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Abstract. Ill-posed image recovery requires regularisation to ensure stability. The presented open-source regular-
isation toolkit consists of state-of-the-art variational algorithms which can be embedded in a plug-and-play fashion
into the general framework of proximal splitting methods. The packaged regularisers aim to satisfy various prior ex-
pectations of the investigated objects, e.g., their structural characteristics, smooth or non-smooth surface morphology.
The flexibility of the toolkit helps with the design of more advanced model-based iterative reconstruction methods
for different imaging modalities while operating with simpler building blocks. The toolkit is written for CPU and
GPU architectures and wrapped for Python/MATLAB. We demonstrate the functionality of the toolkit in application
to Positron Emission Tomography (PET) and X-ray synchrotron computed tomography (CT).
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1 Introduction

In tomography,1 various mathematical reconstruction algorithms are applied to the measured pro-
jection data to obtain a volume. When the measured projection data is corrupt, noisy and/or angu-
larly undersampled, the inversion is ill-posed and regularised iterative methods (RIM) should be
used. A suitable regulariser can be chosen according to some prior expectations about the recon-
structed object. For instance, in material science the reconstructed object is frequently piecewise-
constant while in medical imaging piecewise-smooth.

One of the main disadvantages of using RIM for tomographic reconstruction is the computa-
tional cost involved in optimising the objective function which consists of the data fidelity and reg-
ularisation terms (see Fig. 1). When the terms of the objective function are differentiable, gradient
or Hessian-based optimisation methods can be employed. The smoothness constraint, however,
might not always be a desirable feature of the objective and one needs to resort to non-smooth
optimisation strategies.

The framework of proximal splitting operators (PSO)2 can be applied to indifferentiable cost
functions and allows the objective decoupling resulting in simpler, frequently parallelisable, opti-
misation steps. This enables fast prototyping and implementation of novel RIMs.3

In this paper, we introduce the CCPi-Regularisation Toolkit (CCPi-RGL)4 for effective and
efficient regularisation of iterative methods for application the reconstruction of large 3D tomo-
graphic datasets. We demonstrate how the CCPi-RGL toolkit can be used to reconstruct positron
emission tomography (PET) data with the STIR-SIRF package5, 6 and also high-resolution syn-
chrotron tomographic data using MPI-based Savu software.7
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2 CCPi-RGL software contents and methodology

The CCPi-RGL software contains various state-of-the-art variational regularisation techniques
which include a second and fourth-order diffusion-based methods as well as local and non-local
approaches. We refer the reader to the dedicated paper4 where all available methods we describe
in detail and benchmarks provided to help with method selection.
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Fig 1 CCPi-RGL within the general optimisation framework.

The general optimisation form for tomographic image reconstruction can be formulated as:

min
x∈RN

F(x) + g(x) ≡ f(Ax) + g(x) ≡
n∑
i=1

fi(Aix) + g(x), (1)

where fi : RMi → R, f : RM → R is a continuously differentiable convex function with Lipschitz
continuous gradient. Thus, F also has Lipschitz continuous gradient and we denote its constant
by L. The functions fi measure the fidelity of Ax to the projection data b ∈ RM where A =
(A1; . . . ;An) ∈ RM×N is the linear forward operator and x ∈ RN is the unknown solution. The
regularisation term g : RN → R is a convex, possibly non-differentiable function expressing
a prior knowledge of the unknown estimate x (see Fig. 1 (left)). In X-ray CT, the common
choice for the data fidelity term is the Least-Squares (LS) model: f(Ax) = ‖Ax − b‖22 or the
Penalised Weighted Least Squares (PWLS): f(Ax) = ‖Ax − b‖2W , where W ∈ RM×M is a
diagonal matrix such as {Wii = 1/σ2

i }Mi=1 and σ2
i ≈ y2i is the variance of the measurements. It is

not uncommon, especially for emission tomography,5 to use the more realistic non-linear Poisson
model f(Ax) = 〈y,Ax〉+ 〈z exp(−Ax),1〉.

In order to solve problem (1) efficiently, we rely on the theory of the proximal methods2 which
helps to split the problem into parts which are easier to solve. Before presenting various splitting
approaches, we introduce the notion of the proximal operator:

proxτg(u) = min
x∈RN

g(x) +
1

2τ
‖x− u‖2. (2)

All regularisation algorithms of CCPi-RGL aim to solve (2) and therefore one needs to be con-
cerned only with the f -related sub-problem which is specific to the imaging modality.

Here we present some PSO-based algorithms in which CCPi-RGL can be easily integrated.4

A well-known FISTA algorithm8 (see Alg. 1) can ensure O(1/k2) rate of convergence. FISTA
requires f in (1) to be Lipschitz differentiable and include only one proximal step on each iteration
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Algorithm 1 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
Input: x0 ∈ RN , K;
τ = 1/L, t0 = 1
for k = 0 to K − 1 do

1. yk = xk +
(
tk−1
tk+1

)
(xk − xk−1)

2. xk+1 = proxτg
(
yk − τ∇F (yk)

)
3. tk+1 = 1 +

√
1 + 4t2k/2

end for

(step 2). The group of primal-dual methods9 relax the differentiability condition but normally rely
on two proximal steps instead (see Alg. 2).

