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Abbreviations: 13 

APC – Antigen presenting cells 14 

DAMPs - Danger associated molecular patterns  15 

DC – Dendritic cells 16 

DETCs - Dendritic epidermal γδ T cells 17 

DTH - Delayed-type hypersensitivity 18 

ILC - Innate Lymphoid cell 19 

MMP - Matrix metalloproteinases 20 

LCs - Langerhans cells 21 

TLR – Toll-like receptor 22 

Tcm - central memory T cells 23 

TNF - Tumour Necrosis Factor 24 

Trm – T resident memory cells 25 

Tregs - T regulatory cells 26 

UV - Ultraviolet 27 

VZV – Varicella Zoster Virus  28 
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Abstract: 29 

The skin is the outermost layer of the body with an extensive surface area of approximately 30 

1.8 m2, is the first line of defence against a multitude of external pathogens and 31 

environmental insults. The skin also has important homeostatic functions such as reducing 32 

water loss and contributing to thermoregulation of the body. The structure of the skin and 33 

cellular composition work in harmony to prevent infection, deal with physical and chemical 34 

challenges from the outside World.  35 

In this review we discuss how the structural cells such as keratinocytes, fibroblasts and 36 

adipocytes contribute to barrier immunity. We also discuss specialised immune cells that are 37 

resident in steady-state skin such as mononuclear phagocytes such as Langerhans cells, 38 

dermal macrophages and dermal dendritic cells in addition to the resident memory T cells. 39 

Ageing results in increase in skin infections and increased cancer incidence. As we age the 40 

skin structure changes with thinning of the epidermis and dermis, increased water loss and 41 

fragmented collagen and elastin. In addition the skin immune composition changes with 42 

reduced Langerhans cells, decreased antigen-specific immunity and increased regulatory 43 

populations such as Foxp3+ Tregs. Together, these alterations result in decreased barrier 44 

immunity in the elderly explain in part their increased susceptible to cancer and infections.  45 
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1. Skin Barrier: 46 

The skin is the outermost layer of the body with an extensive surface area of approximately 47 

1.8 m2, is the first line of defence against a multitude of external pathogens. The skin 48 

consists of three layers: above is the epidermis, a thin layer (approximately 0.1mm thick) of 49 

stratified squamous epithelium, composed of four strata of keratinocytes in progressive 50 

stages of differentiation. The stratified epithelium provides a watertight barrier from the 51 

external environment and prevents excessive water loss from the body. The epidermis is 52 

mainly composed of keratinocytes, however there are also melanocytes are present which 53 

provide a barrier in the skin from Ultraviolet (UV) radiation via expression of melanin. The 54 

epidermis does not have a blood supply of its own, but instead is nourished from blood 55 

vessels below. The second layer is the dermis, a thicker layer (up to 3-4 mm depending on 56 

body site) which has a relatively low cell volume as compared to the epidermis. The dermis 57 

predominantly consists of the extracellular matrix, such as collagen which is made by 58 

fibroblasts. In addition to the extracellular matrix dermis contains structures such as blood 59 

vessels, lymphatics, nerves, sweat glands and pilosebaceous units. The deepest layer of the 60 

skin is the subcutaneous layer, which consists of subcutaneous fat and connective tissue 61 

(1).  62 

 63 

2. Skin barrier immunity: 64 

The skin is a complex organ which carries out numerous functions contributing to its barrier 65 

immunity function – the skin structure and stromal and immune cell composition can be seen 66 

in Figure 1.  67 

Antimicrobial peptides and lipids are secreted onto the cell surface to control bacterial 68 

growth. These include dermcidin, which is secreted in human sweat and has broad anti-69 

microbial activity against a range of pathogenic bacteria, and its antimicrobial activity is not 70 

affected by the low pH value and high salt concentrations of human sweat (2). Sebum is 71 

made by sebaceous glands found independently of or near hair follicles, within the sebum 72 

are antimicrobial lipids, such as lauric acid and sapienic acid, which play an important role in 73 

controlling pathogenic organisms (3).   74 

However, the skin is not a sterile site, and there is extensive research showing the role the 75 

skin microbiota plays in immunity by restricting the growth of pathogenic bacteria (4). 76 

