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Abstract 53 
 54 
Transcriptome-wide association analysis is a powerful approach to studying the 55 
genetic architecture of complex traits. A key component of this approach is to build a 56 
model to impute gene expression levels from genotypes using samples with matched 57 
genotypes and gene expression data in a given tissue. However, it is challenging to 58 
develop robust and accurate imputation models with a limited sample size for any 59 
single tissue. Here, we first introduce a multi-task learning method to jointly impute 60 
gene expression in 44 human tissues. Compared with single-tissue methods, our 61 
approach achieved an average 39% improvement in imputation accuracy and 62 
generated effective imputation models for an average 120% more genes. We then 63 
describe a summary statistic-based testing framework that combines multiple 64 
single-tissue associations into a powerful metric to quantify the overall gene-trait 65 
association. We applied our method, called UTMOST, to multiple genome wide 66 
association results and demonstrate its advantages over single-tissue strategies.  67 
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Introduction 68 
 69 
Genome-wide association studies (GWAS) have successfully identified numerous 70 
single-nucleotide polymorphisms (SNPs) associated with complex human traits and 71 
diseases. Despite these successes, significant problems remain in statistical power 72 
and biological interpretation of GWAS results1,2. In particular, the complex 73 
architecture of linkage disequilibrium (LD) and context-dependent regulatory 74 
machinery in the genome hinder our ability to accurately identify disease genes from 75 
GWAS, thereby raising challenges in downstream functional validation and 76 
therapeutics development. Recently, large-scale consortia, such as the 77 
Genotype-Tissue Expression (GTEx) project3,4, have generated matched genotype 78 
and expression data for various human tissues. These rich data sets have provided 79 
great insights into the mechanisms of cross-tissue transcriptional regulation and 80 
accelerated discoveries for expression quantitative trait loci (eQTL)4-7. In addition, 81 
integrating eQTL information in genetic association analysis has become an effective 82 
way to bridge SNPs, genes, and complex traits. Many methods have been developed 83 
to co-localize eQTL with loci identified in GWAS to identify candidate risk genes for 84 
complex traits8-13. Two recent studies addressed this issue through an innovative 85 
approach that is sometimes referred to as transcriptome-wide association analysis. 86 
First, based on an externally-trained imputation model, gene expression is imputed 87 
using genotype information in GWAS samples. Next, gene-level association is 88 
assessed between imputed gene expression and the trait of interest14,15. These 89 
methods have gained popularity in the past two years due to their capability to 90 
effectively utilize signals from multiple eQTL with moderate effects and to reduce the 91 
impact of reverse causality in expression-trait association analysis. The applications 92 
of these methods have led to novel insights into the genetic basis of many diseases 93 
and traits16-18.  94 
 95 
Despite these successes, existing methods have several limitations. First, due to the 96 
tissue-dependent nature of transcription regulation, existing methods train separate 97 
imputation models for different tissues. This practice ignores the similarity in 98 
transcription regulation across tissues, thereby limiting the effective sample sizes for 99 
tissues that are difficult to acquire. Second, a hypothesis-free search across genes 100 
and tissues increases the burden of multiple testing and thus reduces statistical 101 
power. Pinpointing a subset of tissues based on prior knowledge may resolve this 102 
issue to some extent. However, for many complex traits, biologically relevant tissues 103 
are unknown. Further, reports have shown that eQTL with large effects tend to 104 
regulate gene expression in multiple tissues4. Genetic correlation analysis has also 105 
suggested substantial sharing of local expression regulation across tissues19. This 106 
would inevitably result in statistically significant associations in tissues irrelevant to 107 
the trait of interest, a phenomenon that has been extensively discussed recently20. 108 
Jointly analyzing data from multiple genetically-correlated tissues has the potential to 109 
resolve these issues. It has been demonstrated that multi-trait analysis could improve 110 
accuracy of genetic risk prediction21-23. Multi-tissue modeling has also been shown to 111 
improve the statistical power in eQTL discovery24-27 and gene network studies28. In 112 
this work, we demonstrate that a cross-tissue strategy could also improve 113 
transcriptome-wide association analysis. 114 
 115 
We introduce UTMOST (Unified Test for MOlecular SignaTures), a principled method 116 
to perform cross-tissue expression imputation and gene-level association analysis. 117 
We demonstrate its performance through internal and external imputation validation, 118 
simulation studies, analyses of 50 complex traits, a case-study on low-density 119 
lipoprotein cholesterol (LDL-C), and a multi-stage association study for late-onset 120 
Alzheimer’s disease (LOAD). We show that UTMOST substantially improves the 121 
accuracy of expression imputation in all available tissues. In the downstream 122 
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association analysis, UTMOST provides a powerful metric that summarizes 123 
gene-level associations across tissues and can be extended to integrate various 124 
molecular phenotypes.  125 
 126 
 127 
 128 
Results 129 
 130 
Model overview 131 
The UTMOST framework consists of three main stages (Figure 1). First, for each 132 
gene in the genome, we train a cross-tissue expression imputation model using the 133 
genotype information and matched expression data from 44 tissues in GTEx. Next, 134 
we test associations between the trait of interest and imputed expression in each 135 
tissue. Lastly, a cross-tissue test is performed for each gene to summarize 136 
single-tissue association statistics into a powerful metric that quantifies the overall 137 
gene-trait association. Here, we briefly introduce the UTMOST framework. All the 138 
statistical details are discussed in the Online Methods. 139 
 140 
We formulate cross-tissue expression imputation as a penalized multivariate 141 
regression problem: 142 ேܻ×௉ = ܺே×ெܤெ×௉ +  ே×௉, 143ߝ
where ܰ, ܯ, and ܲ denote the sample size in the training data, the number of SNPs 144 
in the imputation model, and the total number of tissues, respectively. As only a 145 
subset of tissues was collected from each individual, expression data in matrix ܻ 146 
were incomplete and sample sizes for different tissues were unbalanced. We estimate 147 ܤ by minimizing the squared loss function with a lasso penalty on the columns 148 
(within-tissue effects) and a group-lasso penalty on the rows (cross-tissue effects) 149 
(Online Methods). 150 ܤ෠ = argmin஻ ෍ 12 ௜ܰ ‖ ௜ܻ − ௜ܺܤ∙௜‖ଶଶ௉

௜ୀଵ + ଵߣ ෍ 1ܰ௜ ௜‖ଵ௉∙ܤ‖
௜ୀଵ + ଶߣ ෍ฮܤ௝∙ฮଶெ

௝ୀଵ  

where ௜ܻ, ௜ܺ, and ௜ܰ denote the observed expressions, genotypes, and sample size 151 
of the ith tissue, respectively. Parameters ߣଵ and ߣଶ are tuned through 152 
cross-validation. Our cross-tissue imputation model does not assume eQTL to have 153 
the same effect direction across tissues. Instead, UTMOST uses a group LASSO 29 154 
penalty term the framework to encourage the presence of cross-tissue eQTL and 155 
improve the estimation of their effects. 156 
 157 
In the second stage, we test the associations between the trait of interest and imputed 158 
gene expression in each tissue. We denote imputed gene expression in the ith tissue 159 
as ܧ௜ = ௜ܺܤ෠∙௜ and test associations via a univariate regression model: 160 ܶ = ௜ߙ + ௜ߛ௜ܧ +  .௜ߜ
The z-scores for gene-trait associations in the ith tissue can be denoted as  161 ܼ௜ = (ො௜ߛ) ݁ݏො௜ߛ ≈ ෠∙௜்ܤ ௜߁ ෨ܼ 

