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BOUNDS FOR TRACES OF HECKE OPERATORS AND APPLICATIONS TO
MODULAR AND ELLIPTIC CURVES OVER A FINITE FIELD

IAN PETROW

ABSTRACT. We give an upper bound for the trace of a Hecke operator acting on the space of
holomorphic cusp forms with respect to certain congruence subgroups. Such an estimate has ap-
plications to the analytic theory of elliptic curves over a finite field, going beyond the Riemann
hypothesis over finite fields. As the main tool to prove our bound on traces of Hecke operators, we
develop a Petersson formula for newforms for general nebentype characters.

1. INTRODUCTION

1.1. Statement of Results. Let S,(T', €) be the space of holomorphic cusp forms of weight &, for
a subgroup I' of a Hecke congruence group, and of nebentype character e. We write Tr(7T'|S, (T, ¢€))
for the trace of a linear operator T" acting on S, (I',€). The aim of this paper is to give estimates
for Tr(T,,|S,(T,€)), where T,, is the mth Hecke operator, as the parameters m,x,I", and e vary
simultaneously.

Consider first the case that I' = T'o(N) and € is any Dirichlet character modulo N. Let d(m)
denote the number of divisors of m, o(m) the sum of the divisors of m, and let ¢(IN) = [['o(N) :
SLo(Z)] = NHP|N (1 + %) We assume that x > 2 an integer throughout the paper. Deligne’s

theorem tells us that each eigenvalue A(m) of T, satisfies |A\(m)| < al(m)m'%1 Therefore we have
the “trivial” estimate on the trace
K— - 1 N K—

(1.1) (Tl Sk(To(N),€)) < dim Se(To(N), e)d(m)m T < %d(m)m%.
For the bound on dim S,(To(N),¢), see e.g. [Ros92, Cor 8]. The power of m in (L.I]) is sharp by
the Sato-Tate distribution for Hecke eigenvalues. On the other hand, by a careful analysis using
the Eichler-Selberg trace formula, Conrey, Duke and Farmer and in more generality Serre
[Ser97, Prop. 4] show that if e(—1) = (—1)" then
(1.2)

k—1

Te(Tn[Ss(To(N). €)) = =45 e<m%>m3—1w<N)+0(<a<m>fr2n<a4>;1 ¢<f>+d<m>N%>mzd<N>),

where e(m'/?) is understood to be 0 unless m is a perfect square. If e(—1) # (—1)* then S, (To(N), €) =
{0}, so the left hand side vanishes identically. We expect the estimate (I2]) to be sharp if m is fixed
and K + N — 0.

Write c(e) for the conductor of the Dirichlet character e, and ¢*(e€) =[]
part. In this paper we prove:

Theorem 1.1. Suppose that e(—1) = (=1)%, (N,m) = 1, and that m c(e) c*(e) « (N*&'931=1 for
some n > 0. Then we have that
(1.3)

Kk—1 61

Tr(Tn|Su(To(N), €)) = “=e(m¥)mE " Y(N) + Oy (N%m%’l+ﬁm c(e) T c* (e)ri(Nmm)f) .

ple(e) P for its square-free
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We remark that the hypothesis that mc(e) c*(e) « (N*x'/3)1=" for some n > 0 in Theorem
[L1lis no restriction in practice, since if the hypothesis fails then (II]) is a superior bound anyway.
Indeed, the error term in (L3) is smaller than that in both (LI]) and (L2]) when

(N4H%)1717

el ()

For example, if € is trivial and the weight & is fixed, then (3] is better than (LI]) and (L2 for
N+ < m « N4

Note that our result requires the hypothesis (IV,m) = 1, whereas the estimates (LI]) and (L2) do

not. We discuss the source of this condition in the sketch of the proof, below.

We are also interested in spaces of modular forms for groups other than I'o(N). In particular,
for positive integers M | N let
(1.4) D(M,N) ={(2Y) € SLy(Z) s.t. a,d=1(mod N), ¢=0(mod NM)}.
These congruence groups interpolate between I'1(N) = I'(1, N) and T'(N) ~ I'(N, N). We write
Sk(M, N) for the space of modular forms of weight  for the group I'(M, N) (without nebentype
character). Let d(a,b) be the indicator function of @ = b and d.(a,b) be the indicator function of
a = b(modc). Let T, be the mth Hecke operator acting on S,(M, N) and for (d,N) = 1 let {d)
the dth diamond operator. These operators commute and Ty = (1) = id; for definitions see
§5.1, 5.2] or §4]. In particular, we have

(1.5) Tr((d) T[Sk (DM, N))) = > e(d) Tr(Tin | Sk (Lo (N M), €)).
€ (mod N)

8 12

N13 k105 (NK)® c(e)% c*(e)le5 «m <L

M)

Applying (L) to ([LI) we have
(L6) ()Tl S (DML N)) < "5

Meanwhile, summing (L2]) over characters e (mod N) such that ¢(—1) = (—1)" we find

L (VYN M)d(m)m .

rk—1
24

(L7) ()Tl Se(T(M, N))) = “=m3 T o(N)o(NM) (an(md,1) + (~1)"6n (mbd, ~1))

+ O<(J(m) f12n<821)7(nl/1(f) + d(m)(MN)%)m%ld(MN)N>

The following result improves on both (L) and (7)) in an intermediate range of parameters.

Theorem 1.2. Suppose that M | N, (N,m) = 1, and that m « (N®&'9/3)1=7 for some n > 0. We
have that
k—1

Tr((d)Ton| S (DM, N))) = “mm 3 (N (N M) (8 (md, 1) + (<1)"dn (m>d, ~1)

41 r—1 1 61
+ Oy <MNﬁmT+ﬂm% (Nm/f)a).

1.2. Applications to Modular and Elliptic Curves over a Finite Field. Hecke operators
appear throughout number theory, and estimates for their traces are especially relevant to equidis-
tribution problems. See for example [Ser97), §5-§8] and [MS09]. We mention here a few consequences
in the analytic theory of modular and elliptic curves over a finite field.

Let C be a nonsingular projective curve of genus g over a finite field F, with ¢ elements. Then
we have (see e.g. [Mil17, Ch. 11]) that

29
IC(Fgn)l = ¢" +1 =) af,
=1
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where {a;} are the inverse zeros of the zeta function of C'
(1 - OélT) e (1 - OéggT)
(1=T)(1 —qT)
The Riemann hypothesis for curves over finite fields asserts that |o;| = /g for all i. Igusa [Igu59
showed that there exists a non-singular projective model for X((N) over Q whose reductions modulo

primes p, p{ N are also non-singular (see also the survey [DI95] §9]), and so the preceding discussion
applies to Xo(NN) when p{ N. Since g ~ 1)(N)/12 as N — oo we have that

(1.8) [ Xo(N)(Fy)| = g+ 1+ O((N)g"?).

In particular, | Xo(N)(F,)| ~ ¢ as ¢ — o0 as soon as ¢ » N?%9 for some § > 0. On the other hand,
the Eichler-Shimura correspondence (see e.g. [Mill7, Thm. 11.14]) asserts that

- [ terv (1=Xs(p)T + pT?)
- (1-T)(1 —pT) ’

where Hy(NV) is a basis for So(I'g(V)) consisting of eigenforms of {T},,p { N}, and A¢(p) is the T,
eigenvalue of f. We therefore have

[Xo(N)(Fo)| = g +1 = Tr(Ty[S2(To(N))) + p Tr(Ty2|52(Co(N))),
where we set T,,-1 = 0. Applying (L), (L2)), and Theorem [T we get

Z(C,T) =

Z(Xo(N),T)

(

Corollary 1.3. Suppose ¢ = p¥ is a prime power such that pt N. We have

$(N)
12

In particular, the main term is larger than the error term as soon as q > Nat+o for some fixed
0> 0.

