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Abstract

Classification of transient and variable light curves is an essential step in using astronomical observations to develop an
understanding of the underlying physical processes from which they arise. However, upcoming deep photometric surveys,
including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which
traditional type estimation procedures are inappropriate. Probabilistic classification is more appropriate for such data but is
incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations
like LSST intend to use the resulting classification probabilities for diverse science objectives, indicating a need for a
metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an
open classification challenge that seeks to identify probabilistic classifiers that can serve many scientific interests. The
Photometric LSST Astronomical Time-series Classification Challenge (PLASTICC) aims to identify promising techniques
for obtaining classification probabilities of transient and variable objects by engaging a broader community beyond
astronomy. Using mock classification probability submissions emulating realistically complex archetypes of those
anticipated of PLASTICC, we compare the sensitivity of two metrics of classification probabilities under various weighting
schemes, finding that both yield results that are qualitatively consistent with intuitive notions of classification performance.
We thus choose as a metric for PLASTICC a weighted modification of the cross-entropy because it can be meaningfully
interpreted in terms of information content. Finally, we propose extensions of our methodology to ever more complex
challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic data products.

Key words: methods: data analysis — methods: statistical — stars: variables: general — supernovae: general — surveys —
techniques: photometric

1. Introduction . . . . . . .
divided into photometric bands in the visible regime. LSST’s

The Large Synoptic Survey Telescope (LSST) will revolu-
tionize time-domain astronomy and the study of transient and
variable objects within and beyond the Milky Way. With its
rapid scan strategy, exquisite depth, and multiple optical filters,
LSST will deliver millions of light curves, comprised of time-
series observations in six electromagnetic wavelength ranges

expansive catalog of light curves will enable unprecedented
population-level studies of time-varying astrophysical sources,
from asteroids to variable stars to active galactic nuclei,
deepening our understanding of stellar aging processes, the
evolution of the most massive galaxies, and the expansion
history of the universe, to name but a few.
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Science output from the LSST data set is, however,
contingent on distinguishing classes of astrophysical sources
from one another. Though photometric light curves like those
of LSST can be used for classification, costly observations of a
high-resolution spectrum have traditionally served as the gold
standard for classification. The volume of objects anticipated
of LSST, as well as the potentially low signal-to-noise ratios
(S/Ns) of the faintest sources, likely exceeds the availability of
spectroscopic follow-up resources; the great majority of LSST’s
time-varying discoveries will never be spectroscopically
confirmed. As such, there is an acute need for classifiers of
photometric light curves that can perform well on data sets that
include a wide variety of sources, including those that are at the
limits of detection.

The Photometric LSST Astronomical Time-series Classifica-
tion Challenge (PLASTICC**) aimed®® to identify and motivate
the development of classification techniques that serve astronom-
ical science goals by engaging the broader community outside
astronomy. PLASTICC’s data set is comprehensive, including
models for well-understood classes, newly observed classes, and
classes that have only been proposed to exist, to simulate
serendipitous discoveries anticipated of LSST (PLASTiCC Team
et al. 2018; Kessler et al. 2019). Additionally, PLASTICC joins the
ranks of a handful of past astronomy classification challenges
including (Kitching et al. 2011, Mapping Dark Matter’®), (Harvey
et al. 2014, Observing Dark Worlds~"), and (Dieleman et al. 2015,
the Galaxy Challenge®®), all hosted on Kaggle,” a platform that
hosts data analytics competitions where seasoned professionals
and amateurs alike can compete to classify, model, and predict
large data sets uploaded by companies or scientific collaborations.
Kaggle attracts a broad userbase, and those without domain
knowledge may provide novel approaches to the problem at
hand.

Classification in astronomy may proceed through images, as
has been done in the contexts of galaxy -classification
(Hoyle 2016), supernova classification (Cabrera-Vives et al.
2017), identification of bars in galaxies (Abraham et al. 2018),
weak lensing estimation®® (Mandelbaum et al. 2014), separa-
tion of Near Earth Asteroids from artifacts in images (Morii
et al. 2016), as well as time-domain classification (Morii et al.
2016; Mahabal et al. 2017; Zevin et al. 2017), and even noise
classification (Zevin et al. 2017; George et al. 2018).
Classification may also proceed from time-series or spectro-
scopic data rather than images, as in Newling et al. (2011),
Richards et al. (2012, 2015), Ishida et al. (2013), Armstrong
et al. (2016), Lochner et al. (2016), and Moller et al. (2016).
Automated classification (Mahabal et al. 2008; Djorgovski
et al. 2011; Bloom et al. 2012; Djorgovski et al. 2012; Narayan
et al. 2018) is becoming increasingly important in time-domain
astronomy due to its potential for speed relative to visual

24 http:/ /plasticcblog.wordpress.com/, https://www.kaggle.com/c/PLASTiCC-
2018

25 PLASTICC was run as a Kaggle challenge from 2018 September 17 to
2018 December 17. Though PLASTICC concluded prior to the final revision
of this paper, the study herein was conducted entirely before the
commencement of PLASTICC, and the draft was submitted to the journal
prior to PLASTICC’s conclusion, hence the use of the present and future
tenses throughout this paper.
26 https: //www.kaggle.com/c/mdm
2 https: //www.kaggle.com/c/DarkWorlds
28 https: //www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
29

https: //www.kaggle.com/
30 http://great3challenge.info/
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inspection by an expert; the sooner one can make follow-up
observations of an interesting object, the more one can learn
about its underlying physical processes and nature.

Classification is intrinsically probabilistic in that the goal is to
constrain the class conditioned on limited data, thereby defining a
posterior probability density, or classification posterior for short,
over all classes for each classified light curve. Probabilities of
classification that are reduced to an estimated class label (say, by
rounding a probability 0 < p < 1 up or down) without a notion
of confidence become deterministic classifications. Such a
reduction of a probability density to a deterministic label discards
information, the impact of which depends on how the
classification results are subsequently used.

Probabilistic classifications could inform decision making
regarding allocation of limited spectroscopic follow-up
resources. To reduce wasting spectroscopic resources dedicated
to a common class whose science use requires spectra, one
might only attempt follow-up observations of the objects with
the highest classification probabilities. Spectroscopic follow up
of a rare class, on the other hand, may be useful enough that an
object with even a moderate probability of being of a very rare
class could be worth the risk.

Perhaps more significantly, classification probabilities may
be propagated through a hierarchical inference of population-
level parameters, enabling scientific investigations to proceed
even when spectra are unavailable. The efficacy of this
application of classification probabilities in the context of
supernova cosmology is an active field of research (Rubin et al.
2015; Roberts et al. 2017; Jones et al. 2018, Malz et al. 2017).
Thus, the impact of a photometry-only survey like LSST can be
greatly enhanced by probabilistic classifications.