where ෨ܼ denotes the SNP-trait z-scores and ߁௜ is a diagonal matrix whose jth 162 
diagonal element denotes the ratio between the standard deviation of the jth SNP and 163 
that of imputed expression in the ith tissue (Online Methods). When there is no 164 
SNP-trait association, ෨ܼ follows a multivariate normal distribution ܰ(0,  165 ܦ where ,(ܦ
is the LD matrix for SNPs. The covariance matrix of ܼ = (ܼଵ, ܼଶ, … , ܼ௉)் can be 166 
calculated as 167 Σ = ൫Λ்ݒ݋ܿ ෨ܼ൯ = Λ்ܦΛ 
where Λ = ,෠∙ଵΓଵܤ) ,෠∙ଶΓଶܤ … ,  ෠∙௉Γ௉). 168ܤ
 169 
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Finally, we combine single-tissue gene-trait association results using a generalized 170 
Berk-Jones (GBJ) test, which takes the covariance among single-tissue test statistics 171 
into account30. We note that this framework allows gene-trait associations to have 172 
different directions across tissues. Details on the GBJ statistic and p-value calculation 173 
are discussed in the Online Methods.  174 
 175 
 176 
Cross-tissue expression imputation accuracy 177 
We first evaluated the accuracy of cross-tissue expression imputation through 178 
five-fold cross-validation. We used an elastic net model (i.e. the model used in 179 
PrediXcan14) trained in each tissue separately as the benchmark for prediction without 180 
leveraging cross-tissue information. We used squared Pearson correlation (i.e. ܴଶ) 181 
between the observed and predicted gene expression levels to quantify imputation 182 
accuracy. Cross-tissue imputation achieved higher imputation accuracy in all 44 183 
tissues (Figure 2a). On average, imputation accuracy was improved by 38.6% across 184 
tissues (Figure 2b). The improvement was particularly high in tissues with low sample 185 
sizes in GTEx (N < 150; an average of 47.4% improvement). Analysis based on 186 
Spearman correlation also showed consistent results (Supplementary Figure 1). 187 
Next, we calculated the proportion of genes with increased imputation accuracy. In all 188 
44 tissues, substantially more genes showed improved imputation performance 189 
(Supplementary Table 1). Using a false discovery rate (FDR) cutoff of 0.05 as the 190 
significance threshold, our cross-tissue method achieved 120% more significantly 191 
predicted genes across tissues. Among tissues with low sample sizes, the 192 
improvement percentage rose even further to 175% (Figure 2c). Furthermore, we 193 
compared our method with the Bayesian Sparse Linear Mixed-effects Model 194 
(BSLMM31), the imputation method used in TWAS15. Similarly, UTMOST achieved 195 
higher imputation accuracy in all 44 tissues (Supplementary Figure 2). On average, 196 
imputation accuracy improved 20.3% across tissues. 197 
 198 
Next, we performed external validation using two independent datasets. We first used 199 
our imputation model for whole blood in GTEx to predict gene expression levels in 200 
GEUVADIS lymphoblastoid cell lines (LCLs)32 (Online Methods). The imputation 201 
accuracy quantified as R2 showed substantial departure from the expected 202 
distribution under the null (i.e. expression and SNPs are independent), which 203 
demonstrates the generalizability of cross-tissue imputation (Supplementary 204 
Figures 3-4). Compared to single-tissue elastic net, cross-tissue imputation achieved 205 
significantly higher prediction accuracy in different quantiles (P = 3.43 × 10-7; 206 
Kolmogorov-Smirnov test), which is consistent with our findings from cross-validation. 207 
Two examples of well-predicted genes are illustrated in Figure 2d-e, showing 208 
improved concordance between observed (gene expressions adjusted for potential 209 
confounding effects; Online Methods) and predicted expression values via 210 
cross-tissue imputation. Analysis on CommonMind consortium data33 showed similar 211 
results (Online Methods, Supplementary Figure 5-6).  212 
 213 
 214 
Cross-tissue association test  215 
Another key advancement in the UTMOST framework is a novel gene-level 216 
association test that combines statistical evidence across multiple tissues. We 217 
performed simulation studies using samples from the Genetic Epidemiology Research 218 
Study on Adult Health and Aging (GERA; N = 12,637) to assess the association test’s 219 
type-I error rate and statistical power in a variety of settings (Online Methods). We 220 
did not observe inflation in the type-I error rate in two different simulation studies 221 
(Supplementary Table 2-3). We observed a substantial improvement in statistical 222 
power of the multi-tissue joint test when gene expressions in multiple tissues were 223 
causally related to the trait. The improvement was also consistent under different 224 
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simulated genetic architectures (Figure 3). When the trait was affected by expression 225 
in only one tissue, statistical power of the joint test was comparable to that of a 226 
single-tissue test in the causal tissue. Compared to the naïve test that combines 227 
results across tissues while applying an additional Bonferroni correction, our joint test 228 
was consistently more powerful (improvement ranged from 15.3% to 24.1%).  229 
 230 
 231 
UTMOST identifies more associations in relevant tissues  232 
To evaluate the performance of single-tissue association test based on cross-tissue 233 
expression imputation, we applied UTMOST to the summary statistics from 50 GWAS 234 
(Ntotal≈4.5 million without adjusting for sample overlap across studies; 235 
Supplementary Table 4) and compared the results with those of PrediXcan14 and 236 
TWAS15. To identify tissue types that are biologically relevant to these complex traits, 237 
we applied LD score regression34 to these datasets and partitioned heritability by 238 
tissue-specific functional genome predicted by GenoSkyline-Plus annotations35. 239 
Tissue-trait relevance was ranked based on enrichment p-values (Methods). 240 
Compared to PrediXcan and TWAS, UTMOST identified substantially more 241 
associations in the most relevant tissue for each analyzed trait, showing 69.2% 242 
improvement compared to PrediXcan (P = 8.79 × 10-5; paired Wilcoxon rank test) and 243 
188% improvement compared to TWAS (P = 7.39 × 10-8, Figure 4). Such 244 
improvement was consistently observed across traits (Supplementary Table 5). In 245 
contrast, for other tissues, UTMOST identified similar number of genes and showed 246 
no significant difference compared with PrediXcan (P = 0.52). Comparing tissues that 247 
were most and least enriched for trait heritability, UTMOST identified significantly 248 
more associations in tissues strongly enriched for trait heritability than in tissues with 249 
the least enrichment (P = 0.016) while the contrast was not significant based on 250 
PrediXcan (P = 0.192) or TWAS (P = 0.085). Finally, we applied the cross-tissue joint 251 
test to these traits and compared the number of significant genes with the combined 252 
results from 44 UTMOST single-tissue tests. UTMOST joint test identified more 253 
associations than single-tissue tests in 43 out of 50 traits (P = 1.74 × 10-8; Wilcox rank 254 
test; Supplementary Figure 7), showing improved statistical power in cross-tissue 255 
analysis. 256 
 257 
Integrating external QTL resource  258 
We applied UTMOST to the meta-analysis summary data of LDL-C from the Global 259 
Lipids Genetics Consortium (N = 173,082)36. Results based on four different analytical 260 
strategies, i.e. single-tissue test using liver tissue in GTEx (N = 97), single-tissue test 261 
using liver eQTL from STARNET37 (N = 522), cross-tissue joint test combining 44 262 
GTEx tissues, and cross-tissue joint test combining 44 GTEx tissues and the liver 263 
eQTL from STARNET, were compared. We identified 57, 58, 185, and 203 significant 264 
genes in the four sets of analyses, respectively (Figure 5a). 265 
 266 
Among the identified genes in cross-tissue joint test of 44 GTEx tissues and 267 
STARNET-liver, SORT1 had the most significant association (P = 3.4 × 10-15). SORT1 268 
is known to causally mediate LDL-C levels, even though the GWAS association signal 269 
at this locus is clustered around CELSR238,39. Of note, not only was liver not 270 
implicated as the relevant tissue for SORT1 in the association analysis, association 271 
signal at SORT1 was completely absent in the single tissue test based on GTEx-liver 272 
due to its low imputation quality (FDR = 0.064). Limited sample size of liver tissue in 273 
GTEx (N = 97) restrained the imputation performance of SORT1, and consequently 274 
reduced the statistical power in association test. On the other hand, UTMOST 275 
successfully recovered the association signal at SORT1 (P = 3.4 × 10-15). Additionally, 276 
UTMOST cross-tissue association test is flexible in incorporating external QTL 277 
resources along with GTEx data (Online Methods). Through integrating single-tissue 278 
associations in all 44 GTEx tissues and a large external liver dataset (STARNET; N = 279 
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522), we successfully recovered the association of SORT1 (Figure 5b). Furthermore, 280 
we performed pair-wise conditional analyses between SORT1 and other significant 281 
genes at the SORT1 locus, and found that SORT1 remained statistically significant in 282 
all analyses, showing that its association signal is not shadowed by other genes 283 
(Supplementary Table 6). Further, when correlations between gene expression were 284 
moderate, SORT1 was more significant than all other tested genes in conditional 285 
analysis. Even when correlation was substantial (e.g. CELSR2 and PSRC1 both had 286 
correlation = 0.9 with SORT1 in STARNET), SORT1 remained statistically significant. 287 
We compared association based on STARNET only and found that SORT1 is not the 288 
top signal in the locus in single-tissue analysis and cross-tissue approach does not 289 
increase the false-positive rate (Supplementary Note). These results suggest that 290 
integrative analysis of transcriptomic data from multiple tissues and multiple QTL 291 
resources can effectively increase statistical power in gene-level association 292 
mapping. UTMOST is a flexible framework and is not limited to GTEx tissues only. 293 
Integrating relevant external QTL studies via UTMOST may further improve 294 
downstream association analysis. 295 
 296 
 297 
UTMOST identifies novel risk genes for Alzheimer’s disease 298 
Finally, to demonstrate UTMOST’s effectiveness in real association studies, we 299 
performed a multi-stage gene-level association study for LOAD. In the discovery 300 
stage, we applied UTMOST to the stage-I GWAS summary statistics from the 301 
International Genomics of Alzheimer’s Project40 (IGAP; N =54,162). Multiple recent 302 
studies have suggested that functional DNA regions in liver and myeloid cells are 303 
strongly enriched for LOAD heritability35,41,42. It has also been suggested that 304 
alternative splicing may be a mechanism for many risk loci of LOAD43. Therefore, in 305 
addition to 44 tissues from GTEx, we also incorporated liver eQTL from STARNET and 306 
both eQTL and splicing (s)QTL data in three immune cell types (i.e. CD14+ 307 
monocytes, CD16+ neutrophils, and naive CD4+ T cells) from the BLUEPRINT44 308 
consortium in our analysis (Online Methods). Single-tissue association tests were 309 
performed and then combined using the GBJ test. In total, our cross-tissue analysis 310 
identified 68 genome-wide significant genes in the discovery stage (Supplementary 311 
Table 7, Supplementary Figure 8).  312 
 313 
Next, we replicated our findings in two independent datasets: using GWAS summary 314 
statistics based on samples in the Alzheimer’s Disease Genetics Consortium (ADGC) 315 
that were not used in the IGAP stage-I analysis (N = 7,050), and summary statistics 316 
from the genome-wide association study by proxy45 (GWAX; N = 114,564). Despite the 317 
moderate sample size in the ADGC dataset and the ‘proxy’ LOAD phenotype based on 318 
family history in GWAX analysis, replication rate was high (Supplementary Table 7). 319 
Seventeen and 15 out of 68 genes were successfully replicated under the 320 
Bonferroni-corrected significance threshold in ADGC and GWAX, respectively. The 321 
numbers of replicated genes rose to 41 and 30 under a relaxed p-value cutoff of 0.05. 322 
Twenty-two out of 68 genes had p-values below 0.05 in both replication datasets. We 323 
then combined p-values from all three analyses via Fisher’s method. A total of 69 324 
genes, including 12 genes that were not significant in the discovery stage, reached 325 
genome-wide significance in the meta-analysis (Figure 6, Supplementary Table 326 
7-8). These 69 genes were significantly enriched for seven gene ontology terms 327 
(Supplementary Table 9), with “very-low-density lipoprotein particle” being the most 328 
significant (adjusted P = 5.8 × 10-3). 329 
 330 
Most significant genes are from previously identified LOAD risk loci40,46-51. These 331 
include CR1 locus on chromosome 1, BIN1 locus on chromosome 2, HBEGF locus on 332 
chromosome 5, ZCWPW1 and EPHA1 loci on chromosome 7, CLU locus on 333 
chromosome 8, CELF1, MS4A6A, and PICALM loci on chromosome 11, and the 334 
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APOE region on chromosome 19. Among these loci, AGFG2 rather than ZCWPW1, 335 
the previously-suggested index gene at this locus40, was significant in the 336 
meta-analysis (P = 7.19 × 10-7). Similarly, BIN1 was not statistically significant in our 337 
analysis. But LIMS2, a gene 500 kb upstream of BIN1, was significantly associated (P 338 
= 9.43 × 10-12). SNPs in the 3’UTR of LIMS2 have been previously suggested to 339 
associate with cognitive decline52. GWAS index genes for the rest of the loci were all 340 
statistically significant in our analysis. 341 
 342 
Further, new associations at known risk loci provide novel insights into LOAD etiology. 343 
We identified a novel gene IL10 for LOAD risk (P = 1.77 × 10-7). IL10 is 700 kb 344 
upstream of CR1, a strong and consistently replicated locus in LOAD GWAS40,51,53. 345 
CR1 is also significant in our analysis (P = 3.71 × 10-7). Although some SNPs near the 346 
promoter region of IL10 were moderately associated with LOAD in all three datasets 347 
(Supplementary Figure 9), the IL10-LOAD association was mostly driven by SNPs 348 
near CR1 (Supplementary Table 10). An interesting observation is that even when a 349 
key SNP is missing – the most significant SNP in IGAP and ADGC (i.e. 350 
rs2093761:A>G) was not present in GWAX, other predictors (e.g. rs6690215:C>T in 351 
GWAX) still helped recover the association signal at the gene level, leading to a 352 
genome-wide significant association at IL10. To investigate if IL10 is simply a 353 
companion association signal due to co-regulation with CR1, we performed a 354 
cross-tissue conditional analysis using UTMOST with both significant genes CR1 and 355 
IL10 included in the model (Online Methods). Only IL10 remained significant (P = 1.4 356 
× 10-7 for IL10 and P = 0.11 for CR1, Supplementary Table 11) in the conditional 357 
analysis. In addition to strong statistical evidence, the biological function of IL10 also 358 
supports its association with LOAD. IL10 is associated with multiple immune 359 
diseases54-57. It is known to encode one of the main anti-inflammatory cytokines 360 
associated with the occurrence of Alzheimer’s disease and has therapeutic potential to 361 
improve neurodegeneration58,59. Its protein product is also known to physically interact 362 
with the Tau protein60.  363 
 364 
CLU is another well-replicated risk gene for LOAD. Two independent association 365 
peaks at this locus, one at CLU and the other at PTK2B, have previously been 366 
identified in GWAS (Supplementary Figure 10)40,51. In our analysis, in addition to 367 
CLU (P = 1.66 × 10-10), we identified two more significant genes at this locus, i.e. 368 
ADRA1A (P = 1.29 × 10-9) and EXTL3 (P = 5.08 × 10-12). PTK2B showed marginal 369 
association (P = 1.72 × 10-4) with LOAD but did not reach genome-wide significance. 370 
Interestingly, EXTL3 expression is predicted by a SNP in the LOAD association peak 371 
at CLU while ADRA1A is regulated by SNPs at both CLU and PTK2B (Supplementary 372 
Table 12). ADRA1A has been implicated in gene-gene interaction analysis for 373 
LOAD61. Its protein product physically interacts with amyloid precursor protein (APP)60 374 
and an α1-adrenoceptor antagonist has been shown to prevent memory deficits in 375 
APP23 transgenic mice62. EXTL3 encodes a putative membrane receptor for 376 
regenerating islet-derived 1α (Reg-1α), whose overexpression and involvement in the 377 
early stages of Alzheimer’s disease has been reported63. Further, the effect of Reg-1α 378 
on neurite outgrowth is mediated through EXTL3. Our results provide additional 379 
evidence that IL10, ADRA1A, and EXTL3 may be involved in LOAD etiology. 380 
 381 
Finally, we identified five novel loci for LOAD, each represented by one significant 382 
gene: NICN1 (P = 2.23 × 10-7), RAB43 (P = 1.98 × 10-6), VKORC1 (P = 3.53 × 10-9), 383 
HPR (P = 3.02 × 10-7), and PARD6G (P = 3.60 × 10-11). The Rab GTPases are central 384 
regulators of intracellular membrane trafficking64. Although RAB43 has not been 385 
previously identified in LOAD GWAS, USP6NL, the gene that encodes a 386 
GTPase-activating protein for RAB43, has been identified to associate with LOAD in 387 
two recent studies45,50. USP6NL also showed suggestive association with LOAD in the 388 
discovery stage of our analysis (P = 0.004). However, the associations at RAB43 and 389 
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USP6NL were not strongly supported by ADGC or GWAX datasets. Further, the 390 
RAB43-LOAD association was driven by SNPs near RPN1, a gene 400 kb 391 
downstream of RAB43 (Supplementary Figure 11, Supplementary Table 13). This 392 
locus is associated with a variety of blood cell traits including monocyte count65,66. 393 
VKORC1 is a critical gene in vitamin K metabolism and is the target of warfarin67, a 394 
commonly prescribed anticoagulant. It is known that the APOE ε4 allele affects the 395 
efficacy of warfarin68. HPR has been identified to strongly associate with multiple lipid 396 
traits69 and interact with APOE60. NICN1 is known to associate with inflammatory 397 
bowel disease70 and cognitive function71. These results provide potential target genes 398 
for functional validations in the future. The cross-tissue imputation models of these 399 
genes were listed in Supplementary Tables 14-20. 400 
 401 
 402 
 403 
Discussion 404 
 405 
Despite the many improvements of UTMOST over existing methods, researchers need 406 
to be cautious when interpreting findings from UTMOST analyses. First, gene-level 407 
associations identified in UTMOST do not imply causality. It has been recently 408 
discussed that correlations among the imputed expression of multiple genes at the 409 
same locus may lead to apparent associations at non-causal genes20, which is 410 
comparable to linkage disequilibrium (LD)’s impact on SNP-level associations in 411 
GWAS. Consequently, TWAS-type approaches have limitations in both inferring 412 
functional genes and relevant tissues. When eQTL of different genes at the same 413 
locus are shared or in LD, irrelevant genes may be identified through significant 414 
associations. Similarly, for a given gene, if eQTL for the same gene in different tissues 415 
are shared or in LD, irrelevant tissues may show significant association signals. 416 
UTMOST cross-tissue conditional analysis can resolve the issue of gene prioritization 417 
to some extent, but fine-mapping of gene-level association remains challenging, 418 
especially in regions with extensive LD. We performed simulations to show that true 419 
associations in the causal tissue were consistently stronger than those in the 420 
non-causal tissue in most scenarios, which indicated that single-tissue association 421 
analyses have the potential to infer causal tissue (Supplementary Note; 422 
Supplementary Figure 12). However, as the proportion of shared eQTL increases, 423 
p-values for associations in the non-causal tissue became increasingly significant. 424 
Even when two tissues do not share eQTL, associations in the non-causal tissue still 425 
frequently passed the significance threshold, most likely due to LD between eQTL. 426 
These results are consistent with our experience and discussions in the literature20,72. 427 
We also note that these issues may become even more complex when sample sizes 428 
and imputation power vary across tissues. Further, we emphasize one of the 429 
principles in hypothesis testing – one should not conclude the null hypothesis when an 430 
association is not statistically significant. UTMOST is a general framework that 431 
involves many analytical steps, and technical issues might mask true gene-trait 432 
associations. For example, SPI1 from the CELF1 locus has been causally linked to 433 
LOAD risk42. We identified multiple significant associations at this locus but SPI1 was 434 
not a significant gene in our analysis. Possible reasons for this include insufficient 435 
imputation quality based on the current model, non-availability of causal tissue in the 436 
training data, key eQTL missing from the GWAS summary statistics, causal 437 
mechanism (e.g. alternative splicing) not well-represented in our analysis, or 438 
insufficient sample sizes. In practice, these issues need to be carefully investigated 439 
before ruling out any candidate gene. 440 
 441 
Overall, UTMOST is a novel, powerful, and flexible framework to perform gene-level 442 
association analysis. It integrates biologically-informed weights with GWAS summary 443 
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statistics via modern statistical techniques. Interpreted with caution, its findings may 444 
provide insights into disease and trait etiology, motivate downstream functional 445 
validation efforts, and eventually benefit the development of novel therapeutics. It is 446 
also exciting that statistical and computational methodology in this field evolves at a 447 
fast pace. Several methods on mediation analysis and functional gene fine-mapping in 448 
the context of transcriptome-wide association study have been proposed recently73,74. 449 
It has been shown that data-adaptive SNP weights could effectively improve statistical 450 
power at the cost of clear interpretation of associations75. Extension of these methods 451 
into multi-tissue analysis is an interesting possible future direction. As high-throughput 452 
data continue to be generated for more individuals, cell types, and molecular 453 
phenotypes, UTMOST promises to show even better performance and provide greater 454 
insights for complex disease genetics in the future. 455 
 456 
 457 
 458 
URLs 459 
UTMOST software: https://github.com/Joker-Jerome/UTMOST 460 
BLUEPRINT: ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/qtl_as/ 461 
STARNET: https://github.com/Wainberg/Vulnerabilities_of_TWAS 462 
AlzData: http://alzdata.org/index.html 463 
GLGC: http://lipidgenetics.org 464 
IGAP: http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php 465 
TWAS summary statistics:  466 
ftp://ftp.biostat.wisc.edu/pub/lu_group/Projects/UTMOST  467 
GEUV: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/ 468 
GWAX: http://gwas-browser.nygenome.org/downloads/ 469 
GTEx: https://www.gtexportal.org 470 
ADGC2 summary statistics: https://www.niagads.org/datasets/ng00076 471 
 472 