Corollary shows that there is significant cancellation between the zeros «; of Z(Xo(N),T),
and in this sense goes beyond the Riemann hypothesis for Z(Xy(N),T). Assuming square-root
cancellation between the zeros, one might conjecture an error term of size (¢INV )1/ 2+¢ in Corollary
3, which would imply that the main term is larger than the error term whenever ¢ » N'*9 for
some ¢§. If one assumes the generalized Lindel6f hypothesis for adjoint square L-functions, then
the method in this paper produces an error term of size ¢%/3t¢ N/2+¢ in Corollary (see Lemma
[61). In a much more speculative direction, if under the assumption (mn, W) = 1 the upper bound
e (MnW)W 12 for the sum appearing in Lemma BTl holds (cf. the Linnik-Selberg conjecture),
then the error term (¢N)Y/2*¢ in Corollary is admissible.

If ¢ is a square then we can compare the second main term in Corollary [L3] to the error term
coming from ([.2) in the range where ¢ is small compared to N. For example, in the special case
that p is a prime and ¢ = p? we have

[Xo(V)(Fy)| = q+ (p— 1) 555202(0,0) + O (min(u(N), ¢¥ N (gN)F, (¢ + N3)d(N)a)a? )

Corollary 1.4. If p, N — o where p runs through primes p{ N then for any fized 6 > 0 we have

p? + O(p(N)) if p2 » N0
23 10 40
2+ 0. (pBE N (gN)F) if N31—0 « p? « N4-3
[ Xo(N)(Fp2)| =3 23 10 . ooB s 0 _s
p5~ + O:(p22 N11 (gN)*) if NT3T° « p” « N2t

(p— 1) 4 O ((p* + N2p)d(N)p) if p> « Ni 0.

The first of these cases is just (L)), and the last is the Tsfasman-VIadut-Zink theorem [TVtZ82],
which has important applications to algebraic coding theory, see [Mor91l, Ch. 5].
Using Theorem we can make more explicit statements about elliptic curves themselves. Let
E be an elliptic curve defined over F; and let tp = ¢ + 1 — #E(F,) be the trace of the associated
3



Frobenius endomorphism. Hasse’s Theorem tells us that |tg| < 2,/g. The set of Fy-isomorphism
classes of elliptic curves defined over F, is naturally a probability space where the probability of a
singleton is given by
1
Py({E}) = —— =1
! q| Autg, (E)|

We would like to study the expectations as ¢ — o0 of various random variables associated to tg or
the structure of the group of F,-rational points of E/. To be precise: let A be a finite abelian group
with at most two generators, and let ® 4 denote the indicator function of the event that there exists
an injective group homomorphism A — E(F,). Let U;(z) for j = 0 be the Chebyshev polynomials
of the second kind. The Chebyshev polynomials form an orthonormal basis for the Hilbert space
L?([-1,1], 2¥/1 — 22dz). N. Kaplan and the author in [KPI7, Thm. 2] gave explicit formulas for
the expectations

Z Uj(te/2:/q)

Ey(U;(te/2y/q)®a) = % | Auty, (E)|

E/F,
A—E(Fy)
in terms of Tr((d)T,,|S.(T'(M,N))) and elementary arithmetic functions of m, M, N, and j.

Theorem yields the following refinement of the error term in the main corollary of .

Let
ny 120[(—(q1’n1)>>
v(ny,ng) = ———= 1+7 ng .
(na,ma) ¥(n1)p(n1)n3 p 1:[ <

(g—1,n7)

Corollary 1.5. Let n1 = ni(A) and ny = ny(A) be the first and second invariant factors of A
(i.e. we have ng | ny). Suppose that (|A|,q) =1 and ¢ =1 (modng). Then

Ey(U;j(te/2y/q)®4) = v(n1,n2) <5(J',0) + Ojc <min(n1,qﬁn%g)mmq_%(qnlf)> .

If ¢ # 1 (mod ng), then Ey(U;®4) vanishes identically.
In particular, the traces of the Frobenius tp for {E/F, : A — E(F,)} become equidistributed

with respect to the Sato—Tate measure as ¢ — o0 through prime powers ¢ = 1(modnsg). The
41

C e, . . . . =40
equidistribution is uniform in A as soon as ¢ » n3n{* " for any fived § > 0.

In Kaplan and the author showed that the equidistribution of tg for {E/F, : A — E(F,)}

is uniform as soon as ¢ » n%ni‘” by applying (L) to bound the trace. In this sense, Corollary

goes beyond what one can conclude using the Riemann hypothesis of Deligne alone. All of the
error terms in the theorems and corollaries found in section 2 of [KP17] are similarly improved by
applying Theorem [[.2] in addition to (L6l

1.3. Outline of Proof. Thanks to (LA]), the structural steps of the proof of Theorem reduce
to those of Theorem [Tl The details of the analytic arguments differ however (see section [l). For
these reasons, we only discuss the proof of Theorem [[.T] in this outline.

By Atkin-Lehner theory, to estimate Tr(7,,|Sx(To(NN),€)) it suffices to estimate

(1.9) D As(m),

JeHE(N,e)

where H(N,e€) is set of Hecke-normalized newforms of level N and character €, and Af(m) is the
mth Hecke eigenvalue of f, normalized so that [A¢(n)| < d(n). Whereas Serre and Conrey, Duke,
and Farmer used the Eichler-Selberg trace formula to access the trace of T,,, we take a different
path and use the Petersson trace formula.
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Let B, (T'o(IN),€) be an orthonormal basis for S, (I'o(N),€). Let g € B.(To(N),e€) and write its
Fourier coefficients as {by(n)}n>1. Then the Petersson formula [IK04, Prop. 14.5] says that
(1.10)
r -1 T N € s 10y 4
T 1) N bpn)bg(m) = S(m,n) + 2w Y Mjﬁ_l < ”m"> ,

(4/mn)r—1 c ¢
J€Br(Lo(N),€) c=0 (ri(())d N)

where J, is the J-Bessel function, Sc(m,n,c) is the twisted Kloosterman sum
dm + dn
c 9

Scmon.c) = Y e(d)e <

d (mod c)

and the = indicates we run over invertible d (mod c).
Our goal is to apply the Petersson formula to (L9]), and so we are faced with two technical
difficulties:

(1) Only the newforms in S,(I'o(IV),e) have Fourier coefficients proportional to the Hecke
eigenvalues appearing in (L9), and

(2) If f is a newform, the constant of proportionality between Fourier coefficients b¢(n) and
the Hecke eigenvalues A¢(n) is ~ || f||12, which is not constant across H} (NN, e€).

We overcome (1) in Theorem B.IIby developing a Petersson formula for newforms for S, (I'g(N), €).
There has been much recent interest in such formulas, see for example [BBD*17], [Nell7], [PY1S],
and [Youl7]. Theorem[Blis a generalization of [BBD*17, Prop. 4.1] to nontrivial central characters,
which itself is a generalization of work of Iwaniec-Luo-Sarnak [[LS00], Rouymi [Roull] and Ng
[Ng12]. Peter Humphries has also shared a preprint with the author in which he independently
obtains Theorem B and uses it to study low-lying zeros of the L-functions associated to [ €
H}(N,e). Theorem[Blis the only place in the proof where we have used the hypothesis (N, m) = 1,
in an essential way, and so is the source of the relatively prime conditions in Theorems [[.1] and

We deal with (2) by appealing to the special value formula

_M@)m (If12

L(1,Ad* f) (k) Vol Xo(N)’

where L(s, Ad? f) is a certain Dirichlet series whose coefficients involve #(n?), and which we discuss
in more detail in section 2l One may then swap the sum over f and this Dirichlet series, and apply
our Petersson formula for newforms (Theorem B]). Estimating the resulting sums directly using
the Weil bound for Sc(a,b,c) (see Lemma [Z), one recovers that the trace of Ty, is <, (Nk)!™¢
(compare with (ILT)).

