
Tackling Mobile Traffic Critical Path Analysis
With Passive and Active Measurements

Gioacchino Tangari
University College London

gioacchino.tangari.14@ucl.ac.uk

Diego Perino
Telefonica Research

diego.perino@telefonica.com

Alessandro Finamore
O2 - Telefonica UK

alessandro.finamore1@telefonica.com

Marinos Charalambides
George Pavlou

University College London
firstname.lastname@ucl.ac.uk

Abstract—Critical Path Analysis (CPA) studies the delivery of
webpages to identify page resources, their interrelations, as well
as their impact on the page loading latency. Despite CPA being a
generic methodology, its mechanisms have been applied only to
browsers and web traffic, but those do not directly apply to study
generic mobile apps. Likewise, web browsing represents only a
small fraction of the overall mobile traffic. In this paper, we take
a first step towards filling this gap by exploring how CPA can be
performed for generic mobile applications. We propose Mobile
Critical Path Analysis (MCPA), a methodology based on passive
and active network measurements that is applicable to a broad
set of apps to expose a fine-grained view of their traffic dynamics.
We validate MCPA on popular apps across different categories
and usage scenarios. We show that MCPA can identify user
interactions with mobile apps only based on traffic monitoring,
and the relevant network activities that are bottlenecks. Overall,
we observe that apps spend 60% of time and 84% of bytes on
critical traffic on average, corresponding to +22% time and +13%
bytes than what observed for browsing.

I. INTRODUCTION

Web browsing has been at the core of Internet services
since its early days. Significant attention has been devoted
to define metrics [6], [7], [21], [38] and methodologies [12],
[16], [21], [39] to unveil webpages content delivery dynamics,
and systems to optimize content delivery [8], [22], [24], [40].
These efforts are justified to improve end-users quality of
experience (QoE), while service providers are incentivized
to optimize their systems as their revenues are linked to
users QoE.1 Within these works, Critical Path Analysis (CPA)
studies the delivery of webpages to identify page resources,
their interrelations, and their impact on the user experience.
To this goal, CPA first identifies a delivery deadline capturing
the user QoE. For instance, the most widely adopted metric
is Page Load Time (PLT), the time elapsed between a user
clicking a URL and the browser triggering the onLoad event.
Once the deadline is defined, CPA investigates how each object
download, parsing, and rendering tasks can be a bottleneck for
the overall webpage delivery [8], [39], [40].

The role of browsing is however shifting, as it is not at the
center of user activities on mobile devices anymore. Recent
reports [5], [11] show that users spend less than 10% of their
time browsing, and more than 35% on apps different than
Facebook, streaming, gaming, and instant messaging. Such

1https://www.fastcompany.com/1825005/how-one-second-could-cost-
amazon-16-billion-sales

a trend is challenging also ad platforms where browsing on
mobile devices generates half the conversion rate of desk-
tops [10], [27]. This progressive change in user interests and
usage patterns is creating a gap in the literature, and CPA has
not been investigated in the context of generic mobile apps.
At high level, CPA is based on three requirements: i) define
a delivery deadline capturing the user QoE; ii) characterize
network activities and their relationships iii) identify which
activities impact the delivery deadline, thus users QoE.

To address the first requirement we need to answer the
questions: “Is any of the performance metrics defined for web
traffic suited as delivery deadline for generic mobile apps?
If not, how can we define a more suitable metric?”. The
literature has proposed several delivery deadlines. Despite PLT
is the commonly used metric, Above The Fold (AFT) [7] and
Speed Index (SI) [17] are considered superior. Both have been
introduced by Google and focus on rendering dynamics mea-
sured via a screen capture. Their costs is not negligible, and
confine their adoption only to properly instrumented devices.
Trying to solve AFT/SI constraints, the research community
has proposed a flourished set of alternatives (Yslow, Object
Index, DOMLoad, etc. [6]). As for PLT, these metrics are
easier to compute than AFT/SI, but they are all web traffic
specific. Conversely, AFT and SI do not make assumptions
on content or application internals, so they are applicable to
study generic mobile apps.

To understand traffic dynamics, identifying the right metric
is not enough. Indeed, within the boundaries of each delivery
deadline, a second question to address is “How to identify
which flows carry critical content for the overall delivery, with-
out knowing the properties of the content itself?”. For instance,
when considering web traffic, CPA leverages a dependency
graph where nodes represent the content downloaded while
edges map the interdependecies between objects and related
activities (e.g., parsing, script execution, rendering). While
extracting such graph can be trivial for webpages (e.g., parsing
webpages source code, or inspecting the document object
model - DOM), there is no guarantee that mobile content is
served in the form of a webpage. It is therefore not clear
how different network activities can be identified and how to
understand which ones impact the delivery deadline.

Finally, another critical question is: “Where is CPA per-
formed?”. The common choice in the literature [9], [40], [32]
is an in full control scenario (e.g., rooted device, apps source



code, operating system “modding”). In this case we can obtain
fine-grained info at the cost of limiting the study to a few
apps and users. Conversely, in the interest of enabling at-scale
studies, we aim to study how to reduce the amount of on-
device instrumentation in favour of a more traffic measure-
ments centric approach.