473 
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Figure Legends 737 
Figure 1. UTMOST workflow. Gray and brown boxes denote input data and computed outcomes, 738 
respectively. 739 
 740 
Figure 2. Improvement in gene expression imputation accuracy. Compared to single-tissue elastic 741 
net, UTMOST showed substantially higher (a) average increment in ܴଶ across genes and (b) relative 742 
improvement (i.e. percentage of increment in ܴଶ) in imputation accuracy. (c) UTMOST identified more 743 
imputed genes, especially in tissues that have smaller sample sizes in GTEx. Sample sizes of 44 GTEx 744 
tissues are listed in Supplementary Table 1, predictability tested by F-test with d.f. 1 and n – 2. Panels 745 
(d-e) show the imputation improvement in two specific examples in whole blood tissue, shaded region 746 
represents the 95% confidence band. 747 
 748 
Figure 3. Cross-tissue analysis improves statistical power. We compared the statistical power of 749 
UTMOST, a single-tissue association test, and a simple union of findings from single-tissue analysis with 750 
various disease architectures. Left/right panels represent the cases that genes explain 1%/0.1% of trait 751 
variance in total (denoted as high/low phenotypic effects). Muscle is the only causal tissue in setting 1. 752 
Both muscle and skin are causal tissues in setting 2. All three tissues are causal in setting 3. 753 
 754 
Figure 4. UTMOST identified more associations in biologically relevant tissues for 50 complex 755 
traits. Boxes on the left show the number of genes identified in all other tissues. Boxes on the right show 756 
the number of genes identified in the most relevant tissue for each trait. In each box, the two horizontal 757 
borders represent the upper and lower quartiles, solid line in the middle represent median. The highest 758 
and lowest points indicate the maxima and minima. P-values were calculated via one-sided paired 759 
Wilcoxon rank tests (n = 50). 760 
 761 
Figure 5. Multi-tissue analysis identifies more associations for LDL cholesterol. (a) Number of 762 
significant genes identified in four sets of analyses. (z-score test for single-tissue and generalized 763 
Berk-Jones for cross-tissue test, Bonferroni-corrected thresholds were used, i.e. 4.49 × 10-6, 8.39 × 10-6, 764 
3.31 × 10-6 and 3.31 × 10-6) (b) Associations at the SORT1 locus, values on the x-axis were based on the 765 
transcription start site of each gene. The horizontal line indicates the Bonferroni-corrected genome-wide 766 
significance threshold (n = 173,082, generalized Berk-Jones test). 767 
 768 
Figure 6. Manhattan plot for LOAD meta-analysis. P-values are truncated at 1 × 10-30 for visualization 769 
purpose. The horizontal line marks the genome-wide significance threshold. The most significant gene at 770 
each locus is labeled. (n = 168,726, generalized Berk-Jones test) 771 

