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Abstract: We report a novel variant of Band Target Entropy Minimization (BTEM), 

Adaptive Band Target Entropy Minimization (A-BTEM) that offers an improved ability to 

accurately decompose mixed spectra obtained from complex multicomponent systems. 

Several key challenges have existed in the application of the basic BTEM approach to 

decompose Spatially Offset Raman Spectra (SORS) of bone underneath soft tissues and other 

multi-layer systems demonstrating high collinearity between the spectra of individual 

components; these have included instabilities, signal mixing and spectral artefacts which have 

precluded the reliable use of BTEM in such situations. By using automatic factor selection, 

an adaptive penalty function in addition to metaheuristic optimization strategies we 

demonstrate that high quality spectral reconstructions of underlying pure component spectra 

can be obtained with typical correlation coefficients >0.996. Furthermore, we ascertain the 

behaviour of A-BTEM with different input datasets, both synthetic and real, displaying 

varying signal-to-noise ratio, signal composition and numbers of spectra. We thereby identify 

the multifarious parameter space in the application of A-BTEM and the quality of data 

required for the most accurate spectral estimates of pure component spectra. 

[Keywords: spatially offset Raman spectroscopy, bone disease, self modelling curve 

resolution, multivariate curve resolution, band target entropy minimization]  

 

1. Introduction 

Band target entropy minimization (BTEM) is a multivariate analytical technique for the blind 

reconstruction of spectra from mixtures where prior knowledge of the mixture composition is 

unknown. Originally developed using the deconvolution of infrared spectra of organometallic 

mixtures[1] and mixtures of common laboratory solvents[2] as examples, it has been applied to 

data from multifarious analytical techniques including Raman spectroscopy, hyperspectral 

imaging,[3] mass spectroscopy and nuclear magnetic resonance.[4] Despite the publication of 

these articles, currently no published work has focussed on the systematic optimization of the 

BTEM approach for the deconvolution of spectra of chemical mixtures where some a priori 

information on the spectral target is known. Furthermore, there is no available comprehensive 

quantitative information in the literature that identifies the quality of Raman spectroscopic 

data required for optimal spectral reconstruction. Whilst there are many articles describing 

novel application-specific results, these provide limited information on how best to apply the 

BTEM method to acquire the required spectral estimates. Overall, there is a need to develop 

approaches which require little or no supervision that provide trustworthy spectral 

reconstructions, particularly when specific analytes are known to be present within a multi-

component system.  

Spatially Offset Raman Spectroscopy (SORS) is a Raman technique where the point of 

sample illumination on the surface of the specimen is spatially offset from the point of signal 
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collection. The spatial volume from which the major component of scattered light is collected 

moves deeper into the sample as the offset is increased within the limit of detectable signal of 

sufficient signal-to-noise ratio (SNR).[5,6] SORS has found numerous applications including 

explosives detection at airport security screening checkpoints as well as the verification of 

pharmaceutical raw materials7 and shows great potential in the biomedical area.8 Several 

groups including ours are currently in the process of developing SORS for in vivo bone 

disease diagnostics to discriminate between healthy and diseased bone for selected bone 

conditions including osteoarthritis,[9] osteoporosis[10,11] and osteogenesis imperfecta[12]. 

Recently our group has also conducted experiments exploring photon migration properties in 

bone and investigated the depth origin of the major signal component as a function of spatial 

offset.[13,14] A key part of applying SORS for in vivo bone disease diagnosis is separating bone 

signal from spectral contributions associated with the soft tissue strata above it. 

The routine use of vibrational spectroscopy, particularly Raman spectroscopy, for the in vivo 

diagnosis of bone disease is still yet to be established. It is well known that the chemical 

composition of bone determines overall bone strength and disease status. However, current 

imaging modalities such as dual band x-ray absorptiometry (DXA) only provide information 

of the hydroxyapatite component but not the organic phase that also determines strength, 

therefore bone strength is only indirectly associated with DXA data.[15] Despite extensive 

work and some success in detecting abnormal bone composition both ex vivo and in vivo in 

both animal models and human subjects key challenges remain in spectral analysis of SORS 

datasets particularly in the separation of the bone signal component from that of soft tissues.  

In simple two-layer systems where light absorption is negligible and a suitable isolated band 

exists for the surface layer a simple scaled subtraction can be carried out to remove the 

surface contribution from the SORS spectra. However, in the case of biological tissues 

pertaining to in vivo bone data acquisition where the major spectral components of the 

surface layer are shared with that of bone, and other layers are present, the problem is more 

complex and self-modelling curve resolution (SMCR) methods, independent components 

analysis (ICA)[16] or multiway methods such as parallel factor analysis (PARAFAC) are 

necessitated.[17] The application of several currently available multivariate techniques for 

SORS data deconvolution have been investigated.[18,19] Where the data show adequate 

trilinearity PARAFAC is the optimum choice (for instance when in vivo SORS datasets of 

bone are obtained from multiple anatomical locations), but for systems where the data are not 

sufficiently trilinear SMCR two-way methods must be employed. Therefore, to acquire 

meaningful pure bone spectra specific to an anatomical location in an individual, multiway 

methods are intrinsically precluded.  

 

1.1 Band Target Entropy Minimization (BTEM) 

BTEM was based upon the work of Sasaki et al. who first described the use of Shannon 

information entropy to decompose mixed spectra.[20] Sasaki et al. used entropy minimization 

to estimate pure component spectra for whole mixtures simultaneously arguing that by 

minimizing the information entropy for each component you can accurately and realistically 

model the spectra for the entire system. Approaches using target bands and dissimilarity 

functions were developed by Garland and co-workers.[21] Building upon their initial work 

they suggested the idea of one-at-a-time reconstruction using both information entropy and a 

target band in addition to the traditional self-modelling-curve resolution (SMCR) constraints 

of spectral and concentration non-negativity.[2] These additional constraints helped to 

overcome the problem of rotational ambiguity, providing numerically unique solutions in the 

limit of high SNR data. Since then, several improvements and modifications have been 

implemented to automate the decomposition of mixtures composed of an unknown number of 
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component species[22] in addition to generating multiple spectral estimates without the need 

for band specific targets.[23] 

Despite these developments several problems remain in BTEM’s application to systems 

where there is high spectral overlap or collinearity between constituents or where data 

collection is heavily signal limited and noisy. This is particularly so for the decomposition of 

in vivo SORS datasets of bone, where one seeks to obtain an extremely accurate and stable 

BTEM spectral estimate of pure bone from datasets where this signal is mixed with 

contributions of soft tissues and where these components share similar spectral features. 