In light of the aforementioned benefits of classification
probabilities, PLASTICC will thus accept classifiers producing
classification posteriors.”’ However, probabilistic classifications
are incompatible with the metrics, any quantification of the
performance of a classifier, of deterministic label assignments used
in previous classification challenges (Kessler et al. 2010a, 2010b)
and efforts to develop supernova classifiers (Narayan et al. 2018).
Accuracy, purity, completeness, and contamination are examples
of metrics of deterministic classification estimates that are
commonly used in astronomical applications.

Many deterministic classification metrics can be modified for
evaluation on classification posteriors (Gieseke et al. 2010;
Lochner et al. 2016; Moller et al. 2016; Hon et al.
2017, 2018b), but only by reducing class probabilities to
deterministic labels via evaluation at different cutoffs, the
choice of which may ultimately affect the value of the metric
and thus assessment of the classifier. Furthermore, many such
metrics are restricted to binary classifications (“yes” or “no”)
and thus do not meet the diverse needs of PLASTICC.

If the data are simulated using a fully self-consistent forward
model, a metric of the accuracy of classification posteriors relative
to the true, underlying probabilities would be straightforward.
However, such a simulation procedure would require beginning
with a fully populated probability space over all classes and all
possible light curves, which is an insurmountable challenge.
Therefore, attention must be directed toward defining the criterion
for identifying a winning classifier. In the context of astronomy,

31 Classifiers that only provide deterministic or binary classifications
(including some of the most prevalent classifiers in the field of time-domain
astronomy) will have to convert their results to probability vectors to compete
in PLASTICC.
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concerns about the choice of metric for probabilistic classifications
have been investigated (Kim & Brunner 2017; Florios et al.
2018), though most studies focus on the standard metrics of purity
and completeness. Even within that subset, metric consistency
over a range of classifiers and between different analyses is not
always ensured (Bethapudi & Desai 2018), indicating a need for
further study.

This work explores the problem of how to choose a metric of
probabilistic classifications with intended application to many
science applications. The PLASTICC metric must respect the
information content of probabilistic classifications without redu-
cing point estimates of class; it must be well-defined for nonbinary
classes, going beyond a positive/negative dichotomy inherent to
some traditional metrics. The winning classifier should not favor
one science application above all others, necessitating robustness
against significant class imbalance, both between and within the
training set and test set, as well as other concerning systematics.
Finally, in order for the metric to satisfy the challenge
requirements, the metric must return a single, scalar value.

We perform a systematic exploration of the sensitivity of
metrics of probabilistic classification to anticipated classifier
failure modes using the PRObabilistic CLAssification Metric
(proclam) code (Malz 2018), which is publicly available on
GitHub.?? The mock classification submissions that we use for
this study are described in Section 2. The metrics we consider
are presented in Section 3. The behavior of the metrics as a
function of mock classification results is presented in Section 4.
We discuss extensions of this exploratory framework to more
complex challenge goals in Section 5.

2. Data

We explore the behavior of metrics on mock classification
probabilities with isolated strengths and weaknesses as well as
realistic mock classification probabilities from a publicly
available light-curve catalog. Throughout this paper, data
always refers to mock classification submissions to PLASTICC,
not the PLASTICC light curves; no light curves were simulated,
viewed, or classified in the preparation of this paper.

Our data is in the form of catalogs of N posterior probability
vectors p(m | d,, D, C) over M classes with labels m condi-
tioned on each observed light curve d,, the training set D, and
some parameters C concerning the behavior of the classifier.
We motivate C here before deferring its detailed explanation to
later in Section 2.1.

If a mock classifier produced p(m | d,), it would solely take
the light curve and produce a posterior over classes. Since such
a situation involves no information besides the light curve d,,,
every classifier would produce identical classification submis-
sions p(m | d,). Including the training set D would not remedy
the problem, as every classifier for PLASTICC has access to the
same training set and so would still have no way to produce
different classification submissions p(m|d,, D). Thus, there
must be some other parameters C that are specific to each
classifier and contribute to the mock classification posteriors it
produces.”> We describe below the way in which mock data is
synthesized, and we return to the classifier parameters C later.

32 hitps: //github.com/aimalz/proclam

3 1t should be noted that classification submissions may not be derived in this
way, i.e., the parameters C may not be explicitly known or may indicate a
procedure that does not produce posteriors but, rather, scores of some kind.
However, we assume for these purposes that classifiers produce the
classification posteriors PLASTICC seeks.
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counts
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Figure 1. The number of members of each of 13 mock classes considered in
this work. Class populations were simulated by drawing the number of
members of a given class from a logarithmic distribution to emulate the
extreme class imbalances typical of astronomical samples.

As is anticipated of the real LSST data set, we use class
populations that are logarithmically distributed such that they
span many orders of magnitude. We then take M draws
u, ~ U, 1) from the standard continuous uniform distribu-
tion. These draws {u,} are used to establish a discrete
probability  distribution p(m) = b /3, b*» such that
Zgzlp(m) = 1. From p(m), we draw N = 10 instances
{m,} of a true class m’ for each light curve n in the catalog.

The true class membership distribution of our tests with
M =13 and b = 6 is shown in Figure 1. Though the class
labels for PLASTICC are expected to be randomized, we
artificially order our mock class labels by their prevalence for
ease of visual interpretation. Once the true classes have been
set, mock classification probabilities for each class are derived
using the procedure described in Section 2.1.

2.1. Mock Classification Schemes

In order to observe metric performance on different
classification schemes, we simulate some archetypal mock
classifiers, devised to produce generic responses to a classifica-
tion challenge, without any interaction with actual challenge
data, nor any other light curves. We use these mock classifiers to
investigate how the performance under each metric changes in
the presence of certain types of failure modes, or systematics. A
robust metric should not reward classification schemes that
display these systematic effects.

The archetypal systematics can be seen as modifications to
the confusion matrix, a measure of deterministic classification
(Bloom et al. 2012). The confusion matrix is an M x M table
of observed counts (or, if normalized, rates) of pairs of
estimated class labels 72 (columns) and true classes m’ (rows)
computed after a deterministic classification has been per-
formed on some data set with N objects.

Under a binary deterministic classification between positive
and negative possibilities, the confusion matrix contains the
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numbers of true positives TP, false positives FP (Type 1 error),
true negatives TN, and false negatives FN (Type 2 error),
which can be turned into rates relative to the true numbers of
positive and negative instances. These rates may serve as
building blocks for more sophisticated metrics of multi-class
deterministic classifiers addressed in Section 3. Though
probabilistic classifications are not compatible with the
confusion matrix, regardless of normalization, we design tests
around proposed normalized confusion matrices exhibiting
various systematics that we anticipate being problematic
for LSST.