772 
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Online Methods 773 
 774 
Penalized regression model for cross-tissue expression imputation 775 
Given a gene, we use genotype information to predict its covariate-adjusted 776 
expression levels in ܲ tissues. We use SNPs between 1 Mb upstream of the 777 
transcription start site and 1 Mb downstream of the transcription end site of the given 778 
gene as predictor variables in the model. This is denoted as an ܰ ×  matrix ܺ 779 ܯ
where ܰ is the total number of individuals and ܯ denotes the number of SNPs. 780 
Throughout the paper, we assume each column of ܺ to be centered but not 781 
standardized. Of note, expression data may not be available for all individuals since 782 
only a subset of tissues were collected from each individual. For the ݅th tissue, we 783 
use ௜ܰ to denote its sample size. We further use an ௜ܰ-dimensional vector ௜ܻ to 784 
denote the observed expression data in the ݅th tissue, and use an ௜ܰ ×  matrix ௜ܺ 785 ܯ
to denote the genotype information for the subset of individuals. Then, cross-tissue 786 
gene expression imputation can be formulated as the following regression problem.  787 ௜ܻ = ௜ܺܤ∙௜ + ݅   , ௜ߝ = 1, … , ܲ. 
Here, the ܯ × ܲ matrix ܤ summarizes SNPs’ effects on the given gene with its ݅th 788 
column ܤ∙௜ denoting the effect sizes of SNPs in the ݅th tissue and the ݆th row ܤ௝∙ 789 
denoting the effect sizes of the ݆th SNP in all ܲ tissues. To effectively select 790 
biologically relevant and statistically predictive SNPs, accurately estimate their effects 791 
across tissues, and address technical issues including shared samples and 792 
incomplete data, we propose the following penalized least-squares estimator for 793 
genetic effects matrix ܤ 794 :ܤ෠ = argmin஻ ෍ 12 ௜ܰ ‖ ௜ܻ − ௜ܺܤ∙௜‖ଶଶ௉