To save a bit more and obtain Theorem [T we remove the weights || f||7, more efficiently using
a method due to Kowalski and Michel [KM99 Prop. 2]. Kowalski and Michel’s method is based
on Holder’s inequality and a large sieve inequality due to Duke and Kowalski Thm. 4] for
sub-families of automorphic forms on GL3. There are other notable large sieve inequalities for GLg3
in the literature, see e.g. Thm. 3] and [Ven06, Thm. 1]. However, these two are not useful
to us since we need a large sieve inequality which is efficient for the proper sub-family of GL3 forms
cut out by the image of the adjoint square lift from GLy. The inequality of Duke and Kowalski is
superior to the results Thm. 3] and [Ven06l Thm. 1] in the case of a thin subfamily and
a long summation variable, which is the situation of interest to us.

1.4. Acknowledgements. I would like to thank Nathan Kaplan for a careful read and pointing
out the Tsfasman-Vladut-Zink theorem to me, Corentin Perret-Gentil for some helpful discussions,
and the anonymous referee for a thorough and detailed report on the first version of this paper.
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2. PRELIMINARIES ON L-SERIES

If L(s) is a meromorphic function defined in Re(s) » 1 by an infinite product over primes p of
local factors Ly(s), then for any integer N we write

N s) = HLP(S)
PIN

and

s) = H Ly(s)

p|N

so that L(s) = Ly(s)LW)(s) for any N € N. To deal with the || f||2,-normalization alluded to in
subsection [[.3] we introduce the “naive” adjoint square L-function. For f e HX(N,e), let

L(s, Ad? f) 23 Z Mf HL s, Ad? f)

n=1

where ((s) is the Riemann zeta function, and where
—1 ()N 2a .
<1_#> Z@O% if pt N
A YY) A . :
<1 ps) (1 P > if p| N.
Warning: the L(s, Ad® f ) is not the true adjoint square L-function of f as defined by functoriality
(see [IK04, pp. 133] and the online errata). But if p{ N, then L,(s, Ad? f) does match the local L-

factor at p of the true adjoint square L-function. Our “naive” adjoint square L function L(s, Ad? f )
is chosen to be the Dirichlet series for which the following Lemma is true.

Lemma 2.1. The series L(s, Ad? f) defined above is holomorphic for Re(s) > 0 and
(N(2)(dm)~ {f, o

(2.1) Ly(s,Ad” f) =

2
(22) LA ) = 0 Vol X (V)
where drd
_ 2 AT QY
o Pox = L I
and dedy m
Vol Xo(N) = LO(N)\% i gww).

Proof. For the first statement, let m denote the irreducible admissible cuspidal automorphic repre-
sentation of GLy generated by f, and denote by L(s,Ad2 7) the L-function of its adjoint square
lift. We have by Gelbart and Jacquet [GJ78] that L(s, Ad*7) is an entire function of s. Therefore,
the prime-to-N part of the naive L-function L(™ (s, Ad? f) is holomorphic for Re(s) > 0.

For the second statement, take the standard non-holomorphic Eisenstein series for I'g(N) at the
cusp o0 given by

E(z,s) = Z Im(yz)%.
~€l\To(N)
Then we have by the classical Rankin-Selberg unfolding argument
9 Ldrdy T(s+r—1) \)\f
oy B )y S = S Z

We deduce the lemma by taking residues on both sides and recalhng [Lwa97, Thm. 13.2] that

Res,—1 E(z,5) = Vol Xo(N) ™!
6




Let o7(n) be the Dirichlet series coefficients of L") (s, Ad? f). Explicitly,

€ 2 if (n =
05(n) = {znzmzf (DA(P) it (n.N) =1

(2:3) 0 if (n, N) > 1.

Inverting, we also have
(2.4) en)Ar(n®) = Y, p(m)os(b).
m2l=n
For future reference, we write the partial sums of L&Y )(1, Ad? f ) compactly as
0s(n)
(2.5) we(z) = Z e,
n<w n

By contrast, when p | N we have that Ly(s, Ad? f) is constant along f € H*(N, ) by the following
Lemma.

Lemma 2.2 ([Ogg69] Thms 2, 3). Let p | N be a prime, and € a Dirichlet character mod N. Write

if € is not a character mod N /p

an,(p) = if € is a character mod N /p and p> { N

OB =

if € is a character mod N /p and p* | N.
Then we have |Af(p)|> = an ¢(p).

3. STRUCTURAL STEPS

We study the operator T, = m/m%1 on Sk (Io(N), €) so that each eigenvalue A\y(m) of the T},
operator is normalized by Deligne’s theorem to have [Af(m)| < d(m). We write H}(N,€) for the
set of Hecke-normalized newforms in S, (V,€) in the sense of Atkin-Lehner theory [ALT70L [Li75].
Also by Atkin-Lehner theory we have when (m, N) = 1 that

3.1) Te(T},[Se(Do(N), ) = D d(L) Y, Ag(m),

LM=N  feH: (M)

where we consider the interior sum to be empty if € is not a character mod M. Thanks to (L3,
we can reduce the structural steps for traces on S, (I'(M, N)) to the case of S, (I'o(N),e€).
Recall the notation from section [L3] and write ¢, = I'(k — 1)/(47)*" L. Let

C
A,@N,e(m,n) = 7H, b (”)b (m)v
(Vimn)*= fewrzouvm e

so that the Petersson formula (LI0) is

(3.2) A Ne(m,n) =d6(m,n) + 2w " Z Mjﬁ_l (47T\C/mn> .
c=0 (Cri(())d N)

The following theorem is our main tool for computing sums over the set of newforms H} (N, €).

Theorem 3.1. If (mn, N) = 1 then we have

Ap(m)As(n) €(0) 2
Cr e = w(L)R(M, L, e) —=Ap Me(m,nl”),
feH%N,e) fofow LMZ—N z%o ¢
(6,M)=1



where

P?|L pl(M,
ptM
and ap(p) was defined in Lemma 22
Proof. See section [1 O

Theorem [B1] does not directly apply to ([B.I]) because of the normalization by {f, f)n.

We present a technique for removing the weights (f, f)n, which is a slight generalization of
Kowalski and Michel [KM99l §3]. The idea for removing such weights first appeared in a paper of
Murty [Mur95]. Let a = (af) be a sequence of complex numbers indexed by

rel) U HiWN.e.
N=1¢e(modN)
Define the natural averaging operator
Ala] = Axela]l = > of.
JeH:(N,e)
Let
P LN(lvAd2f)
RV
Then we define the harmonic averaging operator
Alla] = A fo] = DT wyay.
JeHx(Ne)
The following proposition is a minor generalization of Proposition 2 of [KM99]. It allows us to

pass from natural averages of newforms to harmonic averages of newforms.

Proposition 3.2. Let o = (o) be a sequence of complex numbers indexed by f € Hx(N,€) running
over all N and all €. Suppose that for all € > 0

(3.3) AMlag[] <= (Nw)*
and
(3.4) fe?,;{%ﬁ,s) lwrap| « (Nk)—+e

for some absolute § > 0. For any integer v = 1 write x = (N/i)g. Then we have

K — 1 Vol Xo(N)
4 ((N)(2)
Proof. See section [0l O

Alay] = (A"ws(@ay] + Ocp(a™ 54 + (N0) 7)) .

