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Abstract

The fact that firms benefit from close proximity to other firms with which they can exchange

inputs, skilled labor or know-how helps explain why many industrial clusters are so successful.

Studying the evolution of coagglomeration patterns, we show that which type of agglomeration

benefits firms has drastically changed over the course of a century and differs markedly across

industries. Whereas, at the beginning of the twentieth century, industries tended to colocate with

their value chain partners, in more recent decades the importance of this channels has declined and

colocation seems to be driven more by similarities industries’ skill requirements. By calculating

industry-specific Marshallian agglomeration forces, we are able to show that, nowadays, skill-

sharing is the most salient motive in location choices of services, whereas value chain linkages still

explain much of the colocation patterns in manufacturing. Moreover, the estimated degrees to

which labor and input-output linkages are reflected in an industry’s coagglomeration patterns help

improve predictions of city-industry employment growth.
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1 Introduction

In spite of congestion, elevated factor costs and the risk that trade secrets leak to competitors, firms

in the same industry frequently locate close to one another (Ellison and Glaeser, 1999; Rosenthal and

Strange, 2001). As a consequence, in many industries we observe pronounced geographical clusters.

The existence of these clusters are often attributed to the presence of three different types of exter-

nalities, namely the sharing of inputs, labor and knowledge. However, all industries may not benefit

equally from all agglomeration. Moreover, given the dramatic decline in transportation and commu-

nication costs and the progressive spatial fragmention of value chains in the previous century, it is

likely that the balance of costs and benefits for industries to cluster has changed drastically. However,

our understanding of how agglomeration externalities differ across industries and have changed over

time is still limited. The aim of this paper is to assess the relative importance of different drivers

of agglomeration across industries, and how the main forces behind agglomeration externalities have

changed over the course of a century.

Marshall (1920) ascribed “the advantages which people following the same skilled trade get from

near neighbourhood to one another” (p.225) to three different types of agglomeration externalities:

the benefits of a large pool of skilled labor, easy access to local customers or suppliers and local

knowledge spillovers.1 However, in spite of the early recognition and ample subsequent research of this

topic, the relative importance of each of these Marshallian externalities has fueled debate for over a

century. In part, this is due to the so-called “Marshallian equivalence” (Duranton and Puga, 2004):

all three Marshallian agglomeration theories yield the same prediction for the spatial distribution of

an industry, namely, that, because they generate benefits for one another, economic establishments

engaged in similar activities will tend to agglomerate. This confluence of agglomeration benefits makes

it difficult to determine which theory carries most weight as an explanation for the observed tendency

of industries to concentrate in space.

A major stride forward is marked by Ellison, Glaeser, and Kerr (2010), henceforth EGK, who study

not the agglomeration of individual industries but the coagglomeration of pairs of industries. The

rationale for this is that industries that are similar along some dimensions may differ along others. For

instance, whereas some industries will benefit from being colocated because they employ similar labor,

others may colocate because of input-output or technological linkages. By analyzing the relationship

between locational similarity (i.e., coagglomeration) and similarities that reflect different Marshallian

agglomeration benefits, EGK disentangle the strength of three different types of Marshallian exter-

nalities. They find that input-output linkages are the most important explanation for why industries

coagglomerate, closely followed by opportunities to share labor. Least empirical support is found for

sharing know-how as a rationale for coagglomeration.

1Whereas theoretical models tend to divide agglomeration externalities into benefits from sharing, matching and
learning in local economies (Duranton and Puga, 2004), most of the empirical literature on the topic categorizes Mar-
shallian externalities as economies in transportation, coordination or communication when acquiring one of three factors:
labor, (intermediate) capital goods or knowledge.
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The effects EGK report represent averages across all industries, and, as such, may conceal marked

differences among industries. For instance, whereas making musical instruments requires specialized

workers with years of on-the-job training, workers in food-processing firms are often employed on short-

term contracts through temporary work agencies, without much regard for their skills. Similarly, while

car manufacturers often closely collaborate with their local suppliers (Morgan and Cooke, 1998), the

principal inputs for steel mills, coal and iron ore, are acquired on anonymous exchanges with little need

for buyer-supplier interaction. Finally, although knowledge spillovers may be important drivers of the

clustering of biotechnology firms (Zucker et al., 1994), they will be less important in industries in which

technology progresses less rapidly. Meta-studies reviewing the empirical literature on agglomeration

externalities since the foundational papers by Glaeser et al. (1992) and Henderson et al. (1995) confirm

the existence of considerable variation in empirical findings (Beaudry and Schiffauerova, 2009; Groot

et al., 2015). We expect that these differences are in part driven by variation across industries in how

much they rely on specific agglomeration forces, but also by changes in these forces over time.

Building on EGK, we explore whether this hypothesized heterogeneity in agglomeration benefits is

expressed in industrial coagglomeration patterns. We start by replicating key parts of the original work

by EGK, which was based on US manufacturing industries in the late 1980s and 1990s, using similar

data for the 2000s. Mimicking EGK, we do so using both Ordinary Least Squares (OLS) estimation

and Instrumental Variables (IV) based strategies that instrument inter-industry linkages among US

industries by analogous measures constructed from data external to the US, mainly drawing from data

for the Mexican economy. We confirm that labor linkages and input-output linkages are still more or less

equally important explanations for coagglomeration, whereas evidence for technological (knowledge)

spillovers is relatively weak. However, there are good reasons to expect that coagglomeration patterns

in services will be different from those in manufacturing. First, unlike manufactured goods, services

are often difficult to trade over large distances. Consequently, service firms will need to colocate with

their customers. Second, services tend to be labor intensive, and their quality often crucially depends

on face-to-face interactions between a firm’s employees and its customers.2 For both reasons, access

to adequate human capital may be particularly important in services. This conjecture is confirmed

when we extend the analysis to industries beyond manufacturing: the estimated effects of input-output

linkages on coagglomeration are at least as large in services as in manufacturing, while labor-linkages

are a much stronger factor in the coagglomeration of services than of manufacturing industries.3

Next, we allow Marshallian externalities to vary fully by industry. Doing so reveals an even wider

variation in agglomeration effects. For some manufacturing activities, such as furniture and food

production, coagglomeration patterns can be attributed neither to labor nor to input-output linkages.

2See, for instance, Kolko (1999) on the importance of agglomeration in services.
3For reasons explained more fully later on, unlike EGK, we disregard technological linkages and shared natural

advantages as explanations for coagglomeration. Whereas our reservations about technological linkages are related to
measurement issues – the most readily available source of information on such linkages, patents, are barely used in
the majority of services – our reservations about natural advantages (as defined in EGK) are more fundamental: first,
many natural advantages in EGK are actually man-made, second, EGK use local prices, which are endogenous to the
agglomeration process, to quantify natural advantages.
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For other manufacturing industries, such as those in electronics or in the pharmaceuticals & medical

sector, coagglomeration patterns are primarily driven by input-output linkages. However, the greatest

variety in agglomeration effects exists in services, where some industries, such as those in arts and

culture, cluster along both externality channels, whereas in other services, like media and knowledge-

intensive business services, labor pooling opportunities dominate coagglomeration.

Finally, we turn to changes in coagglomeration forces over time. The US economy and its geography

have undergone major changes in the twentieth century. Urbanization rates rose from 40.5% to over

75% (Black and Henderson, 2003), work shifted from over 40% of male employment in agriculture,4 to

the current dominance of service jobs, and the US population has become increasingly educated, with

the 18% secondary school enrollment rates of 1910 rising to 73% of youth enrolling in high schools

by 1940 (Goldin and Katz, 2009, p. 195). Meanwhile, value chains started fragmenting through

outsourcing and offshoring spurred by the drastic reduction in transportation and communication

costs due to the roll-out of highway systems, airport and internet infrastructure. Using data on the

coagglameration of industries in US states between 1910 and 2010, we explore how, combined, these

processes have altered agglomeration forces. We find that the importance of value chain linkages

in industrial coagglomeration patterns has strongly declined, while the relevance of labor pooling

opportunities has – if not mildly increased – at least stayed constant. These findings suggest that the

aforementioned historical changes indeed led to a shift in agglomeration forces. Arguably, whereas

the contraction of space has eroded the importance of geographical proximity among customer and

suppliers, the skill accumulation and specialization that came with the expansion of the education

system and a deepening of the economy’s knowledge base has amplified the relative benefits of sharing

a common pool of labor.

By studying the heterogeneity of Marshallian externalities, we contribute first and foremost to the

literature on agglomeration externalities in general, and to the fast-expanding strand of research that

focuses on coagglomeration to untangle different agglomeration forces in specific (Ellison et al., 2010;

Howard et al., 2015; Behrens, 2016; O’Sullivan and Strange, 2017). Our work is closely related to the

work of Faggio et al. (2017), who study heterogeneity in Marshallian externalities in the UK. These au-

thors find that agglomeration effects are particularly strong among small firms. Moreover, they report

differences in agglomeration forces between high- and low-tech sectors, differences driven by the level

of education of an industry’s workforce, and – using quantile regressions – differences by industries’

general tendency to coagglomerate. Although we also conclude that different industries experience dif-

ferent agglomeration forces, we arrive at this conclusion from a markedly different empirical approach.

Whereas Faggio et al. (2017) explicitly look for differences related to the organization and technology

of industries, we take a more agnostic approach and study heterogeneity in agglomeration forces in a

nonparametric fashion. One finding that emerges from this is that labor sharing tends to be more im-

portant in services than in manufacturing, whereas the opposite holds for value-chain linkages. Given

the growing importance of services in the economy and the fact that – using a century worth of data

4Authors’ own calculations using IPUMS data.
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– our historical analysis suggests that labor linkages are gaining in relative importance, labor sharing

may soon become the dominant rationale for the cities of the future. However, at the same time, for

some services coagglomeration are also strongly driven by value-chain linkages,5 possibly reflecting the

fact that the output of services is to a large extent nontraded and, therefore, associated with very

high transportation costs. Moreover, we show that the heterogeneity in coagglomeration translates

into differential growth of local industries. With this exploration of how the estimated differences

in coagglomeration forces can help gauge how sensitive an industry’s local growth rate is to a given

type of agglomeration benefit, our paper also contributes to a growing literature on agglomeration

externalities and local industry growth in urban economics (Glaeser and Kerr, 2009; Dauth, 2010;

Jofre-Monseny et al., 2011, Hanlon and Miscio, 2017), cluster research (Porter, 2003; Delgado et al.,

2010), and an emerging literature on related diversification in economic geography (Neffke et al., 2011;

Hausmann et al., 2014).

2 Methodology

2.1 Data

To measure coagglomeration patterns in the current economy, we use datasets that describe employ-

ment by region-industry pair in the US and Mexico. For the US, these data are derived from the

County Business Patterns (CBP) for the years 2003 and 2008.6 Employment data for Mexico are

taken from the economic censuses in 2003 and 2008.

We analyze these data at three different geographical levels: US counties (of which there are 3,190),

metropolitan areas (922 including both Metro- and Micropolitan Statistical Areas) and states (51).

In Mexico, our geographical units are 2,455 municipalities, 58 metropolitan areas and 32 states. Be-

cause we regard metropolitan areas (labelled ‘cities’ hereafter) as the most appropriate spatial unit for

defining labor markets and economically integrated regions, we will focus the discussion on the results

derived at this level, and report county and state level results as supporting evidence where practi-

cal. Furthermore, to define industries, we adjust the North American Industry Classification System

(NAICS) to correct for small inconsistencies between US and Mexican data (see Appendix B). From

the resulting list of 184 industries, we exclude nontraded industries with spatial distributions that are

strongly driven by the distribution of population, such as retail, auto repair, construction work and

elementary schools. Note, however, that we do not exclude extractive activities such as mining. Al-

though these activities are obviously restricted in their location choice, it is still informative to see how

5This evidence is particularly salient when using a locational correlation index instead of the Ellison-Glaeser index of
coagglomeration.

6The CBP data censor small industry-region cells. For such cells, we assign employment numbers following Holmes
and Stevens (2004). For further details, we refer to Appendix G.
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other industries choose to colocate with them. This leaves us with a set of 120 traded industries.7 As

a robustness check, we repeat the main analysis using the full sample of 184 industries. The outcomes,

which are reported in Appendix F, are in line with those based on the restricted sample.

