiting passengers (also 
expressed by placing their request for a taxi into the pool). Also available taxis have tuples in the pool, one 
a customer is picked up, the tuple is withdrawn as the taxi is no longer available. 
 

1. Taxi A and Taxi B available 
We start with a situation when there are two taxis (taxiA and  taxiB) in the example, both currently 
available, being navigated by the Navigator to the taxi-rank. In MAGNET, the situation is described by two 
server tuples representing the taxis inserted into the pool by operation Advert: 
 



TAXIA = (3,2,X1,Y1,TA) 
TAXIB = (3,2,X2,Y2,TB) 

 
Where the [X1, Y1] and [X2, Y2] are the coordinates of current location of the taxis. The Monitor 
components attached to both taxis ensure the tuples are updated in requested intervals, e.g., 5 minutes. TA 
and TB are references to the taxis, e.g., a direct contact to their Navigator components, or phone numbers 
of their drivers etc. 
 

2. Passenger 1 arrives 
Then, Passenger 1 arrives to the taxi-rank and waits for a taxi. The camera at the taxi-rank records the client 
and inserts a client tuple using operation Bind: 
 

P1 = (3,2,X3,Y3,P1) 
 
Where [X3, Y3] is the location of Passenger 1 –  the coordinates of the taxi-rank and P1 is the identification 
of the passenger. As soon as the operation Bind(P1) is called the matching function finds the best available 
match (the closest taxi) and allocates the passenger to that taxi (lets Taxi A is the closer one). Then, the P1 
tuple is automatically withdrawn (as this is the definition of the operation), and tuple TAXIA is manually 
withdrawn by calling WithdrawS operation as a taxi usually cannot drive more than one passenger. The 
details of the matching function are discussed below.  
 

3. Taxi 2 hailed on the Street by Passenger 2 
TAXIB, still on its way to the taxi-rank, is hailed on the street by Passenger 2 – this ‘binding’ takes place 
without MAGNET to illustrate that  in open systems components can establish binging also without the 
assistance of  traders. Technically, this client did not insert any tuple into the pool, simply hailed a passing 
taxi. Consequently, the WithdrawS (TAXIB) operation is called by the TAXIB Monitor to reflect the 
change. Therefore, there are no tuples in the pool at the moment. 

 
4. Passenger 3 calls for a taxi by phone 

A passenger 3 calls for a taxi by phone, a client tuple P3 = (3,2,X4,Y4,P4) is inserted into the pool by 
operation Bind (we may imagine the automated phone operator calls the function). The tuple remains 
waiting in the pool as there is no taxi available. The, TAXI A drops off Passenger 1, the relevant Monitor 
reinserts the server tuple into the pool by operation Advert  (TAXIA). Then, a match is achieved between 
TAXIA and Passenger 3 resulting in directing TAXIA to Passenger 3 location. 

5.3 User-customized Matching Function 
The key feature enabling this dynamic taxi-passenger matching is the customized matching function. In this 
example, we have assumed their [X, Y] coordinates indicate locations of taxis and passengers. As for taxis, 
these are recorded by GPSs attached to taxi Monitors, however, for clients they need to be calculated from 
street names. The user-customized matching function selects the closest client for each taxi (or vice versa). 
For example, there is a taxi tuple TAXI = (3,2,X1,Y1,T) and N waiting clients Pn = (3, 2, Xn2 ,Yn2,  Pn) in 
the pool. Then, the matching function finds the minimum distance (the closest client to the taxi): 
 
TAXI matches Pi  iff  Min i ∀i ∈N ( |X1 – Xi2| + |Y1 – Yi2|)   
 
This calculation assumes grid street topology. We have adopted this approach to illustrate the notion of user 
defined matching, however, in many US cities this distance definition would be perfectly appropriate. 
However, the function could be further extended  to allow more complex distance definitions, based on real 
street maps, and include dynamic changes, such as traffic jams and road closures. However, further 
investigation of these issues is beyond the scope of this paper. 

5.4 Dynamic Adaptation 
A passenger waiting for a taxi at a taxi-rank, is a classical situation, not requiring adaptation, assuming 
there is only one taxi-rank in our example spares the system solving the problem of redirecting taxis from 
one taxi-rank to another in response to varying lengths of queues. Typical adaptation-requiring situations 
include a taxi being hailed in a street when this was to pick up a customer at the taxi-rank, or a passenger 
phoning for a taxi (according to the taxi system priority policy, closest taxi could be allocated to calling 



client despite the fact the taxi was going to pick up a different customer living further, etc.).  First-party and 
third-party rebinding is a key feature of the MAGNET architecture and could be illustrated on the dynamic 
scenarios discussed in this section, however, full explanation of the support for rebinding is beyond the 
scope of  this paper. 