One of the main ingredients in the proof of Proposition is a large sieve inequality for the
Dirichlet series coefficients of the automorphic adjoint square L-funciton L(s, Ad? ), see Proposi-
tion [6:2] which is a quotation of [DK00, Cor 6]. This inequality is only valid when the length of
summation X satisfies X » (Nk)®, which is far from the expected truth. Nonetheless, as of now
it is the best available such inequality in the range of parameters of interest to us. The exponent
—0§/20 in Proposition is optimized given the exponent 8 above, and any improvement over the
result of Duke and Kowalski would lead to a corresponding improvement to the value 20 = 2(8+2).
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We apply Proposition B2l with oy = A¢(m) to equation BI]) to get

(3.5)
(T/ ‘S (PO Z d R4;1V21(A§)0<<2]\)4)AM5[wf( ))\f(m)]+0 <I€N1+€x_6/20+5 —I-NE)
LM=N
—1
- K12 S el I % w0k [T
LM=N n<x n k‘2f
(n,M)=1

+0 <I{N1+€:E_6/2O+E + NE) ]

We are now ready to apply Theorem [BJ1 We deduce a version of the newform formula for the
harmonic averages A"[\;(m)\(n)] appearing in (BH).

Lemma 3.3. Let c,(€) denote the exponent of the p-part of c(e). If (mn,N) =1 then we have

1 1 e
g N = s 3 wmrono [T (1- %) 5 P audmne)
: LM=N p2|M p oL>
(6,M)=1
where
1 A,
FM,e) = ] (1+=) J] (1-=
Pl P pelim P
neT CP(E/):Q
In particular, if € = €qy is trivial we have
1 1 1
B0 AT - e 8 o ] (15 5) X fAang(mat)
LM=N p2|M p oL
(e,M)=1

Note that formula (B.7)) resembles closely the formula found in [BBD*17, Prop. 4.1].
Proof. By the definition of L,(1, Ad? f) and Theorem Bl we have

Ao =TT (1-2) (1-242) 3 ywronzo Y Padmne)

pIN p p LM=N 0L
(¢,M)=1

It suffices to show for any L, M that

(3.8) % I1 (1 - 1) (1 - %MTf(p)>l R(M,L,e) = [ <1 - ]%) F(M,e).

plLM P p2M

We may also assume that c(e) | M, since otherwise Ay ase(m,nf?) = 0. Both sides of (3.8) are
multiplicative, so it suffices to check the case M = p® and L = p® for an arbitrary prime p. The
following cases can be easily verified one-by-one.

a>2 =1, and cy(e) =

a>2, =1, and cpy(e)
a>2,=0,and cp(e)
a>2,=0,and cp(e)
a=1,#>1,and cp(e)
a=1,5>1,and cy(e) =
a=1,5=0,and cy(e) =



4. ANALYSIS FOR T'g(V)

Now we put together ([B.3]), the newform formula (B.6]), and the Petersson formula (3.2)). By (3.3
and ([B.6) we have that

Te(T),|Sx(To(N),e)) = A+ E,
where for an integer 7 > 1 to be chosen later we set 2" = (Nx)'° and have
k=1 d(L) 1 €(0) 1
(41) A= B > 0N (2) > = > 7 > w@QWFEW,e) ] 1—1?

LM=N k<zl/2 (<z/k? wQ=M W
(k,M)=1  (¢,M)=1

X Z @AmW,e(m7 q2€2)7

q|Q%
(¢,W)=1

and FE is the error term from (B3] of size
(4.2) E <o kN eg=50+ 4 N¢.

Applying [B.2) to A we get that

A=D+ 0D,
where D and OD are the contributions from the diagonal term and off-diagonal term of (3.2]),
respectively. We insert 6,,—,2¢20¢(e)w for Aww.e(m,¢*?) in [@J) to find

1
k—1€m2) d(L) 1 1
D=5 v X Gng 4 g 2 MQWEY [ (1= ) s
LM=N k<m1/2/m1/4 WQ=M p2|W
(k,M)=1

Extending the sum over k to infinity we conclude that

K — Em% kN1+e
D= 121—(”1%) o) Y p@WEW.e [] (1—%> oo + O- <;§?|E(m )|>.

LM=N WQ=M p2|W p

[NIES

By a tedious case check on prime powers we have

LM=N p2|M

Therefore the result of the diagonal contribution is

1
Kk — 1€(m2 kIN1te 1
(4.3 D=2y o (S em)
m2 €Tr2m4

which matches what one finds directly from the identity contribution of the Eichler-Selberg trace
formula.
Now we treat the off-diagonal terms. Let

€(ql)

4y BYmW)= 3, Y
(SY  qlQ*
(&,M)=1 (q,W)=1

C

Z Se(m, q2€2,c)J <47Tq€\/ﬁ>
——Jpr | — |-
¢=0 (mod W) ¢

10



Then we have that

-1 d(L) 1 1
op=""" A 1W(QYWEF(W,e) (1 - —> —_B(z/k2,m, W).
12 LMZ—N C(M)@) WQZ—:M pl—‘[/V ” (Z%fl v

Lemma 4.1. Let d3 denote the 3-divisor function. For any m,n = 1 we have

¥ Sl (i)

=0 (mod W)

log 2mn.

sy (o W)Rds(mon)d(W) [ mn\®
« c(e) HP m— (WJrnW)

Proof. The proof is identical to [ILS00, Cor. 2.2] but with the following bound on the Kloosterman
sum in lieu of the standard bound without nebentype character.

ple(e)

Lemma 4.2. For integers c € NZ and a,b € Z with ¢ # 0 and c(€) | N, we have the estimate
[Se(a, b:)] < d(€) (a,5,0)% €2 e()F e (e)1.

Proof. See Knightly and Li Thm. 9.2]. O
O
Applying Lemma [4.1] and estimating sums by integrals we find
1,1
BV, m, W) « o(e)} c*(e) LWMIYE |y,
Wks

hence one estimates that
1 1 1 1 1
OD <« c(€)%c*(e)ixz2komi N logma.

We have Tr(T},|S.(To(N,¢€))) = D + OD + E, and so collecting error terms we obtain

(4.5)  Tr(T5,[Sk(To(N,€))) =

+ RNItep— T +e + N€> )

We now optimize the value of r. By [GHL94] [Ban97], the exponent ¢ = 1 is admissible. The
error in (AH]) is minimized when

2[S9}

11 N

20 =

B

N

1 1
mi c(e)1 c*(e)
Let us assume that there is some 1 > 0 such that
(4.6) m1 c(e)T c*(e)T « (Nk&) .
We choose r = 1 to be the nearest integer to
(. log(k5m1 c(€)T c*(e)1)
2 log(N#¢) — log(m¥ c(€)7 c*(e)) ) |

which by (4.0) is then bounded above uniformly in terms of 7 > 0 only.
11




5. ANALYSIS FOR I'(M, N)
Recall from (L3]) that

Tr((d)T,|Ss(T(M,N)) = >, &(d) Te(T5,|Sx(To(MN), ),
€ (mod N)
and that in section 4] we decomposed the interior of this as
Tr(T),|Sc(To(MN),e)) = D+ OD + E.
Summing the formula (@3] for D and (£2) for E trivially over characters e (mod N) we get

(51) (@IS0, V) = oL o (N)o(NM) (dx(m?d,1) + (~1)6x (md, 1))