௜ୀଵ + ଵߣ ෍ 1ܰ௜ ௜‖ଵ௉∙ܤ‖
௜ୀଵ + ଶߣ ෍ฮܤ௝∙ฮଶெ

௝ୀଵ  

Here, ‖. ‖ଵ and ‖. ‖ଶ denote the ݈ଵ and ݈ଶ norms, respectively (i.e. ‖ݔ௏×ଵ‖ଵ795 = ∑ ௩|௏௩ୀଵݔ|  and ‖ݔ௏×ଵ‖ଶ = ට∑ ௩ଶ௏௩ୀଵݔ ). The first term in the loss function is the 796 

standard least-squares error. We use the ݈ଵ penalty to select predictive variables and 797 
impose shrinkage in effect size estimation. The penalty on each tissue is set 798 
adaptively based on the sample sizes, which reflects the idea that models for tissues 799 
with a larger sample size are more robust to overfitting and therefore are penalized 800 
less. To integrate information across multiple tissues, we introduced the third term - a 801 
group-lasso penalty on the effect sizes of one SNP 29. By imposing this joint penalty 802 
across tissues, UTMOST encourages eQTLs shared across tissues but still keeps 803 
tissue-specific eQTLs with strong effects. Although the penalty on tissue-specific 804 
eQTL may cause the model to exclude some true predictors, recent evidence 76 805 
suggested that tissue-specific eQTL have substantially weaker effect sizes and will 806 
most likely not have major influences on association analysis (Supplementary Note). 807 
Tuning parameters λ1 and λ2 control the within-tissue and cross-tissue sparsity, 808 
respectively. They are selected through cross-validation. Details of optimization were 809 
attached in Supplementary Note. 810 
 811 
 812 
Model training and evaluation 813 
We trained our cross-tissue gene expression imputation model using genotype and 814 
normalized gene expression data from 44 tissues in the GTEx project (version V6p, 815 
dbGaP accession code: phs000424.v6.p1)3. Sample sizes for different tissues ranged 816 
from 70 (uterus) to 361 (skeletal muscle). SNPs with ambiguous alleles or minor allele 817 
frequency (MAF) < 0.01 were removed. Normalized gene expressions were further 818 
adjusted to remove potential confounding effects from sex, sequencing platform, top 819 
three principal components of genotype data, and top probabilistic estimation of 820 
expression residuals (PEER) factors77. As previously recommended17, we included 15 821 
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PEER factors for tissues with ܰ < 150, 30 factors for tissues with 150 ≤ ܰ < 250, 822 
and 35 factors for tissues with ܰ ≥ 250. All covariates were downloaded from the 823 
GTEx portal website (URLs). We applied a 5-fold cross-validation for model tuning 824 
and evaluation. Specifically, we randomly divided individuals into five groups of equal 825 
size. Each time, we used three groups as the training set, one as the intermediate set 826 
for selecting tuning parameters, and the last one as the testing set for performance 827 
evaluation. Squared correlation between predicted and observed expression (i.e. ܴଶ) 828 
was used to quantify imputation accuracy. For each model, we selected gene-tissue 829 
pairs with FDR < 0.05 for downstream testing. External validation of imputation 830 
accuracy was performed using whole-blood expression data from 421 samples in the 831 
1000 Genomes Project (GEUVADIS consortium)32 and the CommonMind 832 
consortium33, which collected expression in across multiple regions from > 1,000 833 
postmortem brain samples (mainly corresponding to Brain_Frontal_Cortex_BA9 in 834 
GTEx) from donors with schizophrenia, bipolar disorder, and individuals with no 835 
neuropsychiatric disorders. For CommonMind data, we focused our analysis on 147 836 
controls with no neuropsychiatric disorders. Average improvements in ܴଶ in both 837 
external validation datasets are shown in Supplementary Figure 4. Although not 838 
statistically significant due to the limited sample size, the accuracy of the cross-tissue 839 
method was consistently higher than that of the single-tissue approach in different 840 
quantiles. Furthermore, comparing the tissue-tissue similarity based on the observed 841 
and imputed gene expressions indicated that cross-tissue imputation removed 842 
stochastic noises in the expression data without losing tissue-specific correlational 843 
patterns (Supplementary Note; Supplementary Figure 5-6). 844 
 845 
 846 
Gene-level association test 847 
We combined GWAS summary statistics with SNP effects estimated in the 848 
cross-tissue imputation model (i.e. ܤ෠) to quantify gene-trait associations in each 849 
tissue. For a given gene, we modeled its imputed expression in the ݅th tissue (i.e. 850 ܧ௜ = ௜ܺܤ෠∙௜) and the phenotype ܶ using a linear model 851 ܶ = ௜ߙ + ௜ߛ௜ܧ +  ௜ߜ
Then, the association statistic for effect size in the ݅th tissue (i.e. ߛ௜) on the trait of 852 
interest is 853 ܼ௜ =  (ො௜ߛ) ݁ݏො௜ߛ

