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We examine the full “life cycle” of miscible viscous fingering from onset to shutdown with
the aid of high-resolution numerical simulations. We study the injection of one fluid into a
planar two-dimensional porous medium containing another, more viscous, fluid. We find
that the dynamics are distinguished by three regimes: an early-time linearly unstable
regime, an intermediate-time non-linear regime, and a late-time single-finger exchange-
flow regime. In the first regime, the flow can be linearly unstable to perturbations that
grow exponentially. We identify, using linear stability theory and numerical simulations,
a critical Peclet number below which the flow remains stable for all times. In the second
regime, the flow is dominated by the non-linear coalescence of fingers which form a
mixing zone in which we observe that the convective mixing rate, characterized by a
convective Nusselt number, exhibits power-law growth. In this second regime we derive a
model for the transversely averaged concentration which shows good agreement with our
numerical experiments and extends previous empirical models. Finally, we identify a new
final exchange-flow regime in which a pair of counter-propagating diffusive fingers slow
exponentially. We derive an analytic solution for this single-finger state which agrees well
with numerical simulations. We demonstrate that the flow always evolves to this regime,
irrespective of the viscosity ratio and Peclet number, in contrast to previous suggestions.

1. Introduction

Mixing of fluids in porous media is notoriously difficult due to the absence of iner-
tia, and lies at the heart of many real-world problems: it plays a key role in carbon
sequestration (Huppert & Neufeld 2014), oil recovery (Lake 1989), mantle convection
(van Keken et al. 2002), microfluidic devices (Stone et al. 2004) and food processing (Hill
1952). Ultimately mixing occurs as molecular diffusion acts to reduce local concentration
gradients. It is, therefore, most effective when both gradients in concentration, and the
surface areas across which it acts, are large. While fluids at high Reynolds numbers can
be vigorously stirred by turbulence, other mechanisms are required to stir fluids in a
porous medium. One such mechanism is the generation of interfacial instabilities, which
increase the area over which molecular diffusion acts. Such instabilities can be driven by
a number of different mechanisms including chemical reactions (Almarcha et al. 2010),
unstable density stratifications (Hewitt et al. 2013) and differences in viscosity (Tan &
Homsy 1988). Here we focus on the effects of a planar, viscously unstable interface on
mixing in porous media.

† Email address for correspondence: jn350@damtp.cam.ac.uk



2 J. S. Nijjer, D. R. Hewitt and J. A. Neufeld

Viscous fingering is an interfacial instability that occurs when a less-viscous fluid
displaces a more-viscous one in a porous medium or Hele-Shaw cell. This phenomenon
was first described by Hill (1952) and later by Saffman & Taylor (1958). The instability
results in a series of fine fingers whose length scale can depend on a variety of factors
including surface tension and diffusion. Saffman and Taylor showed that in the case of
immiscible flows (when the fluids do not mix) these fingers tend to coalesce to a single
steadily-propagating finger. Since the work of Saffman and Taylor, there have been a
variety of studies on both the initial instability and the stability of the single-finger state
(see McCloud & Maher 1995).

If the interfacial tension is zero, Saffman and Taylor’s theory predicts infinitesimally
small fingers. However, experiments with miscible fluids indicate that diffusion between
the fluids acts to smear the smaller scales leading to finite wavelength fingers (Lajeunesse
et al. 1999; Bischofberger et al. 2014). Tan & Homsy (1986) used linear stability theory,
and a slowly diffusing background flow, to predict the most unstable mode and its growth.
In subsequent work, they compared their theory to numerical simulations of the full 2D
problem (Tan & Homsy 1988). Since then much work has been done to understand
the onset and early-time behaviour with the inclusion of a variety of stabilizing and
destabilizing mechanisms such as gravity (Ruith & Meiburg 2000), Korteweg stresses
(Pramanik & Mishra 2015a,b) and permeability layering (De Wit & Homsy 1997a,b).

Some recent attempts have been made to model the impact of viscous fingering on
mixing beyond the onset. Jha et al. (2011a,b) examined the long-time mixing of a
viscously unstable system containing high or low viscosity blobs in a doubly periodic
domain. Informed by numerical experiments, they developed a model for the evolution of
the mixing rate. Here, we instead investigate the evolution of a single viscously unstable
planar interface from onset to shutdown.

Although previous work has looked at the onset problem and early-time behaviour
of miscible viscous fingering, the late-time behaviour remains poorly understood. In
previous work, Tan & Homsy (1988) determined a critical Peclet number beyond which
tip-splitting occurs, and they hypothesized that this value might have implications for
the asymptotic fate of the fingers. Zimmerman & Homsy (1992) similarly suggested that
the asymptotic behaviour may include multiple steadily propagating fingers under the
assumption that tip splitting may balance the upwards cascade in the scale of the fingers,
but were unable to extend their numerical simulations to a final state. In experiments in
a radial geometry, Chui et al. (2015) showed a transition in finger growth from a scaling

with t to one with t
1
2 corresponding to the shutdown of the instability. However, the

ultimate fate and final form of the fingers remains unclear.

This paper has two main aims. The first aim is to identify and provide a detailed expla-
nation of the asymptotic fate of the fingering instability. Then, given an understanding
of the late-time behaviour, the second aim is to examine the full “life cycle” of miscible
viscous fingering from “onset” to “shutdown” which draws together previously disjoint
or contradictory observations and claims. We find that the dynamics can be divided into
three regimes: (i) at early times, the flow is well-described by linear stability theory; (ii)
at intermediate times, the flow is dominated by non-linear finger interactions; and (iii)
at late times, the flow is composed of exponentially slowing single-finger exchange-flow.
Ultimately, once the fingers have slowed enough, diffusion in the direction of the flow
dominates the dynamics. In the course of this study, we also identify a critical Peclet
number for the instability in the first regime and derive an improved averaged model for
the flow in the second regime.

This paper is laid out as follows. In §2 we formulate the problem, and we describe
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Figure 1. An illustration of the model setup. The porous medium is taken to be an infinite
strip of width a initially filled with a fluid with viscosity µ2. A fluid with viscosity µ1 is injected
at a constant velocity U x̂ into the medium. We measure the concentration of the injected fluid,
which is one upstream and zero downstream.

the numerical method used to solve this problem in §3. In §4 we present numerical
results across a range of parameter settings and identify the dominant scalings in each
regime. We then discuss the early-time linearly unstable and intermediate-time non-linear
coalescence regimes in more detail in §5. Finally, in §6, we discuss the late-time behaviour,
for which we derive an analytic solution for the new single-finger state and compare it
to the results of our numerical simulations.