Under a deterministic classification scheme with a normal-
ized confusion matrix with elements p (71, m’), an object with
true class m’ would have an assigned class #m drawn from
pi | m') = p(n, m'")/p(m’), via Bayes’ Rule. We note that
the elements of the confusion matrix have values of Np (rit, m’)
and that p(m’) = N,//N, where N, is the number of true
members of class m’, must be known in order to produce a
confusion matrix. We refer to the matrix C composed of
p(i | m’) as the conditional probability matrix (CPM), and we
use it to derive mock classification posteriors.

Assuming the light curves contain information about the true
class (an assumption that underlies classification as a whole),
we can use the appropriate row C,’ = p(if | m’, C) of the
CPM C as a proxy for p(m|d,, D, C), without directly
classifying light curves themselves.”* To emulate the effect of
natural variation of information content in different light curves
(e.g., a noisy light curve has less information to recover than
one with a higher S/N) using the above, we generate a
posterior probability vector p(m | m’, C) by taking a Dirichlet-
distributed draw

p(m|d,, D, C) ~ Dir[C,, /] ey

about (Cm”/, with a small nonnegative perturbation factor
6 = 0.01. In this way, the posterior probability vector has an
expected value equal to the appropriate row in the CPM, with a
variance set by . We impose one restriction in addition to the
normalization factor of Equation (1), namely, that all elements
of p(m | d,, D, C) exceed 10~®, to ensure numerical stability in
light of the limitations of floating point precision.

We consider eight mock classifiers, each characterized by a
single systematic affecting their CPM. Figure 2 shows the
CPMs corresponding to each systematic considered, discussed
in detail below.

For each of our archetypal mock classifiers, we address:

1. What characteristic behavior defines this classifier?

2. Under what conditions does this behavior arise in real
classifications?

3. What are our expectations of and desires for the response
of the metric to this archetypal classifier?

An actual classifier is expected to be more complex than the
simplified cases of Figure 2, with different systematic behavior
for each class. An example of a combined CPM across different
classes and systematics is given in the top panel of Figure 3.
The rows of this CPM correspond to rows of the archetypal
classifiers of Figure 2. To demonstrate the procedure by which
mock classification posteriors are generated from rows of the
CPM, we provide 26 examples of draws of the posterior CPM

3 This assumption is key to the generality of this work, which was conducted
without any knowledge of the PLASTICC data set simulation procedure.
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in the bottom panel of Figure 3. Given a set of true class
identities, the mock classification posteriors of the bottom panel
are Dirichlet draws from the corresponding row of the CPM of
the top panel.

2.1.1. Uncertain Classification

A CPM U with uniform probabilities for all classes, as
shown in the leftmost top panel of Figure 2, would correspond
to uniform random guesses for deterministic classification, but
in accordance with Equation (1), the classification posteriors
are perturbations away from a uniform distribution across all
classes. The peak values of one such classification posterior
would correspond to random classification drawn from a
uniform distribution, with p(m’|d,, D, Cy) ~ M~!. We can
consider the uncertain classifier as an experimental control for
the least effective possible classification scheme, bearing in
mind that if classifications were anticorrelated with true classes,
the experimenter could simply reassign the classification labels
to improve performance under any metric.

2.1.2. Accurate Classification

The perfect classifier has a diagonal CPM I (left-center top
panel of Figure 2), which would correspond to deterministic
classifications that are always correct. In terms of probabilistic
classifications, a perfect result would be a classification
posterior with 1 for the true class and O for all other classes.
In accordance with the classification posterior synthesis scheme
of Equation (1), the class with maximum probability is almost
always still the true class, and indeed with N ~ 10° and
6 = 0.01, this is always true. This case is also a control, in that
PLASTICC would not be necessary if we believed the perfect
classifier were potentially achievable.

In addition to a perfect classifier, we test linear combinations
C = (s + 1) ! (sI + U) of the perfect and uncertain CPMs
where the contribution of the perfect classifier is greater than
that of the uncertain classifier by a factor of s > 0.
Deterministic classifications drawn from such a CPM would
be correct s times as often as they take any one wrong label,
and the incorrect labels would be uncorrelated across classes.
The classification posteriors drawn from such CPMs would
have some probability at classes other than the true class, but
almost all would still have their peak value at their true class.
We consider the case of the almost perfect classifier with s = 4
(right-center top panel of Figure 2) and the noisy classifier with
s = 2 (rightmost top panel of Figure 2).

A classifier with different accuracy for each class may be
considered a systematic in its own right. An extreme example of
such a classifier is one with perfect classification performance on
one class and uncertain classification on all others. This classifier’s
CPM would be uniform except for one row, which would take a
value of unity on the diagonal and zero elsewhere; if the classifier
were also resilient against Type 1 errors, the CPM would also take
zeros along the column in question, aside from the value of unity
on the diagonal. For a single science application, this type of
classifier is desirable, but the goal of PLASTICC is to serve the
needs of those who study a wide variety of classes for different
purposes. Hence, from the perspective of PLASTICC, we seek a
metric that disfavors the tunnel vision classifier (leftmost bottom
panel of Figure 2).
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Figure 2. Conditional probability matrices (CPMs) for eight mock classifiers. Top row: the uncertain classifier’s uniform CPM; the perfect classifier’s identity CPM;
the almost perfect classifier’s CPM, a linear combination of one part uniform and four parts identity; the noisy classifier’s CPM, a linear combination of one part
uniform and two parts identity. Bottom row: the tunnel vision classifier’s CPM is uniform except at the row and column corresponding to one class, where it takes the
values of the identity matrix; the cruise control classifier’s CPM, which has every row equal to a particular row of the identity; the subsuming classifier’s CPM, which
has two or more rows equal to one another; the mutually subsuming classifier’s CPM, a symmetric case of the subsuming classifier. The top row shows CPMs that
serve as unbiased control cases. The CPMs of the bottom row represent concerning systematics that we would like to ensure are not rewarded by the PLASTICC metric.

2.1.3. Inaccurate Classification

If a deterministic classifier is systematically inaccurate, its
CPM has significant off-diagonal contributions. We model
inaccurate probabilistic classifications of class m’ by using the
row of the CPM corresponding to class 7 as the basis for the
perturbed probability vector p(m | m') = p(m | ). Class m’ is
said to be subsumed by class i by a classifier that absorbs class
m' into class s (right-central bottom panel of Figure 2). The
subsuming classifier may be asymmetric, or the classes may be
mutually subsumed (rightmost bottom panel of Figure 2) if one
already has significant off-diagonal probability, as is true for
the uncertain classifier.

