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ABSTRACT
Stock selection for hedge fund portfolios is a challenging
problem for Genetic Programming (GP) because the mar-
kets (the environment in which the GP solution must sur-
vive) are dynamic, unpredictable and unforgiving. How can
GP be improved so that solutions are produced that are ro-
bust to non-trivial changes in the environment? We explore
an approach that uses subsets of extreme environments dur-
ing training.

Categories and Subject Descriptors
I.2.M [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Genetic Programming, Diversity, Phenotype, Finance, Adap-
tation, Dynamic Environment

1. INTRODUCTION
In May 1994, following an increase in US short-term in-

terest rates, tumbling bond prices, and a knock-on effect
on international currencies, the financial speculator George
Soros lost $650,000,000 in just two days [18]. On 17th Au-
gust 1998, Russia defaulted on its debts; three days later the
financial markets across the world collapsed and in just one
day, the hedge fund Long Term Capital Management lost
$553,000,000 [18].

The financial markets are highly dynamic, unpredictable
and unforgiving. If GP is used to evolve a solution to a
financial trading or investment problem it must be robust
to these time-varying disturbances in the markets.

It follows from the above examples that by “robust” we
do not mean insensitivity of the fitness of an individual to
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perturbations resulting from the genetic operators (geno-
typic robustness [27, 28]); although this form of “robustness”
favours broad plateaus to sharp peaks in the search space, it
does not give much indication about how the best-of-run in-
dividual will perform when the fitness function itself changes
(i.e. the surface of the search space fluctuates). Relevant,
though insufficient, other previous definitions of robustness
include the insensitivity of the fitness of an individual to
small fluctuations in an individual’s parameters (sometimes
known as phenotypic robustness or generalizability [4, 29])
and the insensitivity to a noisy fitness function [5, 8, 19].
The problem with these latter two definitions is that all
known work in the area assumes that the fluctuations or
noise are drawn from a known and time-invariant distribu-
tion (typically uniform or Gaussian), and are small. By
contrast, the financial markets undergo large, abrupt and
time-varying changes.

Aragón et al [1] model a dynamic environment as a se-
quence of fitness functions, each defined by changes to the
previous. The model uses occasional macro-mutation for
radical genotoype shake-up (“recrudescence”), and assumes
that all possible changes to the current fitness function are
enumerable (and finite, and, in practice, few). It assumes
that we can evolve continuously and wait several generations
before adaptation to the new fitness function is achieved.
Unfortunately, in the real world we cannot wait for the evo-
lutionary system to learn from the new environment!

Our approach is substantially different to the prior work
in this area, and is based on the assumption that examples
exist of greatly differing extreme environments. If that as-
sumption holds, then we propose to present these examples
to the genetic population during training in order to select
individuals that perform well in a variety of extreme train-
ing environments. The obvious research question this entails
is whether, as a result of such exposure, trained individuals
are more likely to be robust to large disturbances in the en-
vironment? 1 There are three ways we plan to measure this
kind of robustness in the context of our finance application:

1. when exposed to an out-of-sample volatile validation
data-set, a more robust solution will have a lower stan-
dard deviation of returns, while the returns themselves
do not decrease; or

1
An alternative approach is to look for an adaptive solution, i.e. one

that detects changes in the environment and responds by modifying

its internal structure and the way that it operates. However, a similar
question arises: in an unforgiving environment, would it have time to

adapt and survive without prior exposure to extreme environments?



2. when exposed to an out-of-sample volatile validation
data-set, a more robust solution will have higher re-
turns while the standard deviation does not increase;
or

3. when exposed to an out-of-sample volatile validation
data-set, the mean return per unit of risk of a more
robust solution will not significantly reduce from that
measured during training.

2. RELATED WORK

2.1 Robustness
Robustness for a biological system is a property to allow

a system to maintain its functionality despite internal and
external perturbations [14, 30].

Robustness is a very broad theme and it is impossible to
capture all its aspects by means of a single definition. Ro-
bustness is an ubiquitously observed property of biological
systems. It is considered to be a fundamental feature of
complex evolvable systems [14].