Typical example average differences for univariate Raman spectral band ratios between 

diseased and healthy bone are approximately: osteoporosis 5-10%,[10] osteoarthritis 7%[9] and 

osteogenesis imperfecta 11%[12] thus placing extreme emphasis on achieving high quality 

reconstructions. Although we have had some success in ideal situations, the spectral estimates 

obtained from routine SORS screening of patient volunteers are often of inferior quality using 

the BTEM method as originally described. This problem is particularly evident for spectra 

acquired with short integration time as required in a clinical setting where owing to laser 

safety standards power densities are severely restricted and the SNR of data obtained is often 

limited.[10] 

Recently Maher et al. have found that over-constrained library based fitting could provide an 

alternative means to produce reliable spectral estimates for SORS datasets.[19] They noted 

specific difficulties in applying BTEM to in vivo SORS data to acquire pure bone spectra and 

assert that BTEM is not a suitable method to extract pure bone signals. More recently de Juan 

and co-workers have investigated using MCR-ALS and BTEM in succession to improve the 

spectral reconstructions obtained from a number of data types.[24] However, this does not 

address the underlying issues in BTEM and the results showed little improvement for Raman 

spectral estimates as compared to using BTEM alone. A key challenge of generating spectral 

estimates using optimization techniques is ensuring the stability and accuracy of the spectral 

reconstructions; there are often differences in the spectral estimates calculated on repeat runs 

using the same penalty function and optimization routines – these have not been 

characterized to date.  

In this paper, we highlight the fundamental problems associated with applying the basic 

BTEM approach to acquiring pure spectra of bone from in vivo SORS data including 

instability and common spectral artefacts. We then describe the development of an advanced 

variant of the BTEM method, Adaptive-BTEM (A-BTEM) that affords more stable and 

accurate spectral estimates. In addition, we ascertain the quality of SORS data required to 

enable high quality reconstructions. The proposed improvements and modifications to the 

BTEM method include: 

1) Automatic selection of the optimum number of retained basis vectors. 

2) Enhanced adaptive penalty function that is dynamically adjusted during the 

optimization process to prevent competing terms inducing spectral artefacts, i.e. 

distorted spectral estimates, whilst enhancing stability.  

3) The use of linked metaheuristic optimization strategies to improve spectral estimate 

accuracy and stability between repeat runs. 

These improvements are general and will be useful to anyone considering using the BTEM 

method particularly where there is significant collinearity between the Raman spectra of the 

chemical components in the system being examined. The analytical methods developed and 

presented here are applicable to many types of spectroscopy where the output data are 

continuous. 
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1.2 Theory 

The basic BTEM algorithm has been described in detail elsewhere.[2,25] Briefly, BTEM is 

initiated via the singular value decomposition (SVD) of the pre-processed data matrix Dk x , 

 

D𝑘×𝜐 = U𝑘×𝑘𝚺𝒌×𝝊V𝜐×𝜐
T            (1) 

 

Where U𝑘×𝑘 are the left singular vectors, 𝚺𝒌×𝝊 are the singular values, V𝜐×𝜐
T  are the right 

singular vectors, k is the number of spectra or rows and ν is the number of columns or 

wavenumber variables in the dataset. In general, it is at this stage one inspects the right 

singular vectors VT for characteristic spectral features to target (manually or automatically) 

but for Raman spectra of bone this is not required as the target peak is well established (~960 

cm-1 1PO4
3-).[26] 

Factor compression is also carried out following the initial decomposition, whereby only the 

significant eigenvectors are retained for the subsequent reconstruction. The number of factors 

retained by BTEM varies considerably in the literature. Typically, the number chosen is 

system dependent, but usually one of two general strategies is applied for their determination. 

One is to retain a very large number of basis vectors[3] - even arbitrarily large[22] – the second 

is to select a relatively small fixed number for a given system type.[10] To date there has only 

been limited discussion of the rationale for selecting the precise number of factors and no 

routine implementation of suitable statistical tests to aid appropriate factor compression exists 

– some authors have chosen the number visually.[27] Selecting the optimum number of 

retained eigenvectors is important as retaining an excessive number of factors increases the 

number of decision variables required for the BTEM estimate which when excessive can 

induce numerical instability during optimization and increase the computational time. In 

addition, retaining an excess of vectors increases the noise contribution in the final spectral 

estimate unnecessarily. On the other hand, retaining too few basis vectors removes physically 

meaningful information that would otherwise contribute to the spectral estimate and increase 

its accuracy and could prevent reconstruction of very low signal components. For error free 

measurements, the number of basis vectors required for an adequate model of the data is 

equal to the number of distinct chemical components in the system.[28] In the presence of 

errors or noise the physically meaningful information is spread into eigenvectors of lower 

value and mixed with noise. This implies that factor compression can reduce the errors or 

noise but cannot entirely remove them as some error is held within the significant 

eigenvectors. Therefore, the appropriate number of eigenvectors to retain not only depends 

upon the chemical composition of the precise system under investigation, but also on the 

quality of data obtained from the system and the number of spectra available. 