Subsuming is not always the mark of a poor classifier and
may be insurmountable by more sophisticated classification
techniques. Real classification posteriors p(m | d,, D, C) are
conditioned on light curves, training data, and assumptions
necessary for the classification algorithm, and there may simply
not be enough information in a light curve and/or training set
to distinguish between classes.

For example, based on only the first few light-curve points, it
is sometimes impossible to separate cataclysmic variables (stars
that are not destroyed and can brighten and fade many times)
from supernovae, which are stars that are completely destroyed
in their explosions. Even with observations over extended
periods, it can still be impossible to distinguish cataclysmic
variables from active galactic nuclei that result from activity
near a galaxy’s central black hole. Similarly, tidal disruption
events that occur when stars are destroyed by proximity to the
central black hole of a galaxy can look much like supernovae
that simply happen to be near a galaxy’s center. When the prior
information of the location of the source is more informative
than its sparse, noisy, irregularly sampled, or short light curve,
it may present a challenge no classifier can overcome, a
fundamental limit on available information about the object.

Distinguishing between subclasses of a single phenomenon
is subject to limits not only on the light curves of the unknown

targets but also by the availability of adequate training sets. It is
nonetheless essential to identify subclasses when they have
wholly different science applications. As an example, super-
novae (SN) Ia and Ibc are notorious for being difficult to
distinguish. In fact, it is more common for SN Ibc to be
misclassified as SN Ia than the other way around. This
asymmetry is due to systematic underrepresentation of SN Ibc
in available training sets. However, SN Ibc contaminants in the
traditional cosmology analysis done with SN Ia can bias
estimates of the cosmological parameters, so the distinction is
critical.

Class imbalance is a ubiquitous problem in astronomy that
can severely exacerbate this form of inaccuracy, as the relative
rates of various astrophysical events and objects differ by
orders of magnitude from one another. For example, RRc and
RRd Lyrae stars are challenging to separate despite having
different pulsation modes, and RRd stars, due to their rarity, are
typically subsumed by RRc labels.

An extreme case of inaccurate classification is to classify all
objects as the most common class (in the training or test set),
which is of particular concern to PLASTICC given nonrepre-
sentative class balance of the training set. Such a cruise control
classifier (left-center bottom panel of Figure 2) counters
PLASTICC’s goal of identifying objects belonging to extremely
rare classes. We would like the PLASTICC metric to reward a
classifier that successfully avoids this kind of error.

2.2. Realistic Classifications

In order to understand the performance of classifiers on
simulated data sets approximating reality, we calculate the
values of our metric candidates on representative classifiers of a
precursor light-curve classification challenge. The Supernova
Photometric Classification Challenge (SNPHOTCC; Kessler et al.
2010b) focused on deterministically classifying a heteroge-
neous population of supernovae into subclasses of SN Ia, SN II,
and SN Ibc.
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Figure 3. A realistically complex CPM and classification posteriors drawn
from it. Top panel: an example of a realistically complex CPM, constructed by
selecting a systematic for each individual class. This illustrates (for example),
how a classifier may exhibit multiple systematics from Figure 2 for each true
class. Bottom panel: example classification probabilities, drawn from the above
CPM, with their true class indicated by a star and the systematic, characterized
by its row in the CPM, affecting that true class described on the right. The
Dirichlet process emulates the variation in classification posteriors due to
differences between light curves within a given class, leading to different
classification posteriors even among rows sharing a true class.

The SNPHOTCC attracted diverse classification approaches,
encompassing X fits of the supernova light curves to publicly
available templates (Nugent et al. 2002), empirical models
(Conley et al. 2008), as well as alternatives to curve-fitting such
as outlier identification on the training set Hubble diagram,
dimensionality reduction, and clustering. Machine learning was
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also employed, using features such as the light-curve slopes to
produce a predictive model for the training data.

Since the conclusion of the SNPHOTCC, the light curves
became a testbed for a suite of machine-learning classifiers. We
consider a collection of probabilistic classification methods, as
presented in Lochner et al. (2016), whose CPMs™ are shown in
Figure 4.

The set of classification algorithms includes template-based
classification procedures, denoted as T, (Sako et al. 2011, top
row) and a wavelet decomposition, denoted as W, of the light
curves to construct the features over which to classify (Newling
et al. (2011), bottom row), each paired with Boosted Decision
Tree (BDT), K-Nearest Neighbors (KNN), Naive Bayes (NB),
Neural Network (NN), and Support Vector Machine (SVM)
machine-learning algorithms (columns). While the complexity
of entries to the SNPHOTCC was greater than this subset, we use
these examples to establish the behavior of our metrics on
realistic classification submissions.

We draw attention to the marked presence of the systematics
introduced in Section 2.1 in the CPMs of Figure 4. Note that
the WNN and WNB methods both suffer from the cruise
control systematic on SN II, which were the most prevalent in
the SNPHOTCC data set. Nearly all of the other CPMs exhibit
classifications that are almost perfect for SN Ia, perfect for SN
II, and noisy for SN Ibc. A likely cause for this effect is that SN
Ibc are poorly represented in training and template sets.

3. Methods

To optimally discriminate between classification techniques,
there must be a performance metric, a single scalar value
quantifying how appropriate a classifier is for the task at hand.
Choosing a metric for PLASTICC therefore is logically entwined
with the challenge goals.

In Section 3.1, we review a familiar binary, deterministic
metric of light-curve classification in astronomy. In Section 3.2,
we introduce metrics appropriate for multi-class probabilistic
classification. We take weighted averages of the per-object
metrics with per-class weights described in Section 3.3.

3.1. Science-motivated Deterministic Metric

We begin with a presentation of a classification metric that
has been used in the evaluation of astronomical light-curve
classifiers in the recent past. The metric we highlight makes use
of the notions of true positive, false positive, and false negative
counts from binary deterministic classification. We briefly
define the efficiency ¢ = TP/(TP 4+ EN) and purity m™ =
TP/(TP + FP).