The definition of robustness in evolutionary systems varies
from author to author, but in broad terms, it can divided
into two categories:

1. Robust to internal changes (genotypic robustness)

Robustness as the resistance to changes from varia-
tion operators such as crossover and mutation. Soule
[27, 28] observes that the most outstanding evidence
of pressure towards this type of robustness is the phe-
nomenon of code growth (or bloat) in GP. Code bloat
is a rapid increase in code size that does not result
in fitness improvements. It is proposed that GP trees
grow this extra code (“introns”) as a means of protect-
ing the useful code within good solutions. By adding
introns the useful code is less likely to be affected by
crossover or other similar operators. The robustness
in this sense can be drawn parallel to gene redun-
dancy in biosystems and to the existence of “neutral
networks” 2 which enable a population to maintain a
dominant phenotype required for adaptation despite
random genotype changes during the evolution [11].

2. Robust to external changes (phenotypic robustness)

(a) Robustness as the generalisation ability of the
programs evolved using GP [2, 15, 16, 21, 23].
The concept of generalisation is originated from
connectionist or symbolic learning research and it
is defined as the desired successful performance of
the solution when it is applied to an environment
similar to the one it was evolved for. In the con-
text of evolutionary systems, the ability to gener-
alise is defined as “the predictive accuracy of the
learner in mapping unseen input cases to outputs
with a satisfactory degree of correction” [17]. In
this respect, robustness is in line with though op-
posite to the definition of overfitting. Overfitting
happens when the computational effort spent on
obtaining a more precise fit of the sample results
in an increased error on other data.

2Connected networks of RNA sequences with identical struc-
ture.

(b) Robustness as the ability to cope with non-constant
noise [13, 22]. Practical optimisation problems
often require the evaluation of solutions through
experimentation, stochastic simulation, sampling,
or even interaction with the user. Thus, most
practical problems involve noise. Jordanne et al.
[13] investigated this particular aspect of robust-
ness when noise is added to the deterministic ob-
jective function values.

(c) Robustness as the sensitivity of performance qual-
ity in the presence of external environmental per-
turbations. For example, Hermann [10] defines
robust solutions as the one that has the best worst-
case performance.

This aspect of robustness is the most consistent
with phenotypic robustness in nature. Although
a biological system exhibits robustness in terms
of genes, structures etc, from an evolution point
of view, ultimately robustness of only one fea-
ture matters: fitness is the ability to survive and
reproduce (which in evolutionary systems means
the performance quality of a solution).

(d) Robustness as the ability for self-repair when sub-
ject to severe phenotypic damage [20, 3]. This
behaviour is reminiscent of autonomous regener-
ation of the pond organism hydra, which can re-
form itself when its cells are dissociated and then
re-aggregated in a centrifuge [7].

2.2 Structured Training Sets for Robustness
The way in which training data is presented to the popula-

tion is central to our work yet has received little prior atten-
tion. The techniques that have been proposed are twofold:
the use of random noise in the training data; and the use of
randomly generated environments (fitness cases). However,
the experimental methodology of the prior work is not en-
tirely helpful in giving confidence that robust solutions have
actually been evolved.

Ito et al and Reynolds [12, 24] use noise and modify initial
conditions in order to promote robustness of the programs
produced by GP — robustness both to changes in the ini-
tial conditions and to changes in the environmental stimuli.
The use of noise can be helpful in reducing the brittleness of
programs and increasing the likelihood of robustness [24]. In
Ito et al. [12] both changing initial coordinates and the di-
rection of the robot, together with the introduction of noisy
sensors and actuators, are tried to produce robust programs
for robot behaviour. Separate training and testing sets are
used but there is no discussion of how training and test cases
should be chosen. Furthermore, training and testing com-
parisons are done on a generation basis and the measure of
robustness in testing on a different environment after the
training (i.e., after evolution has stopped) is not reported.
The results of the experiments do not make it clear whether
a robust behaviour has been reached and if so, how it is
reached.

Haynes and Wainwright [9] use GP to evolve an agent that
can survive in a hostile environment. Rather than using a
fixed environment for a particular run, a new environment
is generated randomly at the end of each generation. In this
way, it is hoped that the agent can handle “any” environ-
ment. Since the agent does not seem to be tested in a new



environment after the evolution has stopped, the nature and
the degree of robustness to new environments (that might
have been obtained by variable training environment during
the evolution) remains unexplained.