2. Problem formulation

We consider a two-dimensional, isotropic porous strip of infinite extent and finite width
a (figure 1). The medium has uniform porosity φ and permeability k, and is initially
saturated with an ambient fluid which has viscosity µ2. Another fluid, which is fully
miscible with the ambient fluid and has viscosity µ1, is injected at a constant velocity
U x̂. The diffusivity between the fluids is D and gravity is neglected. Note that, in general,
the permeability and diffusivity may be described by second-rank tensors, and can depend
on a variety of factors including the concentration of either fluid, fluid velocity, time, and
space. For simplicity, the permeability and diffusion-dispersion tensors are here assumed
to be isotropic and constant.

2.1. Governing equations

The two fluids are incompressible and fully miscible. The flow obeys Darcy’s law and
the concentration of the injected fluid is described by an advection-diffusion equation,

∇ · u = 0, (2.1)

u = − k

µ(c)
∇p, (2.2)

φ
∂c

∂t
+ u · ∇c = φD∇2c. (2.3)

Here u = (u, v) is the Darcy velocity or fluid flux, p the pressure, and c the concentration,
which varies between 0 (in the ambient fluid) and 1 (in the injected fluid). The viscosity
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µ(c) varies with the concentration, and we follow the convention of previous authors
(e.g. Tan & Homsy 1986; Zimmerman & Homsy 1991; Pramanik & Mishra 2015a) by
assuming an Arrhenius-like exponential dependence,

µ(c) = µ2e
−Rc, (2.4)

where R = −ln(µ1/µ2).
We non-dimensionalize the equations by the height of the domain a, velocity U , time

φa/U , permeability k, viscosity of the ambient fluid µ2, and pressure µ2Ua/k, leading to

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (2.5)

−u∗µ∗ =
∂p∗

∂x∗
, −v∗µ∗ =

∂p∗

∂y∗
, (2.6)

∂c

∂t∗
+ u∗

∂c

∂x∗
+ v∗

∂c

∂y∗
=

1

Pe

(
∂2c

∂x∗2
+

∂2c

∂y∗2

)
, (2.7)

µ∗(c) = e−Rc, (2.8)

where (·)∗ denotes a dimensionless quantity. For notational simplicity, we drop the
asterisks from all subsequent quantities. The key dimensionless parameters are the log-
viscosity ratio and the Peclet number, defined as

R = −ln

(
µ1

µ2

)
, Pe =

Ua

φD
. (2.9)

When the injected fluid is more viscous than the ambient (R < 0), the interface is stable
and the concentration evolves by diffusion alone, with a classical error-function profile.
However, when the injected fluid is less viscous than the ambient (R > 0), the interface
can be unstable, leading to complex fingering patterns. We focus on the latter problem
here. The Peclet number provides a ratio of the characteristic timescales for diffusion and
advection: when Pe� 1, diffusion dominates the dynamics, and when Pe� 1, advection
dominates. In the diffusive limit, as will be shown later, the instability can be suppressed
so we will, therefore, focus predominantly on the limit Pe� 1.

We work in a reference frame moving with the velocity of the injected fluid, and
introduce transformed variables

ũ = u− 1, x̃ = x− t. (2.10)

In this frame, equations (2.5-2.7) become

∂ũ

∂x̃
+
∂v

∂y
= 0, (2.11)

−(ũ+ 1)µ =
∂p

∂x̃
, −vµ =

∂p

∂y
, (2.12)

∂c

∂t
+ ũ

∂c

∂x̃
+ v

∂c

∂y
=

1

Pe

(
∂2c

∂x̃2
+
∂2c

∂y

)
. (2.13)

Again, for notational convenience, we drop the tildes from all subsequent quantities.

2.2. Boundary conditions

Similar to previous work (Tan & Homsy 1988), we impose periodicity at the top and
bottom boundaries. The upstream and downstream concentration are fixed at c = 1 and
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c = 0 respectively and the horizontal velocity is fixed at u = 0 (in the moving frame).
The boundary conditions are thus

c(x, 0, t) = c(x, 1, t), u(x, 0, t) = u(x, 1, t), v(x, 0, t) = v(x, 1, t), (2.14)

c(−∞, y, t) = 1, c(∞, y, t) = 0, (2.15)

u(−∞, y, t) = u(∞, y, t) = 0. (2.16)

2.3. Diagnostic quantities

As the instability develops and an array of fine fingers form, the local fingering
dynamics become chaotic and are controlled by non-linear interactions between fingers.
Instead of examining the behaviour of each individual finger, we aim to examine how the
fingering dynamics evolve globally. To do so, we compute the average concentration over
the transverse direction,

c(x, t) =

∫ 1

0

c(x, y, t)dy. (2.17)

Using this definition, and defining the deviations c′(x, y) = c(x, y)− c(x), (2.13) can be
written as two coupled equations for the mean and perturbed concentrations,

∂c

∂t
+
∂uc′

∂x
=

1

Pe

∂2c

∂x2
, (2.18)

∂c′

∂t
+
∂uc′

∂x
+
∂uc

∂x
− ∂uc′

∂x
+
∂vc′

∂y
=

1

Pe

(
∂2c′

∂y2
+
∂2c′

∂x2

)
. (2.19)

We will use this decomposition in our derivation of the late-time solution in §6.
We also examine three global quantities over time: the mixing length h, which quantifies

the width of the mixing zone; the average number of fingers n, which gives an inverse
measure of the transverse length scale; and the Nusselt number, Nu, which quantifies the
total convective mixing rate. These quantities are defined as,

h = x|c=0.01 − x|c=0.99, (2.20)

n =
1

h

∫ x|c=0.01

x|c=0.99

η(x)dx, (2.21)

Nu =

∫ ∞
−∞

∫ 1

0

u

(
c− 1

2

)
dydx, (2.22)

where the number of fingers η(x) is calculated by counting the number of local maxima
in a vertical slice. Note that, the Nusselt number is often defined as Nu∗ = 1 + Pe Nu,
which is the ratio between total transport and diffusive transport (Zhou 2013). Here we
instead use the Nusselt number simply to quantify the convective transport.

3. Numerical Method

A variety of techniques have been used to solve the coupled equations (2.8, 2.11-
2.13) including spectral (Tan & Homsy 1988; Zimmerman & Homsy 1991, 1992; De Wit
& Homsy 1997b), pseudo-spectral (Islam & Azaiez 2005) and finite-difference methods
(Jha et al. 2011a,b). Here we use a modified finite-difference method, which is numerically
stable for all R.