The choice of test to estimate the required number of basis vectors depends on whether 

accurate knowledge of the errors associated with a given measurement exists. Where such 

knowledge is lacking, empirical methods are required. Several such tests are available, and 

these often provide different numbers of meaningful eigenvectors. One of the most well-

known and successful tests in the factor analysis literature is Malinowski’s indicator function 

(IND); for our work here, we have included this as an initial step in the A-BTEM 

implementation to ensure that factor compression and the selection of the number of basis 

vectors is carried out as rigorously as possible. From our recent in vivo trial, the number of 

eigenvectors required for a given dataset for an anatomical location varies from patient to 

patient and using a fixed number will undermine many BTEM decompositions. Malinowski’s 

IND function is given by, 
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IND𝑧 = 
1

(𝑘 − 𝑧)2
∙ (
∑ 𝜆𝑗

0𝑘
𝑗=𝑧+1

𝑣(𝑘 − 𝑧)
)

1
2

 .              (2) 

 

Here ν is equal to the number of columns in the data matrix D𝑘×𝜐 which is the number of data 

channels or variables in each spectrum, k is the number of rows in D𝑘×𝜐 or the number of 

spectra in the dataset, z is the number of retained eigenvectors and 𝜆𝑗
0 is the eigenvalue 

associated with the jth eigenvector. The correct number of eigenvectors is identified when 

IND𝑧 reaches a minimum for a given z. 

Following factor compression, i.e. the process of retaining only the significant number of 

eigenvectors, a spectral estimate, 𝑎̂𝑘×𝜐, is obtained,  

 

𝑎̂1×𝜐 = 𝑡1×𝑧𝐕𝐳×𝝊
𝐓           𝑧 ≥ 𝑠 .                  (3) 

Where z or the number of retained factors is greater than or equal to the number of 

contributing species s. In practice, the elements of the transformation vector 𝑡1×𝑧 are 

determined numerically by a global optimization process (traditionally simulated annealing[2] 

although simplex[19]  and particle swarm[24] have been used), minimizing a penalty function. 

During each iteration in the optimization the spectral estimate obtained is normalized to the 

maximum intensity. The basic penalty function used in BTEM,  

 

min𝐹 =  −∑ℎ𝜐 ln ℎ𝜐
𝜐

+ 𝑃(𝑎̂1×𝜐, 𝐶̂𝑘×1, 𝑎̂1×𝜐
𝑚𝑎𝑥)               (4) 

includes a term for the Shannon information entropy,[29] in which ℎ𝜐 is defined by, 

 

ℎ𝜐 = |
𝑑𝑎̂𝜐
𝑑𝜐

| ∑|
𝑑𝑎̂𝜈
𝑑𝜈

|

𝜐

⁄ .               (5) 

 

In addition, it also includes a penalty function, P, containing the terms pertaining to spectral 

non-negativity, concentration non-negativity and a factor that penalises estimates where the 

target peak is not the maximum peak in the spectral estimate, 

 

𝑃(𝑎̂1×𝜐, 𝐶̂𝑘×1, 𝑎̂1×𝜐
𝑚𝑎𝑥).                 (6) 

 

Typical numerical weights of each of the non-entropy terms can be found in several 

papers.[1],[22] Extensions of the basic BTEM approach suggested in an early paper[2] involve 

the use of the sum of absolute spectral derivatives (first, second, or forth order) and the 

numerical integrated intensity of the spectral estimate in addition to the basic Shannon 

information entropy term or sum of higher order derivatives,  

 

min 𝐹 = ∑ |𝑑𝑠𝜐|
𝜐

+∑|𝑎̂𝜐| +

𝜐

𝑃(𝑎̂1×υ, 𝐶̂𝑘×1, 𝑎̂1×𝜐
max )                 (7) 

where, 
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d𝑠𝜐 = 
𝑑𝑛𝑎̂𝑣
𝑑𝜐𝑛

                        (8) 

and n is the order of differentiation. 

We propose a new adaptive penalty function as part of A-BTEM, where the integrated 

intensity term is normalized to the number of spectral channels, ν, and is ‘switched-off’ in the 

limit of a ‘reasonable’ solution, i.e. below a threshold normalized integrated intensity. For a 

given target feature, this numerically emphasizes the region of factor space in which the best 

spectral estimate is found. Our novel penalty function is shown in equation (9), 

 

min 𝐹 =  ∑|𝑑𝑠𝜐|

𝜐

+ (
∑ |𝑎̂𝜐|𝜐

𝜐
)𝛽 + 𝑃(𝑎̂1×υ, 𝐶̂𝑘×1, 𝑎̂1×𝜐

max )                (9) 

 

where, 

𝛽 =

{
 
 

 
 1,    ∑|𝑎̂𝜐|

𝜐

𝜐⁄  > 𝛿

0 ,    ∑|𝑎̂𝜐|

𝜐

𝜐⁄  ≤ 𝛿
                       (10) 

Here 𝛿 is equal to the threshold normalized integrated intensity value. For a known target 

species, normalized reference spectra can be used to obtain a conservative initial estimate of 

𝛿. However, for datasets where no a priori knowledge of the system composition is known, it 

is necessary to obtain appropriate 𝛿 for a given targeted feature in 𝐕𝐳×𝝊
𝐓  by trial-and-error and 

careful examination of the spectral estimates obtained for each threshold value tested 

following an initial interpretation of the species likely present. 

Owing to the random initialization and probabilistic nature of the simulated annealing 

algorithm, different spectral estimates will be obtained on different runs of traditional 

BTEM; in fact, simulated annealing is best used where approximate solutions are required. 

We introduce the use of a metaheuristic optimization method, ‘Global Optimum 

Determination by Linking and Interchanging Kindred Evaluators’ (GODLIKE),[30] for 

minimizing the penalty function in A-BTEM. This optimization method operates by 

simultaneously running several basic implementations of different population based heuristic 

optimizers that are linked; namely the genetic algorithm, differential algorithm, particle 

swarm and adaptive simulated annealing. The members of each method’s populations are 

swapped with some probability during each run which acts to reduce the likelihood of the 

overarching method returning a secondary minimum thereby increasing robustness and final 

accuracy of the spectral estimates obtained. Furthermore, it is less sensitive to problem 

specific tuning compared to traditional heuristic optimization methods as it takes advantage 

of the strengths of the different underlying methods. A summary description of the A-BTEM 

algorithm is described in section 2.3 below. 