In this paper we present our journey in answering the
previous questions. We introduce a methodology, namely Mo-
bile Critical Path Analysis (MCPA), which combines passive
and active measurements and heuristics to: i) recognize user
interactions with applications; ii) extract network activities and
relevant delivery deadlines; iii) identify network traffic that
is critical for performance. To understand the effectiveness
of MCPA we follow the standard practice of using an instru-
mented device, and we dissect the traffic of 18 popular mobile
apps. Results show that via passive measurements we can
identify user engagement with more than 80% accuracy (§V).
We can also define delivery deadlines at least as good as PLT
for browsing, and with less than 1.3s of error with respect to
AFT in 75% of tests with other apps (§VI). By means of active
experiments, we can split traffic into “phases” likely related
to apps logic. Overall, we find that apps spend 60% of time
and 84% of bytes on critical traffic on average (§VII). Results
support the idea of a new class of tools based on network
measurements that ease the study of mobile apps. MCPA source
code and experimental datasets are publicly available.2

II. RELATED WORK AND MCPA CHALLENGES

Mobile traffic has mostly been studied at an aggregated level
(per-connection latency, throughput, etc.) [14], [23], [28], [33],
or focusing on specific protocols (e.g., DNS [4], SPDY [13],
MPTCP [19], [20]). Exceptionally, a few studies take a step
further. For instance, Panappticon [41] and AppInsight [32]
enable fine-grained view on users engagement with apps by
respectively tapping into Android components and studying
app binary files; QoE Doctor [9] focuses on performance is-
sues (e.g., high latency) by measuring radio resource allocation
and user interface interactions; Prometheus [2] tries to bridge
network metrics with user experience via machine learning.

Despite their merits, these tools focus on system information
(e.g., radio resources, operating system calls, multi-threading)
rather than digging into the role of content download and net-
work protocols dynamics. Conversely, studies focusing on web
traffic, despite being limited to this traffic class only, represent
the state of the art regarding how to dissect traffic dynamics.
In the remainder of this section we review this literature, and
we highlight the challenges in applying currently available
methodologies to study generic mobile traffic.

A. Performance metrics and delivery deadlines

Beside generic metrics such as latency and throughput, most
of the metrics in literature are defined in the context of web
traffic. We can split those into two classes: objective metrics
are delivery deadlines quantifying the time needed to obtain

2
https://www.dropbox.com/sh/rk853z5e49l1mjy/AADOvq19EQ05R5ZDK_Jt0w1Ya?dl=0

some content [1], [13], [14], [25], [30]; subjective metrics are
defined considering direct feedback from end-users (e.g., mean
opinion score - MOS) and can include factors beyond content
delivery [6], [15], [22], [37]. For the purpose of this work, we
focus only on objective metrics, which we can further split
into time instant and time integral metrics.
Time instant metrics capture specific instants across the whole
events timeline of the content delivery. The most accurate
instant metric is Google’s AFT which measures the time at
which the content shown in the visible part of a webpage
is completely rendered [7]. This definition is not web traf-
fic specific, although the metric has been applied only to
browsing traffic. AFT computation requires a video screen
capture, and accurate video post-processing as the presence
of dynamic elements, such as animations and roll ads, can
introduce biases [37]. These costs limit the use of AFT for
small scale studies on instrumented devices. A recent work
shows that AFT could be approximated leveraging information
about objects position in a webpage, but this technique is
complex to be applied outside browsers [12]. Despite being
less accurate, PLT is the most widely adopted metric. Other
known deadlines are the Time To First Byte (TTFB), the
Time To First Pixel (TTFP), the time at which the parsing of
the Document Object Model (DOM) is completed. W3C has
also defined the navigation timing guidelines [38], a series
of specific events happening during a webpage rendering, but
their implementation may differ across browsers.
Time integral metrics capture the cumulative effect of events
until a specific point in the timeline is reached. The most
popular example is Google’s SI [17], which is obtained by
integrating over time the residual rendering left to reach the
AFT. Given the definition, SI suffers from the same limitations
AFT does. ObjectIndex and ByteIndex are two alternative
integral metrics that respectively capture the evolution of
objects and bytes delivery until the PLT [6].
Challenges: Metrics like PLT, which are based on internal
application “hooks”, cannot be applied to generic mobile apps
as there are no standard APIs, neither at app nor at operating
system level, to expose these information. Differently, we
argue that AFT and SI are valid delivery deadline for generic
mobile apps, as they capture the actual screen rendering
and do not depend on app internals (§III). However, their
measurement cost is a barrier for their adoption. To enable at-
scale measurement, a cheaper alternative is to opt for metrics
based on passive traffic measurement to compute either on-
device (e.g., via VPN solution which avoid rooting devices) or
in-network (e.g., monitoring middle-boxes are very common in
mobile networks). We are therefore interested in understanding
what passive metrics are available, when they can be applied,
and what bias they introduce with respect to AFT and SI.

B. Critical Path Analysis - CPA

CPA allows to dissect traffic dynamics within the boundaries
of a delivery deadline. It has been successfully applied to
understand web traffic, but methodologies and terminology can
vary. To the best of our knowledge, the first tool leveraging



CPA is WProf [39] (and its follow ups Shandian [40], and
WProfX [29]), a system that requires augmenting the browser
with a profiling engine to capture the dependency graph for
any given webpage. Such graph structures the activities related
to both rendering as well as content dependencies as visible in
the webpage DOM. Given a graph, WProf defines the critical
path as the longest path of activities such that reducing the
duration of any activity not on the critical path does not impact
the webpage PLT.

Recently, Google added Lighthouse [18] to the Chrome
devtools suite to automate webpages auditing. Lighthouse
offers a richer output than WProf, including different deadlines
(First Meaningful Painting, First CPU idle, SpeedIndex, etc.),
as well as a report on resources that can block the rendering.
To some extent, Lighthouse output is an evolution of a
webpage download waterfall, i.e., a gantt chart picturing the
evolution of the network communications triggered during a
webpage load. All modern browsers allow to dissect traffic
dynamics via a waterfall, and systems like KLOTSKI [8]
further build on waterfalls to find activity patterns invariant
to PLT performance.
Challenge: All these tools have slightly different critical path
definitions. They also heavily rely on “hooks” specific to
browsers internals, so they are unappealing to study mobile
apps. At the core of CPA there is the need to identify depen-
dencies between activities, and this is particularly challenging
to do only based on passive measurements. Hence, we want to
understand if active experiments, such as traffic throttling, can
complement passive measurements to create a more effective
methodology to spot traffic impacting the delivery deadline.