To analyze historical coagglomeration patterns, we use the US census samples provided by IPUMS

USA (Ruggles et al., 2017) for the 1910-2010 period. Given the between 1% and 5% sampling rates,

estimated industry-region employment data will be too noisy for small spatial units. Therefore, we

restrict our analysis in this section to the coagglomeration of industries within US states. The industry

classification in IPUMS (IND1990) distinguishes more than 200 activities, from which we select a set

of 104 industries following the same logic as for CBP data.8

2.2 Dependent variable: coagglomeration

Our main object of interest is the degree to which industries coagglomerate. That is, to what extent

do pairs of industries employ workers in the same regions? To quantify the tendency of industry i to

coagglomerate with industry j, EGK propose the following measure:9

EGij =
∑
R
r=1 (sir − xr) (sjr − xr)

1 −∑
R
r=1 x

2
r

. (1)

where sir =
Eir

∑
R
r′=1Eir′

– with Eir industry i’s employment in region r – is the employment share of

industry i in region r, while xr is the mean of these shares in region r across all industries. Using

a model of location choice, Ellison and Glaeser (1997,1999) motivate this index as a measure of the

likelihood that establishments in industries i and j generate spillovers for one another. The index has

the advantage that it should not be affected by the size distribution of establishments in an industry

or by the granularity of spatial units. Following this logic, we calculate EG indices for all pairs of

industries in the US.

The EG index is similar in spirit to a measure used by Porter (2003), who quantifies the coagglomeration

of two industries as the correlation between industries’ locational employment vectors:

LCij = corr (sir, sjr) , (2)

7Traded industries represent about 38% of employment nationwide. That is, 100% of manufacturing, 100% of extrac-
tive activities, 0% of agriculture, utility or construction. Among services, we consider as traded a set of activities that
constitute about 30% of employment in the tertiary sector. We list all excluded and included industries in Appendix D.

8More details on the construction of variables from IPUMS data can be found in Appendix B, while the list of included
IPUMS industries is provided in Appendix D.

9This measure is equivalent to the coagglomeration index in Ellison and Glaeser (1999) for the coagglomeration of
pairs of industries.
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Hausmann et al. (2014) show that the locational correlation of industries i and j, LCij , can be inter-

preted as an estimate of the similarity of the industries’ technology requirements in a Ricardian trade

model. For brevity, we focus our discussion on the analysis that uses the EG index. The results using

the LC index are reported in Appendix E, unless they lead to qualitatively different conclusions, in

which case we discuss them in the main text.

2.3 Independent variables

EGK use four different inter-industry linkages to explain why industries may coagglomerate. The first

three represent Marshallian externality channels: value-chain linkages, similarities in labor require-

ments and technological similarities among industries. The fourth linkage type captures the fact that

the location of some industries reflects a need to access natural resources. Although these “natural ad-

vantages” do not represent Marshallian externalities, they may result in nonrandom coagglomeration

of industries that require similar natural resources.

Input-output links

Value chains allow individual firms to specialize. However, such specialization also creates costs:

intermediates need to be shipped between firms, and innovation efforts must be coordinated with

suppliers (Richardson, 1972; Abdel-Rahman, 1996; Porter, 1998). Because the costs of transportation

and coordination typically rise with distance, colocating different parts of a value chain can be an

effective cost-reduction strategy.

We measure the strength of input-output relations between a pair of industries using the same indicator

as EGK. That is, the input-output proximity of industries i and j is defined as the maximum relative

importance of i as a customer or as a supplier of j and vice versa. Let IOij be an input-output matrix,

i.e., IOij represents the value of goods and services that industry j sources from industry i. We now

measure the proximity between i and j in terms of input-output linkages as

P IOij =max(
IOij

∑k IOkj
,

IOji

∑k IOkj
,

IOij

∑k IOik
,

IOji

∑k IOik
) (3)

To estimate current value-chain linkages, we use tables provided by the Bureau of Economic Anal-

ysis (BEA) for the year 2002 in the US and by the Mexican statistical office, Instituto Nacional de

Estad́ıstica y Geograf́ıa (INEGI) for the year 2008 in Mexico. For the historical analyses, we use

input-output tables provided by BEA for the period 1947-2012. A detailed description of the data

processing and subsequent calculations is provided in Appendix B.
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Labor market pooling

A large local pool of specialized labor benefits both firms and workers. First, larger pools of skilled

workers (and firms that want to hire them) may result in a better matching of workers to firms (Helsley

and Strange, 1990). Second, workers may demand a wage premium as a compensation for moving to

regions that offer few alternative employment opportunities in case they lose their jobs. In contrast,

having many firms and industries that can absorb one another’s redundant workers acts as an implicit

insurance scheme and may, therefore, lower wage demands (Marshall, 1920; Duranton and Puga, 2004).

Following EGK, we measure the extent to which two industries can draw from the same pool of workers

using industry-occupation employment matrices. In particular, we compute correlation coefficients

between the occupational employment of industries i and j, Eio and Ejo, where Eio represents the

number of workers in occupation o employed (nationwide) in industry i:

PLij = corr(Eio,Ejo). (4)

For the US, we use the industry-occupation data for the year 2002 reported in the Occupational

Employment Statistics (OES), while for Mexico, we use the Encuesta Nacional de Ocupación y Empleo

(ENOE). Historical estimates are derived from the samples of the US census provided by IPUMS USA.

For more details, we refer the reader to Appendix B.

Technological similarity

EGK estimate inter-industry technological similarity using cross-industry patent citations and the

technology-flow matrix constructed in Scherer (1984). The latter yields the, conceptually, most attrac-

tive metric. To build the technology-flow matrix, science-degree students assessed for a large sample

of patents which industries were most likely to be beneficiaries of the inventions described therein.

Given that this exercise has not been repeated, we fall back to patent citations. Using the NBER

patent citations dataset (Hall et al., 2001), we construct the overrepresentation of industries i and j

in bilateral citation flows, and measure the extent to which industries exchange knowledge, PTij , in a

similar fashion as P IO, as

PTij =max(
Cij

∑k Ckj
,

Cji

∑k Ckj
,

Cij

∑k Cik
,

Cji

∑k Cik
) (5)

where Cij is the number of citations from patents associated with industry i to patents associated

with industry j. We estimate PTij twice: once as a main covariate using patents by US inventors, and

once as an instrument using patents by foreign inventors. Details of this procedure are provided in

Appendix B.
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Natural advantages

In some industries, firms’ location choices are limited by factors that are driven by natural advantages.

For instance, shipbuilding requires access to waterways and some tourism activities rely on the beauty

of a place’s natural environment. To correct for such factors, EGK calculate an index of how similar

industries are in terms of their reliance on natural resources. This index is based on work by Ellison

and Glaeser (1999) that predicts for each industry what share of its employment will locate in a given

region from information on, on the one hand, the industry’s intensity of use of a given resource, and,

on the other hand, on the price of this resource in the region. Next, the predicted shares are used to

estimate predicted coagglomeration patterns as a metric of similarity in natural advantages:

EGij =
∑
R
r=1 (ŝir − xr) (ŝjr − xr)

1 −∑
R
r=1 x

2
r

. (6)

Note that equation 6 is the same as equation 1 but for the substitution of ŝjr for sjr. For reasons

explained hereafter, we will not repeat this exercise in full. Instead, we recalculate equation 6 using

two different versions of ŝir. First, to replicate the EGK results, we update the estimated employment

shares by industry taken from the supplementary online material of EGK in such a way that they

match the US economy’s employment composition of 2003 and the NAICS classification system. Next,

we create our own estimates to extend the analysis to services, which are disregarded by EGK. These

estimates combine information on an industry’s use of primary resources (using IO tables) and un-

skilled labor (using the industry’s occupational employment vector) on the one hand, and the regional

availability of these primary resources (proxied by the presence of the associated extractive industries)

and unskilled labor (taken from BLS tables on urban employment by occupation), on the other hand.

Both procedures are explained in more detail in Appendix B.

Discussion

As pointed out by EGK, a possible cause for concern is that the inter-industry similarity matrices are

endogenous. That is, if two industries located close to each other due to an historical accident, this

coagglomeration may have prompted them to adjust their production technologies, for instance, in such

a way that they could use one another’s outputs or skilled workers. Another concern is that similarity

matrices are only imperfect proxies for the degree to which industries can exchange products, or use the

same workers, technologies or natural advantages. Such measurement error would lead to a downward

bias in our estimates. In line with EGK, we therefore also estimate the models in equations 7 and 8

using an IV approach. As instruments, we use analogously constructed variables based on information

from outside the US economy.10 Similar to the UK-based instruments in EGK, our instruments are

10For value chain and labor similarity linkages, we use data on the Mexican economy, for technological similarity we use
patents by inventors who reside outside the US. Natural advantages, should, by definition, be exogenous and therefore
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valid, as long as idiosyncratic patterns in the input-output, labor or technological linkages outside the

US are exogenous to coagglomeration patterns in the US.

A second concern is related to the main goal of this paper. To explore the heterogeneity of Marshallian

externalities across industries and over time, it is insufficient to generate proxies for each type of inter-

industry linkage; we must also ensure that these proxies can be created with some accuracy for all

industries. Although value-chain linkages and occupational similarity matrices can be constructed with

relative ease for any industry, the same cannot be said for technological linkages because industries differ

widely in how much they rely on patents to protect their intellectual property (Cockburn and Griliches,

1988). To illustrate this, Figure 1 shows the number of patents in the period 1975-1999 per 1,000

employees by industry. Clearly, although most manufacturing industries (in blue) produce at least some

patents, most service industries do not patent any inventions at all. What is more, the technologies

that get patented are arguably unrepresentative of the vast set of technologies firms use in their

day-to-day processes.11 As a result, the accuracy with which inter-industry technological similarity

can be estimated from patent data will differ tremendously by industry. Because this heterogeneity

in measurement error will translate mechanically into heterogeneity in the estimated effect of inter-

industry knowledge spillovers on coagglomeration patterns, it compromises what our paper sets out to

do.12

don’t require instrumenting. Below, however, we will raise some doubts about the exogeneity of the natural advantage
variable in EGK.

11EGK are well aware of this: “Our patent citation measure is a proxy for the importance of exchanging technology
rather than a proxy for all forms of intellectual spillovers. Since our measures of idea sharing are weaker than our
measures of input-output linkages, we anticipate their connection with coagglomeration to be weaker.” (p. 1202)

12That is not to say that we believe that the other inter-industry proximity measures are unaffected by heteroscedastic
measurement-errors. However, for reasons explained above, we believe that the variation in the precision with which
we can characterize labor and input-output linkages is dwarfed by the variation in measurement error for technological
linkages. Moreover, although the IV estimations will correct for some of the errors-in-variables bias, the scope for this is
limited in the case of technological linkages, where the instrument is based on patent data as well.
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Figure 1. Patenting rates by industry
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Patents in the period 1975-1999 per 1,000 employees by industry. Industries sorted by patenting intensity. Blue bars

refer to manufacturing industries, red bars to services.

A third and final concern arises due to the way natural advantages are measured in EGK. Although

we agree that natural advantages may have driven some of the historical coagglomeration patterns in

the US, the metric EGK use to correct for this has problems of its own. First, it is unclear whether

prices should be considered when constructing a measure of natural advantages as in EGK. After

all, local prices are endogenously determined by supply and demand in a region. For instance, low

prices of a natural resource may make a location attractive to industries that heavily rely on this

resource, or reflect that demand for them is low because such industries have shunned the region for

other reasons. Second, the majority of production factors EGK list as natural resources are, in fact,

man-made. For instance, EGK do not just label cheap electricity and abundant farmland and cattle

as natural advantages. They also include low local manufacturing wages, educational attainment,

unionization rates and population density. Most of these factors would also be reflected in similarities

in industries’ labor requirements. Moreover, a number of other resources, such as coal and timber

– although arguably related to natural endowments – are more accurately regarded as outputs of
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extractive industries. As such, they should be considered as parts of value chains. Upon closer

inspection, the only truly exogenous factor in EGK appears to be a coastal dummy.13 Therefore, the

measure of similarities in natural-resource use is – if not endogenous – redundant given that it uses

much of the same information as what is provided in input-output and labor-use matrices. For these

reasons, after having compared our results to the ones in EGK, we will drop both technological and

natural-resource-use similarities as explanations for coagglomeration patterns.

2.4 Descriptive statistics

Table 1. Summary statistics.

Variable Obs Mean Std. Dev. Min Max

United States

EG index 7140 0.0001 0.0047 -0.0232 0.0846

LC index 7140 0.7166 0.1209 0.4854 0.9915

Input-output 7140 0.0124 0.0353 0.0000 0.6776

Labor 7140 0.6013 0.0997 0.4956 0.9919

Technology 7140 0.0082 0.0267 0.0000 1.2346

Technology (foreign) 7140 0.0082 0.0266 0.0000 1.1838

Nat.Advantage LC (original) 3828 0.9703 0.0357 0.7487 1.0000

Nat.Advantage EG (original) 3828 -0.0000 0.0011 -0.0060 0.0084

Nat.Advantage LC (new) 7140 0.9784 0.0262 0.7819 1.0000

Nat.Advantage EG (new) 7140 0.0000 0.0010 -0.0056 0.0058

Mexico

EG index 7140 0.0005 0.0477 -0.2579 0.5149

LC index 7140 0.7784 0.1657 0.4399 0.9994

Input-output 7140 0.0143 0.0503 0.0000 1.0000

Labor 7140 0.5565 0.1094 0.4828 1.0000

Summary statistics for coagglomeration (EG and LC metrics) and input-output and labor linkages for 120×(120−1)/2 =
7140 unique industry pairs for the US (top) and Mexico (bottom).