 

2. Materials and Methods 

2.1 Experimental SORS Data Acquisition 

A fresh frozen cadaveric human leg from a 93-year-old female donor was obtained from the 

Vesalius Clinical Training Centre at the University of Bristol with the appropriate MTA and 

ethical approval (London Stanmore REC - 08/H072/34) and stored in a freezer at -80 °C. The 

leg specimen was thawed for 24 hours and the upper leg and foot were subsequently removed 
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by an orthopaedic surgeon leaving the tibia and fibula surrounded by original soft tissue 

including skin. The specimen at room temperature was then used for transcutaneous SORS 

spectroscopy by selecting a suitable site on the front medial aspect of the tibia. Subsequently 

the soft tissue was thoroughly removed, and 10 Raman spectra were acquired directly from 

the exposed bone surface corresponding to the site sampled during transcutaneous 

measurements. 

SORS measurements were performed using an inverse SORS custom-built system (Cobalt 

Light Systems Ltd, Oxfordshire, UK). A diode laser at 830 nm was used as the excitation 

source, the nominal optical power at the sample was 320 mW. The instrument delivers the 

light as a user definable annulus of variable spatial offset or radius. The scattered light is 

always collected from a single point at the centre of the annulus in a ~1.5 mm diameter spot. 

In this study, for transcutaneous measurements the chosen spatial offsets or radii were 3, 6 

and 9 mm. The ring width of the different annulae was ~1 mm. For each spatial offset 10 

separate spectra were acquired for 0.5 s and 360 accumulations (i.e. with total acquisition 

time of 180 s per single spectrum) to enable the evaluation of our novel BTEM 

implementation on averaged experimental data of varying signal-to-noise ratio. 

On the excised and cleaned tibia, measurements were carried out at 0 mm offset from 10 sites 

on the bone surface corresponding to an area within the maximal annulus chosen for the 

transcutaneous measurements. At 0 mm offset, the instrument is effectively acquiring point 

scan measurements from the surface of the bone, but the probed volume is significantly 

greater than a standard confocal Raman microscope.[13] These spectra were acquired for 0.5 s 

with 120 accumulations (i.e. for 60 s integration time).  

The scattered Raman light from the central collection zone was focused into a low-loss 

Optran WF fiber bundle (CeramOptec, East Longmeadow, MA) connected to a spectrograph 

(Raman Explorer, Headwall, MA) equipped with a CCD detector (Andor iDus 420 BR-DD; 

Andor, Belfast, Northern Ireland). The detector had a spectral resolution of 8 cm-1. Spurious 

cosmic ray spikes were removed automatically by the instrument’s operating software. To 

afford high efficiency collection, the fibre optic collection bundle used a round configuration 

of 33 fibres on the sample side, whilst at the spectrograph end was configured in a linear 

arrangement to optimally fill the spectrometer slit and the vertical axis of the detector.  

 

2.2 Synthetic Data 

Two extremely high SNR archetypal spectra of bone and soft tissue were created from large 

libraries of excised bone and skin/soft tissue spectra by averaging. These were subsequently 

smoothed with a Savitzky-Golay filter using a 3rd order polynomial and 11-point frame length 

and normalized to their respective spectral maxima. After smoothing the SNR of the two 

spectra was ~150. 

Based on these two spectra synthetic SORS datasets where then prepared by generating 

ranges of combinatory ratios between maximum and minimum bone contributions. Datasets 

with different predetermined numbers of spectra were prepared for each range. The maximal 

ratio value was varied to emulate SORS datasets with different overall bone signal 

contribution levels e.g. SORS data acquired from different anatomical locations where the 

thickness of soft tissue is greater for one location or for the same location for different 

individuals with widely different body mass index (BMI). The mean maximal ratio of bone 

signal to soft tissue signal used was 4:5 in line with data obtained as part of our previous in 

vivo measurements. 

For each of the smooth SORS datasets specified above a further eight matching datasets were 

created with various levels of added Gaussian white noise to simulate experimental data 
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acquired with poorer signal-to-noise ratio to compare spectral estimates obtained from these 

with those obtained from the high SNR versions.  

 

2.3 Data Analysis 

Raw experimentally acquired spectra were imported into MATLAB (Mathworks, Natick, 

MA) and pre-processed using several custom functions. All spectra were first corrected for 

CCD sensitivity variation and the fluorescence background was removed using an 

implementation of the mollifier algorithm previously described by Koch et al.[31] The 

resulting corrected spectra were normalized (to the phosphate mode at ~960 cm-1 if obtained 

from excised bone or to the CH2 wagging mode at ~1450 cm-1 if SORS measurements) and 

either used as is if acquired from excised bone or if transcutaneous SORS measurements, 

subsequently submitted to BTEM or A-BTEM decomposition. The relevant penalty functions 

and optimization routines were specified depending on the specific requirements and those 

chosen are made clear in the following results section. All BTEM and A-BTEM spectral 

estimates were carried out on a MacBook Pro with a 2.3 GHz quad core Intel i7 processor 

and 16 GB of RAM. Typical run times for A-BTEM were around 5 minutes per spectral 

estimate, although on our machine four estimates could be run in parallel effectively reducing 

the total processing time. For clarity a schematic showing the structure of the new A-BTEM 

algorithm can be found in the supplementary information (see figure S1). The algorithm 

begins with the input of the pre-processed Raman spectra, the spectral range (start and end 

wavenumbers) of the target band and the target spectrum threshold integrated intensity, , 

required for the adaptive penalty function. Subsequently singular value decomposition is 

performed on the pre-processed spectra and Malinowski’s indicator function is calculated for 

different numbers of retained factors. Following the determination of the minimum number 

of retained factors the singular vectors and values are truncated according to the number of 

retained factors. The transformation vector, t, of length equal to the minimum in IND is 

initialized. The elements of t are then adjusted iteratively by GODLIKE so as to minimize the 

adaptive penalty function (see equation (9) above) by finding the optimal linear combination 

of right singular vectors and thereby return the optimal spectral estimate for the target peak 

and threshold integrated intensity.  