6 J. S. Nijjer, D. R. Hewitt and J. A. Neufeld

Given that the fluids are incompressible, we write the velocity in terms of a stream-
function Ψ(x, y, t),

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (3.1)

Eliminating the pressure from (2.12) and combining with (3.1) and (2.8) results in a
non-linear elliptic equation for the streamfunction,

∂2Ψ

∂x2
+
∂2Ψ

∂y2
−R ∂c

∂x

∂Ψ

∂x
−R∂c

∂y

∂Ψ

∂y
= R

∂c

∂y
, (3.2)

with boundary conditions

Ψ(x, 0, t) = Ψ(x, 1, t), (3.3)

Ψ(−∞, y, t) = Ψ(∞, y, t) = 0, (3.4)

from (2.14) and (2.16).
In order to simulate an infinite strip, we impose boundary conditions (2.15) and (3.4)

at x = ±Γ/2, where Γ is chosen to be sufficiently large such that these boundaries are far
from the fingered region. Furthermore, since previous work has shown that solutions are
independent of the aspect ratio as long as the fingered region is sufficiently far from the
boundaries (Ruith & Meiburg 2000; Tan & Homsy 1988), we use a growing domain to
minimize computational time. Each simulation is initialized with a domain length Γ = 1,
and Γ is doubled whenever c(x = −0.3Γ ) = 0.999 or c(x = 0.3Γ ) = 0.001. We compared
simulations with variable and fixed domain sizes to confirm that this mapping had no
measurable effect on the dynamics.

We discretise the domain on a rectangular grid with (nx, ny) grid points in the (x, y)
direction. Each simulation is initialized with an almost sharp interface and an added
small random perturbation centred at x = 0,

c0 =
1

2
+

1

2
erf

(
− x√

t0

)
+ r(x, y)e−x

2/t0 , (3.5)

where the function r(x, y) returns a uniformly distributed random number on the interval
[0, 10−5]. The diffusive error function with small effective time origin t0 is included in
(3.5) to aid the accuracy of the numerical scheme at early times. We set t0 = 10−6 in all
simulations.

At each time step, we solve (3.2) using an iterative multi-grid solver (Adams 1999)
with the solution at the previous time step used as an initial guess. We use sixth-order
compact finite differences (Lele 1992) to discretise the spatial derivatives in (3.2) and
(2.13), and advance (2.13) in time using a third-order Runge-Kutta scheme. We select
the time step, δt = min(10−3,min( δx

umax
, δy
vmax

)), to always satisfy the Courant-Friedrichs-
Lewy condition. To validate the numerical method, we tested the convergence of the
solution with increased spatial and temporal resolution and compared the growth rate
of single-mode perturbations to the linear stability theory of Tan & Homsy (1986).

4. Fingering pattern and regimes

Figure 2 shows a sequence of snapshots from a typical simulation for log-viscosity ratio
R = 2 and Peclet number Pe = 2000. At early times, the initially very sharp interface
begins to smooth out and a series of fine fingers develop (figure 2a). At intermediate times,
once the fingers reach a certain size, they begin to interact, which drives coarsening in the
vertical direction and growth in the horizontal direction (figures 2b,c,d). Overall, these
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Figure 2. Colourmaps of the concentration field (in a frame moving with the interface) over the
course of a simulation. Here, R = 2 and Pe = 2000. Snapshots, from top to bottom, are taken
at (a) t = 0.5, (b) t = 1, (c) t = 3, (d) t = 10, (e,f) t = 31. Note that the numerical domain is
significantly larger than shown in the lower 3 panels. Panel (f) is zoomed out to include the full
finger and note that the figure is horizontally compressed by a factor of 4.

non-linear interactions lead to coalescence until a single broad finger remains (figures
2e,f).

All of our numerical simulations, which have Pe ranging from 100 to 16000 and R
ranging from 1 to 5, show this qualitative behaviour. In general, we find that at early
times the interface diffuses and a set of fingers develop. The number of fingers that
develop increases with both the Peclet number and the log-viscosity ratio. The fingers
then reach a critical size after which they interact non-linearly. The fingers interact via
a variety of different mechanisms. These include shielding, when a longer finger widens
at the tip and shields the growth of smaller neighbouring ones; fading, when a finger
stops growing and diffuses into the ambient; and coalescence, when two or more fingers
merge together. When the Peclet number and log-viscosity ratio are large, the fingers
also exhibit more complex behaviour including tip-splitting, when a finger splits into two
at the tip; and branching, when a finger sheds fingers from its side (Islam & Azaiez 2005;
Tan & Homsy 1988; Zimmerman & Homsy 1991).

Regardless of the Peclet number and log-viscosity ratio, these interactions, on aggre-
gate, lead to coalescence until a single broad finger remains. This finding is contrary to
previous suggestions that the final state may include multiple fingers. The single finger
that remains diffuses while propagating at an exponentially slowing speed, ultimately
leaving a linear background concentration gradient that is gradually smoothed out by
diffusion. We find that the final mixing zone length increases with both R and Pe.

Figure 3 shows the mixing length h, number of fingers n, and Nusselt number Nu
as functions of time for different Peclet numbers (left) and log-viscosity ratios (right).
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Figure 3. Plots of (a,b) the mixing length h, (c,d) the number of fingers n, and (e,f) the Nusselt
number Nu as functions of time plotted on logarithmic axes. To reduce the noise in the data,
two different simulations are averaged. (a,c,e) Data for log-viscosity ratio R = 2 and different
Peclet numbers Pe as marked. The black circles correspond to the snapshots in figure 2. (b,d,f)
Data for Pe = 1000 and different values of R as marked.

Figures 3a,b show that the mixing length initially grows, then steepens, before finally
slowing towards a constant. The early-time mixing length is larger for small Peclet
numbers and is independent of the log-viscosity ratio whereas the final mixing length
increases with both the Peclet number and log-viscosity ratio. Figures 3c,d show the
average number of fingers is fairly constant at early times, decays to one at intermediate
times, and stays constant at one at late times. Although the initial number of fingers
increases with the Peclet number and log-viscosity ratio, the flow always tends to a
single finger eventually, irrespective of the parameters. Finally, figures 3e,f show that
the Nusselt number first grows exponentially, then grows more slowly and finally decays
exponentially.