+0D* + 0, </{(MN2)1+%_%+5 + N(MN)5> ,

where 2" = (M Ng)!°, r is a parameter to be chosen later, and

OD*= Y €d)OD.
€ (mod N)
e(—1)=(~1)"
Let
Sc(m, g%, ¢
Bymw) = Y] IR ) Sl E.0)
€ (mod N) =1 q\QOO =0 (mod W)
e(=1)=(-1)" 5<Y (W)=
XJ,Lgfl <M>’
&

so that we have

« K1 1. .
(52)  OD*==r <<K Z k2 2 Q)WH(l—?)B (x/k*,m, W).
LK=MN k<m1/2 p2W
<kK>

We would like to utilize the orthogonality of characters over € (mod N). To implement this, we
now refresh the notation. Suppose W, N > 1 are integers such that W | N2. For a,b,d, s € Z and
1 <¢=0(modW) define

Tiw(a,bc) = Y] eld)eB)F(W,S.(a,b,).
€ (mod N)
e(=1)=(=1)"~
c(e)|W

With this notation, we have

1 Ty (m, ¢*02, ) 4dmlg/m
. B*(Y,m,W) — SLUASLE Sk ARy S i Aiay Iy
59 SR I o (fntay

(0,K)= =0 (mod W) ¢
<Y ( W)=1

We can derive a bound on Ty by appealing to the Weil bound for Kloosterman sums.

Lemma 5.1. Suppose W, N > 1 such that W | N2, a,b,d,k € Z such that (b,W) =1, (d,N) =1
and 1 < ¢=0(modW). We factor ¢ = c1co with ¢c1 | W* and (co, W) = 1. Then

Ty (a,b, ¢)| < (c1)d(ca)(a, b, e2)/2ey/>.
12



Proof. Consider the sum

Tiy(a,b,c) i= > e(d)e(b)F(W,€)Se(a,b,c),
€ (mod N)
c(e)|w
which is a minor variation of Tyy (a, b, ¢), but omitting the global condition e(—1) = (—1)". We first
consider the sum 77}, locally, returning to Ty at the end of the proof. Let «, 3,7 = 0 such that
a <7, a<2B, (dp?) = (b,p*) =1, and consider Tye(a,b,p”). Let

1+ if cple) =a=1
_ -1
I(a, 8) == Z e(dz)e(b)dc, (e)<a (1 - %) if cple) =a>2
¢ (modp?) 1 else.

By opening the Kloosterman sum and exchanging order of summation we have

* ar + bT
(5.4) T = X o5 ) ras)
z (mod p7) P
Next we break into four cases:
(1) a>p
(2)0=a<p
B)l=a<p

(4) 2<a<p.
Recall the orthogonality relation

Z E(Q)E(b) = @(n)én(av b)

and the almost-orthogonality relation (see e.g. [HB8I], Section 2])

Y )= Y, e (3)-

c(e)=c d|(a—b,c)
We apply these to evaluate I(«, 8) in cases ([{I)-(l). We find
90(295)5,,13 (zd,b) ifa>p
1 ifo=a<p
5.5 I(a,B) = ‘
59 (@) 0 (p)dp(xd. b) + 5 X5 pav) P(O)u(p7 /0) ifl=a<g
P(p™)0pe (2d,0) + 523 X (e wap) PO)u(07/0)  if 1=a <.

Recall that (d,p”) = 1, so that d~! (mod p”) (or (modp?) in cases (@) and (@)) exists. Inserting
ED) to (B4, we find the following.
Case ([I): 8 < a.

* ar + bT

T =) 3 o),
z (mod p7)
x=d~1b (mod p?)

Case [@): = a=0.

& axr + bx
Tll(av bypfy) = Z € < 52 ) = S(a7 bapﬁ/)'

z (mod p7V)
13



Case @): > a=

Té(a,b,p’y)—so(p). 3 e(““b“‘> Z‘P o) S e(ax%—bf)'

pY
z (mod p7) 5‘17 z (mod p7)
x=d~1b (mod p) z=d~ b (mod J)
Case {): > a > 2.
o * ar + bT 1 o * ar + bx
et =0t Y (T Ypeuers Y e *ET).
x (mod p7) b b S|p> x (mod p7) b
x=d~'b (mod p®) x=d~'b (mod §)

Using the Weil bound for Kloosterman sums and trivial bounds, we find for all integers a, b, and
non-zero integers 0 < i < j, and (y,p) = 1 we have

* b2_ j 2 i\ L J e
(5.6) 3 <ﬂ> A0 @ )i =0
j ! P else.
z (mod p’)
z=y (mod p*)
Applying (5.6]) to the various cases above, we find that cases (), (B]), and (), i.e. when o > 0, the
bound

(5.7) | Tpe(a,0,p7)| < 9(p7).
In case (@), i.e. when a = 0, we have
(58) [Ty (a,b,07)] < d(p")(a,b,p7)!2p72,

Thus the estimation of T;;a (a,b,p7) is finished.
Now we return to the case of Ty (a,b,c). We have

1 —1)*
Tw(a,b,c) = §T§V(a, b,c) + ( 2)

4 (CL, _b7 0)7

so it suffices to establish the bound stated in the lemma for Ty, (a,b,c). We have that Ty, (a,b, c)
is twisted multiplicative, i.e. we have a factorization

(5.9) Ty (a, b, c) H Tha(acp cp=,bep=,p7).
pe(IW
p7lle

Bounding the left hand side of (5.9) using (5.7)) and (5.8]), we conclude the proof of the lemma. [
Applying Lemma 5.1l to (5.3]) we get

P(c d(ca)(m, ¢*0?, c
B*(Y,m, W) ZZMZQZH)(\/‘%?)

C
(éK 1 ¢|Q® Wi we 1 (e, W)=1
<Y (¢ W)=1

Again following closely the proof of [ILS00, Cor. 2.2] we have that

1

4 2 2 3

I < Wbﬁ)‘ « dg((a b)) < b’a ) log 26%a.
c1Co e /e1 b\/a + 1k

[SIES

C1C2

o (k)

¥ d(ca)(a,b%, ¢)?
(c2,W)=1 \/6—2

We have moreover that

D=
N

1 1 2
<
W;WOO Vcl (b\/5+cm)% W%b

14
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These last two estimations lead to

1
B (v, m, W) « 2 0V)
ke W2 (

» miys: (log Y)? log 2m (W)
ﬁ% VV%
Inserting this into (5.2]) we get

OD* « ks MN3+ez3 (log :13)3mi log 2m,
and inserting this into (5.1)) we conclude that
(5.10)

Te((@)T4|Se (D(M, N))) = =2

mEp(N)O(NM) (6 (m#d, 1) + (~1)"6y (m#d, ~1))
+Ope (K%MN%a;%“m% log 2m + w(MN2)*ep=3+< 4 N(MN)€>
Now we optimize the value of . The error term is minimized when

3 5
11 N2k6
20

m

ISk

Let us assume that there is some 1 > 0 such that

1

mi & (N 3
We choose r = 1 to be the nearest integer to

m%)k".

11 log M Nk
2 logN%/i% —logm% ,

which is then bounded above uniformly in terms of 1 > 0 only.