III. MCPA OVERVIEW

In this section, we introduce MCPA, our methodology to
perform CPA on generic mobile apps. First, MCPA identifies
activity windows, i.e., user interactions with apps. Each activ-
ity window is profiled to extract network activities, measure
the delivery deadline, and finally extract the critical traffic.
Activity windows (§V). In the context of web traffic, CPA
is performed for every webpage retrieval. This includes all
activities in response to directly typing a URL, refreshing
or aborting the load of a webpage, clicking a link within
a page, etc. For webpages, those activities can be easily
identified using APIs provided by browsers. However, such
mechanisms are not available to study generic mobile apps,
so alternative approaches need to be considered. One option
is to log user clicks, scrolls, currently displayed apps, and use
such detailed information to partition the traffic based on user
engagement. However, in an at-scale scenario, i.e., without
full control on the devices, logging actual user interactions
is almost impossible. Another option available is to apply
“cheaper” passive traffic analysis heuristics. In fact, mobile
traffic is bursty in nature [14], [35], i.e., the traffic presents
activity windows when the user is interacting with the phone,
interleaved by “idle” periods. An optimal split associates a
different user action to each window, but depending on traffic
conditions and apps characteristics this might not always be

possible. In §V we discuss heuristics for partitioning the traffic
based on passive measurements and we evaluate their accuracy.
Download waterfall and performance metrics (§VI). For
each activity window we need to define a set of metrics and
identify the activities involved in the delivery of contents. CPA
for webpages requires to instrument the browser to extract
all activities participating to both the download and rendering
tasks. However, to do the same for generic mobile apps would
require to either reverse engineer every app, or to instrument
their source code or the operative system [32], [41]. The
approach of MCPA is to focus only on network activities and to
report per-flow metrics for both transport (TCP, UDP, QUIC)
and application (DNS, HTTP, HTTPS/TLS, Facebook Zero -
FB0) protocols. These activities are visually represented in the
form of a download waterfall.

Once the different activities are identified, a delivery dead-
line should be set to capture the quality of experience per-
ceived by users. In a fully controlled environment, the best
available option is to apply AFT and SI (§II). We argue they
are still valid to study generic mobile traffic, but we are
not aware of any work in the literature proving this. Indeed,
the end of a user action on an app is generally marked by
visual changes, and this applies to apps wrapping browser(-
like) functionalities (e.g., social, news, e-commerce), as well
as to more interactive apps such as messaging ones (e.g., the
end of a message delivery triggers a check mark on screen).
However, both AFT and SI capture events related to rendering.
In an at-scale scenario screen recording is not possible, so
rather than looking for exact estimates of user experience, we
are interested in defining a proxy for AFT/SI, yet sufficient
to identify critical activities, based on passive measurements.
In §VI we discuss how MCPA creates waterfalls, we introduce
our delivery deadlines, and we compare them against AFT/SI.
Critical Path (§VII). Finally, MCPA identifies which activities
of a waterfall constitute the critical path. To do so, we rely on
active experiments, i.e., we observe how the delivery deadline
changes when throttling the traffic on a per-domain basis. In
other words, if a macroscopic delay is observed on the overall
delivery when delaying some traffic, we can conclude that a
domain, and the related traffic, is critical. The same principle
also applies to discover relationships among domains.

MCPA is built upon pcap2har, a Python open source
tool transforming pcap files into webpages HAR files,3 which
we modified and extended to handle generic mobile traffic
(including TLS/HTTPS, QUIC, FB0).

IV. DATASET

Mobile Apps. We select 18 popular apps across 7 categories:
Social (Twitter, Facebook, Instagram), Messaging (WhatsApp,
SnapChat, Messenger), News (CNN, BBC, Newsbreak), Geo-
based (Google Maps, Uber), Shopping (Letgo, Amazon), E-
mail (Microsoft Outlook, Gmail), and Streaming (Youtube,
Spotify, Soundcloud). We intentionally left out Games and
Productivity apps as they are known to generate little network

3https://github.com/andrewf/pcap2har



 0

 200

 400

 600

 800

 1000

 1200

00 10 20 30 40

v
o
lu
m
e

 
[k
B
]

time [s]

clic
k
clic
k
clic
k

clic
k

sta
rtu
p

00 10 20 30 40

ne
w 

ac
tivi
ty

win
do
w 

if

α b
 

= 2
00
kB

Δ

g
ra
d
ie
n
t 
 
 

b

time [s]

αt = 2.5s
αt = 5s

sta
rtu
p

Fig. 1: Activity windows: cumulative traffic when using the CNN
app (left); traffic gradient ∇b (right).

traffic, which is likely related to ads [3]. Conversely, we focus
on very popular apps according to both vendors [34], and 3rd
party4 rankings, to create a set of apps sufficiently diversified
to assess if there is a case to use passive and active analysis to
perform CPA. We further consider web browsing by studying
the top-100 Alexa websites (alexa-T100).
Traffic Scenarios. We consider two traffic scenarios:
app-startup and app-click. The former considers the traffic
generated in the first 60s after the app is launched.5 In
the latter, relevant user interaction sequences are emulated
based on common behaviors with the apps, such as select a
video/song, a news, scroll an email, send a chat message, etc.
To this end, we define ad-hoc patterns, each with multiple
input tap events uniformly distributed within [0,10s]. For
example, for the Letgo shopping app, the sequence is: search
by category; show top results; select random item; show price
and geographical location (all sequences listed in [36]).
Data collections. Our experiments are performed on a Nexus 5
running Android 6.0.1, and using a SIM of a European mobile
carrier. For each app and scenario we ran 10 experiments, with
the device instrumented to collect pcap files (via tcpdump) as
well as the video screen record (via Android screenrecord
utility6). For alexa-T100 dataset, we also use WProfX, Google
Lighthouse and Chrome’s devtools to extract performance
indicators and critical path information. In regards to video
recording, as shown in [6] the additional computation can bias
the experiments, artificially slowing the rendering. We verified
that this effect is not present in our results (details in [36]).