Commensal bacteria have been shown to produce an antimicrobial peptide which synergizes 77 

with the human antimicrobial peptide LL37, which together kill the pathogenic bacterium 78 

Staphylococcus aureus (5). However, insults and pathogens are in the majority controlled 79 

and prevented entry due to structure and barrier immunity in the skin.  80 
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 81 

2.1 Skin resident stromal cells: 82 

Keratinocytes are the main component of the epidermis. They express Toll-like receptors 83 

(TLRs), which are crucial pathogen pattern recognition receptors that when triggered lead to 84 

the production of inflammatory cytokine and initiation of an immune response (6). 85 

Keratinocytes have been shown to constitutively express TLR1, 2, 3, 5, 6 and 10 (7, 8). They 86 

also have the ability to sense wound damage and produce inflammatory cytokines and 87 

chemokines such as IL-1β, IL-8 and CCL20 to recruit leukocytes to the site of damage (9).  88 

Keratinocytes express a raft of antimicrobial peptides that control bacterial growth including 89 

adrenomedullin and β-defensins (10, 11). β-defensin-1 is constitutively expressed by human 90 

keratinocytes and β-defensin 2 and 4 are upregulated upon inflammatory challenge (11-13). 91 

Keratinocytes can express the antimicrobial peptide Cathelicidin upon stimulation and can 92 

store Cathelicidin in cytoplasmic granules until needed (14, 15). Keratinocytes also express 93 

RNase 7 constitutively, which is a very potent antimicrobial ribonuclease, and upon 94 

inflammatory or bacterial challenge there is further increased expression (16). 95 

More recently, it has been proposed that Keratinocytes a have the ability to process and 96 

present antigen to CD4+ and CD8+ T cells, initiating an adaptive immune response (17). The 97 

keratinocytes are the key site for the first step in the vitamin D metabolism pathway, as pro-98 

vitamin D3 (7-dehydro-cholesterol) is metabolised into vitamin D3, as catalysed by UVB - as 99 

Vitamin D is an important component of a functioning immune system the metabolism of this 100 

at the skin site contributes to barrier immunity (18). 101 

Dermal fibroblasts are the structural cells of the dermis, their primary function is to secrete 102 

extracellular matrix components such as pro-collagen. Fibroblast express the full range of 103 

TLRs, at a  higher level than keratinocytes, demonstrating their important role in the 104 

detection of pathogens (19). In vitro studies have shown that dermal fibroblasts can have 105 

differing roles in immunity, indeed TLR4 signalling results in production of inflammatory 106 

cytokines such as IL-6, IL-8 and the monocyte chemoattractant CCL2 (20).  Whilst 107 

conversely fibroblasts have been shown to suppress T cell proliferation via IDO production, 108 

and skew the T cells to produce immunoregulatory cytokines such as IL-10 (21). 109 

The subcutaneous layer of the skin is predominantly composed of adipocytes – their primary 110 

function is to be a repository of energy which responds to hypothermia by producing heat. 111 

More recent work has identified the important role of adipocytes in barrier immunity as a 112 

significant source of antimicrobial peptides. In response to infection, for example to 113 

Staphylococcus aureus, dermal fibroblasts can differentiate into adipocytes and produce the 114 

antimicrobial peptide cathelicidin (22). 115 
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 116 

2.2 Skin resident immune cells: 117 

2.2.1 Mononuclear phagocytes 118 

Within the epidermis there is a population of mononuclear phagocyte called Langerhans 119 

cells (LCs) – they have historically been believed to have been seeded at birth and 120 

repopulated locally maintaining a steady state population (23). However a recent study 121 

demonstrated, in the murine model of immune injury, that is a repopulation of LCs from 122 

peripheral monocytes to make up for the slow repopulations from mature LCs (24). LCs they 123 

are located at the interface with the external environment and as such are multifunctional, 124 

sentinels of the epidermis. LCs sample the environment via their extension and retraction of 125 

their dendrites between the keratinocytes in amoeba-like movement (25). They present 126 

antigen to T cells within the epidermis to initiate a local immune response and also have the 127 