6. PROOF OF PROPOSITION
Proof. We have by Lemma 2] that
K — 1 Vol Xo(NN)
Alay] =

dr - ((N)(2) Z

wray LN (1,Ad? f) =
feHY(N,e)

K — 1 Vol Xo(N)

Ala; L™ (1, Ad? ).
Recall that we have set o/(n) to be the Dirichlet series coefficients of L") (s, Ad? f), along with

or\n of(n

we(z) = Z %), and wy(z,y) = Z s(n)
n<x

Lemma 6.1. We have

r<n<y

LN(1,Ad” f) = wp(w) +wp(2,y) + O-(Nk)2y~279).
Assuming the generalized Lindelf hypothesis, the (Nk)Y? can be reduced to (Nk)E.
w¢(y), finding

Proof (sketch). For ¢, T,y > 0, we apply Perron’s formula (see e.g. [Dav00, pg. 105]) to calculate

1 c+iT
I )

LM + 5, Ad? f)% ds + O <y 3 0;(n)

o min(1, T log y/n|_1)> .
n=1 n
15



We shift the contour to Re(s) = —2 to get

—oiT QT petil s
(6.1) wr(y) = L™ (1,Ad® f) + L U +f +f LM (1 +s,Ad2 )L ds
278 \Je—ir 2—iT 24T s

( n(1, 7" logy/n|” 1))

By an inspection of the functional equation for L(s, f ® f) found in [Li79, Example 1], we have the
convexity bound (see e.g. [IK04, (5.20)])

(6.2) L™ (s, Ad? ) « [(kN)2(1 + [t))*] 2",

where s = o + it, valid for 0 < 1. Choosing ¢ = ¢, T = (N/-i)*%y%“, and estimating all of the
terms in (G.I]) directly, one finds the estimate in the statement of the Lemma.

If one assumes the generalized Lindel6f hypothesis in place of (62]), then we shift the contour to
Re(s) = —1/2 instead of —2 and follow the same steps. O

By Lemma we have

k — 1 Vol Xo(N)
ir (M)(2)

(6.3)  Alay] = <Ah[Wf( z)as] + A[ws(z, y)ag] + O(Nk) 2y~ 2+EAh[lOéf\])) :
By the hypothesis (33) we have A"[|a;|] <. (Nk), and so taking y = (Nk)>*¢, we find that the
O term in ([B3) is « (Nk)~!

Next we consider the second term and treat it using the following large sieve inequality. This is
a slight variation on Corollary 6 of [DKO00], see also [KM99, Prop. 1]. Let )\;2) (n) be the Dirichlet
series coefficients of the automorphic adjoint-square L-function L(s, Ad% 7)), where f is a newform
for the representation 7. If (n, N) = 1 then we have that )\;2) (n) = o¢(n).

Proposition 6.2. Let X > (Nk)®. We have for all e > 0 that

2
(6.4) > anP @)

e Xl—l—E Z ‘an‘2
feH}:(Nye) In<X n<X

for any finite family (an)1<n<x of complex numbers, where the constant depends only on €.

By following closely Kowalski and Michel [KM99, §3.3] one deduces from Proposition the
following Lemma.

Lemma 6.3. Let r > 1 be an integer such that x" > (Nk)1°. Then for all ¢ > 0 we have
A[wf(a;,y)zr] Lre (NK)S,
where the tmplied constant depends only on r and €.

Proof. 1t suffices to replace instances of A¢(n?) in [KM99, Lemma 3] by €(n)As(n?) and to use
equations (Z3]) and (Z4) in the place of the equations (15) and (16) of Kowalski and Michel. O

We now can give an estimate for the second term of (6.3). We use Holder’s inequality to
separate wy(x,y) from ay, and Lemma to handle the former. Precisely, let s be defined by
16



(2r)~! + 571 = 1. Applying Holder’s inequality we find for any integer r > 1 that

AMwp(z,y)ag] = D wiwp(a,y)ay
Jey

@ [

where

A= max wrlaf| « (Nk)~oF

feH(N,e)

by hypothesis ([3.4). Suppose now that r is sufficiently large so that z” > (Nk)!°. Then Lemma
applies, and we have

Alwy(2,9)%]7 <o (NK)E.

Lastly, by hypothesis (3:3]) we have
AMlagl] <. (Nx)E.

Putting these estimates together, we find that A"[w;(z,y)ar] <. (N/i)7%+€, and so derive the
bound claimed in Proposition O

7. PROOF OF THEOREM B.1]

Proof. The strategy of the proof is the pick an orthogonal basis for S, (I'g(N),€) and compute the
Fourier coefficients of basis elements explicitly. For f a modular function of weight x, we denote
by fla(z) = d2 f(dz). Atkin-Lehner theory gives an orthogonal direct sum decomposition

SR(FO(N)ve) = @ @ SE(L§f7€)7

LM=N feH?(M,e)

where Sy (L; f,€) = span{fj, : £ | L} is called an oldclass. Note that the inner sum is {0} unless
c(e) | M, so we may assume this for the remainder of the proof.

To pick an orthogonal basis for Sy (I'g(IN), €) it then suffices to pick a orthonormal basis for each
oldclass Sk (L; f,€). We use a basis for the oldclasses first due to Schulze-Pillot/Yenirce [SPY1S8]
Thm. 8]. The basis constructed by Schulze-Pillot/Yenirce is the same as the one found by Rouymi
[Roull] in the case of prime power level and trivial nebentypus and Ng in the case of
arbitrary level and trivial nebentypus, see also Blomer and Mili¢evi¢ [BM15], Ch. 5] and Humphries
[Hum18, Lemma 3.15]. Each of these preceding works used the Rankin-Selberg method to compute
inner products and orthonomalize the oldclasses. Schulze-Pillot/Yenirce however took a different
and simpler path, using the trace operator to compute the inner products.

17



Let f e H*(M,e). For integers d | g one defines a joint multiplicative function £,(d). On prime
powers &,(d) is given for v > 2 as follows:

) SO PRV [ DD A
&(1) =1, fp”(p)<1 p(1+80’]\;(p))2) (1 p? > 7

5;0(17) = (1 - ()\f(p)z) ) gp"(pu_l) = Mgp”(pu)a

€0, (P) \2
p(l+ =22)

N

—As(p)
VPl + €0,m(p)/p)

and &y (p?) = 0 in all other cases.

Proposition 7.1 (Thm. 9 [SPY1S]). Let M | N and let f € H}(M,e). The set of functions
D(2) = 21&(d)d? f(dz) : g | L}
dlg
is an orthogonal basis for Sp(L; f,€). In fact, if f is L*(Do(N)\J)-normalized, then the above set

is in fact orthonormal.

Now that we have an orthonormal basis for S, (T'g(NV), €), we follow Barrett, Burkhardt, DeWitt,
Dorward, and Miller [BBD* 17| to derive the Petersson formula for newforms Theorem B.11

Let f € H}(M,¢) have Fourier coefficients ay(n) and be normalized so that ay(1) = 1. Of course
F&)/IIfllv is L?(To(N)\H)-normalized, so using the basis in Proposition [.1] we have

Ck —_—
Apnelmmn)=—"—F > by(n)by(m)
(Mmn)"2" e, (To(N).e)

(7.1) zcinﬁ_,l Z Z <f1f> Zaf(g) m)a ) (n).

(mn)™= L= N feH:(m g|L

fp(l) =

Q) G ) = %é W),

By definition of £ we have
n

Ar(g) (n) = Z fg(d)d%af< ),
dl(g,n)
which are now expressible in terms of Hecke eigenvalues Af(n) normalized so that [Af(n)| < d(n).