Excluding the diagonal, there are 7,140 unique industry pairs in our sample of 120 industries. Table 1

contains descriptive statistics. It is interesting to note that, whereas means are similar for all variables

in the US and Mexico, the dispersion is larger in Mexico, and sometimes substantially so. Although

the greater dispersion in the Mexican variables may be structural, it could also mean that the variables

constructed from US data are measured more accurately.

13However, this dummy has no significant impact on industries’ locational choices (see Ellison and Glaeser (1999)).
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Table A.6 reports correlation coefficients between the various dependent and independent variables.

Interestingly, the correlations of the same variables in a different country are typically higher than of

different variables in the same country. For instance, there is a 0.24 correlation between US labor and

input-output similarities, whereas these variables exhibit correlations of over 0.5 with their Mexican

counterparts. This is reassuring because it suggests that the similarity measures capture distinct, yet

general, relations among industries.

2.5 Estimation framework

To infer the strength of agglomeration forces, we follow EGK and analyze the relationship between the

coagglomeration patterns and various types of inter-industry linkages using the following econometric

model:

EGij = α +∑
rel

βrelP relij + εij , (7)

where EGij is the EG-index of coagglomeration for industries i and j, and rel ∈ {IO,L,T,NA}.

Matrices P IO, PL, PT and PNA contain the inter-industry value-chain linkages, labor-requirement,

technology and natural-advantage similarities defined in the previous sections.

While EGK only study coagglomeration among manufacturing industries, we extend the analysis to

other sectors of the economy. We do so by expanding both the columns and rows of the EG matrix.

Next, we split the rows into a manufacturing and a services section. Within these subsets, we study

how industries coagglomerate with any other industry. That is, we study the coagglomeration patterns

of a manufacturing industry (or of a service) with all other industries. Finally, note that each industry

can coagglomerate with 119 other industries. Therefore, there are sufficiently many degrees of freedom

to estimate agglomeration effects that vary freely by industry. We do so using the following two-way

fixed effects model:

EGij = αi + δj +∑
rel

βreli P relij + εij (8)

This regression yields vectors of industry-specific agglomeration effects, β̂rel. The elements of these

vectors represent the extent to which a given inter-industry linkage type is expressed in an industry’s

coagglomeration patterns.
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3 Empirical findings

3.1 Replication of EGK results

We begin our analysis by assuming that agglomeration effects are homogeneous across industries. That

is, we assume that Marshallian externalities affect all industries in the same way. Table 2 replicates

the results of EGK. The table shows the results of univariate OLS specifications for manufacturing

industries.14 To facilitate the interpretation of estimated effect sizes, all variables are rescaled such

that they are expressed in units of standard deviations. We will apply this rescaling to all subsequent

analyses as well. The left part of the table (columns 1 to 3) shows our own estimates; the original

findings by EGK (table 3, p.1204) are shown on the right (columns 4 to 6).

Table 2. OLS univariate regressions (EGK replication).

EG index (our estimates) EG index (EGK estimates)

(1) (2) (3) (4) (5) (6)

state city county state city county

Input-output 0.214 0.177 0.144 0.205 0.167 0.130

(0.035) (0.032) (0.029) (0.037) (0.028) (0.022)

Observations 3655 3655 3655 7381 7381 7381

R2 0.060 0.060 0.047 0.042 0.028 0.017

Labor 0.181 0.164 0.195 0.180 0.106 0.082

(0.018) (0.018) (0.016) (0.014) (0.016) (0.013)

Observations 3655 3655 3655 7381 7381 7381

R2 0.029 0.035 0.060 0.032 0.011 0.007

Technology 0.108 0.109 0.116 0.081 0.100 0.085

(0.016) (0.013) (0.012) (0.012) (0.016) (0.013)

Observations 3655 3655 3655 7381 7381 7381

R2 0.015 0.022 0.030 0.007 0.010 0.007

Nat.Advantages 0.109 0.085 0.082 0.210 0.188 0.222

(0.018) (0.014) (0.009) (0.020) (0.017) (0.014)

Observations 3655 3655 3655 7381 7381 7381

R2 0.014 0.012 0.014 0.044 0.036 0.049

Robust standard errors in parentheses. Columns 1-3 replicate the univariate regression results of Ellison et al. (2010)

(shown in columns 4-6) using equivalent data for the US from 2003 for manufacturing industries and three levels of

spatial aggregation: states, cities and counties. In all cases, the dependent variable is the pairwise EG coagglomeration

14EGK restrict their sample to the manufacturing sector. To enhance comparability, we define manufacturing industries
in this table at the 4-digit level of the original US NAICS classification. In the remainder of this section, we switch to
the (US-Mexican) harmonized NAICS classification.
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index (equation 7).

In spite of the fact that our sample refers to a different period and more aggregated industry definitions

(manufacturing codes are less detailed at the 4-digit NAICS level than at the 3-digit SIC level), most of

our estimates are remarkably close to those of EGK. Moreover, we replicate EGK’s main conclusions:

all three externality channels are important, but the strongest impact on coagglomeration is recorded

for value-chain linkages, the weakest for technological linkages. The main difference between our

results and the ones in EGK is that we find larger effects of labor pooling at the city and county levels.

Furthermore, natural advantages have a weaker influence according to our estimates.

Next, we extend the EGK framework in several directions. First, we expand the sample of industries

by including services. This results in a sample of 120 industries in the (adjusted) NAICS classification,

roughly two thirds (83) of which belong to the manufacturing and one third to the services sector.

Doing so also forces us to abandon the natural-advantages variable taken from EGK. Instead, we use

the alternative implementation described in the data section. Furthermore, we switch to a multivariate

regression framework and add IV estimations, using the similarity matrices based on non-US data as

instruments. Marshallian effects on coagglomeration measured by the EG index are reported in Table

3. For results using the LC index, we refer to Appendix E.

Adding services and moving to a multivariate setting changes some of the point estimates, but does not

alter the main conclusions. The most substantive change is that the effect of technological similarities

on coagglomeration becomes insignificant, with some of the point estimates even turning negative.

This change is in part due to the fact that we now estimate the effects of all externality channels

simultaneously. However, also in univariate regressions merely including services in the sample halves

the technological similarity effect (see Table F.2 of Appendix F). This reinforces our concerns about

the use of this variable outside the manufacturing sector. Furthermore, the effects of the new natural-

advantages variable are over three times stronger than those reported in Table 3.15,16 Moreover, adding

this control variable cuts the estimated effect of labor linkages in half. This is unsurprising in light

of our earlier discussion of the fact that what EGK call natural advantages includes characteristics of

the local labor force. Given these concerns about the technology and natural-advantages measures, we

henceforth drop these variables from the analysis.17

Using IV regressions, the labor channel regains some of its prominence in the state- and city-level es-

15To some extent, this increase seems to be driven by some exceptionally large locations. When we drop the twenty
largest counties, ten largest cities, or five largest states, the coefficients drop to levels closer to the ones reported in Table
3.

16Note that, given that natural advantages should be exogenous, these variables enter the models of columns 4-6
uninstrumented.

17We also ran robustness tests, where we retain natural advantages as a control variable to correct for potential omitted
variable bias. The only difference we find is that the estimated OLS effect of labor linkages in services is attenuated when
using the EG-index as a dependent variable. All other estimates – which are available upon request – are consistent
with what we report here.
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timates.18 Unlike EGK, who base their instruments on data from the UK, our instrumental variables

are derived from Mexican data and, therefore, further test the robustness of the original EGK results.

Overall, however, the discrepancies between OLS and IV estimates are minor, suggesting that endo-

geneity plays no major role in these estimations.19 Balancing the trade-off between bias and efficiency,

our preferred estimates are the ones from OLS regressions. At the city level, these estimates imply that

a one-standard-deviation increase in similarity in the human capital requirements of two industries in-

creases their coagglomeration by 0.1 standard deviations, whereas a one-standard-deviation increase in

the strength of value-chain linkages increases their coagglomeration index by 0.16 standard deviations.

Table 3. OLS and IV multivariate regressions on extended sample.

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

EG index - All traded

Input-Output 0.227 0.149 0.125 0.244 0.128 0.105

(0.042) (0.026) (0.028) (0.048) (0.033) (0.036)

Labor 0.144 0.109 0.077 0.173 0.166 0.080

(0.012) (0.010) (0.009) (0.034) (0.023) (0.023)

Technology -0.001 -0.028 -0.026 -0.003 -0.030 -0.024

(0.010) (0.008) (0.009) (0.011) (0.008) (0.008)

Nat.Advantages 0.239 0.323 0.272 0.223 0.300 0.274

(0.018) (0.023) (0.031) (0.021) (0.023) (0.031)

Observations 7140 7140 7140 7140 7140 7140

R2 0.136 0.127 0.081 0.135 0.124 0.081

Robust standard errors in parentheses.

3.2 Manufacturing versus services

We start our exploration of sectoral differences in Marshallian externalities by splitting the sample

into a manufacturing and a services subsample. Figure 3.2 shows the effects of labor market pooling

and value chain linkages in each subsample. The different panels show estimated effects, together with

their 95% confidence intervals, on coagglomeration patterns for manufacturing industries in blue and

18Note that this also occurs in a univariate analysis (Appendix F). Adding natural-advantages as a control variable
thus also lowers estimated labor pooling effects in IV regressions.

19We formally test for endogeneity in each Marshallian channel using the difference-in-Sargan statistic, a heteroscedas-
ticity robust variant of the standard Hausman test. This test fails to reject the null hypothesis that regressors are
exogenous in all cases, except for the labor pooling channel in city-level estimates.
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services in red. Estimates using the EG index are shown in the top panel, those using the LC index

in the bottom panel. On the left, we plot univariate, on the right, multivariate estimates.20

Figure 2. Coagglomeration effects, manufacturing versus services.
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Estimated effects on coagglomeration of services are plotted with red hollow markers; of manufacturing industries with

blue solid markers. Labor pooling effects are depicted on the vertical axis, value chain effects on the horizontal axis,

using the univariate estimations of equation 7. State-level estimates are marked by squares, city-level estimates by

triangles and municipality-level estimates by circles. IV estimates use labor pooling and input-output linkages based on

Mexican data as instruments. The crosshairs represent 95% confidence intervals based on robust standard errors. The

dashed gray line is a 45 degree line.

20Tables F.3 and F.4 report the analogous coefficients derived from multivariate IV regressions. However, due to the
collinear nature of the inter-industry proximity matrices our instruments are too weak to identify effects in services,
where the Kleibergen-Paap statistic drops below 1.
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The most striking aspect of Figure 2 is the difference between services and manufacturing. Above

the (dashed) 45 degree line, labor-pooling effects exceed value-chain linkages as an explanation for

coagglomeration. Below this line, the opposite holds. Whereas services typically appear above the

45 degree line, manufacturing industries tend to be located on, or below, the line. This means that

coaggomeration patterns in services are more driven by labor-linkages than by value chains, whereas

the opposite holds for manufacturing industries. Moreover, the point estimates for services always

lie above and – in the bottom, LC-based, plots – to the right of the manufacturing estimates. This

confirms our earlier contention that the nontraded nature and labor-intensity of services may make

them particularly sensitive to Marshallian externalities: both externality channels are as or even more

pronounced in the coagglomeration patterns of services than of manufacturing.21

3.3 Effect heterogeneity

To explore the observed sectoral heterogeneity in greater detail, we allow the effects of labor and value

chain linkages to vary freely by industry, as in equation 8. To present outcomes in a more compact

way, we average the resulting 120 industry-specific labor (βL) and input-output (βIO) effects for 27

broad subsectors and plot these averages in Figure 3.22 Estimates for services are colored red, for

manufacturing blue. To avoid cluttering the graph, we only show city-level estimates.

The general patterns roughly track those foreshadowed in Figure 2. Both types of inter-industry

similarities tend to exert a greater influence on coagglomeration in the subsectors of services than

of manufacturing. However, there is pronounced variation in agglomeration effects between (and,

as shown in Appendix D, also within) subsectors, especially in labor-pooling effects. For instance,

the labor channel’s greatest impact on coagglomeration patterns is found in industries in arts &

culture, architecture & engineering, media and knowledge-intensive business services (KIBS). In these

subsectors, a one standard-deviation rise in the human capital similarity of two industries increases

their EG index by up to 1.5 standard deviations.