 

3. Results and Discussion 

3.1 Selection of the number of basis vectors 

As described in the theory section above, we have chosen Malinowski’s indicator function to 

select the optimum number of eigenvectors to retain during factor compression. In general, 

the number of factors containing physically meaningful information increases for real in vivo 

SORS data of human bone compared to synthetic data. This is due to additional sources of 

variance in the data. In experimental situations, the number of factors required will change 

from person to person and at different anatomical sites. Figure 1 shows IND as a function of 

the number of retained factors for two anatomical sites from the same human tibia, notice that 

the function’s minimum value occurs at different numbers of retained factors, 3 and 4 

respectively. This plot highlights intrinsic variation that is inextricable from practical SORS 

data acquired from human subjects and highlights the importance of choosing the correct 

number of factors when carrying out BTEM on in vivo SORS data. Furthermore, the number 

of required basis vectors also increases with noise and the number of spectra in the dataset. 

For a fixed SNR increasing the number of spectra increases the decision variables required 

for the optimization aspect of BTEM.  
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3.2 Existing methods 

Spectral estimates calculated using traditional BTEM from the synthetic high SNR SORS 

dataset containing 17 mixed spectra that mimics the mixture ratios of average in vivo data, i.e. 

bone to soft tissue signal ratios ranging from 0:1 to 4:5, are shown in Figure 2. (a) - (d). Each 

subfigure shows the results obtained by using different but previously described penalty 

functions and the simulated annealing optimization routine with optimal annealing 

parameters. For each function, our BTEM program was run fifty times to assess the stability 

of the spectral estimates obtained.  

It is clear from inspection of Figure 2 (a) that using the basic BTEM penalty function, which 

only includes the Shannon information entropy, does not produce realistic spectral estimates 

of bone in almost all runs. In addition, the spectral estimates obtained highlight a very high 

degree of optimization instability as they are markedly different from run to run. In most 

runs, there was a large degree of signal mixing from subcutaneous adipose tissue. Commonly 

researchers have used Pearson’s correlation coefficient, ρ, to determine the quality of spectral 

estimates – the mean value obtained in this case was 0.91 ± 0.13. Our attempts to numerically 

stabilize the solution were unsuccessful, i.e. this situation was found regardless of simulated 

annealing parameters and cooling/reannealing schedule (data not shown). Figure 2 (b) shows 

the spectral estimates obtained after the incorporation of the un-normalised integrated 

intensity term in the penalty function. The addition of this term stabilizes the algorithm and 

the fifty spectral estimates fall into two sets in each of which all the estimates are essentially 

identical. The mean correlation coefficient in this case was 0.9930±0.0023. However, obvious 

deficiencies in the minimal spectral estimate are plain, chiefly dips in the amide I (1640 cm-1) 

and CH2 wagging (1450 cm-1) regions of the spectrum. Such features were also observed in 

Maher et al.[19] N.B. the spectra in the set with greater intensity fall into a secondary 

minimum which qualitatively appears to be a set of better estimates, but the penalty function 

values for these are an order of magnitude larger than for the set of estimates with obvious 

artefacts; they are a manifestation of the optimization routine getting trapped in a secondary 

minimum. 

 

 

Figure 1. Variation of IND as a function of the number of retained eigenvectors z for SORS 

datasets obtained from two distinct anatomical sites on the front medial aspect of a human 

tibia. [Color in Print] 
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Figure 2. Plots showing 50 spectral estimates of bone obtained from synthetic in-vivo SORS 

datasets using different penalty functions as described in the original BTEM literature with 

simulated annealing optimization. (a) Shannon information entropy, (b) Shannon information 

entropy and integrated intensity, (c) sum of absolute second derivatives, (d) sum of absolute 

second derivatives and integrated intensity. In all figures, the offset black spectrum is the 

reference spectrum of bone used to generate the underlying synthetic SORS data. Inset 

figures magnify the amide I region. [Color in Print] 

Spectral estimates obtained using the sum of absolute second derivatives in place of the 

Shannon entropy are shown in figure 2 (c). The use of this term improves the spectral 

estimates obtained from noiseless synthetic data with the instability and signal mixing with 

soft tissue being dramatically reduced but a visible range of varying estimates is still obtained 

(ρ = 0.9973±0.0024). However, in figure 2 (d), that highlights spectral estimates where the 

integrated intensity is included in the penalty function in addition to the sum of second 

derivatives we can see the same artefactual behaviour as for the estimates obtained with the 

Shannon entropy and integrated intensity terms shown in figure 2 (b) (ρ = 0.9926±0.0020).  

Maher et al. associated these flaws with the fundamental BTEM approach as applied to the 

deconvolution of transcutaneous SORS data of bone rather than identify them as a 

consequence of the numerical implementation and penalty function behaviour.[19] When 

considering the original BTEM penalty function the value of the standard terms, 

spectral/concentration non-negativity and targeted peak intensity, tend to zero in the limit of a 

reasonable solution and the only non-zero term in the limit of a global function minimum is 

the information entropy. However, when integrated intensity is used as further contributing 

term to “prevent spectral over-resolution” two non-zero terms will be present no matter what 

the spectral estimate is. Global optimization will always seek the lowest valued solution, this 

means that the two non-zero terms will be in direct competition with each other, the final 

global minimum found will minimize the term with the greater numerical weight at the 

expense of the lesser. The greater term is invariably the normalised integrated intensity as the 
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Shannon entropy (or sum of second derivatives) cost of the incorporation of an artefactual dip 

(the indentation to the Raman peak) is far less than the associated integrated intensity gain in 

its absence. We conclude therefore, that use of the basic information entropy term alone is 

insufficient to afford a stable separation of bone from soft tissue related signals. Inclusion of 

the integrated intensity term prevents the mixing of unwanted signals but creates artefacts and 

distorts the resulting minimal spectral estimate. Furthermore, in the best case of the sum of 

second derivatives with noiseless data inherent instability in the simulated annealing method 

leads to an unacceptable variation in spectral estimates over many runs. It will be seen in a 

later section that these problems are exacerbated by experimental error (noise) as this has a 

marked effect on the sum of second derivatives and that even in the best case shown above 

the presence of normal noise levels will lead to signal mixing. 