V. ACTIVITY WINDOWS

Mobile devices are constantly connected to the network, so
they generate a continuous stream of connections. Conversely,
user engagement is occasional, hence the connections stream
has to be processed in order to identify those time intervals
where users interact with the device. Ideally, the traffic stream
should be split so that each partition corresponds to a relevant
QoE-related user interaction. We call these partitions activ-
ity windows. Such windows can be obtained using granular
device-screen logs reporting on clicks, scrolls, etc., at the cost
of running tests only on a limited set of instrumented phones.

To enable large scale analysis built on network measure-
ments, the same split should be performed by looking at traffic

4https://www.androidrank.org
5This time is more than double the maximum startup time observed in our

experiments.
6https://developer.android.com/studio/command-line/adb

characteristics only. To this end, we can exploit the bursty
nature of mobile traffic, where bursts of bytes are likely to
correspond to user engagement with an app. For instance,
consider Fig 1(left) showing the cumulative traffic observed
when a user interacts with the CNN app. Notice how volume
abruptly increases in response to users actions. In this section
we investigate how and to what extent traffic bursts and idle
periods can be used to identify activity windows.

A. Partitioning policies.

We consider two possible policies to partition the traffic
generated by a mobile device.
Naı̈ve. The first policy relies on a single threshold to identify
“long” idle periods. That is, a connection is associated to a
new window if its traffic starts after an idle period longer than
αt, otherwise it belongs to the current window.
Gradient. A more refined policy creates a new window if a
“large” burst happens after a “long” idle period. To do so,
we combine two thresholds: αt and αb. We use αt to define
a sliding window where we monitor the gradient ∇b of the
volume. For instance, consider αt = 5s. All traffic in the first
5s is accumulated. Then, we progress the sliding window,
accumulating the traffic entering, and removing the one falling
outside the window. In this way ∇b has a positive slope when
traffic is exchanged, and negative (or no) slope for idle times.
Fig. 1(right) reports ∇b for αt = 2.5s and αt = 5s. Using
the gradient, we define a new activity window if we observe
at least αb bytes exchanged after an idle period of αt. For
instance, considering αb = 200kB, in Fig. 1(right) ∇b reaches
the threshold at 5.2s and 32s. However, we identify an activity
windows only at 32s as it is preceded by an idle larger than
αt = 2.5s (no windows found for αt = 5s).

B. Validation and sensitivity analysis

Our dataset contains detailed logs of the users click times,
each click corresponding to the beginning of a new activity
window. As such, for a given combination of thresholds, we
can quantify the accuracy of the partitioning by measuring the
Precision as the fraction of partitions detected by our policies
actually matching a click, and the Recall as the fraction of
clicks that are identified as activity windows by our policies.
For instance, in Fig. 1 Precision = 1.0 and Recall = 0.25.
Best policy. We find the naı̈ve policy being ineffective. In fact,
a small threshold (αt <1s) leads to over-splitting (high Recall,
but low Precision), while for larger values Recall and Precision
do not go above 50% (see [36] for details). Compared to naı̈ve,
the gradient policy, which considers bursts registered after idle
periods, significantly reduces the over-splitting. By selecting
αb = 5kB and αt = 1s, both Recall and Precision are kept
above 70%. We choose αb to be the median size of a single
transaction as observed in logs from a large European mobile
operator (see [36]), while αt = 1s is considered as a minimum
response time of a user engaging with mobile apps.
Further improvements. Performing a grid search to find
thresholds better than the ones selected based on our intuition
did not help. However, we found most of the misclassification



Fig. 2: TDT and TDI accuracy evaluation

are due to chat apps. Intuitively, as those apps typically ex-
change small messages (unless they are video/audio messages,
or images), αb = 5kB is too large. Indeed, applying αb =
0.25kB only for this app category leads to Recall = 85% and
Precision = 88% across all apps. Although these fine-grained
optimizations could be done on a per-app basis, we argue this
is unnecessary, and would be also challenging considering the
large numbers of apps currently available. In fact, even if our
analysis is not exhaustive, two pairs of thresholds cover a
very diversified set of apps. In order to select which pairs
of thresholds to use, we found that basic traffic classification
techniques, based on port numbers, IP addresses, or domain
names, are sufficient. For instance, chat applications use very
few (and specific) domains and/or ports (§VII).
Background traffic. One last aspect to consider is the impact
of “background” traffic (notifications, emails fetch, etc.) on
the windows partitioning accuracy. We collected several 1-
day long traces, mixing periods of activity with silence. We
observe that, while the gradient policy is still sensible to back-
ground traffic, those intervals (i.e., with no user interaction)
can be filtered out by looking at the pace at which activity
windows are generated. Intuitively, when the user is active,
multiple partitions are expected to be generated in a short time,
while this effect is significantly reduced when only background
traffic is present (see [36]).
Summary. Our results support the idea of identifying activity
windows via passive measurements. We stress that the gradient
policy is a heuristic, so not meant to be perfect. Its function
is to enable us to focus on traffic dynamics and CPA knowing
that the portion of the traffic under analysis is likely related
to user engagement, hence meaningful to be dissected.