A good example of experiments attempting to reduce the
brittleness of individuals generated by GP is presented in
[21]. The system in this paper evolves optimised manœuvres
for a pursuer/evader problem. The results of this study sug-
gest that use of a fixed set of training cases may result in
brittle solutions due to the fact that such fixed fitness case
may not be representative of possible situations that the
agent may encounter. It is shown that use of randomly gen-
erated fitness cases at the end of each generation can reduce
the brittleness of the solution when the solution is tested
against a set of large representative situations after the evo-
lution. However, a proper selection method for training and
testing cases is not provided.

Rosca [25] addresses issues of size and generality in GP;
however, the degree of overlapping between training instances
and the testing instances does not seem to be explicitly con-
trolled. In such a case, an objective and direct comparison
using a common basis between training and testing may be
difficult.

3. DESCRIPTION OF THE ALGORITHM
We are concerned with not only the performance or fitness

of the GP evolved solutions but also the performance volatil-
ity of the GP evolved solutions across a range of environment
dynamics. For example, in a scenario where market prices
are rising (“bull market”), a scenario where market prices
are falling (“bear market”), and a scenario where market
prices are fluctuating with large amplitude (“volatile mar-
ket”).

We therefore consider the training data to be a set of
fitness cases — a vector of environments — representing a
possible range of different environments and then adjust the
fitness with its perceived volatility to obtain an whole pic-
ture of an individual’s performance . Let S be the training
environments vector and sn be the nth possible type of envi-
ronment, which we call a “scenario”; then S = {s1 . . . , sn}.
We also hold a separate out-of-sample validation vector V .

We consider three ways in which the GP population should
be exposed to these scenarios:

1. “Standard GP” (SGP): use the entire vector S, treated
as a single unit, throughout all generations;

2. “Multiple-scenario Evaluation in the Last Generation”
(MELG): use a variant of the three-dataset methodol-
ogy [23, 6], where the entire vector S (treated as a
single unit) is used for n − 1 generations, and in the
final generation individuals are tested against a sub-
set of environments {si} drawn from S. The “best-
of-run” individual used in the validation on set V is
that which has, in the final generation, the highest
Volatility-Adjusted Fitness (see below);

3. “Multiple-scenario Evolution” (MEVO): in each gen-
eration, use a subset of environments {si} drawn from
S, and ascribe to each individual a Volatility-Adjusted
Fitness (see below). Evolution proceeds as normal on
the basis of this adjusted fitness measure. The “best-
of-run” individual from the final generation is used in
the out-of-sample validation on set V .

Volatility-Adjusted Fitness
We have previously introduced S as the training environ-
ments vector and sn as the nth possible scenario; hence
S = {s1 . . . , sn}. Now let M = {m1 . . . mp}; mj ∈ S be
a subset of S that is used for fitness evaluation.

Let Ii be an individual in the population, and f
mj

Ii
be the

fitness of individual Ii when evaluated on scenario mj . Then
FIi

is the “fitness vector” of Ii when evaluated on a subset
of scenarios, given by FIi

= {fm1

Ii
, . . . , f

mp

Ii
}.

We use standard deviation to calculate the volatility of
the fitness (performance) of the individual across this range
of scenarios:

σIi
=

v

u

u

t

1

p

p
X

j=1

(f
mj

Ii
− FIi

)2 (1)

where: FIi
= mean of FIi

, given by 1

p

Pp

j=1
f

mj

Ii

The “Volatility-Adjusted Fitness” (VaF) of an individual
is now defined as the mean fitness divided by volatility:

V aFIi
=

FIi

σIi

(2)

3.1 MELG
For MELG we use a variation of the three-dataset method-

ology as outlined in [23, 6]. In our version of this method-
ology, the training set is used to evaluate the fitnesses of
individuals in n − 1 generations; elitism ensures that the
best-of-generation individuals survive to the last generation,
and the individuals in the last (nth) generation are tested
against a different in-sample volatility set ; a best-of-run indi-
vidual is selected and its quality is assessed using yet another
different out-of-sample validation set.