Although less pronounced than in services, manufacturing industries also exhibit heterogeneous ag-

glomeration effects. For instance, industries in hardware and machinery manufacturing tend to be

driven by value chains and labor pooling relations. In contrast, pharma & medical and electronics

industries coagglomerate with value-chain partners but not with industries that employ similar labor.

21Note that in multivariate regressions of the LC index (Appendix E), the effect of labor-linkages even turns slightly
(although not significantly) negative in two of the manufacturing samples.

22We report the full list of 120 industry-specific estimates in Appendix D.
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Figure 3. Coagglomeration effects for 27 subsectors (EG-index)
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Average point estimates for industries in 27 subsectors (see Appendix D for results by industry) of labor pooling effects

(vertical axis) and value chain effects (horizontal axis) on EG coagglomeration index, using OLS regression. Estimates

for services are marked with red triangles, for manufacturing industries with blue circles. The crosshairs represent 95%

confidence intervals for these averages, based on robust standard errors.

4 Marshallian externalities and regional diversification

Using the EGK framework, we have shown that the strength of labor-market-pooling and value-chain-

based agglomeration externalities differs widely across industries. To test the predictive validity of
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the underlying estimations, we now analyze whether the documented differences across industries

manifest themselves in industries’ local growth paths. If the measured effect-heterogeneity reflects the

importance of agglomeration forces, it should not just affect how industries coagglomerate, but also

help predict local growth patterns.

To investigate this, we build on a large and growing literature that focuses on the role of Marshallian

externalities in the evolution of regions’ industrial structures. According to this literature, inter-

industry linkages are important for understanding diversification processes, because regions tend to

branch out into new economic activities that build on a region’s pre-existing strengths. This claim is

supported by the fact that industries grow faster in regions with substantial employment in related

industries (Porter, 2003; Greenstone et al., 2008; Delgado et al., 2010; Dauth, 2010; Jofre-Monseny

et al., 2011; Neffke et al., 2011; Hausmann et al., 2014).

Most papers in this tradition implicitly assume that all industries benefit equally from inter-industry

spillovers. Moreover, they typically do not distinguish among different types of inter-industry linkages.

In this section, we use our estimated industry-specific effects on coagglomeration to enhance the econo-

metric models of local-industry growth-rates used in this line of research. To do so, let the relatedness

between industries i and j be measured by one of two proximity measures, P relij ∈ {PLij , P
IO
ij }. We can

now calculate the proximity-weighted employment for a region-industry, (i, r), in year t as:

Erelirt = ∑

j

P relij

∑k≠i P relik

Ejrt.

This expression can be interpreted as the amount of related employment that already exists in the

local economy, where what we call “related” depends on rel. For example, in the case of labor, ELirt
is an index that reflects the size of the local workforce with skills and know-how that are relevant to

industry i.

Letting G03−08
ir refer to the logarithm of employment growth of industry i in region r between 2003

and 2008, i.e., Gir = ln (Eir08) − ln (Eir03) and restricting the sample to local industries with non-zero

employment in 2003, we estimate the following:

G03−08
ir = δ ln (Eir03) +∑

rel

γrel ln (Erelir03) + ιi + ρr + εir03 (9)

where δ captures mean reversion effects, and ιi and ρr are industry and region fixed effects.

The parameter of interest is γrel. It quantifies to what extent the growth in a local industry can be

predicted from the amount of related activity that already exists in the local economy.
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Table 4 contains results when using cities as the spatial unit of analysis. In line with prior studies (e.g.,

Delgado et al., 2010; Hausmann et al., 2014), we find significant and negative mean reversion effects,

and positive effects of related employment, regardless of whether we measure relatedness in terms of

labor or input-output linkages.

However, if the estimated β̂reli parameters of section 3.3 capture any information on the importance of

Marshallian channels, we would expect that industries with a higher β̂reli will benefit more from the

associated agglomeration externality when it comes to their growth.

To explore this, we augment 9 by interacting the amount of related employment in a city with β̂reli .

To facilitate interpretation, β̂reli values are expressed in units of standard deviations away from their

respective means. This yields the following:23

G03−08
ir = δ ln (Eir03) + γ

rel ln (Erelir03) + γ
rel
β β̂reli ln (Erelir03) + ιi + ρr + εir03 (10)

where we expect γrelβ to be positive. Table 4 shows that this is indeed the case. The interaction effect,

γrelβ , is always positive and significant.

The marginal effects of related employment are given by

∂G03−08
ir

∂Erelir

= γrel + γrelβ β̂reli .

Figure 4 plots these partial derivatives against β̂reli on a range that reflects the span of coefficient

estimates obtained in section 3.3. The interaction effects are strongest when the β̂reli are based on

regressions of the LC index. In this case, the elasticities for value-chain related employment run from

as low as 2% to as high as 4%. The range of elasticities is slightly wider for employment that is related

in terms of human-capital similarities, starting from a low 5% for industries with coagglomeration

patterns that are relatively insensitive to human capital similarities and reaching over 8% where such

similarities are strong drivers of coagglomeration. The fact that the industry-specific coagglomeration

effects are also reflected in industries’ local growth patterns validates the effect-heterogeneity reported

in Section 3.3.24 In Appendix C, we re-estimate the growth model in equation 9 for growth at the

extensive margin, estimating the entry probability for local industries that do non yet exist in 2003.

Here, the range of elasticities runs from about -1% and 2% for value-chain effects, whereas labor

linkages have a constant effect of about 1%. This suggests that a pool of local suppliers or buyers may

also attract new industries to a city, but only those industries whose location patterns are strongly

affected by the spatial distribution of value-chain partners.

23Note that level effects of βrel
i will be absorbed in ιi.

24The industry-specific parameters estimated using the LC index outperform the ones using the EG index in these
growth projections. This suggests that the LC coagglomeration metric may be a better indicator of inter-industry
spillover potentials than the EG index. Although interesting in its own right, we will not pursue this issue further.
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Figure 4. Marginal effects of related employment.
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Marginal effects of related employment with 95% confidence intervals, computed as the partial derivative of growth with

respect to related employment. The left panel depicts IO effects, the right panel labor-pooling effects. The horizontal axis

plots βIO and βL, respectively, on a range that reflects the distribution of coefficient estimates obtained in section 3.3.

Blue dashed lines use estimates from coagglomeration regressions using the EG-index, red solid lines using the LC-index.

5 Trends in Marshallian forces

So far, we have concentrated on cross-sectional heterogeneity in agglomeration externalities. However,

in the past 100 years, the US economy underwent significant transformations, including urbanization,

mass education, de-industrialization, tremendous reductions in transportation and communication

costs, fragmentation and internationalization of supply chains, and a secular shift from agriculture and

manufacturing activities to services. Have these phenomena collectively affected the relative strength

of different Marshallian externalities? For instance, the increasing spatial fragmentation of supply

chains that was facilitated by new transportation and communication technologies may have made

spatial proximity to value-chain partners less crucial than it once was. Similarly, if the reliance on a

highly skilled and specialized work force has increased over time, is this reflected in an increasing role
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of labor similarity in determining coagglomeration? To shed light on these issues, we turn to historical

data on the US economy.

5.1 Descriptive statistics

We start by describing how the agglomeration, occupational structures, and input-output structures

of US industries have changed over time. Figure 5 shows weighted average statistics for industries in

the US economy across decades. To ensure that we are picking up changes in industry characteristics,

and not in the economy’s industrial composition, weights are kept constant at industries’ average

employment shares across all decades.

The left panel shows the evolution of the geographical concentration of industries. The graph plots

the weighted average effective number of US states in which an industry is active, as expressed by the

inverse of the Herfindahl-Hirschman Index (HHI) of an industry’s employment shares across states.25

Until the 1980s, on average, industries have spread their employment more evenly across space. How-

ever, since then, the curve has flattened, indicating that this deconcentration process has ceased.

The center graph shows how the occupational structure of industries has changed in the same period.

The blue line depicts the effective number of occupations per industry, the red line shows the (weighted)

average similarity of industries’ occupational structures to the occupational composition of the US

economy as a whole.26 The effective number of occupations per industry rises over the decades – again,

until roughly the 1980s – suggesting that the division of labor within industries increases.27 However,

at the same time, this division of labor has become more uniform, with industries’ occupational

compositions becoming more similar to the economy’s overall employment composition, suggesting

that workers can be shared across a wider set of industries.

The final graph shows how value chains have developed over time. It plots the value of intermediates

that industries use as a share of total output. Because input-output data are not available before 1947,

this graph is limited to the period from 1950 to 2010. In spite of this, in line with the notion that

value chains have become progressively fragmented, the trend towards greater outsourcing is clearly

visible. Over the course of six decades, the weighted average input share rose by four pp, from 43% to

47%.

25If an industry’s employment is spread out equally across Ns states, the inverse of the HHI, 1
HHI it

= 1

∑s( 1
Eist

)
2 ,

attains a value of 1

∑s( 1
Ns
)2
= 1

Ns( 1
Ns
)2
= Ns. Therefore, a given value of 1

HHI it
can be interpreted as the “effective”

number of states in which an industry is present, i.e., the number of states needed to achieve this value had the industry’s
employment been distributed equally across them.

26The latter is calculated as corr (Eiot,∑iEiot), where the correlation is taken across occupations.
27The flattening of the curve towards the end of the period may reflect real changes in specialization patterns, or simply

that the historical occupational classification system becomes less and less adequate to describe our modern economy’s
job structure.
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Figure 5. Historical trends, descriptive statistics
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Left: geographical concentration. Effective number of states per industry. Center: occupational composition. The left

scale (blue diamonds) is the average effective number of occupations per industry, while the right scale (red triangles)

is the average correlation to the US occupational profile. Right: Intermediates share. Average share of intermediates

for all industries.

5.2 Marshallian externalities

Have the changes described in Figure 5 left a mark on agglomeration forces? In particular, we’d expect

that increased outsourcing would diminish the importance of geographical proximity to value chain

partners. Moreover, the documented rise in the division of labor, together with the fact that workers

can be shared more widely across industries, may have raised the benefits of opportunities to share

skilled workers.

Figure 6 shows the evolution of how labor and value-chain proximity have affected coagglomeration

patterns in the period 1950-2010. The graph on the left shows parameter estimates using OLS re-

gressions, while the graph on the right is based on IV estimates. Note, however, that we do not have

data on the Mexican economy for this period. Therefore, we cannot construct the same instruments

as in section 3. Instead, we instrument the proximities in one decade with the proximities in another

decade.28 This does not mitigate reverse causality problems, which, given our earlier estimates, we

believe are relatively unimportant. However, doing so does help address the errors-in-variables bias

that may result from using mismeasured proximities.

28For all decades but the first, we use as instruments the proximities measured in the preceding decade. In the first
decade, 1950, we use the matrices for 1960 as instruments.
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Figure 6. Trends in Marshallian agglomeration forces - OLS (left) and IV (right)
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Estimated impact of input-output (red circles) and labor (blue squares) linkages on EG-coagglomeration in the period

1950-2010, with 95% confidence intervals based on robust standard errors. The lines represent LOWESS smooths.

Both graphs display clear downward trends in the effect of value-chain linkages on coagglomeration.

This confirms the conjecture that locating close to value-chain partners has become less relevant

with improving transportation and communication technologies. Instead, the labor-pooling effects has

sharply increased in the early decades but than stabilized or even mildly declined towards the end of

the period. Overall, however, in line with the notion that workers have become more specialized, labor

pooling is more important nowadays than in the 1950s.

To test the existence of these trends more formally, we pool all data across decades and interact the

labor and value-chain proximities with a linear time-trend. We express time in units of 100 years and

– for reasons of consistency with the subsequent section – set the year 1910 to zero. Consequently, the

level effects (t = 0) reflect the (extrapolated) situation in 1910, whereas the sum of level and interaction

effect (i.e., t = 1) refers to the decade of 2010. As shown in Table 5, both trends are statistically

significant. The estimated parameters imply that, in 1950, a one-standard-deviation increase in labor

similarities increased industries coagglomeration by 0.259 (0.205+0.5×0.108) standard deviations. This

effect rises to 0.324 (0.205 + 1.1 × 0.108) in 2010. In contrast, the effect of a one-standard-deviation

stronger input-output linkages drops from a 0.256 to a 0.154 standard-deviations increase in the (EG-

)coagglomeration of two industries.29

29In Appendix F, Table F.5 we add 2-way fixed effects to the estimation to control for any industry idiosyncrasies.
This leads to even more pronounced time trends. Moreover, we find similar trends if we exclude services, as shown
in Figure F.1 which uses a sample of only manufacturing industries. Consequently, the changes in labor-pooling and
input-output effects are not simply the result of the US economy shifting towards more and more services.