 

3.3 Adaptive BTEM algorithm 

From the problems identified in the previous subsection two issues need to be addressed, the 

first is the stability of the optimization step and associated spectral estimate reproducibility, 

the second is the systematic errors or artefacts (spectral distortions) introduced by using 

additional penalty terms that aim to stabilize solutions but end up reducing reconstruction 

accuracy in the global minimum. 

In the first instance, we make use of the metaheuristic optimization method called ‘Global 

Optimum Determination by Linking and Interchanging Kindred Evaluators’ (GODLIKE). 

which acts to reduce the likelihood of the overarching method returning a secondary 

minimum, or non-optimal solution, thereby increasing robustness and final accuracy of the 

spectral estimates derived.[30] 

For the second problem of spectral artefacts there are two potential solutions, one is to use 

multi-objective optimization, the second is to initially normalize the integrated intensity term 

to the number of data channels and then to use it adaptively, disabling the non-zero integrated 

intensity term when the objective function is approaching a minimum, thus allowing the 

Shannon information entropy or sum of higher order derivatives to determine the final 

estimate but simultaneously providing a numerical bias to eliminate solutions where there is 

obvious mixing of soft tissue signal with that of bone. The former case is a general solution to 

the problem of soft constrained penalty functions with multiple potentially competing terms. 

In multi-objective optimization, each term is treated as an independent objective, but no term 

is biased. One downside of this is a marked reduction in the speed of optimization. Multi-

objective optimization is significantly slower than the standard GODLIKE method or single 

heuristic methods such as adaptive simulated annealing. In the interest of time efficiency, we 

have focussed on developing an adaptive penalty function. Figure 3 (a) and (b) show the 

results obtained when using the standard GODLIKE method and GODLIKE in combination 

with the adaptive penalty function. It is clear from the data that the fifty spectral estimates in 

each case match the underlying reference spectrum extremely well ((a) ρ > 0.9999 

±3.2877×10-5, (b) ρ > 0.9994±8.6310×10-5). It should be noted that in this case there is only a 

slight difference in the highly stable and reproducible spectral estimates obtained whether the 

additional adaptive integrated intensity term is being used. However, we shall see in the 

following subsection on the influence of experimental error on our novel BTEM 

implementation that with the noisier data characteristic of real measurements obtained from 

patient volunteers the use of the adaptive term becomes necessary. Similar high-quality 

spectral estimates obtained from experimental SORS data measured from a cadaveric human 

leg and reconstructed using A-BTEM are shown in figure 4.  
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Figure 3. Plots showing 50 spectral estimates of bone obtained from an extreme quality 

synthetic in vivo SORS dataset using different penalty functions as described in the original 

BTEM literature with GODLIKE optimization. (a) sum of absolute second derivatives, (b) 

novel adaptive penalty function (A-BTEM). In both figures, the offset black spectrum is the 

reference spectrum of bone used to generate the underlying synthetic SORS data. The inset 

highlights part of the amide I region. [Color in Print] 

 

These estimates were made using the advanced optimization routine (GODLIKE) and the 

adaptive penalty function. The spectral estimates correlate extremely well with most of the 

reference spectrum obtained from the exposed bone surface. However, we note an important 

divergence above 1550 cm-1 whereby the intensity of the amide I band is reduced in the 

spectral estimate when compared to the reference spectrum (dashed black line in figure 4). 

We ascribe this departure to tissue absorption being particularly strong at the amide-I band 

position. As the photons of Raman scattered light which originate from inside the bone 

volume need to pass through the overlaying soft tissue to reach the detector, photons of 

different energy are absorbed to different extents. A recent work by Stone and co-workers has 

explored the effects of laser excitation wavelength on signal recovery as related to 

transmission Raman spectroscopy focussing particularly on the effects of tissue 

absorption.[32] It is clear from the work of Stone that the absorption coefficient of soft tissue 

dramatically increases at the amide-I band position at our excitation wavelength. The 

measured Raman signal contributing to our SORS signals is different from that measured 

from exposed bone, which is consistent with our observations. As the thickness of the soft 

tissue is likely to vary from patient to patient any calibration models built that include the 

amide I region must be well controlled through appropriate balancing of the subjects’ soft 

tissue thicknesses between the training set classes, or this region will have to be removed for 

that type of analysis. This is not ideal in terms of losing spectral information and a preferred 

alternative would be to alter our excitation wavelength to mitigate the effects of the unwanted 

absorption.[32] Despite this, the 1660/1690 cm-1 ratio, which is indicative of bone matrix 

crosslinking maturity,[26] remains constant to a first approximation when comparing the 

exposed bone surface measurement to the BTEM spectral estimate regardless of the overall 

attenuation in this region, which in its nature is spectrally much broader than the separation 

between the two overlapped Raman bands. 

 

3.4 Influence of noise on A-BTEM spectral estimates after factor compression 

A key issue in the application of any BTEM implementation is the role of experimental error 

or noise. To explore and explain the effects of noise on our new algorithm we have prepared 
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synthetic and real experimental SORS datasets with different SNRs but maintaining constant 

overall bone signal contributions and number of spectra per dataset. Figure 5 plots (a) - (f) 

show spectral estimates obtained when using either: (i) the sum of second derivatives and no 

integrated intensity term – blue plots or (ii) the sum of second derivatives and our new 

adaptive integrated intensity term – red plots. The dashed black plot is the reference bone 

spectrum used to produce the underlying synthetic SORS datasets. Similar real experimental 

data are shown in figure 6 plots (a) – (d) where the same colour scheme applies except that 

the reference bone spectrum has been obtained directly from the bone surface corresponding 

to the area sampled during SORS measurements. For both figures by looking at the blue 

spectra with decreasing signal-to-noise ratio we immediately notice that as the noise levels 

increase the spectral estimates worsen and there is significant mixing of lipid signal observed 

at 1299 cm-1 with that of bone. This phenomenon occurs because the sum of absolute second 

derivatives becomes larger for the ‘real’ solution than that for the mixed case when noise 

levels increase; the BTEM algorithm is effectively seeing the mixed situation as a simpler 

solution. This is a key challenge with BTEM in so-far-as the algorithm has no intrinsic way 

to discriminate between noise ‘information’ and physically meaningful information.  