The goal of the SNPHOTCC was to identify one particular
type of astrophysical source, SN Ia, for a single scientific
application, cosmology. As the SNPHOTCC was only concerned
with SN Ia cosmology, it was effectively binary, in that the
metric did not distinguish between non-la classes. Since the
only SN Ia that would be considered for a cosmology analysis
at the time were those with spectroscopic redshifts, the
classification was not only binary but also deterministic. The
SNPHOTCC metric FOM = ¢ - 7 is the product of the efficiency

35 The classifiers of Lochner et al. (2016) are indeed probabilistic but are
reduced to confusion matrices via deterministic labels (by assigning a label of
the class achieving the highest probability) for this visualization and the
science-motivated metric of Section 3.1. In all other instances, the classification
posteriors are used directly.
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Figure 4. Conditional probability matrices (CPMs) of the Lochner et al. (2016) methods applied to the second post-challenge release of the SNPHOTCC data set.
Columns: the five machine-learning methods of Boosted Decision Tree (BDT), K-Nearest Neighbors (KNN), Naive Bayes (NB), Neural Network (NN), and Support
Vector Machine (SVM). Top row: five machine-learning methods applied to template decompositions as features. Bottom row: the same five machine-learning
methods applied to wavelet decompositions as features. These CPMs derived from the data set of a precursor light-curve classification challenge by modern methods
exhibit some of the systematics identified in Section 2.1 and Figure 2, particularly cruise control (WKNN, WNB), noisy (class Ibc in all but TBDT and WKNN), and
perfect (class II in all). It is worth noting that Lochner et al. (2016) applies their classification to a representative sub-sample of the SNPHOTCC data selected once the
challenge was complete, circumventing some of the issues of nonrepresentativity present in the original submissions to the SNPHOTCC.

of SN Ia classification and a modification & = TP/(TP + rFP)
of the purity in terms of a penalty factor r. The inclusion of this
second term was motivated by the potential impact on
cosmological parameter constraints due to contamination of
the SN Ia sample by non-la classes. The pseudo-purity can be
interpreted as the traditional purity when r = 1 as it is related
to the size of the spectroscopic sample; for the SNPHOTCC,
r = 3 was used.

3.2. Probabilistic Metrics

In contrast to SNPHOTCC'’s sole goal of optimal deterministic
classification of a single class, PLASTICC seeks to identify
classifiers that produce multi-class classification posteriors. We
consider two metrics of classification probabilities that avoid
reducing probabilities to deterministic labels.

Our probabilistic metrics are composed of quantities defined
for each possible class m among M potential classes available
to light curve n, which is a true member of the set S, of
astrophysical sources of class m’. The metric value Q, =
Z%:l Q,.m for a single light curve n is a sum of the per-class
per-light-curve metric values Q,,. The metric value
Ow = Y pes,, On for an entire class m' is the sum of the per-
light-curve metrics. Section 3.3 discusses how the global
metrics are derived from the per-class metrics Q,,’.

As part of the derivation of the per-class per-light-curve
metrics, we also define the indicator variable

_{0 m =m

Tn’m:
1 m'=m

2

that indicates if an object has been correctly classified as its
true type.

3.2.1. Log-loss

The log-loss is a quantity borrowed from information
theory and is related to a notion of entropy H, =
—Z%:lp(mld,,)ln[p(m | d,)], a measure of the space of

possible states a system can have, which is, in this case, the
class of which a light curve can be a member. A classification
posterior p(m | d,,) has minimal entropy if it takes a value of 1
at some class and values of 0 at all others, i.e., if it can trivially
be reduced to a deterministic classification, because this is the
scenario in which there is only one possible state, that the light
curve has a true class m. This definition of entropy, however, is
a property of the probability p(m|d,) and has no relation with
any concept of the true class of the light curve m'.

To reconcile the classification posterior with the true class
known by those running a challenge, we define the cross-
entropy

M
L,=Qy ==Y Tumnlp(m | dy)], 3)

m=1

which can be interpreted as the spuriously oversized space of
possible states (an increase in disorder) due to using the
classification posterior in place of the indicator variable.
Whereas H,, is minimized to a value of 0 by any deterministic
classification, L, is minimized to a value of O only if 7,, and
p(m | d,) are equal to one another. It can also be proven that the
uncertain classifier of Section 2.1.1 maximizes L, (Mur-
phy 2012). As an aside, a difference between L, and H,
evaluated at 7, , would be the information lost to disorder in
using p(m | d,,) in place of 7, also known as the Kullback-
Leibler Divergence (KLD); see Malz et al. (2018) for a
comprehensive exploration of the KLD for a continuous one-
dimensional probability space.

The log-loss has only recently established a presence in the
astronomy literature (Hon et al. 2017, 2018a). Its greatest
strength is that it is straightforwardly interpretable, enabling the
metric itself to contribute to uncertainty propagation in an
inference problem using the probability densities provided by
the classifier.
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3.2.2. Brier Score

The Brier score (Brier 1950), given as

M

B, =02 =" (tum— p(m|dy)?, )

m=1

is a mean square error calculated between the indicator variable
and the classification posterior. Unlike the log-loss, the Brier
score has been used extensively in solar flare forecasting
(Crown 2012; Mays et al. 2015; Florios et al. 2018), stellar
variability identification (Richards et al. 2012; Armstrong et al.
2016), and star-galaxy separation (Kim et al. 2015).

As with the log-loss, the Brier score is minimized to 0 only
for a perfect classifier. The Brier score is an attractive option
because it both rewards classifiers for assigning more
probability to the true class and penalizes classifiers for
assigning any probability to classes other than the true class, in
contrast to the log-loss, which only accounts for probability
assigned to the true class. We expect this difference to
significantly distinguish the Brier score from the log-loss.

The interpretation of the Brier score is less obvious than that
of the log-loss, as its dimensions depend on those of the
probability space upon which the classification posteriors are
defined. In addition, modifying it with weights requires
choosing whether to weight only per-object values B,, or also
the individual terms B, ,, contributing to it. We leave to future
work the thorough investigation of a nontrivial weighting
scheme on the Brier metric, however, opting to treat both
metrics the same, according to the weighting scheme of
Section 3.3, in our implementation.

3.3. Weights

The most concerning systematics discussed in Section 2.1
are those of tunnel vision and cruise control. The actual light-
curve data stream of LSST will be particularly vulnerable to
both, due to extreme class imbalance and class hierarchy (for
example different subtypes of a single transient or variable
class). This susceptibility is compounded by the nonrepresen-
tativity of the PLASTICC training set, which is designed to
reflect the nonrepresentativity anticipated of LSST. Any metric
under equal weight per light curve would incentivize tunnel
vision and cruise control focused on the most prevalent class.
In order to meet the needs of science cases concerning other,
rarer classes, PLASTICC’s metric will be more nuanced, even if
it complicates the interpretability of the metric.