26



Table 5. Trends in Marshallian agglomeration forces

EG OLS (1) OLS (2) OLS (3) IV (4) IV (5) IV (6)

Labor 0.205 0.188 0.210 0.193

(0.025) (0.025) (0.026) (0.026)

Labor × year 0.108 0.100 0.116 0.110

(0.034) (0.034) (0.036) (0.036)

Input-Output 0.341 0.315 0.384 0.364

(0.032) (0.031) (0.034) (0.033)

Input-Output × year -0.170 -0.194 -0.211 -0.254

(0.042) (0.041) (0.044) (0.044)

R2 0.05 0.02 0.07 0.05 0.02 0.07

N 31,757 31,757 31,757 31,757 31,757 31,757

Time is expressed in units of 100 years. Regression includes dummies for each decade. Robust standard errors in

parentheses.

In principle, the IPUMS data allow us to measure coagglomeration and labor-similarity matrices

for industries from 1910 onwards, albeit using a different industry classification system.30 The only

constraint is that we have no input-output tables for years before 1947. However, it turns out that

the results of Table 5 are not driven by changes in the value-chain matrices. In fact, as shown in

Appendix F, Table F.5, fixing the input-output matrices to the 1950 version, we find the same results

as when using contemporaneous matrices. That is, input-output linkages have been constant enough

to reliably estimate their impact on coagglomeration using a time-invariant matrix. We exploit this

fact to extend our historical analysis backwards to 1910.

The results of this exercise are depicted in Figure 7.31 They show that the decline of input-output

linkages as a driver of agglomeration set in long before 1950, whereas, viewed over the entire period,

there is no significant increase (nor decrease) in the effect of labor linkages.32 Overall, these analyses

confirm that Marshallian agglomeration forces have changed significantly over the course of a century.

Moreover, if these estimated trends were to continue, value chains will lose their potency as an agglom-

erating force, leaving the skills of the workforce as the principal remaining driver of agglomeration in

the cities of the future.

30Before 1910, the US census only recorded an individual’s occupation, not her industry. The industry codes recorded
in IPUMS in that period are imputed from these occupation codes, making them unusable for our purposes.

31Table F.5 of Appendix F shows the results of a regression that interacts externality channels with a time trend,
analogous to Table 5.

32Closer inspection reveals that the mild positive trend between 1950 and 2010 that was reported in Table 5 is balanced
by a negative trend between 1910 and 1950. This U-shaped pattern is weakly corroborated when we include an interaction
of labor-linkages with a squared time-trend, which locates the minimum of the labor-pooling effect in 1967. However,
the interacted coefficients are only jointly significant with the trend variables themselves.
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Figure 7. Trends in Marshallian agglomeration forces, long-run perspective (OLS)
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Estimated impact of input-output (red circles) and labor (blue squares) linkages on EG-coagglomeration in the period

1910-2010, with 95% confidence intervals based on robust standard errors. The lines represent LOWESS smooths.

6 Conclusion

Extending the work by Ellison et al. (2010), we find substantial variation in why industries coag-

glomerate. Whereas in some industries, firms tend to locate close to their value-chain partners, in

others, they tend to locate near industries that share their labor requirements. In fact, the largest

labor pooling effects are found in the coagglomeration patterns of services. Extreme examples are

industries in architecture & engineering, media and knowledge-intensive business services. Value-chain

effects are generally weaker and comparatively strong in manufacturing. However, overall we find that

human capital similarities and, although less so, input-output linkages, have a stronger effect on the

coagglomeration of services than of manufacturing industries.

This heterogeneity not only affects coagglomeration, but also helps improve predictions of industries’

local growth rates: whereas there are ample studies that show that local industries tend to grow faster

in regions with substantial employment in related industries, we are able to show that this relatedness

matters more whenever the corresponding inter-industry proximity is more strongly expressed in an

industry’s coagglomeration patterns.

Finally, we find that the relative importance of different Marshallian agglomeration channels has

changed over time. Using coagglomeration patterns in the period 1910-2010, we find that value-

chain linkages were dominant in determining which industries coagglomerated at the beginning of the
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twentieth century. However, their influence has weakened significantly since. At the same time, labor

pooling effects have, on the whole, maintained their importance in coagglomeration patterns. Overall,

we, therefore, conclude that whereas value chains were the main organizing principle of the spatial

configuration of industries at the start of the twentieth century, their importance has dropped to a

point where they have been overtaken by local pools of specialized labor as the main driver of industrial

coagglomeration.

The fact that Marshallian forces operate more strongly on the locational patterns of services than of

manufacturing has important implications for the future of cities. In spite of tremendous improvements

in transportation and communication technologies – which should have allowed economic activities

to become more dispersed – the increasing dominance of services in modern economies means that

agglomeration externalities are likely to become more, not less, important. What is more, not only do

services benefit particularly strongly from labor pooling externalities, labor pooling has also overtaken

access to value chain partners as the dominant reason for why industries coagglomerate. As a result,

our findings suggest that large cities increasingly derive their strength from the ease with which skills

circulate in their economies.

29



References

Abdel-Rahman, Hesham M (1996), “When do cities specialize in production?” Regional Science and

Urban Economics, 26, 1–22.

Autor, David and David Dorn (2013), “The growth of low-skill service jobs and the polarization of the

US labor market.” The American Economic Review, 103, 1553–1597.

Beaudry, Catherine and Andrea Schiffauerova (2009), “Who’s right, Marshall or Jacobs? The local-

ization versus urbanization debate.” Research Policy, 38, 318–337.

Behrens, Kristian (2016), “Agglomeration and clusters: Tools and insights from coagglomeration pat-

terns.” Canadian Journal of Economics/Revue canadienne d’économique, 49, 1293–1339.
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Appendix

A Descriptives

Table A.1. Top-10 industry pairs, EG coagglomeration index.

Top-10 co-location (EG index)

industry i industry j value

Software Publishers Aerospace Product Manufacturing 0.0276

Textile furnishings mills Fiber, Yarn, and Thread Mills 0.0233

Motor Vehicle Manufacturing Metalworking Machinery Manufacturing 0.0231

Tobacco Manufacturing Fiber, Yarn, and Thread Mills 0.0225

Motor Vehicle Parts Manufacturing Motor Vehicle Manufacturing 0.0212

Seafood Preparation and Packaging Aerospace Product Manufacturing 0.0178

Motor Vehicle Manufacturing Leather and Hide Tanning 0.0170

Software Publishers Communications Equipment Manufacturing 0.0167

Software Publishers Computer Equipment manufacturing 0.0165

Software Publishers Seafood Preparation and Packaging 0.0163

Top-10 most coagglomerated industry pairs in terms of EG index (equation 1), using city-industry employment data

for the US (County Business Patterns, 2003). The industry classification is based on NAICS 4-digit industries and

includes 120 distinct industry codes containing both services and manufacturing. The top-10 cities have been excluded

from the computation to reduce noise.

Table A.1 and shows the top 10 most coagglomerated industry pairs. When calculating coagglom-

eration scores, we exclude the ten largest cities to avoid that this top 10 gets cluttered by patterns

generated by industries that locate in extremely large cities. Although all our estimations use co-

agglomeration scores calculated with the full set of cities, reported results (available on request) are

robust to excluding the largest cities.

Table A.2. Top-10 industry pairs, occupational similarity.

Top-10 labor links

industry i industry j value

Other Textile Product Mills Other Apparel Manufacturing 0.9919

Other Apparel Manufacturing Cut and Sew Apparel Manufacturing 0.9885

Other Textile Product Mills Cut and Sew Apparel Manufacturing 0.9805

Other Transportation Equipment Agri/Construction/Mining Machinery 0.9802

Motor Vehicle Parts Manufacturing Hardware Manufacturing 0.9766

Other Transportation Equipment Motor Vehicle Body Manufacturing 0.9760

Motor Vehicle Body Manufacturing Heating/Cooling Equipment 0.9756

Other Machinery Manufacturing Agri/Construction/Mining Machinery 0.9742

Household Appliance Manufacturing Hardware Manufacturing 0.9737

Heating/Cooling Equipment Hardware Manufacturing 0.9715
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Top-10 industry pairs in terms of occupational similarity, computed as the correlation of industries’ occupational em-

ployment shares (equation 4), using industry-occupation data for the year 2002 as reported in the US Occupational

Employment Statistics (OES).

Table A.3. Top-10 industry pairs, input-output links.

Top-10 input-output links

industry i industry j value

Petroleum and Coal Manufacturing Oil and Gas Extraction 0.6776

Other Apparel Manufacturing Cut and Sew Apparel Manufacturing 0.6001

Leather and Hide Tanning Animal slaughtering and processing 0.5811

Motor Vehicle Parts Manufacturing Motor Vehicle Manufacturing 0.5720

Motor Vehicle Manufacturing Motor Vehicle Body Manufacturing 0.5351

Pulp, Paper, and Paperboard Mills Paper Product Manufacturing 0.4617

Support Activities for Mining Oil and Gas Extraction 0.4575

Motor Vehicle Manufacturing Audio-Video Equipment Manufacturing 0.4343

Spectator Sports Radio and Television Broadcasting 0.4269

Motor Vehicle Parts Manufacturing Leather and Hide Tanning 0.4227

Top-10 industry pairs in terms of input-output linkages, defined as the maximum relative importance of one industry

as a customer or as a supplier of the other and vice versa (equation 3), based on make-and-use tables provided by the

US Bureau of Economic Analysis (BEA) for the year 2002.

Table A.4. Top-10 industry pairs, technology links.

Top-10 technology links

industry i industry j value

Finance and Insurance Computer Equipment manufacturing 1.2346

Finance and Insurance Communications Equipment Manufacturing 0.8123

Other telecommunications Communications Equipment Manufacturing 0.4905

Other telecommunications Computer Equipment manufacturing 0.4622

Radio and Television Broadcasting Communications Equipment Manufacturing 0.3605

Service Industry Machinery Manufacturing Other telecommunications 0.3207

Management Consulting Services Computer Equipment manufacturing 0.2913

Manufacturing of Magnetic and Optical Media Finance and Insurance 0.2892

Management Consulting Services Communications Equipment Manufacturing 0.2742

Computer Equipment manufacturing Communications Equipment Manufacturing 0.2595

Top-10 industry pairs in terms technological linkages, defined as the maximum overrepresentation of citation flows

between industries’ patents (equation 5), using USPTO data for the years 1975-1999.
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Table A.5. Top-10 industry pairs, natural advantage similarities.

Top-10 natural advantage (EG)

industry i industry j value

Lime and Gypsum Product Manufacturing Iron and Steel Mills 0.0084

Wood product Manufacturing Sawmills and Wood Preservation 0.0078

Pulp, Paper, and Paperboard Mills Iron and Steel Mills 0.0070

Sawmills and Wood Preservation Other Wood Product Manufacturing 0.0067

Steel Product Manufacturing Iron and Steel Mills 0.0067

Iron and Steel Mills Fiber, Yarn, and Thread Mills 0.0062

Iron and Steel Mills Alumina and Aluminum Production 0.0061

Sawmills and Wood Preservation Iron and Steel Mills 0.0059

Petroleum and Coal Manufacturing Iron and Steel Mills 0.0054

Wood product Manufacturing Iron and Steel Mills 0.0053

Top-10 industry pairs in terms of shared use of natural advantages (equation B.3).

Table A.6. Correlation coefficients.