5.5 Discussion 
For additional flexibility, the tuplespace structure as defined in MAGNET can allow the application to 
model time-constrained operations (e.g., a passenger urgently needs a taxi to get to the airport; but, if the 
taxi does not arrive within ten minutes, the plane will be missed, therefore, the passenger is not interested 
after ten minutes). Clients can choose how long they are willing to wait until their request is accepted. The 
time scale extends from zero (if the requested tuple is not available at that moment, an error status is 
returned to the client), through arbitrary time-out intervals (the tuple is waiting in the pool until the 
requested  tuple is inserted or until the timeout expires), to unlimited waiting (the tuple persists in the pool 
forever if the required complementary tuple  has never been inserted). In order to incorporate a “timeout” 
feature, the client can withdraw the tuple when he is no longer interested, or this could  be provided 
automatically by an Updater component where the client sets a predefined threshold. This functionality can 
also be incorporated into the user-defined matching functions, if appropriate (e.g., in the previous example 
of a passenger travelling to the airport; the matching function can incorporate more flexible adjustment of 
the time interval according to the current traffic situation).  Like clients, servers can also time-constrain 
their tuples in the pool; this variation is supported in a similar way, however, in our example it would only 
be meaningful to identify the time when a taxi drives finishes work. 
Finally, the system could record the destination of clients in terms of extra tuple elements and their 
willingness to share a taxi with other clients. Then, the matching function could optimise taxi allocation so 
as clients travelling to destinations near each other could share a taxi which would result in more efficient 
transport. The optimisation matching function can be stored in the Trader with the tuples. 

6 Related Work 
 
There has been some work on adaptive query processing. Examples of this work are pipelined hash join [9], 
hash ripple join [10] and the Xjoin [11]. Most of this work is with relational data and concerns aggregation 
queries as examples [12, 10, 13], however some have looked at XML [14]. Nevertheless this work has been 
very focused and they do not provide the level of customisation supported by MAGNET. 
Contemporary research in mobile computing has explored problems with mobility and the unreliability of 
wireless communication networks [15]. Fluctuations in quality of service (QoS) and changing degrees of 
connectivity have also been studied [16]. However, systems which provide the functionality required by 
location-aware mobile applications to allow dynamic information update and adaptability have not been 
widely investigated. 
As for trading architectures, Linda was the first system to support a generative communication model [17], 
providing several important features, but its fixed tuple format and semantics do not provide the flexibility 
required by mobile applications. A question-based system Osprey [18], which was motivated by Linda, 
implemented application-server coupling using tuple-based interaction. It added a level of flexibility by 
utilizing a result-based tuple naming scheme and replicating tuples over many nodes, but it did not address 
issues concerning user-defined matching. Also, JavaSpaces provide a Tuplespace-like distributed 
environment manipulating objects rather than data tuples. This enables global scalability and forms a base 
for the Jini technology [19].  
 
Blair et al [20] investigated the tuplespace approach to QoS support in a mobile environment. It extends the 
traditional tuplespace with QoS management providing support for monitoring and adaptation for 
applications using heterogeneous networking environments. Its emphasis is on QoS monitoring and 
adaptation to changes in network connectivity in order to ensure the same level of service behaviour, unlike 
MAGNET that supports adaptation of system behaviour according to changes in the environment. 
The problem of dynamic adaptation to a change in environment has been successfully addressed by the 
Personal Computer Memory Card International Association. PCMCIA Ethernet cards can be added and 
removed from the system without powering-off or rebooting the computer. The Linux kernel daemon is 
another successful attempt, enabling operating system kernel adaptation by adding or removing modules 
transparently on demand [21]. Incidentally, both these dynamic adaptation approaches can be implemented 
using MAGNET they are examples of dynamic resource reconfiguration as discussed in [5,7,8]. 



7 Current Status and Further Work 
 
In this section, we summarize our assumptions, outline our implementation experience and discuss further 
work. 

7.1 Assumptions 
Here we summarize the assumptions we used when designing the MAGNET system, and discuss their 
implications and possible solutions. We assume all system components maintain their own consistency. 
That is, we assume that rebinding can be performed only when the system is in a safe state and that when a 
component has finished its operation it must leave MAGNET in a consistent state. Consequently, a more 
powerful framework consisting of transaction processing would be required. A related situation is where 
old tuples remain in the information pool. A periodic garbage collection routine can purge tuples that are 
marked as out-of-date by as defined by the originating component. Similarly, components are responsible 
for the validity of their tuples. In order to prevent components from leaving tuples in the pool when they 
finish the operation, a special subcomponent (present in every component) could automatically withdraw 
all inserted tuples. However, this solution requires co-operation with the component, in terms of 
initialisation of the operations, so it is not fully automated.  
 
