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Abstract: The continuous stirred tank reactor (CSTR) typifies an important class of process control systems. Is is a nonlinear
system and is sensitive to both external disturbances and system uncertainty. Given these challenges, a nonsingular terminal
sliding mode observer is proposed to estimate any external disturbance. Then, a continuous adaptive sliding mode control
method is combined with the proposed disturbance observer. This is found to reduce chattering and improve control accuracy
when compared with other methods. A full Lyapunov stability proof of the resulting closed-loop system is performed and the
effectiveness of the proposed approach is demonstrated by simulation experiments.
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1 Introduction

The CSTR is a typical process control unit which is used
for polymerization, condensation and other reaction pro-
cesses in the chemical industry. The unit has the poten-
tial to increase the rate and adequacy of chemical reactions
[1]. From the viewpoint of control, the dynamic model of
a CSTR is nonlinear, and the system is subject to external
disturbances and system uncertainty [2–5]. These charac-
teristics provide control challenges and a number of meth-
ods have been proposed to deal with such complex systems,
including neural network control [6], optimal output track-
ing control [7] and model predictive control [8]. Sliding
mode control is another good candidate control system for
the CSTR due to its excellent ability to deal with external
disturbances and system uncertainty.

Sliding mode control has some advantages, such as, strong
robustness, straightforward design, low computational com-
plexity and ease of practical application [9–11]. However,
for traditional first order sliding mode control, high gain con-
trol may be required to achieve a rapid rate of convergence
and strong robustness properties. This can in turn lead to
control input saturation as the initial control values required
in particular may be large. In addition, the interaction of any
nonsmooth term in the reaching law with non-ideal dynam-
ics may induce chattering.

There are many methods to reduce chattering in the slid-
ing mode control literature. A boundary layer technique is
defined for nonlinear systems [12] to suppress chattering,
but the finite time reaching properties are lost and the ro-
bustness is weakened. Second order and high order sliding
control may be utilized to attenuate chattering and preserve
robustness[13, 14]. However, the design process can be more
complicated. A continuous terminal sliding mode control
approach can achieve a reaching mode with reduced chatter-
ing [15], but high gain is required to accommodate system
uncertainty and disturbances which may cause control input
saturation.
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Another way to reduce the amplitude of chattering is to
use a disturbance observer within the control strategy. A
disturbance observer can be used to estimate uncertainty and
disturbances online, and direct compensation can be used to
ammeliorate the effects which in turn reduces chattering. For
example, sliding mode disturbance observers are proposed
based on super twisting algorithms in [16, 17]. In order to
simplify the strategies above and reduce chattering, a distur-
bance reconstruction approach is presented using the inte-
gral of sign function in [18]. A linear disturbance observer
is employed in [19] to reduce the gain of the switching term.
However, the aforementioned approaches do not consider the
problems that may arise in implementation, such as the ef-
fects caused by overcompensation.

Overcompensation happens when the control gain is far
larger than the variable uncertainty. In this case, an adap-
tive law can track the variation in the uncertainty and distur-
bance, which can reduce the conservatism and prevent over-
compensation. New methodologies are proposed in [20] to
obtain a robust sliding mode adaptive-gain control law. Fur-
ther, a novel super-twisting adaptive sliding mode control
law is presented to control an electropneumatic actuator [21].
The adaptation algorithm does not overestimate even in the
case where the bounds on the uncertainty and disturbance
are unknown.

In this paper, a novel disturbance observer is used to esti-
mate the uncertainty and disturbance in finite time, and it en-
sures a rapid response. Moreover, an adaptive sliding mode
control for the CSTR is designed according to [22]. The
proposed approach seeks to reduce conservatism and avoid
overcompensation as required to reduce the amplitude on
any chattering effectively.

The paper is organized as follows: The dynamic equations
of a CSTR are presented in Section 2. The disturbance ob-
server is designed and the Lyapunov stability proof is given
in Section 3. A continuous adaptive sliding mode control
method is proposed based on the observer designed in Sec-
tion 4. In Section 5, simulation experiments are presented
to validate the effectiveness of the proposed approach. Con-
cluding remarks are drawn in Section 6.