EG LC IO Labor Tech N-EG N-LC EG LC IO Labor Tech

(US) (US) (US) (US) (US) (US) (US) (MX) (MX) (MX) (MX) (IV)

EG (US) 1.00

LC (US) 0.27 1.00

IO (US) 0.20 0.15 1.00

Labor (US) 0.23 0.04 0.24 1.00

Tech (US) 0.04 0.05 0.13 0.15 1.00

NA EG (new) 0.31 0.03 0.15 0.37 0.11 1.00

NA LC (new) 0.14 0.21 0.06 0.25 0.09 0.45 1.00

EG (MX) 0.19 0.04 0.10 0.16 -0.02 0.16 0.07 1.00

LC (MX) 0.04 0.49 0.06 0.05 -0.02 -0.00 0.23 0.20 1.00

IO (MX) 0.13 0.10 0.53 0.21 0.11 0.15 0.03 0.14 0.05 1.00

Labor (MX) 0.16 -0.02 0.29 0.54 0.13 0.17 0.07 0.19 -0.02 0.28 1.00

Tech (IV) 0.04 0.05 0.14 0.15 0.99 0.11 0.09 -0.02 -0.02 0.11 0.14 1.00

Correlation table of pairwise inter-industry linkages. Variables are created using US (US) or Mexican (MX) data

sources. NA EG (new) and NA LC (new) refer to the EG- and LC-based measures of shared natural advantages using

the authors’ own calculations (see section B). Tech (US) refers to technological similarity between industries measured

by patent citations among patents by US inventors. Tech (IV) is an analogous measure using patents by non-US inven-

tors.
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B Variables construction

Industry classification

In section 3, US industries are classified according to the North American Industry Classification

System (NAICS). Whereas data for 2003 use the NAICS2002 classification, 2008 data – which are

used in section 4 to calculate 5-year growth rates – are recorded using NAICS2007 classes. Moreover,

although the Mexican classification systems are based on NAICS as well, they are not fully harmonized

with those in the US. Therefore, we aggregate industries where necessary and create a new composite

industry classification, reducing the original 317 4-digit NAICS codes to 215 harmonized industry

classes. After dropping industries with missing data, we are left with 184 industries. In our main

analysis, we restrict this number further to 120 traded industries (see Appendix D)

To construct the coagglomeration measure for the historical analysis, we use industry-state employment

matrices by aggregating US census samples provided by IPUMS (Ruggles et al., 2017). IPUMS provides

harmonized industry codes across decades in two classification systems: IND1950, available for all

decades and IND1990, which is available between 1950 and 2010. When studying the period 1950-2010,

we use the IND1990 classification, with some small corrections proposed by Autor and Dorn (2013).

When extending the analysis back to 1910, we use the somewhat coarser IND1950 classification.

Input-output

We construct inter-industry value-chain matrices using three different data sources. For the US, input-

output linkages are based on make and use tables provided by the Bureau of Economic Analysis

(BEA) for the year 2002. To merge these data to our coagglomeration data, we create a concordance

between the 337 IO codes used by the BEA and our (harmonized) NAICS codes. Whenever one IO

code corresponds to multiple NAICS codes, we distribute the flow of intermediates to or from the IO

industry across the corresponding NAICS codes in proportion to each NAICS code’s employment as

reported in the CBP. Next, we use the resulting aggregated supply (make) matrix, S, and demand

(use) matrix, U , to construct an IO-matrix using IO = SD−1
S U , where DS is a matrix with the column

sums of S on its diagonal and all off-diagonal elements equal to zero.

Similar calculations are carried out for Mexico, using input-output data for the year 2008 provided by

the Mexican statistical office, Instituto Nacional de Estad́ıstica y Geograf́ıa (INEGI). The ten strongest

input-output linkages (based on US data) are shown in table A.3.

For the analyses in section 5, we use BEA historical IO tables from 1947 to 2012. Throughout

this period, BEA uses a consistent industry classification that is closely linked to NAICS. Data are

divided into three separated waves (1947-1962, 1963-1996, and 1997-2012). The level of detail of the

classification system differs by wave. Therefore, we aggregate all data to the industrial classification
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used in the wave of 1947 to 1962. We convert this classification to the IPUMS IND1990 and IND1950

classifications.33 Finally, because the census data in IPUMS are collected once a decade, we compute

5-year averages of these input-output tables, centered on the years 1950, 1960, 1970, 1980, 1990, 2000

and 2010.

Labor linkages

The labor similarity variable used in section 3 is derived from the US Occupational Employment

Statistics (OES) of the year 2002 as published by the Bureau of Labor Statistics. To instrument this

variable, we aggregate the Mexican Encuesta Nacional de Ocupación y Empleo (ENOE) for the year

2005 at the industry-occupation level. The fact that the US and Mexico use different occupational

classification systems does not complicate the calculation of occupational similarity matrices, because

industries are recorded in NAICS codes in both data sources. However, because the ENOE uses a mix

of 3- and 4-digit industry classes (consisting of 68 3-digit and 113 4-digit codes), we have to split some

of the Mexican 3-digit industries into 4-digit codes. As a result, some industry pairs are mechanically

attributed the same PL values, and somewhat under 3% of off-diagonal elements are equal to 1.

For the historical analysis in section 5, we aggregate the IPUMS census samples to the industry-

occupation level. For the period 1950-2010, we use the harmonized OCC1990 codes, whereas in the

1910-2010 period, we use the OCC1950 classification. With up to over 380 different codes, the OCC1990

classification is very detailed. Due to the limited size of the IPUMS samples, this risks imprecise esti-

mates of industries’ occupational structures, especially if industries are small. Therefore, we aggregate

these codes into 82 occupational segments. In contrast, the OCC1950 industries are grouped by only

a dozen occupational segments. Moreover, because, with about 200 different occupation codes in a

typical decade, the OCC1950 classification itself is not as detailed as the OCC1990 classification, we

do not aggregate occupations further in the 1910-2010 period.

Technological similarity

The technological similarity matrices are based on patent citations extracted from the NBER database

(Hall et al., 2001). This data set contains 16 million patents filed between 1975 and 1999. We divide

these patents into two samples, depending on whether they were filed by inventors residing inside or

outside the US, dropping patents that list both, US and non-US inventors. After grouping the patents

by their main patent class, we compute the total number of citations among these patent classes.

The result is a 428 × 428 matrix of cross-patent-class citations. Using a concordance developed by

Goldschlag et al. (2016), we map patent classes to the NAICS industry classification. Next, following

EGK, we estimate the degree of industries’ technological similarity as described in equation 5. The

33The concordance was constructed by hand and can be found in the code provided in the supplementary materials.
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instrument for this metric is created by repeating this process with the sample of patents filed by

non-US inventors.

Natural advantages

The estimate of natural advantages in EGK is based on the following nonlinear estimation:

sir =
Eα0
r Eα1

r(m)exp(Xb)

∑rE
α0
r Eα1

r(m)exp(Xb)
(B.1)

where sir is the employment share of industry i in region r, while Er and Er(m) are the total employ-

ment and manufacturing employment in region r.34 The term Xb is a linear combination of natural

advantage factors k ∈K, such that Xb = ∑k βkykrzki. In this expression, ykr measures the abundance

of k in region r, while zki quantifies how strongly industry i relies on factor k.

The estimated employment shares, ŝir, are subsequently substituted for their actual counterparts in

the EG-coagglomeration index:

EGij =
∑
R
r=1 (ŝir − xr) (ŝjr − xr)

1 −∑
R
r=1 x

2
r

. (B.2)

This expression can be seen as the expected coagglomeration of two industries based on their dependence

on the natural advantages in K.

To replicate the natural-advantage estimates in EGK, we plug two different estimates of sir into (B.2).

First, we retrieve EGK’s own nonlinear estimates of ŝir from their supplementary material. Next, we

convert these shares to the NAICS classification using the following formula

s̃i′r =
∑i(Er(m)ŝir × Ti,i′)

∑ir(Er(m)ŝir × Ti,i′)
(B.3)

where Er(m) is the manufacturing employment recorded in the CBP and Ti,i′ is a correspondence

matrix that converts employment from SIC industry i to NAICS industry i′. That is, we calculate

the employment in region r and industry i that EGK would have predicted in our data by computing

Er(m)ŝir. This predicted employment, Êir, is still recorded in the SIC classification. We, thus, convert

it to NAICS using the formula ∑i(Êir × Ti,i′). Next, we express this updated employment as a share

of an industry’s total US employment. This share, s̃ir, is then used in equations 1 and 2 to compute

the predicted EG and LC coagglomeration indices which feature as measures of similarity in natural

advantages.

34Ellison and Glaeser (1999) use population, but we find total employment to be more appropriate.
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Since this procedure relies on the original estimates in EGK, services are excluded. To arrive at

natural-advantage estimates for services, we would need the price information used in EGK, which

we do not have. Instead, we follow a procedure that is close in spirit to the calculations in EGK,

albeit with some differences. First, we use a different list of production factors. In particular, we use

a combination of extractive industries, whose location is pinned down by a natural resource,35 and

unskilled labor categories.36 Second, we change the way we measure ykr and zki. For ykr, which proxies

the availability of a “natural” resource in a location, we either use the employment share of extractive

industry k in region r, or, to proxy access to unskilled labor, the employment share of occupation k

in region r. To proxy the intensity with which industry i relies on natural advantage k, zki, we use i’s

input share sourced from extractive industry k or the share of occupation k in the industry’s overall

employment.

35These five NAICS industries are 1141 (Fishing), 2111 (Oil and Gas Extraction), 2121 (Coal Mining), 2122 (Metal
Ore Mining), 2123 (Nonmetallic Mineral Mining and Quarrying)

36We select six unskilled occupations (which we aggregate into one ‘unskilled’ factor): 35 (Food Preparation and
Serving Related Occupations), 37 (Building and Grounds Cleaning and Maintenance Occupations), 47 (Construction
and Extraction Occupations), 49 (Installation, Maintenance, and Repair Occupations), 51 (Production Occupations), 53
(Transportation and Material Moving Occupations)
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C Growth at the extensive margin

Figure C.1. Marginal effects of related employment – Extensive margin.
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Marginal effects of related employment with 95% confidence intervals, computed as the partial derivative of entry prob-

ability from Linear Probability Models (LPMs) with respect to related employment. The left panel depicts IO effects,

the right panel labor-pooling effects. The horizontal axis plots βIO and βL, respectively, on a range that reflects the

distribution of coefficient estimates obtained in section 3.3. Blue dashed lines were constructed with estimates from

coagglomeration regressions using the EG-index, red solid lines using the LC-index.
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D Industry lists

Table D.1. Industry list with IO and labor coefficients (EG).

name group data traded IO labor

avail. coef. coef.

1 Crop production . 0 0 . .

2 Animal production . 0 0 . .

3 Aviculture . 0 0 . .

4 Mixed agriculture . 0 0 . .

5 Silviculture . 0 0 . .

6 Forestry . 0 0 . .

7 Logging . 0 0 . .

8 Fishing . 0 0 . .

9 Hunting and Trapping . 0 0 . .

10 Support Activities for Crop Production . 0 0 . .

11 Support Activities for Animal Production . 0 0 . .

12 Support Activities for Forestry . 0 0 . .

13 Oil and Gas Extraction 1 1 1 0.27 -0.26

14 Coal Mining 1 1 1 0.06 0.97

15 Metal Ore Mining 1 1 1 -0.02 0.82

16 Nonmetallic Mineral Mining and Quarrying 1 1 1 -0.04 0.47

17 Support Activities for Mining 1 1 1 0.36 0.95

18 Utilities . 1 0 . .

19 Utility System Construction . 1 0 . .

20 Land Subdivision . 1 0 . .

21 Highway, Street, and Bridge Construction . 1 0 . .

22 Heavy and Civil Engineering Construction . 1 0 . .

23 Building Exterior Contractors . 1 0 . .

24 Building Equipment Contractors . 1 0 . .

25 Building Finishing Contractors . 1 0 . .

26 Other Specialty Trade Contractors . 1 0 . .

27 Animal Food Manufacturing 2 1 1 0.01 0.24

28 Grain and Oilseed Milling 2 1 1 -0.09 0.35

29 Sugar Product Manufacturing 2 1 1 0.01 0.19

30 Fruit and Vegetable Preserving 2 1 1 -0.00 0.23

31 Dairy Product Manufacturing 2 1 1 -0.16 0.16

32 Animal slaughtering and processing 2 1 1 0.02 0.54

33 Seafood Preparation and Packaging 2 1 1 0.14 -0.06

34 Bakeries and Tortilla Manufacturing 2 1 1 0.08 -0.10

35 Other Food Manufacturing 2 1 1 0.01 0.07

36 Beverage Manufacturing 2 1 1 0.02 0.13

37 Tobacco Manufacturing 3 1 1 0.26 0.35

38 Fiber, Yarn, and Thread Mills 4 1 1 -0.11 2.10

39 Textile and Fabric Mills 4 1 1 0.28 -0.18

40 Textile furnishings mills 4 1 1 0.16 0.21

41 Other Textile Product Mills 4 1 1 -0.01 0.12

42 Apparel Knitting Mills 4 1 1 -0.04 0.69

43 Cut and Sew Apparel Manufacturing 4 1 1 0.31 0.21

44 Other Apparel Manufacturing 4 1 1 0.37 -0.09

45 Leather and Hide Tanning 4 1 1 0.10 0.38

46 Footwear Manufacturing 4 1 1 0.13 0.31

47 Other Leather Manufacturing 4 1 1 0.00 0.11

48 Sawmills and Wood Preservation 5 1 1 0.05 0.64

49 Wood product Manufacturing 5 1 1 0.11 0.31

50 Other Wood Product Manufacturing 5 1 1 0.10 0.22
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name group data traded IO labor

avail. coef. coef.