VI. NETWORK WATERFALL AND METRICS

For each identified activity window, MCPA creates a down-
load waterfall detailing traffic dynamics and performance.
Network waterfall. MCPA extracts transport (L4) and appli-
cation (L7) per-flow metrics. At L4, it computes aggregated
statistics (e.g., total duration, bytes, RTT), as well as protocol
specific information (e.g., TCP, QUIC, FB0 handshake dura-
tion, IP addresses, ports). At L7, MCPA reports on HTTP trans-
actions (e.g., metadata from request and response headers),
TLS handshake (e.g., duration, if the handshake is full or fast,
SNI, ALP protocols), DNS (e.g., domain name, CNAMEs,
query resoution time). Moreover, each flow is split into bursts
by grouping packets when interleaved by more than 2 RTTs.

0 5 10 15 20 25
TDT [s]

20

10

0

10

20

AF
T-

TD
T 

[s
]

App-startup

0 5 10 15
TDT [s]

20

10

0

10

20
App-click

BBC
Letgo
Amazon
CNN
Facebook
Messenger
Gmaps
Gmail
YouTube

Instagram
Outlook
NewsBreak
SnapChat
SoundCloud
Spotify
Twitter
Uber
WhatsApp

Fig. 3: Per-app instant metrics comparison

All the metrics are then represented as a download waterfall,
a relevant visual aid to CPA (§VII).
Performance metrics. As discussed in §II, we consider AFT
and SI suitable to study mobile apps traffic. However, we
consider them only as baseline as we aim to avoid on-device
screen recording. We are instead interested in studying the
reliability of objective metrics based on passive traffic mea-
surements. We define the instant metric Transport Delivery
Time (TDT) as the time between the beginning of an activity
window and the 95th percentile of the whole volume ex-
changed in the window.7 We also define the equivalent integral
metric Transport Delivery Index (TDI) as

∫ TDT

0
1− xB(t)dt,

where xB(t) is the percentage of total volume exchanged in
the window up to time t. We highlight that TDI is similar to
the Object Index introduced in [6] using TDT instead of PLT
(recall that PLT does not apply for generic mobile apps §II). In
the remainder of the section we investigate the penalties TDT
and TDI introduce against the respective baselines AFT and SI.
We consider also PLT as reference for browsing performance.

A. Evaluation

Web Browsing. Fig. 2(left) reports the Cumulative Distribu-
tion Function (CDF) of the deltas AFT-TDT and SI-TDI for
alexa-T100 dataset. Both are well centered around zero, but
TDI is a better proxy of SI than TDT is for AFT. Notice
however that AFT-PLT presents a similar distribution as AFT-
TDT. In other words, if PLT is the most popular metric to
measure web performance, TDT is at least comparable. This
is further corroborated considering PLT-TDT which presents
a distribution well centered around zero.
Aggregate apps traffic. Fig. 2(right) reports the CDFs
of AFT-TDT and SI-TDI deltas for both app-startup and
app-click datasets. All curves are well centered around zero,
but app-startup CDFs present a heavier negative tail. This
resembles what was observed for browsing, i.e., at startup
more content is downloaded than what is required for the
visualization, so TDT and TDI can over-estimate rendering
deadlines. TDI is more sensible to this effect, while for 75%
of the experiments TDT generates a ±1.3s error at most.
Per-app traffic. To further investigate the deviations be-
tween instant metrics, Fig. 3 reports the deltas AFT-TDT
as a function of TDT for each individual app. Considering
app-startup (left plot), besides a few outliers, all apps present

7We experimented with other percentiles too (see [36]), but the 95th resulted
the more robust to long tail effect (e.g., keep alive).



Fig. 4: Examples of download waterfall: YouTube (left); CNN (center); Twitter (right).

similar behavior, with variable deadlines in absolute scale,
but TDT is triggered slightly after AFT as already observed
in Fig.2(right). For app-click (right plot) errors are further
reduced, with only Amazon showing larger penalties.
Summary. The analysis shows that metrics purely based on
passive traffic monitoring are a reasonable approximation of
AFT and SI, and at least as good as popular metrics such as
PLT. This brings visibility on apps dynamics when AFT and SI
cannot be measured, and more broadly they can significantly
simplify QoE/performance analysis. There are clearly some
corner cases and occasional outliers, as not all apps behave the
same, but our analysis shows that TDT and TDI are reasonable
heuristics to qualitatively capture delivery deadlines.

VII. CRITICAL PATH ANALYSIS

CPA tools for browsing define the critical path based on
a dependency graph capturing the relations between objects
downloaded (§II-B). This graph is constructed “passively”
exploiting the DOM built by the browser when rendering the
webpage; however this technique is not applicable to generic
mobile apps. Therefore, to discover critical traffic, MCPA uses
an “active” approach based on traffic throttling. We use the tc
utility to throttle one domain at a time to 1kb/s, and test the
impact on the activity window delivery deadline. In particular,
for each throttling scenario we perform 10 runs applying a p-
value test (with 0.05 as significance level) to accept or reject
the null hypothesis: a domain is critical if the deadline is
always delayed across runs. Likewise, a similar test is applied
to discover dependencies among domains (i.e., by delaying
domain A also domain B is delayed).

Overall, we define Critical Set (CS) as the set of domains
impacting the delivery deadline, and we use it to create a
dependency graph among domains. We define Critical Path
(CP) as the whole set of flows generated by the CS. In
other words, similarly to Lighthouse, MCPA CP is defined
based only on network traffic, but it captures the whole
traffic activities of a flow, rather than pinpointing specific
objects/requests. It follows that the time on CP is the sum
of time intervals where at least 1 critical flow is active. In
the remainder of the section, we first present some examples
of CPA on specific apps. Then, we discuss traffic properties
across apps.