capacity to migrate to the lymph node and initiate immune responses (26). 128 

Within the dermis there is a more diverse population of mononuclear phagocytes with dermal 129 

dendritic cells (DC) and dermal macrophage populations. Dendritic cells are the sentinels of 130 

the immune system, they sample the microenvironment and either present antigen to the 131 

resident T cells or migrate through the lymphatics to the lymph node to initiate an immune 132 

response (27). Historical assessment of dermal DCs identified that they are more activated 133 

then their blood counterparts; dermal Dcs had increased expression of co-stimulatory 134 

receptors and were strong stimulators of T cell proliferation relative to their peripheral blood 135 

counterparts (28). |It has been identified that there are two main populations of dermal 136 

myeloid DCs; the CD1c+ DCs and the CD141+ DCs. CD141+ DCs are the cells responsible 137 

for cross-presenting antigens to CD8+ T cells and have homology to the mouse CD103+ 138 

DCs (29). Very few plasmacytoid DCs are observed in steady-state skin (30). 139 

Macrophages are antigen presenting cells resident in the dermis and sense pathogens and 140 

damage and initiate an appropriate immune response. In addition to the immune function, 141 

macrophages maintain tissue homeostasis through increasing appropriate anti-inflammatory 142 

mechanisms, contribute to wound healing and heal nerves upon tissue injury (31, 32).  143 

Macrophages are thought to populate tissues early on but that studies have also shown that 144 

they are replenished by circulating monocytes (33). This data is supported by a study in 145 

humans which showed that CD14+ cells were a transient population of monocyte-derived 146 

macrophages (34).  CD163 has been proposed to be a good marker for dermal 147 

macrophages, as it specifically identifies skin–specific macrophages which are not recently 148 

migrated monocytes (35). 149 
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Analysis of the location of these different mononuclear phagocyte populations in the dermis 150 

have shown that DCs can be found closer to the epidermis (around 0-20µm beneath the 151 

dermo-epidermal junction) and macrophages were located deeper in the skin (around 40-152 

60µm beneath the dermo-epidermal junction) (36). 153 

 154 

2.2.2 Other innate populations 155 

In rodent and cattle skin a population of γδ T cells has been described called Dendritic 156 

epidermal γδ T cells (DETCs) - these cells are localised in the epidermis (37). DETCs 157 

express a limited T cell receptor repertoire and recognise danger associated molecular 158 

patterns (DAMPs) induced on damaged or dysregulated keratinocytes. In addition, DETCs 159 

have also been shown to play a role in maintaining keratinocyte homeostasis, as in the 160 

absence of DETCs there was increased keratinocyte apoptosis (37). However, DETCs have 161 

not been observed in human skin. Indeed, in human skin the predominant leukocyte 162 

population is αβ T cells, γδ T cells and NK cells were found in the skin but at very low 163 

frequencies (0.35% and 0.97% respectively) (38). Neutrophils are not present in steady-state 164 

skin – however upon sun exposure there is an infiltration of neutrophils which contribute to 165 

sun burn and photo-ageing (39). 166 

Innate Lymphoid cells (ILC) are a relatively recently described immune cell population and 167 

their function in the skin is still under investigation. In steady-state human skin there are 168 

sparse number of ILCs, and those cells that are present tend to be ILC1 and ILC3 - only 169 

upon an inflammatory response are ILC populations observed in significant numbers (40). In 170 

atopic dermatitis there is an influx of ILC2s and in psoriatic plaques there is ILC1 and ILC3 171 

populations (40, 41). 172 

The dermis also contains mast cells, of which there are between 77-108 cells/mm2 (42). 173 

Mast cells contain granules with pre-formed inflammatory mediators such as histamine that 174 

are released when receptors are crosslink, contributing to local inflammatory response. Mast 175 

cells also play an important role in allergic reactions and associated itching and rash.  176 

 177 

2.2.3 T cells 178 

Skin T resident memory cells (Trm) are non-circulating T cells present in the skin who 179 

maintain immune surveillance and are crucial for initiating a robust immune responses at 180 

times of infection (43-45). In steady-state skin there are around 1x106 T cells/cm2  181 

suggesting that in an average person there is around 2x1010 T cells present in the whole skin 182 