51 Pulp, Paper, and Paperboard Mills 6 1 1 -0.13 0.74

52 Paper Product Manufacturing 6 1 1 -0.05 0.28

53 Printing and Related Support Activities 7 1 1 0.02 0.24

54 Petroleum and Coal Manufacturing 8 1 1 0.14 0.31

55 Basic Chemical Manufacturing 9 1 1 0.04 0.36

56 Synthetic Fibers Manufacturing 9 1 1 0.04 0.43

57 Agricultural Chemical Manufacturing 9 1 1 0.01 0.35

58 Pharmaceutical and Medicine Manufacturing 10 1 1 0.30 -0.33

59 Paint, Coating, Adhesive Manufacturing 9 1 1 0.09 0.09

60 Soap, Cleaning Compound Manufacturing 9 1 1 0.17 -0.27

61 Other Chemical Product Manufacturing 9 1 1 0.03 0.16

62 Plastics Product Manufacturing 11 1 1 -0.02 0.20

63 Rubber Product Manufacturing 11 1 1 0.09 0.32

64 Clay Product and Refractory Manufacturing 11 1 1 0.11 0.40

65 Glass and Glass Product Manufacturing 11 1 1 0.06 0.26

66 Lime and Gypsum Product Manufacturing 11 1 1 0.07 0.11

67 Other Mineral Product Manufacturing 12 1 1 -0.02 0.46

68 Iron and Steel Mills 12 1 1 0.13 0.81

69 Steel Product Manufacturing 12 1 1 0.18 0.35

70 Alumina and Aluminum Production 12 1 1 0.04 0.36

71 Nonferrous Metal Production 12 1 1 0.07 0.33

72 Foundries 12 1 1 0.04 0.55

73 Forging and Stamping 12 1 1 0.19 0.32

74 Cutlery and Handtool Manufacturing 13 1 1 0.22 0.17

75 Structural Metals Manufacturing 13 1 1 0.02 0.10

76 Boiler, Tank, Container Manufacturing 13 1 1 0.09 0.28

77 Hardware Manufacturing 13 1 1 0.21 0.19

78 Spring and Wire Product Manufacturing 13 1 1 0.19 0.21

79 Screw, Nut, and Bolt Manufacturing 13 1 1 0.20 0.21

80 Coating, Engraving, Heat Treating 13 1 1 0.28 0.22

81 Other Metal Product Manufacturing 13 1 1 0.17 0.10

82 Agri/Construction/Mining Machinery 14 1 1 0.46 0.18

83 Industrial Machinery Manufacturing 14 1 1 0.09 0.17

84 Service Industry Machinery Manufacturing 14 1 1 0.18 0.08

85 Heating/Cooling Equipment 14 1 1 0.21 0.14

86 Metalworking Machinery Manufacturing 14 1 1 0.31 0.46

87 Engine, Turbine, Transmission Manufacturing 14 1 1 0.16 0.46

88 Other Machinery Manufacturing 14 1 1 0.28 0.15

89 Computer Equipment manufacturing 15 1 1 0.15 0.06

90 Audio-Video Equipment Manufacturing 15 1 1 -0.04 -0.10

91 Semiconductor Manufacturing 15 1 1 0.04 0.13

92 Communications Equipment Manufacturing 15 1 1 0.23 0.01

93 Manufacturing of Magnetic and Optical Media 15 1 1 0.07 0.00

94 Electric Lighting Equipment Manufacturing 16 1 1 0.10 0.01

95 Household Appliance Manufacturing 16 1 1 0.13 0.23

96 Electrical Equipment Manufacturing 16 1 1 0.20 0.15

97 Other Electrical Equipment Manufacturing 17 1 1 0.04 0.12

98 Motor Vehicle Manufacturing 17 1 1 0.11 0.13

99 Motor Vehicle Body Manufacturing 17 1 1 0.00 0.25

100 Motor Vehicle Parts Manufacturing 17 1 1 0.17 0.22

101 Aerospace Product Manufacturing 17 1 1 0.24 -0.08

102 Railroad Rolling Stock Manufacturing 17 1 1 0.24 0.47

103 Ship and Boat Building 17 1 1 0.01 0.27

104 Other Transportation Equipment 17 1 1 0.12 0.17

105 Household Furniture Manufacturing 18 1 1 -0.02 0.29
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name group data traded IO labor

avail. coef. coef.

106 Office Furniture Manufacturing 18 1 1 0.05 0.10

107 Other Furniture Related Manufacturing 18 1 1 -0.01 -0.04

108 Medical Supplies Manufacturing 10 1 1 0.13 0.02

109 Other Miscellaneous Manufacturing 99 1 1 0.09 -0.04

110 Wholesale Trade . 1 0 . .

111 Retail Trade . 0 0 . .

112 Scheduled Air Transportation . 1 0 . .

113 Nonscheduled Air Transportation . 1 0 . .

114 Rail transportation . 0 0 . .

115 Water Transportation . 1 0 . .

116 Inland Water Transportation . 1 0 . .

117 General Freight Trucking . 1 0 . .

118 Specialized Freight Trucking . 0 0 . .

119 Urban Transit Systems . 1 0 . .

120 Interurban Bus Transportation . 1 0 . .

121 School and Employee Bus . 1 0 . .

122 Charter Bus Industry . 1 0 . .

123 Taxi and Limousine Service . 1 0 . .

124 Pipeline Transportation of Crude Oil . 0 0 . .

125 Pipeline Transportation of Gas . 1 0 . .

126 Other Pipeline Transportation . 1 0 . .

127 Sightseeing Transportation, Land . 1 0 . .

128 Sightseeing Transportation, Water . 1 0 . .

129 Sightseeing Transportation, Other . 1 0 . .

130 Support for Air Transportation . 1 0 . .

131 Support for Rail Transportation . 1 0 . .

132 Support for Water Transportation . 1 0 . .

133 Support for Road Transportation . 1 0 . .

134 Freight Transportation Arrangement . 1 0 . .

135 Support Activities for Transportation . 1 0 . .

136 Postal Services . 0 0 . .

137 Couriers and express delivery services . 1 0 . .

138 Local Messengers and Local Delivery . 0 0 . .

139 Warehousing and Storage . 1 0 . .

140 Publishers 19 1 1 0.18 0.81

141 Software Publishers 21 1 1 0.17 0.61

142 Sound Recording Industries 25 1 1 1.91 1.71

143 Radio and Television Broadcasting 19 1 1 0.01 1.16

144 Satellite Telecommunications 20 1 1 0.11 0.47

145 Data Processing Services 21 1 1 0.04 0.42

146 Other telecommunications 20 1 1 0.05 0.68

147 Real estate and construction . 1 0 . .

148 Offices of Real Estate Agents . 1 0 . .

149 Activities Related to Real Estate . 1 0 . .

150 Automotive Equipment Rental . 1 0 . .

151 Consumer Goods Rental . 1 0 . .

152 General Rental Centers . 0 0 . .

153 Machinery and Equipment Rental . 0 0 . .

154 Lessors of Nonfinancial Intangible Assets 23 1 1 -0.20 1.11

155 Legal Services 23 1 1 0.13 2.58

156 Accounting Services 23 1 1 0.44 0.68

157 Architectural and Engineering Services 22 1 1 0.09 0.59

158 Specialized Design Services 22 1 1 0.05 2.25

159 Computer Systems Design . 0 0 . .

160 Scientific and R&D Services . 0 0 . .
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name group data traded IO labor

avail. coef. coef.

161 Advertising and Related Services . 0 0 . .

162 Professional and Scientific Services . 0 0 . .

163 Management of Companies and Enterprises 23 1 1 0.07 0.46

164 Office Administrative Services 23 1 1 -0.04 0.54

165 Facilities Support Services 23 1 1 0.07 0.71

166 Management Consulting Services 23 1 1 0.12 0.13

167 Business Support Services 24 1 1 0.04 0.21

168 Travel Arrangement Services . 1 0 . .

169 Investigation and security services . 1 0 . .

170 Services to Buildings and Dwellings . 0 0 . .

171 Other Support Services . 0 0 . .

172 Waste Treatment and Disposal . 1 0 . .

173 Elementary and Secondary Schools . 1 0 . .

174 Junior Colleges 24 1 1 0.32 0.57

175 Colleges, Universities, Professional Schools 24 1 1 0.07 0.38

176 Business Schools and Computer Training 24 1 1 0.27 0.39

177 Technical and Trade Schools 24 1 1 0.13 0.10

178 Other Schools and Instruction . 1 0 . .

179 Educational Support Services . 1 0 . .

180 Offices of Physicians . 1 0 . .

181 Offices of Dentists . 1 0 . .

182 Offices of Other Health Practitioners . 0 0 . .

183 Medical and Diagnostic Laboratories . 0 0 . .

184 Home Health Care Services . 0 0 . .

185 Other Ambulatory Health Care Services . 1 0 . .

186 General Medical and Surgical Hospitals . 1 0 . .

187 Psychiatric and Substance Abuse Hospitals . 1 0 . .

188 Specialty Hospitals . 1 0 . .

189 Nursing Care Facilities . 1 0 . .

190 Mental Health and Substance Abuse Facilities . 1 0 . .

191 Individual and Family Services . 1 0 . .

192 Community Food and Housing . 1 0 . .

193 Vocational Rehabilitation Services . 1 0 . .

194 Child Day Care Services . 1 0 . .

195 Performing Arts Companies 25 1 1 -0.01 3.41

196 Spectator Sports 25 1 1 0.03 0.17

197 Promoters of Performing Arts 25 1 1 0.23 0.42

198 Agents and Managers 25 1 1 0.85 2.96

199 Independent Artists 25 1 1 0.26 2.19

200 Museums and Historical Sites 25 1 1 0.18 0.44

201 Amusement Parks and Recreation Industry 26 1 1 0.16 0.15

202 Traveler Accommodation 26 1 1 -0.00 0.13

203 RV Parks and Recreational Camps 26 1 1 -0.24 -0.17

204 Residential Care Facilities . 1 0 . .

205 Restaurants . 1 0 . .

206 Special Food Services . 1 0 . .

207 Drinking Places (Alcoholic Beverages) . 0 0 . .

208 Automotive Repair and Maintenance . 1 0 . .

209 Machinery Repair and Maintenance 27 1 1 0.05 0.31

210 Household Goods Repair and Maintenance . 1 0 . .

211 Other Personal Services . 1 0 . .

212 Associations and Organizations . 1 0 . .

213 Household services . 0 0 . .

214 Other Public Services . 1 0 . .

215 Finance and Insurance 23 1 1 0.07 0.53
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Table D.2. Average point-estimates by subsector.

group name IO labor

coef. coef.

1 Extraction 0.13 0.59

2 Food Manufacturing 0.00 0.18

3 Tobacco Manufacturing 0.26 0.35

4 Textile Manufacturing 0.12 0.39

5 Wood products 0.09 0.39

6 Paper products -0.09 0.51

7 Printing 0.02 0.24

8 Petroleum and Coal Manufacturing 0.14 0.31

9 Chemical Manufacturing 0.06 0.19

10 Pharmaceutical and medical supply 0.21 -0.15

11 Materials 0.06 0.26

12 Mineral products manufacturing 0.09 0.45

13 Hardware Manufacturing 0.17 0.18

14 Machinery 0.24 0.23

15 Electronics 0.09 0.02

16 Electrical equipment manufacuting 0.14 0.13

17 Transportation Equipment 0.11 0.19

18 Forniture 0.01 0.12

19 Media 0.09 0.99

20 Telecommunication 0.08 0.57

21 IT services 0.10 0.51

22 Architecture and Engineering 0.07 1.42

23 Professional KIBS 0.08 0.84

24 Educational 0.16 0.33

25 Art and culture 0.49 1.61

26 Recreation -0.03 0.04

27 Machinery repair 0.05 0.31

99 Other 0.09 -0.04

Industries used from IPUMS classifcations

IND1990={40 41 42 50 60 100 101 102 110 111 112 120 121 122 130 132 140 141 142 150 151 152 160 161 162

171 172 180 181 182 190 191 192 200 201 210 211 212 220 221 222 230 231 232 241 242 250 251 252 261 262

270 271 272 280 281 282 290 291 292 300 301 310 311 312 320 321 322 331 332 340 341 342 350 351 352 360

361 362 370 371 372 380 381 390 391 392 700 701 702 710 711 712 721 722 731 732 740 741 762 770 800 802

810 841 850 872 882 890 891 892 893}.

IND1950={206 216 226 236 239 306 307 308 309 316 317 318 319 326 336 337 338 346 347 348 356 357 358

367 376 377 378 379 386 387 388 399 406 407 408 409 416 417 418 419 426 429 436 437 438 439 446 448 449

456 457 458 459 466 467 468 469 476 477 478 487 488 489 499 716 726 736 746 756 806 807 808 856 857 858

859 879}.
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E Analysis using Location Correlation

Table E.1. Top-10 industry pairs by coagglomeration (Locational Correlation index).