A. Dissecting individual apps traffic

Fig. 4 details the startup traffic dynamics for YouTube,
CNN, and Twitter apps. For each app, we stack 6 views of
the traffic: dependency graph, download waterfall, time on
CP, CDF of the bytes exchanged, and a film strip showing
the screen rendering progress. The dependency graphs show
only domains having at least one dependency. In the download
waterfall each row corresponds to a different flow (labeled with
domain and destination port). Horizontal lines show bursts
carried by flows (§VI), colored red if found critical (blue
otherwise), while dotted lines indicate idle periods. Saturated
colors reflect exchange of data, while pale ones correspond
to DNS and handshakes (TCP, TLS, or QUIC). Finally, two
vertical lines mark the AFT and TDT deadlines.
YouTube. Focusing on YouTube, the traffic before the AFT
is almost entirely critical. This is composed of a mix
of images (i.ytimg.com handles video thumbnails, while
yt3.ggpht.com handles user related content such as avatars),
control, and other structural elements of the app (e.g., fonts,
javascripts). The download idle times hint to rendering cycles
(fetch→process→render→iterate), as also confirmed by the
film strip showing a “dummy” loading screen used to hide
the actual rendering process. TDT is delayed due to video
pre-fetching [26]. This is confirmed by app-click, where we
observe the portion of video left being delivered on the already
opened flows when the playback is triggered (see [36]).
CNN. Differently from YouTube, the majority of the traf-
fic for the CNN app is not critical. After contacting cere-
bro.api.cnn.io (possibly a control domain), there are about 3s
busy with only 3rd party and ads services communications,
none of which is critical. Finally the control goes back
to cerebro.api.cnn.io which triggers the rest of the critical
traffic (dynaimage.cdn.turner.com). As for YouTube, rendering
phases are possibly hidden by the loading screen, but more
interesting is the macroscopic impact of 3rd party traffic which
accounts for 55% of the overall deadline.
Twitter. The Twitter app instead has a very simple waterfall:
only 3 flows, all twitter related, with only 1 being critical.
We interpret this minimalist approach as an explicit design
choice, but it would be interesting to know if applying content
sharding and a few more flows could further reduce loading
latency.



TABLE I: Critical path traffic characteristics.

App-startup
fl. dom. vol.[kB] TC[s] TC break [%]

abs % abs % abs % abs % dns hshake data
Twitter 13 38 1 13 33 79 4 77 0 32 68

Facebook 7 40 2 40 836 97 9 61 1 6.3 92.7
Instagram 16 56 2 25 1108 97 4 80 0 11.6 88.4
Whatsapp 2 100 1 100 4 100 1 100 9 6 85
Snapchat 10 80 4 50 2802 91 11 70 3 23 74

Messenger 5 57 3 50 86 72 2 63 0 31.8 68.2
CNN 10 59 2 13 25 31 3 38 15 19.6 64.4
BBC 6 75 2 50 98 96 1 21 0 29 71

NewsBreak 27 66 5 25 152 92 5 63 0 20 80
Gmaps 17 65 6 46 870 99 4 57 0 37 63

Uber 18 81 6 43 238 95 13 53 0 25 75
Letgo 10 56 3 30 715 97 1 18 6 31 63

Amazon 33 67 5 45 1490 96 7 84 0.4 30.6 69
Gmail 7 14 1 20 16 91 2 82 0 46.5 53.5

Outlook 4 57 2 50 20 91 2 79 3 32 65
Youtube 10 63 5 45 127 84 3 46 5.8 25 69.2

SoundCloud 10 43 2 20 715 99 8 76 0 84 78
Spotify 1 13 2 25 78 95 5 59 1 15 84

AVERAGE 11 57 3 38 523 89 5 63 2.5 24.8 72.7

Browsing 12 48 5 37 488 71 5.53 38 2.6 21.5 76

App-click
fl. dom. vol.[kB] TC[s] TC break [%]

abs % abs % abs % abs % dns hshake data
1 13 1 25 29 96 19 44 0 0 100
2 40 2 67 1313 63 5 54 6 10 84
4 57 1 50 1538 90 2 50 0 0 100
1 100 1 100 1 100 1 100 0 0 100
2 22 1 33 194 75 6 17 2 7 91
3 60 2 40 20 79 10 35 0 2 98
3 25 2 40 69 82 1 55 0 3 97
4 36 2 67 105 92 1 67 0 22 78

19 43 7 78 96 20 3 73 0 13 87
3 60 2 100 870 98 2 52 0 0 100
3 43 1 50 13 11 5 85 0 0 100
5 100 2 100 65 100 2 100 0 6 94

21 34 4 36 1650 92 12 80 0 6 94
6 55 2 40 38 75 11 21 0 7 93
5 83 3 75 9 100 0 35 0 75 25
5 45 1 20 65 47 1 31 0 67 35
1 17 1 33 120 99 1 44 0 0 100
3 30 1 50 115 98 0 52 0 0 100
5 48 2 56 351 79 4 55 0 12 88