(46). The majority (80-90%) of T cell found in the skin are Trm the remaining T cells are 183 
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recirculating T cells (47). Cutaneous Trm are generated after exposure to antigen and provide 184 

memory at the site of initial exposure - Trm  are more potent effector cells as compared to 185 

circulating T cells (47). Of the CD3+ Trms present in the skin the ratio of CD4+ to CD8+ T cells 186 

was found to be approximately 3:1 in human epidermis and 6:1 in dermis (47).   187 

The most commonly used markers to define Trm cells are cell surface expression of CD69 188 

and CD103 (48). T cell increase CD69 expression in response to antigen exposure or Type I 189 

Interferon (IFN) signalling, and this blocks T cell egress from the skin via inhibiting the 190 

sphingosine-1-phosphate receptor function (49, 50). CD103 is an integrin that binds to E-191 

cadherin, it has been shown to be a marker more for CD8+ Trm present in the epidermis (47, 192 

48). CD103 expression in the epidermis is believed to be due in part to the expression of E-193 

cadherin on the keratinocytes which is important for retention of these cells in the epidermis 194 

(51).  195 

In addition to CD69 and CD103, CCR8 has been proposed to be a Trm marker (52, 53). The 196 

sole ligand for CCR8 is CCL1, which is predominantly expressed by CD1a+ Langerhans 197 

cells (52).  The epidermis and in particular keratinocytes have been shown to play a role in 198 

upregulating CCR8 on naïve T cells in the skin and generating Trm cells, through production 199 

of Vitamin D3 and Prostaglandin E2 (53, 54). 200 

CD4+ FoxP3 T regulatory cells (Tregs) are an important regulatory cell type that play an 201 

important role in immune and tissue homeostasis (55). Foxp3+ Tregs with a memory skin-202 

resident phenotype have been observed in the dermis and in particular in steady state 203 

conditions can be found located closely to hair follicles (56). The short-chain fatty acid 204 

Sodium Butyrate, which is a bacterial metabolite produced by skin commensals, can 205 

increase Foxp3 expression in non-Tregs driving an increase Foxp3+ Tregs (57). In addition, 206 

UVB light has been shown to increase number of Foxp3+ Tregs via facilitating the 207 

proliferation of thymically derived Foxp3+ Tregs (58). This effect of UVB could be in part due 208 

to the production of Vitamin D3 which can drive Foxp3+ Treg proliferation in vitro (59). This 209 

function of Sodium Butyrate leads to immune tolerance to the skin commensal bacteria. 210 

Indeed it is believed Foxp3+ Tregs accumulate around the hair follicle due to entry of 211 

commensal bacteria to newly formed hair follicles during neonatal skin development (60). 212 

 213 

2.3 Ageing and skin structure: 214 

As we age our skin structure changes (Figure 2). The epidermal layer is thinner due to 215 

keratinocyte atrophy observed in older skin (61).  This leads to increased trans-epidermal 216 

water loss in elderly individuals resulting in increased skin dryness (62).  The extracellular 217 

matrix components collagen and elastin which provide tensile strength and elasticity 218 
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respectively, are substantially changed with age. The total amount of collagen has been 219 

shown to be reduced with age (63). However there is also increased collagen fragmentation 220 

which is believed to be due to increased Matrix metalloproteinase (MMP) expression in older 221 

skin (64).  Elastin is an inert protein which is formed during early development and is not 222 

replenished, therefore any changes to elastin which occur over a life-time tend to be 223 

permanent (65). MMPs, in particular MMP-1, -3 and -9 target elastin for fragmentation (65), 224 

resulting in reduced skin elasticity and the classical sign of skin ageing, wrinkling. 225 

Dermal fibroblasts contribute to age-associated dermal thinning as they are reduced in size 226 

(66). In addition dermal fibroblasts from elderly individuals make less pro-collagen and 227 

increase expression of MMP-1 contributing to increase collagen fragmentation (66-68). 228 

Other changes in the skin which are observed with age are reduced sweat and sebum 229 

production (69). Finally, there is a thinning of the adipose tissue observed with age due to a 230 

reduction in white adipose tissue – subsequent anti-microbial protection (by the dermal fat) 231 

in response to infection is significantly decreased. This reduction in adipocytes is believed to 232 

be due in part to the inability of fibroblasts to convert to adipose tissue (70).  233 