Based on these sets of observations we partition the flow into three distinct regimes: (i)
an early-time, linearly unstable regime: the mixing zone grows diffusively and fingers grow
exponentially; (ii) an intermediate-time non-linear regime: fingers coalesce and the mixing
length and Nusselt number exhibit power-law growth; and, (iii) a late-time, single-finger,
exchange-flow regime: a single pair of counter-propagating fingers slow exponentially.
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Figure 4. Rescaled plots of (a,b) h, (c,d) n, and (e,f) Nu for early times (left) and late times
(right). The dashed lines are for constant R = 2 and different Pe as marked, while the solid
lines are for constant Pe = 1000 and different R as marked. To reduce the noise in the data, two
different simulations are averaged.

Each regime shows different dynamics and exhibits different scalings. We explore these
scalings in the following subsection, before examining each regime in more detail in
sections 5 and 6.

4.1. Scalings

At the start of all simulations, the interface is relatively sharp and the concentration
and velocity perturbations are small. Diffusion across the interface dominates the growth
of the mixing zone, and a diffusive balance c

t ∼
c

Peh2 gives the scaling for the mixing length

h ∼
(
t
Pe

) 1
2 , as can be seen in figure 4a. In this linearly unstable regime, the aspect ratio of

the fingers is O(1); hence, from incompressibility, ux ∼
v
y ⇒ u ∼ v. The linearized elliptic

equation (3.2) further suggests a balance u
y ∼

v
x ∼

Rc
y , or u ∼ v ∼ R. The linear scaling

of the velocity with the log-viscosity ratio, together with an advection-diffusion balance
in (2.13), indicates that c

t ∼
uc
x ∼

c
Pex2 , or t ∼ 1

R2Pe and x ∼ 1
RPe . That is, at early times,

the number of fingers scales linearly with bothR and Pe. Figure 4c shows a rescaled plot of
the number of fingers which collapses well with this scaling. Finally, the Nusselt number is
defined as the product of the exponentially growing velocity u ∼ Reσt and concentration
perturbations c′ ∼ eσt integrated over the size of the perturbations x ∼ 1

RPe (where σ is
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Early times Intermediate times Late times

h ∼
(
t
Pe

) 1
2 h ∼ Rt h ∼ RPe

n ∼ RPe n ∼ 1
Rt

n ∼
(
t
Pe

) 1
2 n = 1

Nu ∼ etR
2Pe/Pe Nu ∼ R2t Nu ∼ R2Pe e−Pet

Table 1. Scalings for h, n, and Nu for early, intermediate, and late times. The transition from
the early-time to intermediate-time regime occurs at t ∼ O( 1

R2Pe
) and the transition from the

intermediate-time to late-time regime occurs at t ∼ O(Pe).

the growth rate of the instability). Given the time scale identified above, t ∼ 1
R2Pe , we

collapse the data for the Nusselt number with the scaling Nu ∼ etR2Pe/Pe (figure 4e).

At intermediate times the fingers interact non-linearly causing them to elongate and
coarsen. The horizontal velocity remains relatively constant and is solely a function of the
log-viscosity ratio, u = U(R). An advective balance in equation (2.13) gives the scaling
Uc
h ∼

c
t , or h ∼ U(R)t, and this linear growth of the mixing zone in time can be seen in

figures 4a,b. In fact, we return to the functional form of the velocity U(R) in section 5.2,
and find that it can be approximated by U ∼ R for small R. The number of fingers n, in
the intermediate-regime, follows two distinct coalescence regimes. Initially the coalescence
is advectively dominated, and in this limit (2.13) gives the scaling vc

1/n ∼
c
t . Assuming

that the transverse velocity is O(R) and constant, then n ∼ 1
Rt . Subsequently, the flow

becomes diffusively dominated and (2.13) gives the scaling c
t ∼

c
Pe/n2 ⇒ n ∼ (t/Pe)−

1
2 .

These two scaling laws can be seen in figures 4c,d. In the intermediate-time regime, the
Nusselt number scales with the width of the mixing region (h ∼ Rt) and the average
convective flux, which scales with the velocity U ∼ R. Together, this gives the scaling
Nu ∼ R2t (see figures 4e,f). These observations suggest that the Nusselt number and
growth of the mixing zone are independent of the Peclet number and, after a small
amount of time spent advectively coalescing, the finger coalescence becomes independent
of the viscosity ratio.

Finally, at late times, a single pair of long, thin fingers counter-propagate and decay
through a background concentration gradient. As seen in figure 4d, all simulations tend to
this single-pair (single-maxima) state. Assuming that the concentration deviations from
the background are small and applying a long, thin approximation to equation (3.2),
results in the scaling u ∼ R (as discussed in more detail in §6). Balancing longitudinal
advection and transverse diffusion over a single finger yields the scaling Rc

h ∼
1
Pe ⇒

h ∼ RPe. This tendency towards a constant mixing length proportional to RPe is shown
in figure 4b. A diffusive balance, c

t ∼
1
Pe , suggests that the time should be scaled by

the Peclet number in this late-time regime. Applying the same argument as before, the
Nusselt number decays exponentially like Nu ∼ PeR2e−Pet.

The scalings are summarized in table 1. In the following sections, we discuss each of
these regimes in more detail with an emphasis placed on understanding the evolution of
the transversely averaged concentration.
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Figure 5. (a) Nu(t), attained from direct numerical simulations, plotted on logarithmic axes
for R = 2 and different Pe as marked. The Nusselt number is strictly decreasing for Pe = 20, but
has a period of growth for Pe = 30, suggesting a point of marginal stability between Pe = 20 and
30. (b,c) Marginal stability curves for R = 3 and (b) Pe = 25, 200, 500, 1000 (c) Pe = 15, 20, 25.
(d) Plot of the critical Peclet number versus log-viscosity ratio based on the linear stability
analysis (black line) and numerical simulations (blue ranges). The lower and upper estimated
values of Pec from our simulations in (d) are given, respectively, by the largest Pe for which
Nu(t) monotonically decreases, and by the smallest Pe for which Nu(t) increases at any time.

5. Early- and intermediate-time regimes

5.1. Early times: linearly unstable regime

The concentration gradient between the two fluids, which are not moving relative to
each other, is initially very high and spreads by diffusion. Neglecting the very small initial
perturbations in (3.5), the resultant concentration profile is one-dimensional and given
by

c(x, t) =
1

2
+

1

2
erf

(
− x√

4t/Pe

)
. (5.1)

Therefore, before the instability manifests itself, the concentration front widens like
(t/Pe)

1
2 , which corresponds to the early-time scaling of h (see figure 4a).