where ߛො௜ denotes the point estimate for effect size and ݁ݏ (ߛො௜) denotes its standard 854 
error. From the linear model, we have 855 ߛො௜ = ,௜ܧ)ݒ݋ܿ (௜ܧ)ݎܽݒ(ܶ = ෠∙௜்ܤ )ݒ݋ܿ ௜ܺ, ௜ଶߟ(ܶ = ෠∙௜்ܤ  ෨ߚ௜ଶ߁

where ߁௜ is an ܯ ×  diagonal matrix with the ݆th term equal to ܯ
ఙೕఎ೔, where ߪ௝ is the 856 

standard deviation of the ݆th SNP, and ߟ௜ is the standard deviation of imputed gene 857 
expression in the ݅th tissue. These parameters could be estimated using a reference 858 
panel. ߚ෨ denotes the SNP-level effect size estimates acquired from GWAS summary 859 
statistics. Regarding the standard error of ߛො௜, we have 860 se(ߛො௜) = ඨ ௜ଶߟ௚ܰ௪௔௦(௜ߜ)ݎܽݒ ≈ ௒ඥߪ ௚ܰ௪௔௦ߟ௜ 
Here, ߪ௒ denotes the standard deviation of phenotype ܶ and ௚ܰ௪௔௦ is the sample 861 
size in GWAS. The approximation ݎܽݒ(ߜ௜) ≈  ௒ଶ is based on the empirical 862ߪ
observation that each gene only explains a very small proportion of phenotypic 863 
variability78. The same argument can be extended to association statistics at the SNP 864 
level. For the ݆th SNP in the model, we have 865 
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se൫ߚ෨௝൯ ≈ ௒ඥߪ ௚ܰ௪௔௦ߪ௝. 
Therefore, SNP-level z-scores can be denoted as 866 ෨ܼ௝ = ෨௝൯ߚ෨௝se൫ߚ ≈ ඥ ௚ܰ௪௔௦ߪ௝ߚ෨௝ߪ௒ , ݆ = 1, … ,  ܯ

In matrix form, this is 867 ෨ܼ ≈ ඥ ௚ܰ௪௔௦ߪ௒ ቌߪଵ ⋱ ெቍߪ  ෨ߚ

Combining the derivations above, we can denote the gene-level z-score as 868 ܼ௜ = (ො௜ߛ) ݁ݏො௜ߛ ≈ ෠∙௜்ܤ ෨ߚ௜ଶ߁ × ඥ ௚ܰ௪௔௦ߟ௜ߪ௒ = ඥ ௚ܰ௪௔௦ߪ௒ ෠∙௜்ܤ ௜߁ ቌߪଵ ⋱ ெቍߪ ෨ߚ ≈ ෠∙௜்ܤ ௜߁ ෨ܼ 

Under the null hypothesis (i.e. no SNP-trait association), ෨ܼ follows a multivariate 869 
normal distribution ෨ܼ~ܰ(0,  is the LD matrix for SNPs and could be 870 ܦ where ,(ܦ
estimated using an external reference panel. Denoting the cross-tissue gene-trait 871 
z-scores as ܼ = (ܼଵ, ܼଶ, … , ܼ௉)், the covariance matrix of ܼ could be calculated as 872 Σ = ൫Λ்ݒ݋ܿ ෨ܼ൯ = Λ்ܦΛ, 
where Λ = ,෠∙ଵΓଵܤ) ,෠∙ଶΓଶܤ … ,  ෠∙௉Γ௉). 873ܤ
 874 
In order to combine gene-trait associations across multiple tissues, we applied the 875 
generalized Berk-Jones (GBJ) test with single-tissue association statistics ܼ and 876 
their covariance matrix Σ as inputs. This approach provides powerful inference 877 
results while explicitly taking the correlation among single-tissue test statistics into 878 
account even under a sparse alternative (i.e. biologically meaningful associations are 879 
only present in a small number tissues)30. The GBJ test statistic can be calculated as 880 ܩ = ଵழ௜ஸ௉/ଶݔܽ݉ ݃݋݈ ቆܲݎ (ܵ൫|ܼ|(௉ି௜ାଵ)൯ = (ܼ)ܧ | ݅ = ,௜ߤ̂ (ܼ)ݒ݋ܿ = ൫|ܼ|(௉ି௜ାଵ)൯ܵ) ݎܲ(ߑ = (ܼ)ܧ | ݅ = 0, (ܼ)ݒ݋ܿ = (ߑ ቇ × ܫ ൬2ߔഥ൫|ܼ|(௉ି௜ାଵ)൯ < ݅ܲ ൰ 

where |ܼ|(௜) denotes the ݅th order statistic of the absolute value of gene-trait 881 
z-scores in an increasing order; ܵ(ݐ) = ∑ 1(|ܼ௜| ≥ ௉௜ୀଵ(ݐ  denotes the number of 882 
gene-trait z-scores with absolute value greater than a threshold ߤ̂ ;ݐ௜ denotes the 883 
corresponding value of ܧ(ܼ) that maximizes the probability of event ܵ൫|ܼ|(௉ି௜ାଵ)൯ = ݅; 884 
and Φഥ(ݐ) = 1 − Φ(ݐ) is the survival function of the standard normal distribution. The 885 
GBJ test statistic can be interpreted as the maximum of a series of one-sided 886 
likelihood ratio test statistics on the mean of ܵ(ݐ), where the denominator denotes the 887 
maximum likelihood when no gene-trait association exists in any tissue (all z-scores 888 
have zero mean) and the numerator denotes the unconstrained maximum likelihood. 889 
Of note, calculating the exact distribution of ܵ(ݐ) is difficult when z-scores are 890 
correlated. As previously suggested, we calculate ܩ by approximating the 891 
distribution of ܵ(ݐ) with an extended beta-binomial (EBB) distribution. As a 892 
maximum-based global statistic, the p-value of GBJ test could be written as 893 ݁ݑ݈ܽݒ݌ = 1 − (௜ܾ)ܵ)ݎܲ ≤ (݀ − ݅), ∀݅ = 1,2, … , ܲ | ,0)ܸܰܯ~ܼ Σ)) 
where 0 ≤ ܾଵ ≤ ܾଶ ≤ ⋯ ≤ ܾ௉ are ‘boundary points’ derived from inversion of the test 894 
statistic, which depends on ܩ, ܲ and Σ. The last quantity in the equation can be 895 
calculated recursively with the EBB approximation30. 896 
 897 
P-value cut-offs for gene-level association tests were determined by Bonferroni 898 
correction. For each method, we used 0.05 divided by the total number of genes 899 
tested across 44 tissues (i.e. 5.76 × 10-7 for TWAS, 2.44 × 10-7 for PrediXcan, and 900 
1.28 × 10-7 for UTMOST, respectively) as the significance threshold. As more genes 901 
can be accurately imputed (ܴଶ significantly larger than zero with FDR < 0.05) in our 902 
cross-tissue imputation, the significance cutoff was the most stringent in UTMOST. 903 
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 904 
Cross-tissue conditional analysis 905 
Genes that are physically close to the true risk gene may be identified in marginal 906 
association analyses due to co-regulation of multiple genes by the same eQTL and 907 
LD between eQTL of different genes. In order to prioritize gene-level associations at 908 
the same locus, we expand UTMOST to perform cross-tissue conditional analysis. 909 
There are two major steps in this framework:  910 
 911 
First, at any pre-defined locus, we can derive the formula of conditional analysis 912 
based on marginal associations. Denote ܶ as the trait of interest. The goal is to 913 
perform a multiple regression analysis using ܭ imputed gene expressions in the ݅th 914 
tissue (i.e. ܧ௜ଵ, ..., ܧ௜௄) as predictor variables: 915 ܶ = ∗௜ߛ∗௜ܧ  +  ∗௜ߜ
Here, we use ܧ௜∗ = ,௜ଵܧ) … , ܰ ௜௄) to denote anܧ ×  imputed gene 916 ܭ matrix for ܭ
expressions in the ݅th tissue. Regression coefficients ߛ௜∗ = ,௜ଵߛ) … ,  ௜௄)் are the 917ߛ
parameters of interest. To simplify algebra, we also assume that trait ܶ and all SNPs 918 
in the genotype matrix ܺ are centered so there is no intercept term in the model, but 919 
the conclusions apply to the general setting. Similar to univariate analysis, gene 920 
expressions ܧ௜ଵ, … , ∗௜ܧ ௜௄ are imputed from genetic data via linear prediction models: 921ܧ =  ∗௜ܤܺ
where ܤ௜∗ are imputation weights assigned to SNPs. The ݇th column of ܤ௜∗ denotes 922 
the imputation model for gene expression ܧ௜௞. Then, the OLS estimator ߛො∗ and its 923 
variance-covariance matrix can be denoted as follows: 924 ߛො௜∗ = (∗ො௜ߛ)ݒ݋ܿ ்ܶ(∗௜ܧ)ଵି(∗௜ܧ்(∗௜ܧ)) ≈  ଵି(∗௜ܧ்(∗௜ܧ))(ܶ)ݎܽݒ
The approximation is based on the assumption that imputed gene expressions 925 ܧ௜ଵ, … ,  ௜௄ collectively explain little variance in ܶ, which is reasonable in complex 926ܧ
gene expression genetics if ܭ is not large. We further denote: 927 