B. Critical traffic properties across apps

Table I summarizes the critical traffic properties for both
app-startup (left) and app-click (right). For each app we report
the number of critical flows, domains, bytes both in absolute
and percentage averaged across different runs. We also report
the time spent on the critical path (TC) and how this is spent
doing DNS, transport handshakes, and data transfers. Table
rows are grouped by app categories.
Traffic volume. On average, 57% (48%) of flows, 89% (79%)
of bytes are critical in app-startup (app-click). Differently from
what we expected, in absolute scale the volume of bytes is still
significant in app-click (351kB on average, almost 70% of the
average volume in app-startup). Considering domains, 38% are
critical in app-startup startup against 56% for app-click. There
are macroscopic differences between apps, but no visible pat-
terns within and between categories or scenarios. For instance,
Whatsapp is an “outlier” as all traffic is carried over 1-2 flows,
hence everything is critical. The only class that seems different
is web browsing, which presents 48% (71%) of critical flows
(bytes), -9% (-18%) with respect to apps startup.
Time on CP. For browsing also TC is lower, 38% against
63% (55%) in app-startup (app-click) as also detailed in Fig. 5.
On the other hand, for both browsing and apps TC is similar
in absolute scale (4-5s). In other words, despite the diversity
in the actions triggered, results suggest that the differences
in the critical traffic between startup and actual app usage
could be less pronounced that one might think. As expected,
data transfer has the largest impact on the critical path with
72.7% (88%) for app-startup (app-click). DNS is generally
small except for a few cases. Conversely, protocol handshakes
are heavier at startup (24.8% on average), but app-click shows
unexpected bi-modal behaviour with either a heavy (e.g., 67%
YouTube, 10% Facebook) or negligible weight.
Content type analysis. Extracting keywords from the do-
mains, we split the traffic in 3 classes: ad-hoc (apps/websites
specific domains), cdn, and oth-serv (e.g., 3rd party services,
ad networks). We find that for apps (browsing) TC is split
into 68% (33%), 25% (51%), and 7% (15%), while volume is
split into 47% (25%), 52% (65%), and 1% (9%) for ad-hoc,
cdn, and oth-serv respectively. In other words, apps network
latency tends to gravitate towards app-specific domains. Those
are not necessarily responsible only for control logic as

0.00 0.25 0.50 0.75 1.00
Fraction of time on CP

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Browsing
App-startup
App-click

Fig. 5: MCPA time on CP for
different types of traffic.

0.00 0.25 0.50 0.75 1.00
Fraction of time on CP

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MCPA
WProfX
Lighthouse

Fig. 6: Comparing network
time on CP across CPA tools.

Fig. 7: Lighthouse critical path analysis.

they carry almost the same volume as CDNs. Conversely,
browsing content is likely served by CDNs. Considering oth-
serv, browsing spends 2× TC than apps, but downloads 9×
more volume than apps.

VIII. DISCUSSION

MCPA aims to identify critical traffic generated by generic
mobile apps. A few other CPA tools for mobile apps have
been presented, but none of them are applicable to our intent
as they either require heavy on-device instrumentation or do
not dissect traffic dynamics [32], [41]. However, restricting
the focus to web browsing only, we can compare MCPA with
WProfX (the WProf version for mobile browsing) and Google
Lighthouse, both open sourced. Fig. 6 shows the CDF of the
fraction of time on CP for the three tools. We highlight that
for MCPA and Lighthouse, time on CP implicitly refers to only
network activities, while WProfX reports also on parsing and
rendering time, which we exclude for the comparison.
WProfX profiles the impact of webpages loading activities on
PLT. Notice the strong similarity of MCPA and WProfX CDFs,
with both tools reporting 38% of time on CP on average. This
implies that MCPA, even if based on traffic analysis only, is
comparable with an in-browser profiling engine.
Lighthouse reports the webpage Critical Request Chains
(CRCs) pinpointing to objects generating bottlenecks.8 As
visible in Fig. 6, Lighthouse reports a shorter time on CP
than both WProfX and MCPA. We found that MCPA generally
classifies a few more domains as critical than Lighthouse
(details reported in [36]), but the same is true for WProfX
too. The reason of the discrepancy resulted clear only by
investigating Lighthouse source code, i.e., it is due to an
internal design choice not publicly documented. Specifically,
Lighthouse marks objects as critical if they have a network
priority higher than medium (i.e., the browser schedules ob-
jects fetch early on), and they are neither images, XML HTTP

8https://developers.google.com/web/tools/lighthouse/audits/critical-request-chains



Request (XHR), nor server push(ed) content. This results in
a “constrained” view of the traffic as reported for a subset of
websites by the strip-plots in Fig. 7: grey dots represent all
requests; red dots (left plot) mark critical objects; blue dots
(right plot) marks prioritized objects; vertical black lines mark
the AFT. Notice how Lighthouse is biased towards the first part
of the download, which possibly involves only “structural”
properties of the webpage rather than actual content.

Beside the fine-grained details, the tools comparison high-
lights a more subtle problem: the lack of standard methodolo-
gies to pinpoint what is critical, and how to perform root cause
analysis related to those bottlenecks. These goals go beyond
the purpose of our work, which instead addresses a prior and
more fundamental requirement: to ease the study of generic
mobile apps. We demonstrated that network measurements can
be effective and easier to adopt than rendering based metrics
such as AFT/SI. Moreover, our definition of critical path aims
to discover any critical network activity without any restriction
on the type, so to capture traffic dynamics as a whole. To test
MCPA we adopted the standard practice of an instrumented
device, with the intention to demonstrate that this might not
be necessary. This can open the doors to a new class of
tools easier to deploy than current state of the art techniques,
without significantly sacrificing accuracy. In this way, app
developers and mobile operators could better dissect traffic
dynamics (e.g., TCP/TLS handshake, TCP fast open [31], app-
specific protocols, control logic, or pre-fetching) by means of
at-scale measurement campaigns.

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,
S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin, “Flywheel:
Google’s data compression proxy for the mobile web,” in Proc. USENIX
NSDI, May 2015.

[2] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements,” in Proc. ACM HotMobile, 2014.