When R > 0, the flow rapidly develops a viscous-fingering instability in which pertur-
bations grow exponentially. Many authors have explored the onset of viscous fingering in
a variety of contexts using linear stability theory. Tan & Homsy (1987) found that the
instability can be suppressed for all times, in a radial geometry, if the Peclet number is
below some critical value. In a planar geometry, however, Pramanik & Mishra (2015a)
found a time-dependent critical Peclet number which decreases in time, and suggested
that there may be no Peclet number for which the flow is always stable.

In this section, we show that there is, in fact, a critical Peclet number below which
the flow is always stable in a planar geometry. To motivate the existence of this critical
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Peclet number, figure 5a shows Nu(t) for R = 2 and small Peclet numbers. For the range
of Peclet numbers plotted, the Nusselt number never transitions to power-law growth,
suggesting that there are choices of parameters where the flow never enters the non-linear
regime. In fact, we notice that for Peclet numbers less than or equal to 20, the Nusselt
number is strictly decreasing, implying the configuration is stable for all times, while for
Peclet numbers greater than or equal to 30, the Nusselt number goes through a period
of growth. In this section, we perform a linear stability analysis to show the existence of
a critical Peclet number for the instability.

We start with a diffusive base-state solution of the unperturbed system c0(x, t) given
by equation (5.1). To accommodate the rapidly varying base-state at early times we use
a similarity transformation ξ = x/

√
t, in terms of which (5.1) is steady,

c0(ξ) =
1

2

[
1 + erf

(
−ξ
√

Pe

2

)]
. (5.2)

We then linearize equations (2.13), (3.1), and (3.2) about this base-state and look for
perturbations of the form u′(ξ, y, t) = φ(ξ)τ(t)eiky and c′(ξ, y, t) = β(ξ)τ(t)eiky, which
satisfy, (

σ(t0)− ξ

2t0

d

dξ
− 1

Pe t0

d2

dξ2
+
k2

Pe

)
β = − 1√

t0

dc0
dξ

φ, (5.3)(
1

t0

d2

dξ2
− R

t0

dc0
dξ

d

dξ
− k2

)
φ = −Rk2β, (5.4)

where σ(t0) ≡ 1
τ
dτ
dt |t=t0 is the instantaneous growth rate at t = t0, such that τ = e

∫ t
0
σdt0

(see also Pramanik & Mishra 2015a). We note that this formulation does not require any
assumption of a slowly-varying or quasi-steady background. We solve (5.3) and (5.4) by
discretizing the domain using standard second-order finite-difference approximations for
the differential operators, which yields the matrix eigenvalue problem

Mβ = σβ. (5.5)

The growth rate of the most unstable mode is given by the maximum eigenvalue of the
matrix M. This growth rate depends on Pe and R, as well as, time t0 and the wavenumber
of the perturbation k.

Figure 5b shows the marginal stability curve σ(k, t0) = 0, where σ is the growth rate
of the most unstable mode, for R = 2 and a variety of Peclet numbers. The system is
always initially stable and goes unstable at a critical time t∗0 > 0. Zooming into the region
around wavenumber k = 2π (figure 5c), which is the largest mode that is permissible
inside the domain, we notice that for Pe = 20, the marginal stability curve lies above
k = 2π for only a finite amount of time: once the marginal stability curve falls below
this value, the flow is again stable. In fact, this transition back to stability at large t0
is a general feature for all R and Pe and this intermittent stability suggests that if the
interface is initially diffuse enough, the instability can be suppressed. Finally, we notice
that for Peclet numbers smaller than some critical value Pec(R), the growth rate is only
positive for wavenumbers smaller than 2π. These modes do not fit in the domain and the
interface is therefore always stable. For example, in figure 5c the critical Peclet number
lies between 15 and 20.

The transitions out of, and back into, stability, occur as diffusion tends to arrest the
instability. The system is initially stable because, for small t, the growth of the interface
(O(t−

1
2 )) outpaces the exponential growth of the perturbations. Matching the diffusive

length-scale to the length-scale of the most unstable perturbation gives a transition time



The dynamics of miscible viscous fingering from onset to shutdown 13

Figure 6. (a) Plot of the transveresely averaged concentration against the similarity variable
x/t. Here R = 2, Pe = 1000 and the time, given by the colour, ranges from 10 to 20. Each
curve plotted represents the average of five different simulations. The dashed lines represent the
three different model solutions: simple Koval (blue, dashed), fitted Koval (green, dotted), and
parabolic Koval (black, dot-dashed) . (b) Plot of the transverse variance in concentration for
Pe = 2000, 4000, 8000, and 16000 at t = 8, 4, 2 and 1. By sampling at these different times, we
normalize for the effect of the onset of the instability. The variance calculated from the simple
Koval model is given by the blue dashed line.

t ∼ 1
R2Pe . At sufficiently large times, the base flow is again stable, because the background

concentration gradient has weakened to such an extent that transverse diffusion can smear
out the advective growth of perturbations. Balancing these two terms for x, y ∼ O(1)
gives a transition time back to stability of t ∼ 1

Pe . At some critical Peclet number, Pec,
these two time-scales become the same, and the instability is completely suppressed. This
balance gives Pec ∼ 1

R .

Figure 5d shows Pec(R) calculated from the linear stability analysis, which agrees
with this predicted scaling. The figure also shows estimates of Pec from direct numerical
simulations, which give a reasonable agreement with the theory.

5.2. Intermediate times: non-linear coalescence regime

The linear instability results in a number of fingers which grow exponentially and
independently of their neighbours. After some time, the fingers begin to interact with each
other. Although the non-linear finger interactions exhibit complex and chaotic patterns
and vary significantly over time and from simulation to simulation, the number of fingers,
mixing length, and Nusselt number are largely indifferent to the exact intermediary
mechanisms (see rescaled data in figure 4). The transversely averaged concentration is
asymmetric, non-linear, and evolves in a self-similar fashion (figure 6a). There have been
many attempts to model the behaviour of the transversely averaged concentration, with
one of the simplest and most widely used models being the empirically derived formula
of Koval (1963). While this model has been revisited by multiple authors (Booth 2010;
Yortsos & Salin 2006), a fully closed model is yet to be derived. In this section we start
by re-deriving the simple model that was first proposed by Koval (hereafter, the ‘simple
Koval model’), and comment on its strengths and shortcomings. In order to address one
of these shortcomings, we then propose a simple improvement to the model, which gives
a qualitative improvement when compared with the numerical simulations.