Top-10 co-location (LC index)

industry i industry j value

Legal Services Accounting Services 0.9712

Management Consulting Services Accounting Services 0.9684

Legal Services Finance and Insurance 0.9681

Screw, Nut, and Bolt Manufacturing Coating, Engraving, Heat Treating 0.9636

Specialized Design Services Accounting Services 0.9614

Specialized Design Services Legal Services 0.9611

Publishers Legal Services 0.9601

Management Consulting Services Architectural and Engineering Services 0.9565

Finance and Insurance Accounting Services 0.9565

Architectural and Engineering Services Accounting Services 0.9552

Idem table A.1, but here, we show the top-10 industry pairs using the LC-based coagglomeration metric (see equation

2) using city-industry employment data for the US (County Business Patterns, 2003). The top-10 cities have been

excluded from the computation to reduce noise.

Table E.1 and shows the top 10 most coagglomerated industry pairs. When calculating coagglomeration

scores, we exclude the ten largest cities to avoid that this top 10 gets cluttered by patterns generated by

industries that locate in extremely large cities. Although all our estimations use coagglomeration scores

calculated with the full set of cities, reported results (available on request) are robust to excluding the

largest cities.
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Table E.2. OLS and IV univariate regressions, extended sample.

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

LC index - All traded

Input-Output 0.132 0.119 0.122 0.162 0.148 0.139

(0.015) (0.015) (0.015) (0.027) (0.028) (0.027)

Observations 7140 7140 7140 7140 7140 7140

R2 0.024 0.021 0.026 0.023 0.020 0.026

Labor 0.120 0.033 0.044 0.061 -0.025 0.005

(0.008) (0.008) (0.008) (0.017) (0.016) (0.015)

Observations 7140 7140 7140 7140 7140 7140

R2 0.024 0.002 0.004 0.018 -0.004 0.001

Technology 0.087 0.046 0.061 0.085 0.041 0.056

(0.023) (0.018) (0.020) (0.022) (0.016) (0.018)

Observations 7140 7140 7140 7140 7140 7140

R2 0.010 0.003 0.006 0.010 0.003 0.006

Nat.Advantages 0.677 0.487 0.477 2.414 2.380 3.058

(0.039) (0.033) (0.031) (0.207) (0.219) (0.237)

Observations 7140 7140 7140 3828 3828 3828

R2 0.077 0.043 0.048 -0.575 -0.756 -1.342

Robust standard errors in parentheses.

Table E.3. OLS and IV multivariate regressions, extended sample, controlling for all four channels.

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

LC index - All traded

Input-Output 0.103 0.115 0.115 0.167 0.201 0.171

(0.014) (0.015) (0.014) (0.033) (0.037) (0.034)

Labor 0.042 -0.034 -0.023 -0.059 -0.151 -0.107

(0.009) (0.009) (0.009) (0.024) (0.024) (0.023)

Technology 0.046 0.019 0.034 0.049 0.019 0.033

(0.013) (0.013) (0.014) (0.015) (0.015) (0.015)

Nat.Advantages 0.614 0.490 0.468 0.684 0.570 0.527

(0.040) (0.034) (0.032) (0.043) (0.039) (0.036)

Observations 7140 7140 7140 7140 7140 7140

R2 0.103 0.063 0.072 0.085 0.036 0.057
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Robust standard errors in parentheses.

Figure E.1. Coagglomeration effects for 27 subsectors (LC-index).
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Replication of Figure 3 using the LC index. The figure depicts labor pooling effects (vertical axis) and value chain effects

(horizontal axis). Estimates for coagglomeration patterns of services are marked with red triangles, for manufacturing

with blue circles.

The correlation coefficient between the vectors of estimated labor-similarity coefficients using the LC

index, respectively EG index, is 0.85. For the estimated input-output proximity effects, the correlation

is 0.44.
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F Additional robustness analysis

Table F.1. OLS and IV univariate regressions by sector (EG-index).

EG index

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

All industries

Input-output 0.174 0.138 0.112 0.237 0.172 0.132

(0.023) (0.015) (0.015) (0.027) (0.020) (0.019)

Observations 16836 16836 16836 16836 16836 16836

R2 0.033 0.022 0.015 0.028 0.020 0.015

Labor 0.201 0.175 0.129 0.322 0.282 0.191

(0.009) (0.007) (0.007) (0.023) (0.016) (0.015)

Observations 16836 16836 16836 16836 16836 16836

R2 0.042 0.034 0.019 0.027 0.021 0.015

Manufacturing

Input-output 0.239 0.161 0.115 0.293 0.199 0.135

(0.028) (0.018) (0.016) (0.036) (0.024) (0.019)

Observations 11786 11786 11786 11786 11786 11786

R2 0.048 0.025 0.017 0.045 0.024 0.017

Labor 0.229 0.191 0.121 0.302 0.254 0.137

(0.010) (0.007) (0.006) (0.025) (0.015) (0.011)

Observations 11786 11786 11786 11786 11786 11786

R2 0.061 0.049 0.027 0.055 0.044 0.026

Services

Input-output 0.127 0.171 0.175 0.209 0.290 0.272

(0.019) (0.028) (0.041) (0.038) (0.053) (0.078)

Observations 5360 5360 5360 5360 5360 5360

R2 0.015 0.016 0.013 0.009 0.008 0.009

Labor 0.213 0.275 0.294 0.421 0.507 0.515

(0.024) (0.037) (0.053) (0.057) (0.075) (0.100)

Observations 5360 5360 5360 5360 5360 5360

R2 0.019 0.018 0.016 0.001 0.005 0.007

This table contains robustness checks, using all 184 industries as the “destination” industry. Robust standard errors in

parentheses.
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Table F.2. OLS and IV univariate regressions, extended sample.

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

EG index - All traded

Input-Output 0.295 0.215 0.176 0.372 0.267 0.201

(0.041) (0.025) (0.028) (0.045) (0.032) (0.032)

Observations 7140 7140 7140 7140 7140 7140

R2 0.069 0.038 0.025 0.064 0.036 0.024

Labor 0.261 0.229 0.178 0.347 0.296 0.194

(0.012) (0.011) (0.011) (0.031) (0.020) (0.018)

Observations 7140 7140 7140 7140 7140 7140

R2 0.065 0.052 0.030 0.058 0.048 0.030

Technology 0.077 0.041 0.030 0.083 0.046 0.031

(0.029) (0.021) (0.015) (0.030) (0.022) (0.015)

Observations 7140 7140 7140 7140 7140 7140

R2 0.005 0.001 0.001 0.005 0.001 0.001

Nat.Advantages 0.348 0.398 0.328 1.053 0.833 0.584

(0.017) (0.022) (0.030) (0.153) (0.120) (0.082)

Observations 7140 7140 7140 3828 3828 3828

R2 0.069 0.094 0.061 -0.030 0.006 0.003

Robust standard errors in parentheses.

Table F.3. OLS and IV multivariate regressions, manufacturing.

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

EG index - Manufacturing

Input-Output 0.239 0.142 0.098 0.315 0.171 0.135

(0.039) (0.023) (0.021) (0.056) (0.034) (0.028)

Labor 0.210 0.184 0.141 0.188 0.194 0.103

(0.011) (0.009) (0.008) (0.032) (0.020) (0.015)

Observations 6474 6474 6474 6474 6474 6474

R2 0.110 0.073 0.053 0.106 0.072 0.050

Robust standard errors in parentheses.
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Table F.4. OLS and IV multivariate regressions, services.

(1) (2) (3) (4) (5) (6)

OLS OLS OLS IV IV IV

state city county state city county

EG index - Services

Input-Output 0.128 0.157 0.185 -0.050 0.296 0.221

(0.031) (0.044) (0.069) (0.186) (0.258) (0.420)

Labor 0.252 0.355 0.315 0.554 0.323 0.388

(0.034) (0.052) (0.074) (0.248) (0.338) (0.526)

Observations 3312 3312 3312 3312 3312 3312

R2 0.043 0.042 0.030 0.009 0.036 0.029

Robust standard errors in parentheses.

Table F.5. Historical analysis of labor and value-chain linkages in coagglomeration patterns.

Historical regressions

[1] [2] [3] [4] [5]

standard 2-way FE IO fixed year standard 2-way FE

1950-2010 1950-2010 1950-2010 1910-2010 1910-2010

OLS IV OLS IV OLS IV OLS IV OLS IV

Labor 0.188 0.193 0.193 0.225 0.188 0.183 0.115 0.108 0.163 0.171

(0.025) (0.026) (0.032) (0.034) (0.031) (0.046) (0.016) (0.025) (0.021) (0.049)

Labor × year 0.100 0.110 0.178 0.193 0.101 0.101 -0.001 -0.003 0.005 -0.004

(0.034) (0.036) (0.040) (0.041) (0.041) (0.057) (0.023) (0.038) (0.023) (0.036)

Input-Output 0.315 0.364 0.362 0.415 0.332 0.424 0.209 0.274 0.189 0.228

(0.031) (0.033) (0.068) (0.073) (0.063) (0.122) (0.027) (0.036) (0.028) (0.039)

Input-Output × year -0.194 -0.254 -0.272 -0.331 -0.217 -0.268 -0.097 -0.117 -0.091 -0.121

(0.041) (0.044) (0.095) (0.101) (0.084) (0.156) (0.047) (0.065) (0.050) (0.071)

R2 0.067 0.067 0.185 0.185 0.067 0.068 0.029 0.030 0.119 0.122

N 31757 31757 31757 31757 31757 26401 30356 29403 30356 29403

Year is divided by 100. Time dummies for each decade are included, but not reported in the table. Robust standard

errors in parentheses. The first block (column 1 and 2) replicates columns 3 and 6 of table 5. The second block controls

for (2-way) industry fixed effects. In the third block, the input-output table used to construct value-chain proximity does

not change over time but is fixed to the 1950 table (IV: 2010 table). Block 4 and 5 extend the estimates to the period

1910-2010.
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Figure F.1. Trends in Marshallian agglomeration forces for manufacturing - OLS (left) and IV (right)
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Estimated impact of input-output (red circles) and labor (blue squares) linkages on EG-coagglomeration in the period

1950-2010 for manufacturing, with 95% confidence intervals based on robust standard errors. The lines represent

LOWESS smooths.

G Correction to CBP censoring

To avoid disclosure of sensitive information, the Census Bureau witholds precise data in the CBP,

whenever the information in a cell (by geography and by industry) reveals information about a firm.

Instead, in such cases, the CBP report employment in terms of size categories. To translate these

categories into single employment values, we follow Holmes and Stevens (2004), who provide the

following estimate37 of the mean employment by CBP class in the year 2000.

37Estimates for categories below 1,000 employees are directly computed from national totals, dividing total employ-
ment by the number of establishments (within each category). For categories with over 1,000 employees, the average
employment in each category is imputed estimating the parameters of a log-normal distribution of employment across
establishments. See Appendix A.2 in Holmes and Stevens (2004).
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Table G.1. Mean employment by size category in 2000 CBP, as in Holmes and Stevens (2004).

Employment Average

range employment

1-4 1.7

5-9 6.6

10-19 13.5

20-49 30.2

50-99 68.8

100-249 150.1

250-499 340.7

500-999 681.3

1,000-1,499 1,208.8

1,500-2,499 1,892.9

2,500-4,999 3,374.7

5,000 or more 9592.0

The CBP categories have changed slightly since Holmes and Stevens (2004). We adapt their estimates

to the new categories as follows: categories C, E, F and H directly follow the estimates of Holmes and

Stevens. Categories A, B and G use weighted averages from the subcategories in Holmes and Stevens

(2004). Categories I, J, K and L use the average ratio between the estimated employment of classes

A to G and the mid-point of employment classes A to G (0.7974). This ratio is then multiplied by

the midpoint of I, J, K and L to obtain an estimate of the average employment. For category M, we

use an average employment of 125,000, which is obtained by multiplying 100,000 by the average of the

ratio between the minimum and estimated mean of classes I through L. The resulting scheme is shown

below.

Table G.2. Mean employment by size class in 2003 and 2008 CBP, as used in this paper.

Class Employment Average

range employment

A 0-19 5

B 20-99 40

C 100-249 150

E 250-499 341

F 500-999 681

G 1,000-2,499 1,488

H 2,500-4,999 3,375

I 5,000-9,999 5,980

J 10,000-24,999 13,955

K 25,000-49,999 29,904

L 50,000-99,999 59,804

M 100,000 or More 125,000
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