Algorithm 2 Primal Dual Hybrid Gradient (PDHG) algorithm
Input: x0 ∈ RN , c > 0, K;
σ = c/‖A‖, τ = 1/(c‖A‖), y0 = 0 ∈ RM

for k = 0 to K − 1 do
1. xk+1 = proxτg(x

k − τATyk)
2. yk+1 = proxσf∗

(
yk + σA(2xk+1 − xk)

)
end for

Evaluation A or ∇F = A> ◦ ∇f ◦ A in each iteration is cumbersome. An approach to
overcome this drawback is randomisation which can be achieved within PDHG by selecting only
a few dual variables yi in each iteration, resulting in the stochastic PDHG10, 11 method (see Alg.
3).

Algorithm 3 Stochastic PDHG algorithm
Input: x0 ∈ RN , c > 0, K;
σi = c/‖Ai‖, τ = 1/(cnmaxj ‖Aj‖), y0 = 0 ∈ RM , z0 = 0 ∈ RN

for k = 0 to K − 1 do
1. xk+1 = proxτg(x

k − τzk)
2. Select j ∈ {1, . . . , n} uniform at random.

3. yk+1
i =

{
proxσif∗i

(
yki + σiAix

k+1
)
, if i = j

yki , else
4. ∆z = A>j (yk+1

j − ykj )

zk+1 = zk + ∆z, zk+1 = zk + n∆z
end for

Under the linearisation conditions, the PDHG method becomes the well-known ADMM method2

(see Alg. 4). Step 1. of the Alg. 4 is a quadratic optimisation problem when the data fi-
delity is chosen to be PWLS: F (x) = 1/2‖Ax − b‖2W . Therefore one needs to solve: xk+1 =
(I + τA>WA)−1(τA>Wb + vk − uk) for which Krylov-type methods or Newton solvers can
be used.
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Algorithm 4 Alternating Directions of Multipliers (ADMM)
Input: x0 ∈ RN , step τ > 0, K;
u0 = 0 ∈ RN , y0 = x0

for k = 0 to K − 1 do
1. xk+1 = proxτF

(
vk − uk

)
2. vk+1 = proxτg

(
xk+1 + uk

)
3. uk+1 = uk + xk+1 − vk+1

end for

3 Iterative reconstruction of tomographic data using the CCPi-RGL toolkit

Here we briefly demonstrate the usage of the CCPi-RGL toolkit applied to tomographic data of
two different imaging modalities. Due to the limited space, the main aim is not to quantify or
qualify the results, but rather to demonstrate the applicability of CCPi-RGL to different settings.

Our first application is to reconstruct Positron Emission Tomography (PET) data using the
SPDHG10 algorithm with the Kullback-Leibler (Poisson) data model and two different regularisers
from CCPi-RGL: FGP-TV8 and TGV.12 We use STIR-SIRF5, 6 software to model realistic PET
system blur and apply Poisson noise to the projection data generated from the thorax phantom
(see Fig. 2). We run 50 iterations of the SPDHG algorithm and see that the reconstruction without

Fig 2 The SPDHG reconstructions of simulated PET data using no regularisation, FGP-TV, and TGV regularisers.

the regularisation is very noisy. Noise can be damped significantly by using regularisation. The
higher-order priors, such as TGV might be more preferable than piecewise-constant TV models
for emission tomography.

In Fig. 3, we apply CCPi-RGL to reconstruct time-resolved (4D) data of ice-cream under in

Fig 3 Cropped 1k2 pixels axial slice of reconstructions of 2.5k3voxels volume using Huber (smoothed TV), FGP-TV8

and NLTV13 regularisers with FISTA PWLS-OS method (12 iterations). The scale bar corresponds to 100 µm.
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situ thermal cycling conditions14 collected at Diamond Light Source (DLS). We use the ordered-
subsets accelerated FISTA reconstruction method (see Alg. 1) with the PWLS data model. Quali-
tatively the NLTV13 regulariser outperforms its local rivals.

Additionally, we reconstructed dynamic alloy solidification data also obtained at DLS.15 We
use the ADMM algorithm (see Alg. 4) with the SB-TV16 regulariser. It is evident that the regu-
larised reconstruction can produce much improved images in terms of signal-to-noise ratio and res-
olution compare to direct techniques (Filtered Backprojection) or unregularised iterative methods.

Fig 4 Magnified region of a reconstructed 1k3 vox-
els volume from the 3D projection data. Scale bar
corresponds to 200µm.

4 Conclusions and acknowledgments
The presented open–source software CCPi-RGL
can be used for tomographic image reconstruction
across different imaging modalities. A selection
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ficient implementation, the developed methods can
be applied to big data problems across various dis-
ciplines.
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