The simple Koval model can be derived in the limit where both the aspect ratio of the
fingers and the Peclet number are large, (hn� 1 and Pe� 1 respectively). Under these
conditions the flow is predominantly horizontal and longitudinal diffusion is negligible.
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The velocity is calculated by taking the leading order expansion in hn in (3.1),

∂u

∂y
−Ru∂c

∂y
= R

∂c

∂y
, (5.6)

which has solution

u =
eRc∫ 1

0
eRcdy

− 1. (5.7)

Substituting this form for the velocity into (2.18) and neglecting longitudinal diffusion
gives,

∂c

∂t
+

∂

∂x

(∫ 1

0
ceRcdy∫ 1

0
eRcdy

− c

)
= 0. (5.8)

The simple Koval model proceeds under the assumption that the fingered region consists
of ηb(x) leftward-propagating fingers of width wb(x) with uniform concentration c=0
and ηf (x) rightward-propagating fingers of width wf (x) with uniform concentration c=1.
Under these assumptions, (5.8) becomes

∂c

∂t
+

∂

∂x

(
ηf
∫ wf

−wf
eRdy

ηf
∫ wf

−wf
eRdy + ηb

∫ wb

−wb
1dy
− c

)
= 0. (5.9)

In addition, the total area of the fingers has to add up to one, ηfwf + ηbwb = 1, and the
total concentration in the forward propagating fingers has to equal the transverse average,
ηfwf = c. Combining these constraints and simplifying (5.9) results in a hyperbolic
equation for c,

∂c

∂t
+

∂

∂x

(
Mc

Mc+ 1− c
− c
)

= 0, (5.10)

where M ≡ eR = µ2/µ1 is the viscosity ratio between the two unmixed fluids. The
solution to (5.10) is

c(x, t) =


1 x/t < 1

M − 1

1
M−1

(√
M

x/t+1 − 1
)

1
M − 1 6 x/t 6M − 1

0 x/t > M − 1.

(5.11)

Figure 6a compares this solution to the numerical simulations. The simple Koval model
accurately predicts two qualitative features of the non-linear spreading process: an
asymmetric concentration profile, and self-similarity in the variable x/t. However, this
model greatly over-predicts the spreading of the mixing zone (figure 6a). To account for
the difference between the model and experiments, Koval, in his original work, empirically
fit an effective viscosity Me to the experiments of Blackwell et al. (1959), yielding,

Me =
[
0.22eR/4 + (1− 0.22)

]4
. (5.12)

The prediction of (5.11) with M replaced by Me in (5.12), which we denote the ‘fitted
Koval’ model, gives a remarkably good fit with our numerical results (figure 6a). Indeed,
the agreement in figure 6a is all the more surprising given that (5.12) was fitted for fluids
with a different relationship between viscosity and concentration than we are using here.
Nonetheless, in spite of recent attempts, there is no rigorous derivation of this form of
effective viscosity ratio. Furthermore, this fitted model tends to break down for large M
(Malhotra et al. 2015).

One of the critical assumptions of the Koval model is that the concentration is either



The dynamics of miscible viscous fingering from onset to shutdown 15

Figure 7. a) Snapshot of the concentration profile at t = 1 for a simulation with Pe = 16000
and R = 2. Superimposed are lines which follow the peaks (orange) and troughs (blue)
in concentration. b) Concentration profile along peaks (orange) and troughs (blue). c)
Concentration profile in the transverse direction at x = 0 centred around the peaks (orange)
and troughs (blue).

exactly one or exactly zero. We interrogate this assumption by plotting the concentration
field from a simulation with a large Peclet number (Pe = 16000) in figure 7a. We find
that even at very large Pe, the concentration is not just one or zero but varies in both
the horizontal and vertical direction. The concentration along the local maxima and
minima of the fingers (figure 7b) decreases and increases towards the tips, respectively.
In the transverse direction, the concentration has roughly parabolic rather than step
profiles (figure 7c). These two factors together result in a much smaller prediction for the
transverse variance in concentration than the simple Koval model predicts (figure 6b).
Interestingly, in this limit of large Pe, the variance is independent of the Peclet number,
which suggests that the Peclet number has no effect on the effective viscosity in this
regime in agreement with the fact that (5.11) and (5.12) have no dependence on Pe.

Motivated by these observations, we suggest a very simple improvement to the simple
Koval model, which addresses one its main assumptions. In the simple Koval model,
the viscosity is uniformly given by eR or 1 in each finger, which follows from the
assumption of uniform concentration in each finger. However, we observe that the
concentration actually varies in a roughly parabolic manner across the fingers. In fact,
the significant improvement to the simple model by the empirical fit (5.12) suggests
that the main consequence of ignoring this variation is an inaccurate calculation of the
effective viscosity. We therefore propose a simple modification of the Koval model in
which the viscosity varies with a quadratic concentration profile across each finger; that
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Figure 8. Plot of the effective viscosity ratio measured for different values of R and Pe. Each
point plotted is calculated by extracting the value of M from a least-squares fit of (5.11) to the
transversely averaged concentration profiles c(x, t), at five different times t = 10, 11, 12, 13, 14
and five different simulations. These measurements are then averaged and the error bars
represent one standard deviation in these measurements. The three different model predictions
are: simple Koval (blue, dashed), fitted Koval (green, dotted), and parabolic Koval (black,
dot-dashed)

is, µ(y) = eR(1−y2/w2
f ) and µ(y) = eR(y2/w2

b) in the forward and backward propagating
fingers, respectively. In all other respects, we retain the same assumptions as in the simple
Koval model: the fingers are still assumed to be horizontally uniform, and to obtain a
simple analytical solution with the same functional form as the simple Koval model, the
mean concentration in each finger is still assumed to be either zero or one.

Under these assumptions, (5.9) instead becomes

∂c

∂t
+

∂

∂x

 ηf
∫ wf

−wf
eR(1−y2/w2

f )dy

ηf
∫ wf

−wf
eR(1−y2/w2

f )dy + ηb
∫ wb

−wb
eR(y2/w2

b)dy
− c

 = 0. (5.13)

Combining (5.13) with the same constraints as before, and solving, results in the same
expression for c as (5.11) but with an effective viscosity ratio

Me =
eRerf(

√
R)

erfi(
√
R)

, (5.14)

where erfi(x) is the imaginary error function. We denote this model as the ‘parabolic
Koval’ model. As with the original Koval model, the effective viscosity does not depend
on the width or the number of fingers.