Changes in skin structure with age are dependent upon lifestyle choices and environment 234 

challenges, as UVB exposure and the use of sun screen, smoking and environmental 235 

pollution (71, 72). Collectively these changes render older people more susceptible to 236 

mechanical injury, alter the skin microbiome and have important implications for skin barrier 237 

immunity. 238 

 239 

2.4 Immunological changes in the skin with age: 240 

The decrease in cutaneous immune function has been well documented in older humans. A 241 

variety of bacterial infections are more common in the elderly, including cellulitis (in particular 242 

of the lower legs), erysipelas, necrotizing fasciitis, folliculitis, impetigo, folliculitis, and 243 

furunculosis (73). Staphylococcal aureus and B-haemolytic streptococci are the most 244 

common skin pathogens in the elderly, although other bacterial infections caused by 245 

Pseudomonas spp and Klebsiella spp are also elevated in older individuals (74).  The 246 

prevalence of skin colonisation by Proteus mirabilis and Pseudomonas aeruginosa in the 247 

over 65-year-old population is increased by about 25% compared with younger individuals 248 

(74). Fungal infections (such as Candida) and viral infections such as shingles, Herpes 249 

Simplex Virus-1 and Human Papilloma Virus are also more common in the elderly (74, 75).  250 

Non-melanoma skin cancer, including basal cell and squamous cell carcinoma, is more 251 

commonly diagnosed in persons older than 70 years. The highest incidence of malignant 252 

melanoma and melanoma is in individuals aged 65 years and older (75-78).   253 
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Together these observations provide strong evidence for age-dependant changes in the skin 254 

barrier immunity. Although changes in peripheral immune cell populations have been well 255 

described (as reviewed previously (79-81)), we have focussed on skin-specific 256 

immunological differences with age (Figure 3). 257 

 258 

2.4.1 Mononuclear phagocytes: 259 

Langerhans cells are reduced in number in the elderly. In addition LCs from older donors 260 

have reduced migratory capacity to the lymph node (82). Using an ex vivo epidermal model 261 

Pilkington et al have shown that lower levels of IL-1β observed in elderly skin, result in 262 

reduced migration of the LCs to the cytokine gradient – demonstrating that the skin 263 

microenvironment plays a detrimental role (83). The specific source of IL1β in the skin 264 

remains controversial, and both keratinocytes and LCs themselves have been proposed as 265 

the primary source. In addition, LC from aged skin, express less human β-defensin 3, an 266 

important antimicrobial peptide for response to infection (84). 267 

The number and phenotype of dermal DCs is comparable between young and old skin (81). 268 

However, dermal DCs from aged skin appear to be functionally impaired in terms of 269 

migration, phagocytosis and ability to stimulate T cells in a mouse B16 melanoma model 270 

(85). The effect off age on macrophage function is still contentious - some studies 271 

demonstrate reduced TLR expression and TLR-induced cytokine production (86). Whilst 272 

other studies show that there is increased inflammatory cytokine production after TLR 273 

ligation (87). However, there is limited data on the effect of age on dermal macrophage 274 

populations. We have shown that when CD163+ macrophages produce less TNFα in 275 

antigen challenged skin, however upon removal of the macrophages from the skin 276 

environment they produce similar amounts of pro-inflammatory cytokine in response to TLR 277 

ligands (82). Thus, suggesting that it is the skin environment itself which is altered with age 278 

rather than intrinsic dysfunction of macrophages. 279 

 280 

2.4.2 T cells: 281 

Repeated antigen stimulation throughout life can have significant effects on human antigen 282 

specific T cells including the induction of exhaustion and senescence. Functional exhaustion 283 

of T cells is characterised by the loss of functional activity, increase in inhibitory receptor 284 

expression (such as PD-1). It is a mechanism necessary for limiting the magnitude of the 285 

effector T cells response but it also contributes to the functional decline in the adaptive 286 

immunity with age.  Senescence, a loss of replicative capacity, is often induced by repeated 287 
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stimulation, and is primarily induced through the process of telomere erosion. While the age 288 