One option is to apply a threshold of classification efficacy
on all classes in order to assign an overall winner, though it
would require reducing the -classification probabilities to
deterministic class labels. When doing binary classification
with a method that reduces probabilities to deterministic class
labels, each light curve is assigned the class of higher
probability, even if the two probabilities are quite similar, a
situation that is particularly likely if the light curve, in fact,
belongs to a third class or if the two classes are subclasses
of a single physical phenomenon. A simple reduction to
a deterministic label could be made more palatable with a
secondary threshold mechanism. For example, requiring a
minimum difference in probability density between the
maximum probability class and the next highest probability
class would help avert this degeneracy.

Malz et al.

A simpler alternative that we investigate in this paper is to
use a weighted average

0= ;ZWQO )]

mem m

of per-class metrics Q,,. (While weights could be assigned to
each term Q,,, we do not consider this complexity at this
time.) Weights that are not proportional to N~' nor M~! may be
chosen to encourage challenge participants to direct more
attention to classes with less active classification efforts or
those that have been historically more difficult to classify due
to observational limitations.

Downweighting the metrics of classes affected by counter-
productive systematics could mitigate the impact of the tunnel
vision or cruise control classifiers. The weights for the
PLASTICC metric, however, must be determined before there
is knowledge of which systematics affect which classes.
Because of this caveat, the choice of weights is isolated to an
inherently human problem dictated by the value placed on the
scientific merits of knowledge of each class. This paper, on the
other hand, can only quantify the impact of weights in relation
to the systematics. We thus agnostically test weighting
schemes®® where classes affected by a particular systematic
take a given weight 0 < w < 1 and all other classes have a
weight (1 — w)/(M — 1).

4. Results

In the following sections, we explore the response of the log-
loss and Brier score metrics to the classifiers of Section 2 and as
a function of the weights on affected classes.

4.1. Mock Classifier Systematics

We simulate probabilistic classifications as potential sub-
missions to PLASTICC by the methodology of Section 2.1 based
on CPMs composed of pairs of the characteristic classifiers
shown in Figure 5 under various weightings described below.

The systematics introduced to each baseline are those that we
intuitively expect to worsen classification performance of an
arbitrary classifier:

1. the uncertain, almost perfect, noisy, and subsuming
classifiers are anticipated to worsen an otherwise perfect
classifier;

2. the uncertain, noisy, and subsuming classifiers are
anticipated to worsen an otherwise almost perfect
classifier;

3. the uncertain and subsuming classifiers are anticipated to
worsen an otherwise noisy classifier.

In every case, we apply the systematic to one true class, which
corresponds to transforming one row of the baseline CPM.
The introduction of weights illustrates the effect each
particular systematic has on a given baseline, and more
importantly, how up- (or down-) weighting the affected class
changes the overall metric value for the mock classifier.

36 The weights considered in this study are more extreme than those ultimately
used for PLASTICC because the true weights were blinded from some authors
prior to the end of the challenge. However, we note that the weights could be
(and in fact were) discovered by PLASTICC competitors by systematically
probing the output of the public leader board with entries from the cruise
control classifier archetype targeting each class one at a time.
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Figure 5. Weighted log-loss and Brier scores for baseline classifiers with combinations of systematics. Each point represents a classifier with a shared baseline
behavior (regular polygon marker; triangle for perfect, diamond for almost perfect, square for noisy) for all but one class, which is affected by a particular systematic
(asterisk markers; plus for almost perfect, cross for noisy, dot for uncertain, and Y-shape for subsumed). The color of the marker for the systematic effect indicates the
weight on the one class affected by that systematic, while the color of the baseline behavior marker indicates the integrated weight evenly distributed over other classes
with baseline behavior, where lower weights are greener and higher weights are bluer. From left to right, we zoom in on a particular range of scores, to highlight the
scale of the effect of weighted systematics on the metrics for well-behaved methods with low Brier/log-loss values. The ranges of Brier score and log-loss values
between the panels are in ratios of approximately 10:7:3 and 100:10:5, respectively, indicating the log-loss’s higher sensitivity to the presence of systematics. The
metrics are most sensitive to the subsuming systematic on a perfect baseline (triangle with Y-shaped marker), whereas other combinations of baseline and systematic

can be grouped with a smaller dynamic range in both metrics.

Weighting schemes are defined by a weight 0 < w < 1 on the
affected class, with the remaining baseline classes sharing
equal weight (1 — w) /(M — 1); we test 11 weighting schemes
with w = 0., 0.1, ..., 1.. A higher weight on the systematic
corresponds to a lower weight on the more desirable baseline,
causing both the log-loss and Brier score to increase. This
variation in weights establishes linear relationships between the
log-loss and Brier score metrics for each pair of baseline and
systematic, but the slope is related to the relative sensitivity of
the metrics.

Figure 5 confirms that for all weight on the perfect classifier,
the values of both metrics vanish to zero. It is worth noting that
the log-loss has a more dynamic range than the Brier score
overall, and that the log-loss is acutely sensitive to the
subsuming systematic on a baseline of a perfect classifier.
However, the relative scales of metric values for different
baseline-plus-systematic pairs are quite large, requiring three
panels, zooming in from left to right.

The left panel of Figure 5 shows the largest variations in
metric scores, for the combination of the perfect baseline and a
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Table 1
Metric Values Computed Using Equation (5) with All Weight on the Mock
Class Affected by the Indicated Systematic, Described in Section 2.1,
Corresponding to the w = 1 Cases in Figure 5

Classifier Characteristic Brier Score Log-loss
Perfect 0.0 0.0
Almost Perfect 0.042 0.225
Noisy 0.113 0.408
Uncertain 0.253 0.699
Subsumed from Noisy 0.447 1.109
Subsumed from Almost 0.641 1.629
Subsumed from Perfect 1.0 18.421%

Notes. While the log-loss metric has a larger dynamic range than the Brier
score for poor classification, the archetypal classifiers would be ranked (lower
values are better) the same way by either metric.

 The entry for the log-loss of a classifier that subsumes a class into one that is
otherwise perfectly classified should be infinite but is bounded by the
numerical precision of our calculations.

subsuming systematic where one class is given a probability of
1 for being in another particular class and a probability of O for
being in its true class. This means both metrics are acutely
sensitive to the subsuming systematic on a perfect baseline,
which can only be overcome by aggressive downweighting. In
fact, the log-loss value for a classifier that subsumes a class into
one that is classified perfectly should be infinite if the classes
unaffected by the systematic have no weight; it is only finite for
us because of the limits of numerical precision.

The middle panel of Figure 5 illustrates a narrower range of
log-loss and Brier score for the subsuming systematic on the
almost perfect and noisy classifier baselines. The subsuming
systematic on any baseline besides the perfect classifier defines
a new regime of high but not infinite values of the metrics.