 

Figure 4. Plot showing 50 spectral estimates of bone obtained from high quality experimental 

in vivo SORS data. Spectral estimates were calculated using the adaptive penalty function and 

‘GODLIKE’ optimization after determining the required number of basis vectors using 

Malinowski’s IND function. The inset highlights the CH2 wagging and amide I regions. The 

dashed black curve is the reference exposed bone measurement. [Color in Print] 

The red plots show the situation for the same starting synthetic and real SORS datasets after 

the inclusion of the adaptive integrated intensity term (A-BTEM). It is immediately apparent 

that the use of this penalty term allows the implementation to penalise the mixed cases 

heavily but not to the extreme as seen earlier where spectral artefacts were introduced – this 

affords reliable spectral estimates at higher noise thresholds although it does not mitigate the 

problem entirely. When the signal-to-noise ratio reaches a threshold of around 20-25 signal, 

as shown in the synthetic examples, mixing becomes evident despite the new term. BTEM 

performs best with low noise data which is at odds with its application to signal limited 

techniques such as Raman spectroscopy. Some degree of de-noising/smoothing during data 

pre-processing would benefit most applications of the BTEM technique to Raman spectra, 

unfortunately this will always be at the cost of losing real physical information about the 

system under investigation. 
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3.5 The role of bone signal contribution on A-BTEM 

Figure 7 shows how the correlation coefficients of different spectral estimates obtained from 

synthetic SORS datasets containing 17 spectra vary as a function of bone signal contribution 

(expressed as percentage of the most intense lipid Raman band present) and signal-to-noise 

ratio (correlation coefficient 1 represents a perfect reconstruction).  

 

 

Figure 5. Plots (a) – (f) showing spectral estimates of bone obtained from synthetic in vivo 

SORS datasets with varying SNR using selected penalty functions after the addition of 

different amounts of Gaussian white noise. Blue plots – spectral estimates obtained using the 

sum of second derivatives only. Red plots – spectral estimates obtained using the sum of 

second derivatives and the additional normalized adaptive integrated intensity. Black dashed 

plots – reference spectrum of underlying bone signal. Correlation coefficients shown for 

comparison. [Color in Print] 

In these data, we can see a relationship between signal-to-noise ratio and bone signal 

contribution. The greater the bone contribution the lower the required SNR for a highly 

accurate reconstruction. Most importantly when the SNR of the data is greater than ~55 

within the range of bone signal contributions investigated the bone signal contribution 

becomes unimportant and high-quality A-BTEM reconstructions are readily obtainable. 

Therefore, to obtain the best possible spectral estimates from transcutaneous SORS spectra of 

human bone, one should pay attention to not just the absolute strength of Raman bone signal 

but also ensure the SNR is sufficiently high, our results indicate that a SNR of at least 55 is 

appropriate. For other systems, similar analyses using A-BTEM could be carried out with 

synthetic data to discover the optimum data necessary for the most accurate spectral 

reconstructions. When considering the effects of signal contribution and noise on the 

reconstructed spectrum, it is necessary to understand the relationship between the 

contributions of noise to a given solution in terms of the different penalty terms in 
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comparison to that of likely signal contaminants. The algorithm treats experimental noise no 

differently from physically meaningful information, in excess it forces the algorithm to 

include unwanted signals leading to erroneous features and false estimated spectra.  

 

3.6 The Effect of the Number of Spectra on A-BTEM 

Figure 8 shows how the correlation coefficients of bone spectral estimates obtained from 

synthetic data vary as a function of the number of spectra in each SORS dataset and mean 

SNR for a fixed relatively low bone contribution of 16.7%. Interestingly, for all but the 

highest SNR value shown (56.1) increasing the number of spectra per SORS dataset improves 

the quality of the spectral estimate. 

 

Figure 6. Plots (a) - (d) showing spectral estimates of bone obtained from real experimental 

in vivo SORS datasets with varying SNR using selected penalty functions. Blue plots – 

spectral estimates obtained using the sum of second derivatives only. Red plots – spectral 

estimates obtained using the sum of second derivatives and the additional normalized 

adaptive integrated intensity. Black dashed plots – actual averaged reference spectrum of 

underlying cortical bone. [Color in Print] 

However, to achieve the necessary level of accuracy for our diagnostic purposes relating to 

determining the presence of bone disease we must focus on obtaining datasets of the required 

SNR, i.e. ~55. For other applications where such high stringency is not required increasing 

the number of spectra could be used in a compromise situation to further enhance the spectral 

estimates obtained, potentially, to a satisfactory or compromise level at median SNRs for 

lower/moderate target species signal contributions. In these situations, there will be a trade-

off compromise between the integration time invested in obtaining higher SNRs and the time 

required to obtain a greater number of spectra. 
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Figure 7. Plots showing how correlation coefficient for deconvoluted bone spectra obtained 

from synthetic SORS datasets containing 16 spectra varies as a function of signal-to-noise 

ratio and mean bone signal contribution (given in figure legend). [Color in Print] 

 

Figure 8. Plots showing how the correlation coefficient for deconvoluted bone spectra 

obtained from synthetic SORS datasets varies as a function of the number of spectra in each 

dataset and the mean SNR of each dataset (given in figure legend). [Color in Print] 

4. Conclusions 

We have described and implemented a novel variant of BTEM, Adaptive BTEM (A-BTEM) 

that provides excellent stability, accuracy and reproducibility when decomposing challenging 

SORS datasets, not available from the original BTEM algorithms. We have shown that: by 

using an appropriate empirical test to choose the number of retained basis vectors, the use of 

an adaptive penalty function and the incorporation of extremely robust metaheuristic 

optimisation strategies - accurate extremely stable spectral estimates of bone can be acquired. 