௜ܷ ≔ ଵି(∗௜ܧ்(∗௜ܧ))ܰ = ൭ (௜ଵܧ)ݎܽݒ ⋯ ,௜ଵܧ)ݒ݋ܿ ⋮(௜௄ܧ ⋱ ,௜௄ܧ)ݒ݋ܿ⋮ (௜ଵܧ ⋯ (௜௄ܧ)ݎܽݒ ൱ିଵ
 

All elements in matrix ௜ܷ can be approximated using a reference panel ෨ܺ. Therefore, 928 
the z-score for ߛ௜௞ (1 ≤ ݇ ≤ is 929 ܼ௜௞ (ܭ = = (ො௜௞ߛ)݁ݏො௜௞ߛ ௞்ܫ ௜ܷ(ܤ௜∗)்்ܺܶඥܰ( ௜ܷ)௞௞ݎܽݒ(ܶ) = 1ඥ( ௜ܷ)௞௞ ௞்ܫ ௜ܷ(ܤ௜∗)்Θ ෨ܼ 

where ܫ௞ is the ܭ × 1 vector with the ݇th element being 1 and all other elements 930 
equal to 0, Θ is a ܯ × ൫ݎܽݒdiagonal matrix with the ݆th diagonal element being 931 ට ܯ ௝ܺ൯, and similar to the notation in univariate analysis, ෨ܼ is the vector of 932 

SNP-level z-scores from the GWAS of trait ܶ. Importantly, we note that given 933 
imputation models for ܭ gene expressions (i.e. ܤ௜∗), GWAS summary statistics for 934 
trait ܶ (i.e. ෨ܼ), and an external genetic dataset to estimate ௜ܷ and Θ, conditional 935 
analysis can be performed without individual-level genotype and phenotype data. 936 
 937 
In the second step, we combine the conditional analysis association statistics across 938 
different tissues using the GBJ test. Note this is different from the final stage of 939 
UTMOST, which combines the marginal gene-trait-tissue associations. Through these 940 
two steps, LD between eQTL and co-regulation across tissues has been taken into 941 
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account in the test. Specifically, under the null hypothesis (i.e. no SNP-trait 942 
association), ෨ܼ follows a multivariate normal distribution ෨ܼ~ܰ(0,  is the 943 ܦ where ,(ܦ
LD matrix for SNPs and could be estimated using an external reference panel. 944 
Denoting the cross-tissue gene-trait z-scores for gene ݇ as ܼ௞ = (ܼଵ௞, ܼଶ௞, … , ܼ௉௞)், 945 
the covariance matrix of ܼ௞ could be calculated as 946 

Σ௞  = ൫Λ௞்ݒ݋ܿ ෨ܼ൯ = Λ௞்ܦΛ௞, 
where 947 

Λ௞ = (൬ ଵඥ(௎భ)ೖೖ ௞்ܫ ଵܷ(ܤଵ∗)்Θ൰் , ൬ ଵඥ(௎మ)ೖೖ ௞்ܫ ܷଶ(ܤଶ∗)்Θ൰் , … , ൬ ଵඥ(௎ು)ೖೖ ௞்ܫ ܷ௉(ܤ௉∗ )்Θ൰்). 948 