We have then that

Ay c(m,n) = > X || ng Z( > & wﬂi})) ( > £g<d>d3af<2>)
d|

(mn AT N ferz(m,e) IV G2 \ d(gm) d|(g,n)

N

o 3 ¥

LM=N feHz (M)

7 ||2 Z (dZ éAf(iZ)) ( Z é~g(d)dé/\f(2))

N glL (g;m)

XN D),

LM=N feH?*(N,e) N gL

where we have set

=, (m.n, f) = ( > @(d)déxf(;‘))( §g<d>d%Af<Z>)
d|(g,n)




forg | L|N.
Now suppose that (dy,ds) = 1 and dyds | m. Then by Hecke multiplicativity we have

Af(d ))\f(d ) = Ap(m )/\f(d 5
so that for (g1,92) = 1 we have
591 (m7 n, f)EHQ (mv n, f) = /\f(m)Af(n)Eglﬁ (m7 n, f)

Therefore

Auncmm)=ce Y Y m(xf(m)xf(n))

LM=N feHx(M,e)

1—w(L)
p||L \d|p®

H (Z Ed(m7nvf)>7

where w(n) is the number of distinct prime factors of n. Let

V},a(m,n,f) = Z Ed(m7naf) = (1 *E)pa(m7naf)a
dlp™

where # denotes Dirichlet convolution. We suppose now that (m,n, N) = 1 and calculate.

Lemma 7.2 ([BBD*17] Appendix A). If (m,n,N) = 1 then we have
Via(m,m, £) =Ap(m)As(n) (1 + 6D + [&2(1)])
+ A (/DA ()P (&) (1) + E2(p),2(1))
+ At Ay (n/p)p* (& (P) + &2 (D2 ()
+ p2im A (/D2 A ()2 (7)62 (1) + Sy A p (m) s (/07 )p (12 (7).

o

if a =2 and
Vie (m,m, £) =Xp(m)As(n) (1 + [§(D))
+ Byl (/) A (M)p2 & (P)Ep(1)
+ By h (M)A (n/p)p2 & (1) (1),
ifa=1.

Proof. We actually have if a > 2 that
Vpe(m,m, f) = Ex(m, n, f) + Ep(m,n, f) + Epz2(m, n, f).

The other summands vanish because by our assumption (m,n, N) = 1, since if p | m then p f n
because p | N. So each p divides either m or n but never both. Then, we have that £, (1) = 0 for
B = 3. In fact, even more terms vanish. We have

Vo (., ) =X (m)As (0) (1 + &(1) 2 + Ig2 (D)
+ Sy (m/pIA () (§()(1) + P2 (1))
+ 8y (M)A (n/p)p? (&P >+m£pz<p>)
+ 82 m A g (m/p2)Ap (n)pEp2 (D7), (1) + 82, Ay (M) A g (n/p*)pEp2 (1) €2 (0%).

Inserting the formulas for £, we complete the proof. The formula for the o = 1 case is even simpler
as we can drop the p? terms. ]

Recall we write ML = N and f € H(M,e).
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Lemma 7.3. If (m,N) =1 and (n,N) = 1 then we have
(s T Vi tmam, £ = MG g ) [T (1 60F) [T (1+ 16 + e (VP)
|| pllL p?|L

Proof. Note that the conditions (m,N) = 1 and (n,N) = 1 imply that p { m and p f n. So the
formula above follows immediately from the formulas in Lemma O

One has that ||f||% = :2}((1\]\47 || f]13, since f e H:(M,e). Thus

Y(M) | — )
Brotiem,n) = e W(N) T Ar(m)As(n 1+ 601
el LMZ—N Y(N) f€H§M75)||f||% Fm)As( )H( & (D))

< [T +16M1P + [&:(D)7) .

p?|L
Next we insert the definitions of the & functions. Let

IAr(p)?
eo,m(P)\o’
(1 + )

2
r(p) =1+ A (p)? . ( Af(p)2))2) +oee

€0,M (P)\2 oM (p
p(1 + =) p(l+ =5

where € 37 denotes the trivial character modulo M. Observe that

L+ &) =rp(p)~

r(p) =1-

SO

and
-1
L+ + g0 = s (1- 22420)
Then we get
B (M) < 60,M(P)>1 Ap(m)As(n) 1
Ay Ne(m,n) = ¢, === ’

Next we need a formula for r¢(p)~!. Recall from (2J) that at a prime p { M that the local
adjoint square L function is given by

A () 1
Ly(1,Ad? f) P2 C;O f B <1 _ %) <1 _ 1_1)> <1 _ B(p);a(p)>
so that
D ()N () _ 1+
a=0 P <1 _ M) <1 _ B(p)éa(p))
1+




where the second equals sign follows from the formulas

IAr(p)* = e@)Ar(p)? Ar(p) = alp) + B(p), a(p)B(p) = €(p)

which are valid when p{ M. We can summarize the above calculation and Lemma as:
()N 2a .
<1 + %) S0 élp )pé(l’ ) if pt M

ri(p)”t = -1
(1 - @) i p| M.

Let
D Ag(m)Ag(n)
e TR
Recall the definition of R(M, L,¢) from the statement of Theorem B], which we rearrange to

s~ S T0-5) (D) 11 (-22)

A Nelm,n) = ¢,

I;j]‘\/? ;\]\Z p|(M,L
We have then that
€l .,
(7.2) Agne(m,n)= > R(M,Lje) >, % r e (mynt?).
LM=N 0| L®
(e,1|\/1):1

This is analogous to the first half of [BBDT17, Prop. 4.1]. Now we would like to invert this formula,
and we prepare for this with two lemmas.

Lemma 7.4. Let o, >0 and 0 < v < 8 and cp(e) < S — 1. Then
(7.3) R’ p*, ) R(p",p""7,€) = R(p?,p"*7 77 o).

Proof. We check cases.
Case a > 0 and [ = . Note that R(p?,1,¢) = 1 for any v = 0.
Case a = 0. Note that R(p®,1,¢) = 1 for any 8 > 0.
Case a > 1, f =1 and v = 0. We have by hypothesis c,(¢) = 0, so

R(p,p*)R(1,p) = —2L_ (1 - %)1 . (1 ; 1) |

U(p>th) p (p) p
On the other hand, we also have

- gty () (142)

Case a>1, 3> 2 and v = 0. We have p | (p°®,p®) and aps (p) =0, 50 R(p®,p*,¢) = p~® and

(- 4) (1),

R(1,p*P.¢) = W <1 _ pi)‘l (1 + %) .

2
Generic case a > 1, =2, 1 <y<f—1, and cy(e) < f— 1. We have

¥ (p?)
Y(path)

and

R(pP,p%,€) =
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R, po=c) = L) <1 _ M>_l

Y(pP) p
and .
- Y(p?) apr e(p))
R p'y,pﬁJra 77 €)= 1- ’ .
( )= 5pe) p
The above cover all the cases in the lemma. O

Lemma 7.5. Let Ne N, N = LM, and M = WQ. Then
R(M, L, e)R(W,Q, €)dc(eyyw = R(W, LQ, €)d¢(e)w -

Proof. Both sides of the desired formula are multiplicative. Let a = v,(L), f = v,(M), and
v = vp(W). It then suffices to check that

(74) R(pﬁa pa, E)R(pnpﬁ_ﬂya 6)5'y>cp(e) = R(p’ya pOH-ﬁ—’Y’ 6)57207,(5)'

If cp(e) < f—1 then (4] is true by Lemmal[l4l So, suppose not. Then 8 < cp(e) <y, but W | M
so v < 8 and so § = 7. In the case § = 7 the equation (74 is true because R(p®,1,¢€) = 1. O

We are now prepared to invert (7.2]) using Lemma We calculate

> WL)R(M,Lye) ) if)AH,M,E(m,nﬁ)
LM=N £ L>
(¢,M)=1
= Y wmronno Y DS g Y ADar mn2g?)
s L4y e 9 9 q 57W75 9
LM=N () L® QW=M qlQ”
(,M)=1 (q,W)=1
e0) .,
= > wl) > RM,LeRW,Qe€) )] % ~we(m,nb?)
LM=N QW=M b[(LQ)™
(b,W)=1
€) ..
= 3 rwxa Y War ) Y o)
WX=N b| X * LQ=X
(b,W)=1

= R(N’ 1, 6) ;,N,e(mv ’I’L)
= A;,N,e(man)'

where the first equals sign is ([T2]), the third is by Lemmal[75] and the fourth is Mobius inversion. [

REFERENCES

[AL70] A. O. L. Atkin and J. Lehner. Hecke operators on I'g(m). Math. Ann., 185:134-160, 1970.