Figure 8 plots the effective viscosity ratio extracted from the numerical simulations
(dots), together with the predictions of the simple Koval model (S-K), the empirically
fit effective viscosity (F-K) (5.12), and the analytically derived model with parabolic
transverse profiles (P-K) (5.14). The simple Koval model overpredicts the effective
viscosity of the fingered region, whereas the parabolic model agrees well with both the
empirical fit and numerical experiments. In fact, the parabolic model predicts smaller
effective viscosities than the empirical fit for R > 4 in qualitative agreement with
experiments by Malhotra et al. (2015). Although the model agrees well with the data,
it remains, of course, an approximation: it does not take into account the along-flow
variations in concentration, and it still assumes the concentration (but not the viscosity)
is either one or zero in each finger. Nevertheless, we have shown that an accurate effective
viscosity in the Koval model can be derived simply by assuming the viscosity varies
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Figure 9. Snapshots at t = 500 for R = 2, Pe = 2000. (a) Colourmap of the concentration
with overlain contours of the raw (solid) and transversely averaged (dashed) concentration. (b)
Colourmap of c′(x, y) = c(x, y)−c(x). (c) Colourmap of the horizontal velocity u. (d) Colourmap
of the vertical velocity v. Note that the x-axis has been compressed by a factor of 10 in these
plots.

Figure 10. (a) Plot of the transversely averaged concentration. (b) Plot of the longitudinally

averaged concentration cL(y) =
∫ Γ/2
−Γ/2 c(x, y)dx = 1

2
+
∫ Γ/2
−Γ/2 c

′(x, y)dx. A sinusoidal fit for

t = 150 is given by the dashed black line. In both plots R = 2, Pe = 2000 and the time, given
by the colour, ranges from 150 to 550.

smoothly in the transverse direction. Accounting for the other approximations in the
model is the subject of future work.

6. Late times: single-finger exchange-flow regime

6.1. Numerical observations

At late times, we find a new flow regime which, to leading order, involves a single pair of
fingers counter-propagating through a linear background concentration gradient as shown
by the snapshots in figure 9. The concentration field is dominated by a nearly uniform
background gradient in the horizontal direction with some small transverse deviations
superimposed (figure 9a). The concentration deviations (figure 9b) are horizontally
uniform and have a single maximum (i.e. they form a single finger). The horizontal
velocity u (figure 9c) tracks closely the concentration deviations while the vertical velocity
v (figure 9d) is only appreciable at the tips.

Figure 10 shows how the concentration field evolves over time. We find that the
transversely averaged concentration, c(x), is linear and steady in the interior. The fluid
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Figure 11. (a) Plots of c(x) for R = 2, Pe = 500, 1000, 2000 (dashed) and Pe = 1000 and
R = 1, 1.5, 2.5, 3, 4 (solid) at t = 200. (b) c as a function of x/(RPe), with the fitted line
c = 1/2− 24.9x/RPe (black, dashed)

flow only widens the mixing region by filling in the linear profile (inset to figure 10a).
In addition, we find that c is no longer skewed and c = 1/2 is in the middle of the
domain. These features are in stark contrast to the previous regime in which c(x) was
asymmetric and non-linear. Superimposed on this background concentration field are
horizontally uniform deviations which are sinusoidal in the transverse direction (figure
10b). These deviations decay in time, which ultimately results in a one-dimensional linear
concentration field that evolves purely by diffusion in the x direction.

6.2. Asymptotic model

The late-time regime is characterized by a linear background gradient with a single
pair of counter-propagating fingers superimposed. The fingers have a very large aspect
ratio, and so the velocity is given by (5.7), which for small deviations c′, reduces to

u = Rc′ +O(c′2). (6.1)

We look for a steady interior solution for c, for which (2.18) becomes

1

Pe

∂2c

∂x2
= O(c′2), (6.2)

or

c = −αx+
1

2
+O(c′2). (6.3)

Given that the net change in concentration of the two fluids must be equal and opposite,
the concentration at the mid-plane must be 1/2, which determines the constant of
integration in (6.3).

Substituting the steady transversely averaged concentration (6.3) and velocity (6.1)
into equation (2.19) results in a partial differential equation for the evolution of the
deviations,

∂c′

∂t
− αRc′ =

1

Pe

∂2c′

∂y2
+O

(
c′

Peh2

)
+O(c′2). (6.4)

This equation is independent of x; therefore, the deviations must be horizontally uniform,
as observed. The single-finger solution to the leading order truncation of (6.4) is,

c′(y, t) = sin(2πy)e−γ(t−t
∗), (6.5)
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Figure 12. (a) Plot of γ (circles) and αR (diamonds) as functions of Pe and R (colours). (b)
Ratio of γ, measured from the simulations as the decay rate of the maximum of c′ at x = 0, to
γ(αR), calculated using equation (6.6) where α is the slope of c measured at t > 200.

where t∗ is a virtual origin relating to the transition between regimes and

γ =
4π2

Pe
− αR. (6.6)

Note that, while a solution of (6.4) with any integer number of fingers is permissible,
solutions with more fingers decay more rapidly over time, and the solution with k = 2π
(6.5) is the slowest decaying mode.

The slope α of the interior profile in (6.3) is set by the amount of mixing that occurs
during the intermediate, non-linear regime. That regime lasts for a time t ∼ O(Pe)
during which the mixing zone grows linearly in time, h ∼ Rt. Therefore, once the system
has reached the single-finger regime, the width of the mixing zone will have become
h ≈ 1/α ∼ RPe, such that αR = Â/Pe, for some constant Â. We fit Â = 24.9 to the
collapsed transversely averaged concentration profiles (figure 11b).

We verify this model by measuring α and γ from the numerical simulations. We
calculate α by measuring the slope of c at x = 0 at some late time, and γ by measuring
the decay rate of the maximum of c′ at the mid-plane. Plots of the numerically measured
γ and αR are given in figure 12a and both quantities exhibit the predicted 1/Pe scaling.
Finally, the validity of equation (6.6) is tested by plotting the ratio of γ measured from
the simulations and γ(α) calculated using equation (6.6). This quantity is plotted in figure
12b and deviates by a maximum of 4% over a range of Peclet numbers and log-viscosity
ratios.