The right panel of Figure 5 shows the values for all other
systematics on all baselines. Though the slope is lower than in
the other panels, the dynamic range of the log-loss remains
higher; in other words, the log-loss is in general more sensitive
to systematics than the Brier score.

In summary, both the log-loss and Brier score are most
sensitive to the subsuming systematic than any other
systematic. Tuning the weights can provide an avenue toward
imposing a global metric penalty on classifiers exhibiting a
systematic on one class.

When all weight is on the class exhibiting the systematic,
there is a characteristic limit for each metric’s values, shown in
Table 1. Because a subsumed class takes the conditional
probability vector of the subsuming class, the metric values
depend on what systematics may be affecting the subsuming
class as well. While the two metrics obviously take different
values, in accordance with their slopes given in Table 2, they
do agree on the ranking of these classifiers. Though this
agreement is not in general guaranteed, it is a desirable
behavior, indicating that these metrics would lead to the same
conclusion about the severity of each systematic.

The relative sensitivity ratios of the log-loss to the Brier
score are the slopes in the trends of Figure 5 and are given in
Table 2. The log-loss always has higher sensitivity than the
Brier score (i.e., it responds more strongly to up-weighting
classes affected by a systematic), particularly to the difference
between the perfect classifier and any lesser classifier. A
possible implication of this behavior is that the log-loss
may have an enhanced ability to distinguish between multiple
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Figure 6. The rankings of each of the five snmachine classification
algorithms (Boosted Decision Tree (BDT), K-Nearest Neighbors (KNN), Naive
Bayes (NB), Neural Network (NN), and Support Vector Machine (SVM)) on
template (T*) and wavelet (W™) features with equal weight per object under the
three metrics. The metrics broadly agree on the ranking of the classifiers,
confirming consistency between a conventional metric of classification
performance and the metrics of probabilistic classifications presented here.
However, there are some differences with pairwise swapping between the log-
loss and Brier rankings and some significant reordering of ranks 2 through 5
with the FoM metric relative to the probabilistic metrics.

Table 2
The Slopes for Each Baseline-plus-systematic Pair in the Space of Log-loss vs.
Brier Score

Systematics

Baselines Subsumed Uncertain Noisy Almost
Perfect 18.421 2.763 3.601 5.387
Almost Perfect 2.343 2.246 2.556
Noisy 2.102 2.085

Note. A higher slope corresponds to increased sensitivity of the log-loss over
the Brier score to the systematic-baseline pair in question. The contrast between
log-loss and Brier score is highest on a baseline of the perfect classifier,
meaning the log-loss may more strongly discriminate between classifiers that
are already extremely good.

high-performing classifiers that might not have meaningfully
different metric values under the Brier score.

On the other hand, the log-loss can be seen as more
susceptible to the tunnel vision classifier because its value
improves sharply with any move toward perfection. If the
subsumed class has little weight, the metric values are quite low,
moreso for the log-loss than the Brier score. This means that
under a population-proportional weighting scheme, it would not
be penalized for subsuming an uncommon class if it performed
well for a more common class, a situation that would not serve
the needs of the astronomical community.

4.2. Representative Classifications

We apply the log-loss and Brier metrics to the classification
output from snmachine. While the classification methods
described in Lochner et al. (2016) refer to the idealized subset
of the SNPHOTCC data, these approaches are the state-of-the-art
in classification of extragalactic transients. We present in
Figure 6 the rankings under the log-loss and Brier score metrics
assuming an equal weight per object.

We apply our metrics to the classification output from
snmachine applied to the SNPHOTCC data set as an example
of representative light curves and representative classifiers used
in extragalactic astronomy. We present in Figure 6 the rankings
of each classifier under the log-loss and Brier scores assuming



THE ASTRONOMICAL JOURNAL, 158:171 (14pp), 2019 November

an equal weight per object, as well as the original SNPHOTCC
metric described in Section 3.1.

The Brier score, log-loss, and SNPHOTCC FoM are in
agreement as to the first- and last-ranked classifiers. This
consensus indicates that both of the potential PLASTICC metrics
are roughly consistent with our intuition about what makes a
good classifier, providing an anchor between accepted notions
of an appropriate metric and the metrics of probabilistic
classifications under consideration here. One should be careful
not to generalize, however, as the rankings under the three
metrics are not identical.

We note that the FoM differs more from the Brier score and
log-loss metrics than they do from one another. This is perhaps
unsurprising, given that the SNPHOTCC was specifically
looking to value classification algorithms that were pure (that
yielded a large number of SNIa classifications and few
interlopers from the other classes), as opposed to metric that
rewards good performance across classes.

5. Discussion

The goal of this work is to identify the metric most suited to
PLASTICC, which seeks classification posteriors of complete
light curves similar to those anticipated from LSST, with an
emphasis on classification over all types, rewarding a “best in
show” classifier rather than focusing on any one class or
scientific application.”’ The weighted log-loss is thus the metric
most suited to the current PLASTICC release.

Because transient and variable object classification is crucial
for a variety of scientific objectives, the impact of a shared
performance metric on this diversity of goals leads to complex
and covariant trade-offs. Though the selection criteria for
metrics specific to each science goal are outside of the scope of
this work, which concerns only the first instantiation of
PLASTICC, we discuss below some issues concerning the
identification of metrics for a few example science cases.

5.1. Ongoing Transient Follow Up

Spectroscopic follow up is only expected of a small fraction
of LSST’s detected transients and variable objects due to limited
resources for such observations. In addition to optical spectro-
scopic follow up, photometric observations in other wavelength
bands (near-infrared and X-ray from space; microwave and
radio from the ground) or at different times will be key to
building a physical understanding of the object, particularly as
we enter the era of multi-messenger astronomy with the added
possibility of optical gravitational wave signatures. Prompt
follow-up observations are highly informative for fitting
models to the light curves of familiar source classes and to
characterizing anomalous light curves that could indicate
never-before-seen classes that have eluded identification due
to rarity or faintness. As such, decisions about follow-up
resource allocation must be made quickly and under the
constraint that resources wasted on a misclassification consume
the budget remaining for future follow-up attempts. A future
version of PLASTICC focused on early light-curve classification
should have a metric that accounts for these limitations and
rewards classifiers that perform better even when fewer
observations of the light curve are available.

37" At the conclusion of PLASTICC, other metrics specific to scientific uses of
one or more particular classes will be used to identify “best in class”
classification procedures that will be useful for more targeted science cases.
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We consider the decision of whether to initiate follow-up
observations to be binary and deterministic. However, it is
possible to conceive of nonbinary decisions about follow-up
resources; for example, one could choose between dedicating
several hours on a spectroscopic instrument following up on
one likely candidate or dedicating an hour each on several less
likely candidates. Here, we will discuss a metric for an early
classification challenge to be focused on deterministic
classification because the conversion between classification
posteriors and decisions is uncharted territory that we do not
explore at this time.