2 Problem Formulation

The reaction in the CSTR is considered to be first order,
exothermic and irreversible, and a dimensionless dynamic
model from [23] is used as follows:

ẋ1 =− ax1 +Da (1− x1) exp (γx2/(γ + x2))

ẋ2 =− ax2 − bDa (1− x1) exp (γx2/(γ + x2))

+ β (u −x2) + d

y =x2

(1)

where x1, x2 ∈ R are the states, and represent the dimen-
sionless concentration and temperature respectively. y is
the system output, and represents the dimensionless tem-
perature. d ∈ R is the external disturbance and the sys-
tem uncertainty in the input channel. The details of the
dimensionless parameters of (1) can be found in [23]. Let
f (x) = −ax2 − bDa (1− x1) exp (γx2/(γ + x2) )− βx2,
then (1) is written as follows:

ẋ1 = −ax1 +Da (1− x1) exp (γx2/(γ + x2))

ẋ2 = f (x) + βu+ d

y = x2

(2)

Assumption 1. There exists d̄ > 0 satisfying
∣∣∣ḋ∣∣∣ ≤ d̄.

Assumption 2. The states of (2) are measurable.
Assuming the expected temperature signal of the CSTR

system is x2d based on Assumption 2, then the temperature
error and its derivative are defined as{

e = x2 − x2d
ė = ẋ2 − ẋ2d

(3)

3 Design of the Disturbance Observer

External disturbances are always present in a CSTR sys-
tem. Consequently, a disturbance observer is designed in this
section to reduce the effect of the disturbance on the con-
troller performance. Firstly, a symbol is defined as follows
to simplify subsequent formulae:

sig(ρ)
γ
= |ρ|γsgn (ρ) (4)

A terminal sliding mode is presented as below:
s∗ = c (x2 − x̂2)
∆ (t) = −α |x2 − x̂2|+ α |x2 (0)− x̂2 (0)|
s0 = s∗ − s∗ (0) exp (∆ (t))
˙̂x2 = f (x) + βu+ d̂
s1 = ṡ0 + Γ1s0 + Γ2P (s0)

(5)

P (s0) =

 |s0|θsgn (s0) , |s0| ≥ ε
(1− δ) εθ sin (π/(2ε) s0)
+δεθsgn (s0) , |s0| < ε

(6)

where c > 0, α > 0, Γ1 > 0, Γ2 > 0, θ = p/q, 0 < p < q,
p and q are odd numbers, ε > 0, 0 < δ < 1, d̂ is an estimate
of d.

Defining the corresponding disturbance estimation error
as

d̃ = d− d̂ (7)

According to (5),

ṡ0 =ṡ∗ − s∗ (0) exp (∆ (t)) ∆̇ (t)

= [c+ αs∗ (0) exp (∆ (t)) sgn (x2 − x̂2)](
ẋ2 − ˙̂x2

) (8)

Defining κ1 = c + αs∗ (0) exp (∆ (t)) sgn (x2 − x̂2),
then (8) can be written as

ṡ0 = κ1d̃ (9)

Defining κ2 = 1/κ1, an intermediate variable is available
as

d̃ = κ2ṡ0 (10)

Differentiating (9) yields

s̈0 = κ̇1d̃+κ1
˙̃
d

= −α2s∗ (0) exp (∆ (t)) sgn (x2 − x̂2)

sgn (x2 − x̂2) d̃
2+κ1

˙̃
d

(11)

Substituting (10) into (11),

s̈0= −α2s∗ (0) exp (∆ (t)) sgn (x2 − x̂2)

sgn (x2 − x̂2) ṡ
2
0/κ1

2+κ1
˙̃
d

(12)

Defining κ3 = exp (∆ (t)) sgn (x2 − x̂2) sgn (x2 − x̂2)
ṡ20/κ1

2, so (12) can be expressed as

s̈0= −κ3α2s∗ (0)+κ1
˙̃
d (13)

Substitution of (13) into (5) yields

ṡ1 = s̈0 + Γ1ṡ0 + Γ2Ṗ (s0)