We have also demonstrated that BTEM is sensitive to noise and that accurate spectral 

estimates can only be obtained with the new implementation (A-BTEM) when the mean 

signal-to-noise ratio of SORS dataset is sufficiently high (>55) for a given underlying bone 

signal contribution. In our case, spectral estimates showing a correlation coefficient of > 

0.996 are readily available in these instances. The algorithm has been successfully applied to 

transcutaneous bone SORS spectra although its applicability is general and it can be used for 

any other system of interest where de-mixing has proved challenging provided some 

knowledge of the target species is available or can be estimated. We also note that tissue 

absorption is a fundamental issue in the in vivo application of SORS to obtain accurate 

spectral estimates of human bone. Overall this work provides a much-needed pathway to 

developing an optimized SORS instrument for the diagnosis of human bone disease in vivo 

by developing a novel BTEM implementation that affords highly accurate and stable spectral 

estimates as well as highlighting the quality of real data required to be obtained within a brief 
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integration time typical of patient visits simultaneously meeting the requirements of 

unsupervised use and the reliable highly accurate recovery of clinical data. 

 

Conflicts of Interest 

Declarations of interest: none 
 

Acknowledgements  

The authors would like to thank the Vesalius Centre at the University of Bristol for providing 

the cadaveric tissue samples. This work was carried out with the appropriate human tissue 

authority license (HTA12135) and ethical approval (London-Stanmore REC - 08/H072/34). 
 

Funding 

This work was supported by the Engineering and Physical Sciences Research Council 

(EP/K503745/1). 

References 

[1] W. Chew, E. Widjaja, M. Garland, Organometallics 2002, 21, 1982. 

[2] E. Widjaja, C. Li, W. Chew, M. Garland, Anal. Chem. 2003, 75, 4499. 

[3] E. Widjaja, N. Crane, T.-C. Chen, M. D. Morris, M. A. Ignelzi, Jr., B. R. McCreadie, 

Appl. Spectrosc. 2003, 57, 1353. 

[4] L. Guo, P. Sprenger, M. Garland, Anal. Chim. Acta 2008, 608, 48. 

[5] P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, 

M. Towrie, W. F. Finney, A. W. Parker, Appl. Spectrosc. 2005, 59, 393. 

[6] P. Matousek, Appl. Spectrosc. 2006, 60, 1341. 

[7] K. Buckley, P. Matousek, Analyst 2011, 136, 3039. 

[8] P. Matousek, N. Stone, Chem. Soc. Rev. 2016, 45, 1794. 

[9] J. G. Kerns, P. D. Gikas, K. Buckley, A. Shepperd, H. L. Birch, I. McCarthy, J. Miles, 

T. W. R. Briggs, R. Keen, A. W. Parker, P. Matousek, A. E. Goodship, Arthritis 

Rheumatol. 2014, 66, 1237. 

[10] K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, 

A. E. Goodship, J. Raman Spectrosc. 2015, 46, 610. 

[11] J. R. Maher, J. Inzana, M. Takahata, H. A. Awad, A. J. Berger, in Proc. SPIE, (Eds: A. 

Mahadevan-Jansen, W. Petrich), International Society for Optics and Photonics, 2012, 

p. 82190P. 

[12] K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. 

Matousek, A. E. Goodship, IBMS Bonekey 2014, 11, doi:10.1038/bonekey.2014.97. 

[13] K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, P. 

Matousek, J. Raman Spectrosc. 2016, 47, 240. 

[14] K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, P. 

Matousek, Analyst 2017, 142, 3219. 

[15] S. R. Cummings, D. Bates, D. M. Black, JAMA 2002, 288, 1889. 

[16] H. Ding, G. Lu, C. West, G. Gogola, J. Kellam, C. Ambrose, in SPIE Proceedings, 

2016, vol. 9689, p. 96894M. 

[17] R. Bro, Chemom. Intell. Lab. Syst. 1997, 38, 149. 

[18] K. Buckley, J. G. Kerns, A. W. Parker, A. E. Goodship, P. Matousek, J. Raman 

Spectrosc. 2014, 45, 188. 

[19] J. R. Maher, J. A. Inzana, H. A. Awad, A. J. Berger, J. Biomed. Opt. 2013, 18, 077001. 

[20] K. Sasaki, S. Kawata, S. Minami, Appl. Opt. 1984, 23, 1955. 



 18 

[21] S. Y. Sin, E. Widjaja, L. E. Yu, M. Garland, J. Raman Spectrosc. 2003, 34, 795. 

[22] S.-T. Tan, H. Zhu, W. Chew, Anal. Chim. Acta 2009, 639, 29. 

[23] H. Zhang, M. Garland, Appl. Spectrosc. 2007, 61, 1366. 

[24] C. G. Bertinetto, A. de Juan, J. Chemom. 2018, 32, 1. 

[25] L. R. Ong, E. Widjaja, R. Stanforth, M. Garland, J. Raman Spectrosc. 2003, 5, 282. 

[26] G. S. Mandair, M. D. Morris, Bonekey Rep. 2015, 4, doi:10.1038/bonekey.2014.115. 

[27] C. K. Chua, Y. Lv, H. J. Zhang, X. Y. Gu, Anal. Methods 2017, 9, 2667. 

[28] E. R. Malinowski, Factor Analysis in Chemistry, Wiley, 3rd Ed., 2002. 

[29] C. E. Shannon, Bell Syst. Tech. J., 1948, 27, 379–423. 

[30] R. P. S. Oldenhuis, Trajectory Optimization for a Mission to the Solar Bow Shock and 

Minor Planets, Delft University of Technology, Netherlands, 2010. 

[31] M. Koch, C. Suhr, B. Roth, M. Meinhardt-Wollweber, J. Raman Spectrosc. 2016, 48, 

336. 

[32] A. Ghita, P. Matousek, N. Stone, Analyst 2016, 141, 5738. 

 