–related changes in the circulating T cell pool have been well characterised and reviewed 289 

extensively (79), the age related changes in the skin resident T cell population have not 290 

been extensively studied.  The differences in the regulation of senescence and the 291 

importance of telomere shortening between mouse and human T cells should also be taken 292 

into account when extrapolating from mouse models (88).   293 

Tissue resident CD8+ T cells have recently been shown to promote a long lasting state of 294 

equilibrium between melanoma and the immune system (89). Depletion of these Trm 295 

demonstrated that they actively suppress tumour progression (89). How anti-tumour 296 

surveillance and control by skin resident Trm is affected by age and age–related changes 297 

within in the CD8 population has not been studied. It is known that skin resident Trm cells are 298 

vital to clear skin infections (90-92), therefore defects in Trm cells may explain the increased 299 

incidence of infection seen in the elderly. We and other have shown that there is decreased 300 

Delayed-type hypersensitivity (DTH) responses to recall antigens such as Candida or 301 

Varicella Zoster Virus (VZV) (75-78) in older adults due to a reduced infiltration of T cells at 302 

the site of antigen challenge. Our group has shown that the function of skin derived CD4+ T 303 

cells was not impaired with age in response to both mitogen and antigen-specific stimulation 304 

ex vivo (93) although the skin residency markers were not used for cell isolation. 305 

Interestingly old skin actually had a higher proportion of VZV-specific T cells compared to 306 

young- possibly suggesting accumulation over a lifetime of subclinical reactivation (94). 307 

There was however an increase in PD-1 expression on both CD4 and CD8 T cells in old 308 

individuals as compared to young skin, this data suggests that older T cells are more  309 

susceptible to inhibition via PDL-1/PD-1 signalling (93). 310 

 311 

2.4.3 Foxp3+ Tregs 312 

The proportion of regulatory cells in normal skin is increased in older mice and human (95, 313 

96). Foxp3+ Tregs accumulate during a cutaneous immune response.In those people who 314 

had the highest proportion of Foxp3+ Tregs they had the worst DTH response to VZV recall 315 

antigen – showing that Foxp3+ Tregs in the skin can interfere with antigen-specific immunity 316 

(97). Indeed, in a mouse model of melanoma, Tregs can suppress very early stages of the 317 

inflammatory response to antigen challenge (98). It is known that there is an increase in 318 

Foxp3+ Treg numbers in the skin in cancers such as melanoma and basal cell carcinoma 319 

(99-101). In human squamous cell carcinoma of the skin, 50% of cells have a Foxp3+ Treg 320 

phenotype, reduction of Foxp3+ Treg percentage in these patients and their function led to 321 

clinical improvement (102). The reasons Foxp3+ Treg numbers are increased in older skin 322 
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are not clear. It has been shown that UVB irradiation can lead to the induction of Foxp3+ 323 

Tregs and that these Foxp3+ Tregs suppress other immune cells through the production of 324 

IL-10 (58, 103). It is also tempting to postulate that Foxp3+ Tregs could be induced or 325 

accumulate as an attempt to the immune system to control unwanted low grade 326 

inflammation which accompanies ageing. 327 

 328 

2.4.4 Inflamm-ageing and senescence in the skin 329 

Chronic low grade inflammation termed inflamm-ageing is characterised by high serum CRP 330 

(104). Inflamm-ageing is known to negatively impact on immunity as in older people who had 331 

elevated IL-1β they had increased risk of morbidity and mortality (105). It has been 332 

postulated that innate immune cells such as macrophages are a contributor to the inflamma-333 

ageing phenotype, as due to changes in tissue structure –such as skin thinning – they are 334 

exposed to more bacteria which leads to chronic activation and subsequent inflammatory 335 

cytokine production, such as seen with increased gut permeability in an aged mouse model 336 

(106).  337 

Another contributor to inflamm-ageing especially in the skin is UV damage. Repeated 338 

exposure to UVB, as would be the case in old skin, leads to the accumulation of 339 

macrophages and increase in ROS and MMP, and subsequent damage to extracellular 340 

matrix. Inappropriate complement activation may also be caused by the increase in oxidative 341 

stress and accumulation of damaged cells, in line with observations in atherosclerosis (107). 342 