= κ1
˙̃
d− κ3α2s∗ (0) + Γ1ṡ0 + Γ2Ṗ (s0)

(14)

A double power reaching law given in [24] is used in order
to improve the convergence rate of the system to the sliding
mode surface s1 = 0 in finite time:

ṡ1 = −λ1sig(s1)γ1 − λ2sig(s1)
γ2 (15)

where λ1 > 0, λ2 > 0, 0 < γ1 < 1, γ2 > 1.
Combining (14), (15) and Assumption 1, the differential

equation of the disturbance observer is obtained:

˙̂
d =− κ2κ3α

2s∗ (0) + κ2 (λ1sig(s1)
γ1 + λ2sig(s1)

γ2

+Γ1ṡ0 + Γ2Ṗ (s0)
)
+

(
d̄+ η

)
sgn (s1)

(16)
where η > 0.
Theorem 1. If the sliding mode is as shown in (5) and (6)
and the differential equation of the disturbance observer is
as presented in (16), then the disturbance estimation error
converges to 0 in the finite time τ = τ1 + τ2, where

τ1 ≤ 2V
(1−γ1)/2
1 (s1 (0))

/
(ϕ (1− γ1)) (17)

τ2 ≤
(
ln

(
V

1/2
2 (s0 (0)) + ω

/√
2
)
− ln(

ω
/√

2
))/

Γ1

(18)



Proof. A Lyapunov candidate function is chosen as

V1 = 1/2 s21 (19)

According to (14) and (16), the first order derivative of s1
is presented as

ṡ1 =κ1

(
ḋ− ˙̂

d
)
− κ3α

2s∗ (0) + Γ1ṡ0 + Γ2Ṗ (s0)

=κ1ḋ− κ1
(
d̄+ η

)
sgn (s1)− λ1sig(s1)

γ1

− λ2sig(s1)
γ2

(20)

Step 1: Considering (20) and the derivative of (19) yields

V̇1 =s1ṡ1

=− λ1|s1|γ1+1 − λ2|s1|γ2+1
+ κ1s1ḋ− κ1

(
d̄+ η

)
|s1|

≤ − λ1|s1|γ1+1

=− λ12
(γ1+1)/2V

(γ1+1)/2
1

(21)
Defining ϕ = λ12

(γ1+1)/2, then (22) is obtained as below:

V̇1 + ϕV
(γ1+1)/2
1 ≤ 0 (22)

The solution of (22) is

τ1 ≤ 2V
(1−γ1)/2
1 (s1 (0))

/
(ϕ (1− γ1)) (23)

Hence s1 will converge to zero in finite time. Then the
terminal sliding mode function becomes

ṡ0 = −Γ1s0 − Γ2P (s0) (24)

Step 2: Choosing a Lyapunov candidate function as fol-
lows

V2 = 1/2s20 (25)

Considering (24) and the derivative of (25) yields

V̇2 =s0ṡ0

=− Γ1s0
2 − Γ2s0P (s0)

(26)

When |s0| = 0, then V̇2 = 0. When |s0| ̸= 0, an inequal-
ity can be acquired from (6) such that

|P (s0)| ≥ δεθ (27)

and the conclusion can be drawn from (6) that s0 and P (s0)
have the same positive or negative sign.

According to (27), V̇2 becomes

V̇2 =− 2Γ1V2 − Γ2 |s0| |P (s0)|

≤ − 2Γ1V2 −
√
2δεθΓ2V2

1/2
(28)

The solution of (28) is

τ2 ≤
(
ln
(
V

1/2
2 (s0 (0)) + ω

/√
2
)
− ln(

ω
/√

2
))/

Γ1

(29)

where ω = δεθΓ2/Γ1 .
It can be concluded from (9) that d̂ → d if and only if

s0 → 0 and ṡ0 → 0, so the disturbance estimation error
converges to 0 in finite time as required.

4 Design of an Adaptive Sliding Mode Controller
based on the Disturbance Observer

The external disturbance can be estimated in finite time
by the disturbance observer designed in Section 3. In this
section, incorporating the disturbance observer presented
above, an adaptive continuous sliding mode control method
based on the disturbance observer is designed to suppress
chattering, strengthen robustness and improve accuracy.