Further, user defined functions are assumed to be secure in that they return control back to the Trader. To 
overcome this we would have to extend the trader's functionality to finish any matching function by force 
after a timeout period. Also, we assume that unambiguous naming schemes are used. If the computing 
environment does not provide naming which meets these requirements, there must be an additional Trader 
naming scheme defined (or a more intelligent fuzzy mapping mechanism implemented). However, the 
former can be derived from common naming schemes, such as IP addresses. 
 
As for performance, the estimated numbers of components in are in the region of tens and they have the 
potential to generate  tens to hundreds tuples placed in the Trader. Likewise, the number of concurrent 
components accessing the Trader at one time are estimated to be in the region of tens. A higher number of 
components can result   in the Trader becoming a bottleneck. A possible solution would be  to implement 
the information pool in distributed shared memory.  
 
Regarding change frequency, the framework is designed for components that will change their features 
with a frequency of minutes and hours, rather  than seconds and milliseconds. Therefore the proposed 
support for  monitoring and rebinding as a result of a change is adequate. The  support for applications 
requiring finer grained updates (with a  frequency of seconds and milliseconds) would not be viable. This  
can be improved by enabling direct access to the Tree components  for trusted Monitors and Updaters. 

7.2 Implementation 
MAGNET has been implemented in Regis [22], an environment for constructing distributed systems. The 
tuple is implemented in C++ as a high-level base-class (Tuple) comprising the tuple size, the tuple 
matching size, and encapsulating the tuple-elements. All standard and user-defined tuple-element classes 
are inherited from a base tuple-element class TElm.  Trees contain tree data structures supporting the search 
(and matching) for non-parameterised requests. The complexity of the Trader operations was calculated 
and was found to be linear to the number of tuple matching elements. The Trader is responsible for the 
efficient distribution of tree data structures over Tree components. 
 
The matching function is implemented as an overloaded member function of tuple-element classes 
inherited from the base class TElm. A tuple-element type matches only the same type, and the “equality” of 
values can be re-defined according to the type.  
 
As the focus of the architecture is to provide dynamic features, such as runtime adaptability, user-
customisation and flexibility, the implementation results cannot be described in terms of performance. 
However, critical analysis of various features of the framework can be found in [5].  
 
In addition, the MAGNET architecture also supports advanced QoS support. The extensibility of the 
framework allows applications to define and negotiate services using QoS characteristics. However, 



support for QoS is beyond the scope of this paper. Further details of our QoS model, its design and 
implementation can be found in [5]. 

7.3 Further Work 
We are currently looking at using the MAGNET infrastructure for the National electronic Library for 
Health which provides a single gateway to evidence-based medical information on the Internet. It supports 
QoS-based search for data and in the future, we will be looking at  supporting adaptability for different 
degrees of connectivity, from wireless to fully connected.  
 
Also, another our project Go!, a component-based Operating System which has shown that fine-grained 
componentisation does not only provide lightweightness and extensibility but also improvements in 
performance [23]. Effectively the aim of our current research is to prove that to provide an infrastructure 
that would support mobile database computing, one needs component-based technologies down all the 
layers to the hardware. We believe that Go! is a good starting point for this research as it has already 
proven that it can improve performance and be lightweight, but combined with MAGNET we should be 
able to show its true power. To do this we are currently expanding the operating system, and extending our 
work on models to describe hardware abstractions, components and their interaction and resource 
management. This is in terms of resource to request matching (R2R) and extends our work on resource 
mapping in MAGNET.  

8 Conclusion 
 
This paper has targeted a fundamental problem of mobile users requiring dynamically updated location-
aware information. We have argued that the problem has become crucial, owing to a combination of recent 
improvements in wireless communication, and advances in hardware technology. As a result of these 
fundamental changes, there is a new class of applications requiring type-free data storage, frequent updates 
and modifications and user-defined flexible way to query these data. These applications need both 
flexibility and generality, and often no longer require the traditional database features, relational data 
modelling, transactions and security constrains. 
 
As traditional database systems do not provide support for these types of mobile applications, we have 
investigated a tuplespace-based framework, MAGNET, allowing the searching and trading of information 
and data records in frequently changing mobile environments. This extends the notion of the tuplespace 
paradigm to provide a universal solution, which interestingly is not tied to mobile environments only. We 
illustrated how MAGNET meets the specified requirements by a taxi navigation system case study. 
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