 949 
 950 
Simulation settings 951 
Genotype data from 12,637 individuals in the GERA dataset (dbGaP accession: 952 
phs000674), including 7,432 type-2 diabetes cases (phenotypic information not used) 953 
and 5,205 healthy controls, were used in the simulation studies. We removed SNPs 954 
with missing rate above 0.01 and individuals with genetic relatedness coefficients 955 
above 0.05. The genotype data were imputed to the 1000 Genomes Project Phase 1v3 956 
European samples using the Michigan Imputation Server79. After imputation, we 957 
further removed SNPs with MAF < 0.05. After quality control, 5,932,546 SNPs 958 
remained in the dataset.  959 
 960 
We performed two different simulation studies to evaluate the type-I error rate of our 961 
cross-tissue association test. First, we directly simulated quantitative traits from a 962 
standard normal distribution independent from the genotype data, and then performed 963 
single-tissue association tests for 44 tissues in GTEx and GBJ cross-tissue 964 
association test for all genes using the simulated data. In the second setting, we 965 
simulated genetically-regulated expression components and then simulated the 966 
GWAS trait based on gene expression values. For each gene, we simulated its 967 
expression in three tissues, namely skeletal muscle (N = 361), skin from sun-exposed 968 
lower leg (N = 302), and whole blood (N = 338). Within the ݅ th tissue, the 969 
cis-component of gene expression was generated as ܧ௜ = ௜ܺܤ෠∙௜. We used real effect 970 
sizes ܤ෠∙௜ estimated in our joint imputation model so that the genetic architecture of 971 
gene expression was preserved in the simulations. Next, the quantitative trait value 972 
was simulated as ܻ = ଵܧଵݓ + ଶܧଶݓ + ଷܧଷݓ + ߝ , where ݓ௜  is the effect of gene 973 
expression on the trait in the ݅th tissue. To evaluate type-I error, we set ݓଵ = ଶݓ ଷݓ 974= = 0, i.e. none of the three tissues are relevant to the trait. 975 
 976 
To simulate data under the alternative hypothesis, we generated diverse disease 977 
architectures by considering different number of causal tissues (i.e. 1, 2, or 3) and two 978 
heritability settings (i.e. 0.01 and 0.001). Specifically, we fixed the total variance 979 
explained by ܧଵ ଶܧ , , and ܧଷ  and varied ݓ௜  to simulate different levels of tissue 980 
specificity of the trait. We generated traits using the following three settings: 981 
 982 
Setting 1. ݓଵ = 1, ଶݓ = ଷݓ = 0. Only the first tissue contributes to the disease, the 983 
other two tissues are not relevant. 984 
 985 
Setting 2. ݓଵ = ଶݓ = ଵଶ , ଷݓ  = 0. Both the first and the second tissue contribute equally 986 
to disease, the third tissue is irrelevant to the disease. 987 
 988 
Setting 3. ݓଵ = ଶݓ = ଷݓ = ଵଷ. All three tissues contribute equally to the disease. 989 
 990 
Single-tissue and cross-tissue gene-trait associations were then estimated using the 991 
UTMOST framework. We repeated the whole procedure on 200 randomly selected 992 
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genes. For each gene, we further replicated 5 times. Statistical power is calculated as 993 
the proportion of test p-values reaching the significance threshold, i.e. 0.05/15000 for 994 
both single-tissue and cross-tissue tests and 0.05/45000 for single tissue tests while 995 
accounting for the number of tissues. 996 
 997 
 998 
GWAS data analysis 999 
We applied UTMOST to GWAS summary statistics for 50 complex diseases and traits. 1000 
Details of these 50 studies are summarized in Supplementary Table 4. GWAS 1001 
summary statistics for LDL cholesterol was downloaded from the Global Lipids 1002 
Genetics Consortium website (URLs). Summary statistics from the IGAP stage-I 1003 
analysis was downloaded from the IGAP website (URLs). GWAX result for LOAD was 1004 
downloaded from New York Genome Center website (URLs). ADGC phase 2 1005 
summary statistics were generated by first analyzing individual datasets using logistic 1006 
regression adjusting for age, sex and the first three principal components in the 1007 
program SNPTest v280. Meta-analysis of the individual dataset results was then 1008 
performed using the inverse-variance weighted approach in METAL81. 1009 
 1010 
To identify trait-related tissue, we first used GenoSkyline-Plus, an unsupervised 1011 
learning framework trained on various epigenetic marks from the Roadmap 1012 
Epigenomics Project 82, to quantify tissue-specific functionality in the human genome 1013 
83. We then estimated the enrichment for trait heritability in each tissue’s predicted 1014 
functional genome using LD score regression 34. More specifically, 1015 
annotation-stratified LD scores were estimated using the 1000 Genomes samples of 1016 
European ancestry and a 1-centiMorgan window. GenoSkyline-Plus annotations for 1017 
27 tissues that can be matched between Roadmap and GTEx were included in the LD 1018 
score regression model together with 53 baseline annotations, as previously 1019 
suggested 34. For each tissue-specific annotation, partitioned heritability was 1020 
estimated and enrichment was calculated as the ratio of the proportion of explained 1021 
heritability and the proportion of SNPs in each annotated category. Tissue-trait 1022 
relevance was then ranked based on enrichment p-values. We use term “most 1023 
enriched tissues” to denote the tissues that were most significantly enriched for 1024 
heritability of each trait. Authors of 84 also applied LDSC with tissue specific 1025 
annotations based on GTEx data to infer trait-related tissues. Since UTMOST was 1026 
based on GTEx data, we used an independent data from the Roadmap project to infer 1027 
trait-relevant tissues for the purpose of fair comparison. 1028 
 1029 
In the UTMOST analytical framework, multiple parameters need to be estimated using 1030 
an external reference panel (e.g. LD). We used samples with European ancestry from 1031 
the 1000 Genomes Project for this estimation85. When performing cross-tissue 1032 
association tests, we combined single-tissue statistics from tissues that passed FDR < 1033 
0.05 criteria to reduce noise in the analysis. Genome-wide significance was defined as 1034 
3.3 × 10-6 (i.e. Bonferroni correction based on 15,120 genes that passed the quality 1035 
control steps). For heritability enrichment analysis, we applied LDSC to 27 1036 
GenoSkyline-Plus tissue-specific annotations that have matched tissue types in GTEx 1037 
(Supplementary Table 21). The 53 LDSC baseline annotations were also included in 1038 
the model as previously recommended34. The most and least relevant tissues were 1039 
selected based on the enrichment test p-values. Gene ontology enrichment analysis 1040 
was performed using DAVID86. Protein-protein interaction information was acquired 1041 
from AlzData website (URLs)60. Locus plots for SNP-level GWAS associations were 1042 
generated using LocusZoom87. Manhattan plots were generated using the qqman 1043 
package in R88. 1044 
 1045 
 1046 
Additional QTL data  1047 



 26

Imputation model for liver tissue in the STARNET study (N = 522) was downloaded 1048 
from (URLs). Predictor effects were trained using an elastic-net model with variants 1049 
within 500kb range of the transcription-starting site. Details on the quality control 1050 
procedure has been previously reported20. We have also collected additional eQTL 1051 
and sQTL data for three immune cell types (CD14+ monocytes, CD16+ neutrophils, 1052 
and naive CD4+ T cells; 169-194 samples per tissue) from the BLUEPRINT 1053 
consortium (URLs). eQTLs with FDR < 0.01 and sQTLs with FDR < 0.05 were used in 1054 
the gene-level association analysis for LOAD. 1055 
 1056 
We also downloaded monocyte eQTL summary statistics from the Immune Variation 1057 
Project89 as a comparison with BLUEPRINT results in LOAD. We first compared the 1058 
monocyte eQTL identified in BLUEPRINT with what was identified in this dataset 1059 
(denote as ImmVar). Only a very low fraction (3.5%) of the eQTLs could be replicated 1060 
in ImmVar. We further performed single-tissue analysis on LOAD with weights 1061 
constructed from ImmVar and compared the identified associations with those 1062 
identified using BLUEPRINT data (Supplementary Tables 22-23). Significant genes 1063 
did not match between the two analyses which is most likely due to the small overlap 1064 
of eQTLs between two datasets. However, UTMOST uses the Generalized 1065 
Berk-Jones statistic to combine associations across datasets and therefore has the 1066 
flexibility to incorporate single-tissue associations based on external eQTL studies. As 1067 
we demonstrated in the case study of LDL-C at the SORT1 locus, incorporating 1068 
STARNET liver eQTL significantly increased the statistical power despite the fact that 1069 
liver was an available tissue in GTEx. As sample sizes and tissue types in QTL 1070 
studies continue to grow, UTMOST will be able to incorporate additional data sources 1071 
and provide better results.  1072 
 1073 
Statistical tests 1074 
 1075 
We tested the difference in ܴଶ across genes with one-sided Kolmogorov-Smirnov 1076 
test, which calculates the largest distance between the empirical cumulative 1077 
distribution functions and uses it to test if two distributions are identical 1078 
(Supplementary Figures 3-4).  And we used a paired Wilcoxon rank test to 1079 
compare the number of genes identified in different tissues between different 1080 
methods, which is a non-parametric test used to compare two matched samples to 1081 
access whether their population mean differ (Figure 4, Supplementary Figure 7). 1082 
 1083 
Data Availability 1084 
All data used in the manuscript are publicly available (see URLs). GTEx and GERA 1085 
data can be accessed by application to dbGaP. CommonMind data are available 1086 
through formal application to NIMH. ADGC phase 2 summary statistics used for 1087 
validation are available through NIAGADS portal (see URLs) with accession number 1088 
NG00076. 1089 
 1090 

1091 
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UTMOST (Unified Test for MOlecular SignaTures) is a method for cross-tissue gene 1134 

expression imputation for transcriptome-wide association analyses. Cross-tissue TWAS using 1135 

UTMOST identifies new candidate genes for late-onset Alzheimer’s disease.  1136 
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