Combined with (3), a switching function is defined as be-
low:

S = e+ C

∫ t

0

e (T)dT= 0 (30)

Considering the discontinuous reaching law with variable
gain:

Ṡ = −Ksgn (S)/N (S) (31)

where N (S) = ϖ + (1−ϖ) exp
(
ℓ|S|∂

)
< 1, ℓ > 0,

0 < ϖ < 1, ∂ > 0, K > 0.
An adaptive exponential reaching law is proposed by us-

ing the adaptive variable gain approach on the basis of (31).

Ṡ = −K1S − K̂2sig(S)
ψ
/
N (S) (32)

The adaptive reaching law is presented as

˙̂
K2 = γDSsig(S)

ψ
/
N (S) (33)

where K1 > 0, K2 > 0, K̂2 > 0, γD > 0, 0 < ψ < 1, and
the definition of N (S) is the same as (31).

The introduction of the adaptive law updates the system
parameters to adapt to the variable states, to reduce chat-
tering, reduce convergence time and compensate the control
input.
Theorem 2. If the sliding mode is shown as (30), the reach-
ing law is presented as (32), then taking into account (5) and
(6), define the adaptive sliding mode controller for the CSTR
as follows

u = u1 + u2

u1 = −1/β (f (x) + Ce− ẋ2d)

u2 = −1/β
(
K1S + K̂2sig(S)

ψ
/
N (S) + d̂

) (34)

Then the sliding mode S and the error e are uniformly ulti-
mately bounded.
Proof. A Lyapunov candidate function is chosen as

V3 = 1
/(

2S2
)
+ K̃2

2

/
(2γD) + V1 (35)

where K̃2 = K2 − K̂2, ˙̃K2 = K̇2 − ˙̂
K2 = − ˙̂

K2.
Differentiating (35) yields

V̇3 = SṠ − K̃2
˙̂
K2

/
γD + V̇1 (36)

Considering (34) and the derivative of (30) yields

Ṡ =ė+ Ce

=ẋ2 − ẋ2d + Ce

=f (x)+βu+ d− ẋ2d + Ce

=f (x)+β (u1 + u2) + d− ẋ2d + Ce

=−K1S − K̂2sig(S)
ψ
/
N (S) + d̃

(37)



The disturbance observer designed in Section 3 ensures
that the disturbance estimation error converges to 0 in finite
time, so the following assumption is imposed:
Assumption 3. The disturbance estimation error is bounded
and satisfies ∣∣∣d̃∣∣∣ ≤ K2 |S|ψmin

/
N (S) (38)

where the definition of K2, ψ and N (S) are as in (32).
It can be concluded that∣∣∣d̃∣∣∣ ≤ K2|S|ψ

/
N (S) (39)

Substitution of (33) and (37) into (36) yields

V̇3 =S
(
−K1S − K̂2sig(S)

ψ
/
N (S) + d̃

)
− K̃2

˙̂
K2

/
γD + V̇1

≤−K1S
2 − K̂2Ssig(S)

ψ
/
N (S) + |S|

∣∣∣d̃∣∣∣
− K̃2

˙̂
K2

/
γD + V̇1

≤−K1S
2 − K̂2|S|ψ+1

/
N (S) +K2|S|ψ+1

/N (S)− K̃2
˙̂
K2

/
γD + V̇1

=−K1S
2 + K̃2|S|ψ+1

/
N (S)

− K̃2
˙̂
K2

/
γD + V̇1

=−K1S
2 + V̇1 < 0

(40)

Consequently, the sliding mode S and the error e are uni-
formly ultimately bounded.

5 Simulation and Analysis

Three algorithms are simulated in this section, and the cor-
responding control laws and parameters are presented as fol-
lows.