[Ban97]  William D. Banks. Twisted symmetric-square L-functions and the nonexistence of Siegel zeros on GL(3).
Duke Math. J., 87(2):343-353, 1997.

[BBDT17] O. Barrett, P. Burkhardt, J. DeWitt, R. Dorward, and S. J. Miller. One-level density for holomorphic
cusp forms of arbitrary level. Res. Number Theory, 3, Art. 25, 21 pp., 2017.

[BBM17] Valentin Blomer, Jack Buttcane, and Péter Maga. Applications of the Kuznetsov formula on GL(3) II:
the level aspect. Math. Ann., 369(1-2):723-759, 2017.

[BM15] Valentin Blomer and Djordje Mili¢evi¢. The second moment of twisted modular L-functions. Geom. Funct.
Anal., 25(2):453-516, 2015.

[CDF97] J. B. Conrey, W. Duke, and D. W. Farmer. The distribution of the eigenvalues of Hecke operators. Acta
Arith., 78(4):405-409, 1997.

[Dav00]  Harold Davenport. Multiplicative number theory, volume 74 of Graduate Texts in Mathematics. Springer-
Verlag, New York, third edition, 2000. Revised and with a preface by Hugh L. Montgomery.

22



[DI95]

[DKO0]
[DS05]
[GHL94]
(GJI78]

[HBS81]
[Hum18]

[Tgu59)]
[TK04]

[ILS00]
[Twa97]
[KL13]
[KM99]
[KP17]

[Li75]
[Li79]

[Mil17]
[Mor91]

[MS09]
[Mur95]

[Nell7]
[Ng12]

[Ogg69)]
[PY18]

[Ros92]
[Roul1]
[Ser97]
[SPY18]
[TVtZ82]
[Ven06]

[Youl7]

Fred Diamond and John Im. Modular forms and modular curves. In Seminar on Fermat’s Last Theorem
(Toronto, ON, 1993-199/), volume 17 of CMS Conf. Proc., pages 39-133. Amer. Math. Soc., Providence,
RI, 1995.

W. Duke and E. Kowalski. A problem of Linnik for elliptic curves and mean-value estimates for automor-
phic representations. Invent. Math., 139(1):1-39, 2000. With an appendix by Dinakar Ramakrishnan.
Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2005.

Dorian Goldfeld, Jeffery Hoffstein, and Daniel Lieman. Appendix: An effective zero-free region. Ann. of
Math. (2), 140(2):177-181, 1994.

Stephen Gelbart and Hervé Jacquet. A relation between automorphic representations of GL(2) and GL(3).
Ann. Sci. Ecole Norm. Sup. (4), 11(4):471-542, 1978.

D. R. Heath-Brown. The fourth power mean of Dirichlet’s L-functions. Analysis, 1(1):25-32, 1981.

P. Humphries. Density theorems for exceptional eigenvalues for congruence subgroups. Algebra Number
Theory, to appear, 2018.

Jun-ichi Igusa. Kroneckerian model of fields of elliptic modular functions. Amer. J. Math., 81:561-577,
1959.

Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical
Society Colloguium Publications. American Mathematical Society, Providence, RI, 2004.

Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak. Low lying zeros of families of L-functions. Inst. Hautes
Etudes Sci. Publ. Math., (91):55-131 (2001), 2000.

Henryk Iwaniec. Topics in classical automorphic forms, volume 17 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1997.

A. Knightly and C. Li. Kuznetsov’s trace formula and the Hecke eigenvalues of Maass forms. Mem. Amer.
Math. Soc., 224(1055):vi4132, 2013.

E. Kowalski and P. Michel. The analytic rank of Jy(g) and zeros of automorphic L-functions. Duke Math.
J., 100(3):503-542, 1999.

Nathan Kaplan and Ian Petrow. Elliptic curves over a finite field and the trace formula. Proceedings of
the London Mathematical Society, Published Online 2017.

Wen Ch’ing Winnie Li. Newforms and functional equations. Math. Ann., 212:285-315, 1975.

Wen Ch’ing Winnie Li. L-series of Rankin type and their functional equations. Math. Ann., 244(2):135~
166, 1979.

James S. Milne. Modular functions and modular forms (v1.31), 2017. Available at www.jmilne.org/math/.
Carlos Moreno. Algebraic curves over finite fields, volume 97 of Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge, 1991.

M. Ram Murty and Kaneenika Sinha. Effective equidistribution of eigenvalues of Hecke operators. J.
Number Theory, 129(3):681-714, 2009.

M. Ram Murty. The analytic rank of Jo(N)(Q). In Number theory (Halifax, NS, 1994), volume 15 of CMS
Conf. Proc., pages 263—277. Amer. Math. Soc., Providence, RI, 1995.

Paul D. Nelson. Analytic isolation of newforms of given level. Arch. Math. (Basel), 108(6):555-568, 2017.
Ming-ho Ng. The basis for space of cusp forms and Petersson trace formula. Masters thesis, University of
Hong Kong, 2012.

Andrew P. Ogg. On the eigenvalues of Hecke operators. Math. Ann., 179:101-108, 1969.

Tan Petrow and Matthew P. Young. A generalized cubic moment and the Petersson formula for newforms.
Math. Ann., published online, 2018.

Shepley L. Ross, II. A simplified trace formula for Hecke operators for I'o(N). Trans. Amer. Math. Soc.,
331(1):425-447, 1992.

D. Rouymi. Formules de trace et non-annulation de fonctions L automorphes au niveau p”. Acta Arith.,
147(1):1-32, 2011.

Jean-Pierre Serre. Répartition asymptotique des valeurs propres de l'opérateur de Hecke T),. J. Amer.
Math. Soc., 10(1):75-102, 1997.

R. Schulze-Pillot and A. Yenirce. Petersson products of bases of spaces of cusp forms and estimates for
Fourier coefficients. Int. J. Number Theory, 14(8):2277-2290, 2018.

M. A. Tsfasman, S. G. Vladut, and Th. Zink. Modular curves, Shimura curves, and Goppa codes, better
than Varshamov-Gilbert bound. Math. Nachr., 109:21-28, 1982.

Akshay Venkatesh. Large sieve inequalities for GL(n)-forms in the conductor aspect. Adv. Math.,
200(2):336-356, 2006.

Matthew P. Young. Explicit calculations with Eisenstein series. larXiv:1710.03624, 2017.

23


http://arxiv.org/abs/1710.03624

ETH ZURICH - DEPARTEMENT MATHEMATIK, HG G 66.4, RAMISTRASSE 101, 8092 ZURICH, SWITZERLAND
FE-mail address: ian.petrow@math.ethz.ch

24



	1. Introduction
	1.1. Statement of Results
	1.2. Applications to Modular and Elliptic Curves over a Finite Field
	1.3. Outline of Proof
	1.4. Acknowledgements

	2. Preliminaries on L-series
	3. Structural Steps
	4. Analysis for 0(N)
	5. Analysis for (M,N)
	6. Proof of Proposition ??
	7. Proof of Theorem ??
	References