Even within the scope of spectroscopic follow up as a
primary motivation for early light-curve classification, the
goals of model-fitting to known classes and discovery of new
classes would likely not share an optimal metric. The critical
question for choosing the most appropriate metric for any
specific science goal motivating follow-up observations is to
maximize information. We provide two examples of the kind of
information one must maximize via early light-curve classifica-
tion and the qualities of a deterministic metric that might
enable it.

5.2. Spectroscopic Supernova Cosmology

Supernova cosmology with spectroscopically confirmed
light curves benefits from true positives, which contribute to
the constraining power of the analysis by including one more
data point; when the class in which one is interested is as
plentiful as SN Ia and our resources limited a priori, we may
not be concerned by a high rate of false negatives. False
positives, on the other hand, may not enter the cosmology
analysis, but they consume follow-up resources, thereby
depriving the endeavor of the constraining power due to a
single SN Ia.

A perfect classifier would lead to a maximum amount of
information about the cosmological parameters conditioned on
the follow-up resource budget. Consider deterministic labels
derived from cutoffs in probabilistic classifications for this
scientific application; raising the probability cutoff reduces the
number of false positives, boosting the cosmological constrain-
ing power, but at the cost of increasing the number of false
negatives, which represent constraining power forgone. As this
tradeoff is asymmetric, it is insufficient to consider only the
true and false positive and negative rates, as the SNPHOTCC
FoM does, without propagating their impact on the information
gained about the cosmological parameters.

5.3. Anomalous Transient and Variable Detection

A particularly exciting science case is anomaly detection, the
discovery of entirely unknown classes of transient or variable
astrophysical sources, or distinguishing some of the rarest types
of sources from more abundant types. Like the case of
spectroscopic supernova cosmology discussed above, anomaly
detection also gains information only from true positives, but
the cost function is different in that the potential information
gain is unbounded when there is no prior information about
undiscovered classes. The discovery of pulsars serves as an
example of novelty detection enabled by a human classifier
(Hewish et al. 1968; Bell Burnell 1969).

Resource availability for identifying new classes is more
flexible, increasing when new predictions or promising
preliminary observations attract attention, and decreasing when
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a discovery is confirmed and the new class is established. In
this way, a false positive does not necessarily consume a
resource that could otherwise be dedicated to a true positive,
and the potential information gain is sufficiently great that
additional resources would likely be allocated to observe the
potential object. Thus, a metric for evaluating anomaly
detection effectiveness would aim to minimize the false
negative rate and maximize the true positive rate.

5.4. Difficult Light-curve Classification

Photometric light-curve classification may be challenging for
a number of reasons, including the sparsity and irregularity of
observations, the possible classes and how often they occur,
and the distances and brightnesses of the sources of the light
curves. These factors may represent limitations on the
information content of the light curves, but appropriate
classifiers may be able to overcome them to a certain degree.

Though quality cuts can eliminate the most difficult light
curves from entering samples used for science applications,
such a practice discards information that may be of value under
an analysis methodology leveraging the larger number of light
curves included in a sample without cuts. Thus, classification
methods that perform well on light curves characterized by
lower S/Ns are especially important for exploiting the full
potential of upcoming surveys like LSST.

This version of PLASTICC implements quality cuts to
homogenize difficulty to some degree, and notions of
classification difficulty may depend on information that will
not be available until after the challenge concludes. While the
groundwork for a metric incorporating data quality has been
laid by Wu et al. (2019), we defer to future work an
investigation of this possibility.

6. Conclusion

As part of the preparation for PLASTICC, we investigated the
properties of metrics suitable for probabilistic light-curve
classifications in the absence of a single scientific goal.
Therefore, we sought a metric that avoids reducing classifica-
tion probabilities to deterministic labels and is compatible with
a multi-class, rather than binary (two-class), setting. We did not
consider some of the most popular metrics used in astronomy
(such as accuracy, combinations of the true and false positive
and negative rates, and AUC functions thereof) because they
did not satisfy these criteria, even though it is, in principle,
possible to extend such metrics for our situation. Our
experimental design thus explores the response of potential
metrics to simulated classification submissions from a set of
mock classifier archetypes expected of generic transient and
variable classifiers.

We identified two metrics of multi-class classification
probabilities established in the literature: the Brier score and
the log-loss. The Brier score and the log-loss metrics are
structurally and conceptually different, with wholly different
interpretations. The Brier score is a sum of square differences
between probabilities; the explicit penalty term is an attractive
feature, but it treats probabilities as generic scores. The log-loss
on the other hand is readily interpretable as a measure of
information, meaning the metric itself could be propagated into
forecasting the cosmological constraining power of LSST,
affecting the choice of observing strategy.
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When evaluated with equal weight on each classified object,
both the Brier score and the log-loss metrics are susceptible to
rewarding a classifier that performs well on the most prevalent
class and poorly on all others, which fails to meet the needs of
PLASTICC’s diverse motivations under the unavoidable popula-
tion imbalances of astronomical data. To discourage compe-
titors from neglecting rare classes, we explored a weighted
average of the metric values on a per-class basis as a possible
mitigation strategy to incentivize classifying uncommon
classes, effectively “leveling the playing field” in the presence
of highly nonuniform class membership.

On the basis of the mock classifier rankings, we found that
both metrics reward the classifiers that are better and penalize
those that are worse, where better and worse are defined by our
common intuition, yielding the same rankings under either
metric and demonstrating that both could be appropriate for
PLASTICC. However, since only one could be selected, the log-
loss was chosen due to its potential for interpretation after the
conclusion of the challenge. While modifying the log-loss
metric to handle weights for different classes diminishes its
interpretability, it can still be understood as information gain,
subject to the value we as scientists place on knowledge of each
class.

The space of possible metrics we could have considered is
truly unbounded, from traditional metrics of deterministic
labels to established extensions thereof for probabilistic
classifications to novel quantities tuned to any given science
case. Though there was no need to do a more extensive survey
of metrics nor to devise new metrics for PLASTICC, since both
log-loss and Brier score passed the basic sanity tests for this
application, further work remains to be done in optimally
selecting probabilistic classification metrics in other astronom-
ical contexts.

We conclude by noting that care should be taken in planning
future open challenges to ensure alignment between the
challenge goals and the performance metric, so that efforts
are best directed to achieve the challenge objectives. It is our
hope hope that this study of metric performance across a range
of systematic effects and weights may serve as a guide to
approaching the problem of identifying promising probabilistic
classifiers for general science applications.
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