6.3. Total convective mixing

One of the major implications of this final single-finger exchange-flow regime is that
the viscous-fingering instability can only generate a finite amount of convective mixing.
In figure 13a we plot the time-integral of the convective flux through the midplane,

F =

∫ ∞
0

∫ 1

0

uc′|x=0 dydt, (6.7)

as a function of the Peclet number and log-viscosity ratio. We find that the flux increases
linearly with both Pe and R for Pe � 1, and can be fit by the functional form F =
âR(Pe− b̂/R), where the shift in the Peclet number, b̂/R, corresponds to the onset of the
instability as described in section 5.1. We find that the numerical data is best fit with
â = 5.3× 10−3 and b̂ = 45 (solid lines in figure 13a).

Of course, provided advection dominates the horizontal transport, the quantity F can
also be directly related to the slope α of the late-time profiles, by mass conservation.
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Figure 13. (a) Time-integrated convective exchange flux F (6.7) between the two fluids as a
function of Pe and R (colours), as calculated from the numerical simulations. In order to calculate
the infinite time integral in (6.7), we integrate the numerical data out to t = 200, which is well
into the late-time regime in all simulations, and fit a decaying exponential function E(t) to

the flux
∫ 1

0
uc′|x=0dy for subsequent times such that F =

∫ 200

0

∫ 1

0
uc′|x=0 dydt +

∫∞
200

E(t)dt.

The lines of best fit (black) correspond to the fit F = 5.3 × 10−3R(Pe − 45/R). (b) Ratio of
the time-integrated convective exchange flux and the final slope of the transversely averaged
concentration.

Such a balance gives

F =
1

8α
. (6.8)

For the three values of R plotted, we find that this prediction gives good agreement for
Pe > O(100) (figure 13b), which suggests that for the range of R plotted, horizontal
diffusion plays a negligible role in mixing for Pe > O(100).

7. Discussion and Conclusions

In this paper, we have investigated miscible viscous fingering in a semi-infinite planar
geometry using high-resolution simulations. We identified three distinct regimes: an early-
time linearly unstable regime, an intermediate-time non-linear regime, and a late-time
single-finger exchange-flow regime. In each of these regimes, we identify the predominant
balances and scalings for the mixing length h, the number of fingers n, and the total
convective transport Nu (table 1).

The dimensional characteristic length scales of the flow structures, and the time scales
over which they evolve, are summarized in table 2. The early-time dynamics are set by a
local balance of advection and diffusion at the finger scale and hence are independent of
the width of the porous medium a. The flow is more unstable - that is, the flow has finer
structures and faster growth rates - when the viscosity contrast and velocity are large, or
the diffusivity is small. Once the instability has had enough time to diffuse transversely
across the entire width of the porous medium, which occurs at a time scale T ∼ a2/D,
the flow enters the late-time regime. In this case, a single pair of counter-propagating
fingers remain, which occupy half of the width of the domain respectively.

In section 5.1, we showed that for sufficiently small Peclet numbers, the flow can
skip the intermediate regime, and for even smaller Peclet numbers, the instability can
be suppressed altogether. We then presented a linear stability analysis to identify this
cut-off for the instability and compared it to numerical experiments.

In section 5.2 we attempted to improve on current models for the transversely averaged
concentration in the non-linear regime. We started by deriving the simple Koval model,
identified where it disagreed with the numerical simulations and improved on one of its
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Early-times Late-times

X ∼ φD/RU X ∼ RUa2/φD
Y ∼ φD/RU Y ∼ a
T ∼ φ2D/R2U2 T ∼ a2/D

Table 2. Dimensional length and time scales for early and late times.

shortcomings by including a simple model of the nearly parabolic concentration profile
across propagating fingers. We used this ansatz to derive the effective viscosity of the
fingered region (5.13), in good agreement with both the numerical simulations and the
empirical fit to the Koval model.

Finally, in section 6 we identified a new single-finger exchange-flow regime in which
the flow consists of a linear background gradient and counter-propagating fingers. These
fingers exponentially decay and convection stops leaving a linear background gradient.
We derived a model for the asymptotic behaviour and showed that it agrees with the
numerical simulations. One important consequence of this eventual shutdown is that
there is a maximum amount of convective mixing that the instability can generate. Since
diffusion coefficients for typical pairs of fluids tend to be very small, this shutdown is
most relevant when the displacement process occurs at very small scales (small a) or very
long times.

To illustrate the relevant length and time scales in the late-time regime, we use pa-
rameter values from the CO2 sequestration project at Sleipner to estimate the ‘shutdown
time’, Tsd, taken to reach the late-time regime and the ‘final’ mixing zone width H. We
take the parameter values of the carbon-dioxide/brine system to be as follows (Neufeld
et al. 2010; Boait et al. 2012): background velocity, which is the buoyancy velocity,
U = 4 × 10−6 ms−1; log-viscosity ratio R = 2.5; porosity φ = 0.3; aquifer thickness
a = 10 m; and diffusivity D = 2 × 10−9 m2s−1. In this case, the diffusivity is taken to
be the molecular diffusivity of carbon dioxide and brine Dm. Note that this is only valid
when the pore-scale Peclet number, defined as Uap/Dm (ap is the size of the pores),
is small; otherwise the effective diffusivity is given by an anisotropic velocity-dependent
dispersion tensor that could be significantly larger than Dm (Lake 1989).

Using these parameters, the Peclet number of the flow is Pe = 7 × 104. The time
until shutdown can be approximated from the numerical simulations as Tsd ≈ 10−1a2/D
which gives a shutdown time of approximately 150 years. Furthermore, the mixing zone
can be approximated as H = 10−1.5Ra2U/φD which gives a 50 km long mixing zone
upon shutdown. In contrast, if the interface were stable and the mixing at the interface
only occurred through diffusion, the width of the mixing zone would grow like

√
4Dt,

which, after 150 years, would be approximately 5 m.

In a real porous medium, some of the assumptions we made during the analysis may
no longer hold. For instance, the dispersion can be anistropic and velocity dependent; the
permeability often varies spatially at a variety of length scales (pore-scale to field-scale)
and with varying degrees of randomness (from completely random to highly structured);
and the fluids can be only partially miscible. While some of these topics have been
discussed in the context of the onset problem and early-time behaviour (Zimmerman
& Homsy 1991, 1992; De Wit & Homsy 1997a,b; Tan & Homsy 1992; Nicolaides et al.
2015), their impact on the late-time behaviour remains to be understood.
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