The first method is the adaptive sliding mode control
based on disturbance observer (DOASMC) as presented in
this paper. The control law has been given as (34) and the
parameters are selected as a =1.0, Da =0.072, γ =20.0,
b =-8.0, β =0.3, c =20.0, α =1.0, Γ1 = Γ2 =5.0, p =3,
q =5, ε =0.001, δ =0.5, λ1 = λ2 =6.0, γ1 =3/5, γ2 =5/3,
η =0.001, C =1.0, ϖ =0.5, ℓ =1.0, ∂ =1.0, γD =1.0,
K1 =10.0, ψ =3/5, d =0.01sin (πτ). The initial values
of x1 and x2 are 0.3 and 0.5 respectively, and the expected
value of temperature is x2d =1.0.

For the second method (denoted as DOCRLSMC), the
adaptive reaching law (32) is replaced with a constant reach-
ing law, and the control law is shown as below:

u = u1 + u2

u1 = −1/β (f (x) + Ce− ẋ2d)

u2 = −1/β
(
ηsgn (S) + d̂

) (41)

where η =1.0, and other parameters take the same values as
(34).

For the third method (denoted as SALASMC), the ex-
ternal disturbance is estimated with a simple adaptive law

(kS + ηsgn (S)), and the control law is given as below:

u = u1 + u2

u1 = −1/β (f (x) + Ce− ẋ2d)

u2 = −1
/
β
(
K1S + K̂2sig(S)

ψ
/
N (S)

+ (kS + ηsgn (S)))

(42)

where k =3.0, η =1.0, and other parameters take the same
values as (34).

The simulation results are shown in the Fig.1−Fig.7.
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Fig. 1: Concentration response curves for the three methods
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Fig. 2: Temperature response curves for the three methods

Fig.1−2 show that the concentration and temperature are
gradually stabilized in finite time, and the states of Fig.2 per-
form as expected. Fig.3 indicates that the temperature er-
rors converge to zero gradually. However, there is obvious
chattering in the temperature response and temperature er-
ror response with DOCRLSMC. The settling time using the
SALASMC is also extended.

Fig.4 illustrates that the states of the system approach the
sliding mode surface S =0 at first, and after that, they con-
verge asymptotically to zero along the sliding mode surface.
It should be noted that he approach time of SALASMC is
the longest. Besides, there is severe chattering in the sec-
ond and the third curves in Fig.5, while the first one shows



0 1 2 3 4 5 6 7 8 9 10
t/s

-0.4

-0.2

0

e
5 5.2 5.4 5.6 5.8 6

2

3

4
10-4

0 1 2 3 4 5 6 7 8 9 10
t/s

-0.4

-0.2

0

e
5 5.2 5.4 5.6 5.8 6

-2

0

2
10-3

0 1 2 3 4 5 6 7 8 9 10
t/s

-0.4

-0.2

0

e
4 4.2 4.4 4.6 4.8 5

0

2

4
10-3

DOASMC

DOCRLSMC

SALASMC

Fig. 3: Temperature error response curves for the three meth-
ods
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Fig. 5: Control input curves for the three methods

smooth control input. From the viewpoint of Fig.1∼6, the
first method performs best, because the disturbance observer
can estimate the external disturbance and system uncertainty
accurately in finite time, compensating the control gain, so
that the chattering effects are reduced.
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Fig. 6: Curves of disturbance estimation for the three meth-
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Fig. 7: The response curves of the adaptive parameters for
the two adaptive methods

Fig.7 shows the time response curves of the adaptive pa-
rameters. The system parameters are updated to adapt to
the variable states by the adaptive laws. As is seen from
Fig.1∼5, the adaptive approach of SALASMC does not per-
form well.

In summary, the simulation results show that the proposed
adaptive sliding mode control using a disturbance observer
exhibits the best performance of the three methods consid-
ered.

6 Conclusions

In this paper, an adaptive sliding mode control incorporat-
ing a disturbance observer is presented to improve the con-
trol accuracy of a CSTR system. The disturbance observer
can estimate the external disturbance and system uncertainty
in finite time, compensate the control gain,= and better sup-
press chattering. The system parameters can be updated us-
ing the adaptive law, which improves the dynamic perfor-
mance of the system and reduces the control input. Finally,
the simulation results show that the proposed method can ef-
fectively estimate the external disturbance, reduce chattering
and improve the control accuracy for the considered CSTR.
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