This complement activation and chronic activation of macrophages could contribute to 343 

inflamm-ageing in the skin.  Another contributor to increase inflammation in the old is the 344 

accumulation of senescent cells, senescence is defined as irreversible growth arrest. It is 345 

known that there is an accumulation of senescent dermal fibroblasts, as classically defined 346 

by p16 expression in the skin of old  mice and humans (108-110). Senescent fibroblasts 347 

secrete a raft of inflammatory mediators such as IL-8, IL-6, TNFα and CCL2 (110). This 348 

production of inflammatory mediators from senescent cells is termed  senescence 349 

associated secretory phenotype (SASP), which contribute to the low-grade inflammation 350 

observed older individuals (111).  A recent paper has shown senescent dermal fibroblasts 351 

persist in the skin by evading recognition and killing from NK cells and CD8+ T cells, through 352 

increased expression of HLA-E (110). Other skin resident cell populations that have shown 353 

to be senescent include endothelial cells and melanocytes (112, 113). Although increased 354 

frequency and number of senescent T cells have been observed in the periphery (80), their 355 

contribution to the skin environment unknown and warrants further investigation. 356 
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How this inflammation directly negatively affects cutaneous immune responses is not clear. 357 

Our studies have shown that skin from older individuals have a propensity to mount an 358 

inappropriate response to saline injection which negatively correlates with  antigen-specific 359 

cutaneous immunity (94). Furthermore, blocking inflammation using a p38-MAPKinase 360 

inhibitor, Losmapimod, reduced this non-specific inflammation while improving the ability of 361 

old individuals to respond to recall antigen challenge (94). 362 

 363 

2.5 Concluding remarks: 364 

The skin barrier immunity is comprised of stromal cells such as keratinocytes and adipocytes 365 

and immune cells such as Langerhans cells and Trm working in concert to prevent pathogen 366 

entry and to deal with continuous physical and chemical assaults (challenges). With 367 

increasing life-span, it is important to understand how skin changes with age and the impact 368 

these changes have on barrier immunity. Clearly the skin environment is detrimental to a 369 

successful immune response in the skin of older people as removal of individual cells from 370 

the skin microenvironment results in restoration of immune function. Specifically which cells 371 

alter the ageing skin environment is unknown, certainly senescent cells such as fibroblasts 372 

will contribute greatly. However there is still more research required to understand fully 373 

which cells are responsible for the ageing skin microenvironment and cells types such as 374 

keratinocytes, endothelium and adipocytes warrant further investigation. Better 375 

understanding of inhibitory and inflammatory mechanisms that operate in older skin is crucial 376 

for developing of new strategies to combat infections and cancer  377 
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Figure 1: Human skin barrier immunity 

Diagrammatic representation of human skin barrier immunity. The surface of the skin is covered in antimicrobial peptides and lipids, some of 

which originate from the sebaceous gland located near the hair follicle. The epidermis consists of keratinocytes forming stratified corneum, with 

melanocytes interspersed. Langerhans cells and T resident memory cells (Trm) can also be found in the epidermis. The dermis has a more 

diverse collection of cells including structural cells such as fibroblasts, and immune cells such as dermal dendritic cells (DCs) and 

macrophages, CD4+ and CD8+ Trm, mast cells and Foxp3+ T regulatory cells (Tregs) which are often located near the hair follicle. The final 

layer of the skin is the subcutaneous fat which is primarily composed of adipocytes. 
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Figure 2: Structural changes in human skin with age. 

Young skin structure (left) and compared to older skin structure (right). Older skin has fragmented elastin and collagen, increase water (H2O) 

loss which leads to skin dryness and increased wrinkles. In addition, the skin is thinner with all three layers being less thick then the younger 

counter part. 
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Figure 3: Skin barrier immunity changes with age. Schematic showing the effect of age on skin resident populations. Negative/inhibitory 
effects are shown in red and positive/enhancing effects shown in green. ECM = Extracellular matrix; LC = Langerhans cell; MMP = Matrix 
metalloproteinases; Treg = T regulatory cells 