[3] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger,
M. Varvello, and J. Blackburn, “Chimp: Crowdsourcing human inputs
for mobile phones,” in Proc. WWW, 2018.

[4] M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and
M. Varvello, “Dissecting dns stakeholders in mobile networks,” in Proc.
ACM CoNEXT, 2017.

[5] F. A. Blog, “U.s. consumers time-spent on mobile crosses 5
hours a day,” 2017, http://flurrymobile.tumblr.com/post/157921590345/
us-consumers-time-spent-on-mobile-crosses-5.

[6] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of
experience of web users,” in Proc. SIGCOMM Internet-QoE, 2016.

[7] J. Brutlag, Z. Abrams, and P. Meenan, “Above the fold time: Mea-
suring web page performance visually,” https://conferences.oreilly.com/
velocity/velocity-mar2011/public/schedule/detail/18692, 2011.

[8] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing web content to improve user experience on
mobile devices,” in Proc. USENIX NSDI, 2015.

[9] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “Qoe doctor: Diagnosing mobile app qoe with automated
ui control and cross-layer analysis,” in Proc. ACM IMC, 2014.

[10] D. Collins, “Mobile conversion rates lag behind desktop,” 2017, https:
//grafik.agency/insight/mobile-conversion-rates/.

[11] S. Colwyn, “New consumer media consumption research,” 2014,
https://www.smartinsights.com/marketplace-analysis/customer-analysis/
consumer-media-device-use/.

[12] D. N. da Hora, A. Alemnew, C. Vassilis, R. Teixeira, and D. Rossi,
“Narrowing the gap between qos metrics and web qoe using above-the-
fold metrics,” in Proc. PAM, 2018.

[13] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan, “Towards
a SPDYier Mobile Web?” in Proc. ACM CoNEXT, 2013.

[14] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the ACM IMC,
2010.

[15] Q. Gao, P. Dey, and P. Ahammad, “Perceived performance of top retail
webpages in the wild: Insights from large-scale crowdsourcing of above-
the-fold qoe,” in Proc. SIGCOMM Internet-QOE, 2017.

[16] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Detecting
cellular middleboxes using passive measurement techniques,” in Proc.
PAM, 2016.

[17] Google, “Speed Index,” https://sites.google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index, 2008.

[18] Google, https://developers.google.com/web/tools/lighthouse/, 2017.
[19] B. Han, F. Qian, S. Hao, and L. Ji, “An anatomy of mobile web

performance over multipath tcp,” in Proc. ACM CoNEXT, 2015.
[20] B. Han, F. Qian, and L. Ji, “When should we surf the mobile web using

both wifi and cellular?” in Proc. Workshop on All Things Cellular, ser.
ATC ’16.

[21] T. Hofeld, F. Metzger, and D. Rossi, “Speed index: Relating the
industrial standard for user perceived web performance to web qoe,”
in QoMEX, 2018.

[22] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving user
perceived page load time using gaze,” in Proc. USENIX NSDI, 2017.

[23] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopolou, “AntMonitor: A System for Monitoring from Mobile
Devices,” in ACM C2B1D, 2015.

[24] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang,
“Webprophet: Automating performance prediction for web services,” in
Proc. USENIX NSDI, 2010.

[25] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement
and analysis of mobile web cache performance,” in Proc. WWW, 2015.

[26] R. Mok, V. Bajpai, A. Dhamdhere, and k. claffy, “Revealing the Load-
balancing Behavior of YouTube Traffic on Interdomain Links,” in Proc.
PAM, 2018.

[27] Monetate, “Benchmarks and research - eq1,” 2018, https://info.monetate.
com/rs/092-TQN-434/images/EQ1-2018 First-Impressions.pdf.

[28] D. Naboulsi, M. Fiore, S. R., and R. S., “Large-scale mobile traffic
analysis: A survey,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 124–161, Oct. 2015.

[29] J. Nejati and A. Balasubramanian, “An in-depth study of mobile browser
performance,” in Proc. WWW, ser. WWW ’16, 2016.

[30] F. Qian, S. Sen, and O. Spatscheck, “Characterizing resource usage for
mobile web browsing,” in Proc. ACM MobiSys, 2014.

[31] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “Tcp
fast open,” in Proc. ACM CoNEXT, 2011.

[32] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild,” in Proc. OSDI, 2012.

[33] J. P. Rula and F. E. Bustamante, “Behind the curtain: Cellular dns and
content replica selection,” in Proc. ACM IMC, 2014.

[34] Sandvine, “Global Internet Phenomena,” https://www.sandvine.com/
hubfs/downloads/phenomena/2018-phenomena-report.pdf, 2018.

[35] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync
you are?: Smartphone fingerprinting via application behaviour,” in Proc.
ACM WiSec, 2013.

[36] G. Tangari, A. Finamore, D. Perino, M. Charalambides, and G. Pavlou,
“Technical report - Tackling Mobile Traffic Critical Path Analysis
With Passive and Active Measurements,” https://www.dropbox.com/sh/
rk853z5e49l1mjy/AADOvq19EQ05R5ZDK Jt0w1Ya?dl=0, 2019.

[37] M. Varvello, J. Blackburn, D. Naylor, and K. Papagiannaki, “EYEORG:
a platform for crowdsourcing web quality of experience measurements,”
in CONEXT, 2016.

[38] W3C, “Navigation timing level 2,” 2018, https://w3c.github.io/
navigation-timing/\#introduction.

[39] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying page load performance with wprof,” in Proc. USENIX
NSDI, 2013.

[40] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up web
page loads with shandian,” in Proc. USENIX NSDI, 2016.

[41] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda, “Panapp-
ticon: Event-based tracing to measure mobile application and platform
performance,” in Proc. CODES+ISSS, 2013.