Note that a possible drawback of this methodology is that,
where data samples are limited, either the training set or the
out-of-sample validation set must be smaller than it would
be in a two-dataset methodology. However, in our variation
of the methodology the in-sample volatility set is a vector
of subsets of the initial training set. We also choose to set
the fitness vector to be FIi

= {fm0

Ii
, f

m1

Ii
, . . . , f

mp

Ii
}, where

f
m0

Ii
is the fitness of the individual previously calculated in

the n − 1th generation — thus, the fitness vector contains
information about fitness on the whole training set treated
as a single unit, as well as fitness on each of the scenarios.

Our methodology permits a more direct comparison with
SGP, since we know that both SGP and MELG have been
given identical training data — what is different is the way
in which that data is presented to the population.

3.2 MEVO
The MEVO algorithm differs from MELG in that it uses

a two-dataset method: the in-sample volatility set used in
MELG is used not only in the final generation, but in ev-
ery generation. The second dataset is therefore the out-of-
sample validation set V .

Thus, evolutionary selection is based on the volatility ad-
justed fitness V aFIi

, which is calculated from
FIi

= {fm1

In
, . . . , f

mn

In
} (see above). FIi

can be thought
of as an “intermediate” fitness vector for each individual,
and V aFIi

is the “real” fitness of an individual. Note that
MEVO is not exposed to the entire training set (fm0

In
); we

only expose it to the extreme scenarios. This might be



thought to put MEVO at a disadvantage because it does
not have access to as much information as MELG or SGP,
but in early trials we discovered that using the entire train-
ing set as another scenario led to poor results.

4. HEDGE FUND SIMULATION
To test the two new algorithms, we simulate a long/short

market-neutral hedge fund of Malaysian equities. We choose
the Malaysian market because it (in common with other
emerging markets) is particularly volatile. The GP system
evolves a non-linear equation that uses market data to de-
termine whether a single stock should be selected to buy, or
to sell.

4.1 System Overview
Our test system comprises a GP system coupled with an

investment simulator. The coupling between the two is the
fitness function — the investment simulator is called each
time the GP system needs to determine the fitness of an
individual, at which point the individual is used to control
the simulation of an hedge fund of Malaysian stocks. The
simulator is applied to training data giving monthly prices
and other factors. Monthly returns on investment are cal-
culated, and at the end of each simulated year the Sharpe
ratio [26] is calculated.

Fitness
The fitness f for an individual is the Sharpe ratio [26], given
by Equation 3.

Sharpe Ratio =
xi − RFRi

σi

(3)

In Equation 3, xi is the average monthly Return on In-
vestment (ROI) over the sub-period i, σi is the standard
deviation of monthly ROIs over the sub-period i, and RFRi

is the average monthly Risk Free Rate for sub-period i. We
set RFRi to 0.003̇ for all i (equivalent to 4% per annum).

Note that we have chosen not to use a multiple-objective
approach to fitness evaluation. At an early stage we ex-
perimented with using two objectives (high ROI and low
volatility) but the system performed poorly. In financial
investment ROI and volatility are very closely linked (they
are not properly independent objectives); the result was that
the non-dominated set was very small and this adversely af-
fected evolution, causing the system to converge on a local
optimum with poorer performance than the solution found
using the Sharpe Ratio as a single objective.

4.2 The Investment Simulator
We simulate a market-neutral long/short hedge fund of

Malaysian equities. The fund focuses on a basket of 33
Malaysian stocks, which it can buy (“go long”) or sell (even
if it doesn’t own any — “go short”). Since all 33 stocks
are quite well correlated, the market-neutral strategy sim-
ply entails buying the profitable stocks and selling (short if
necessary) those stocks that are performing poorly.3

The training data is monthly prices (and other technical
and fundamental data) over a period of 71 months. All trad-
ing occurs at the beginning of each month and the resulting

3
A contrarian strategy might do the opposite — sell the high stocks

and buy the low stocks, on the expectation that mean-reversion will

occur and the high stocks will fall while the low stocks will rise.

Table 1: Description of Factors
1. Closing stock price on 1st day of a month
2. Closing stock price on last day of a month
3. 12-month MACD: moving average convergence and di-

vergence
4. capitalisation = (number of shares) × (stock price (c))
5. ROE = (net income) ÷ (shareholders’ equity)
6. ROE(this year) − ROE(prev. year)
7. ((total debt) ÷ (common equity)) × 100
8. (sum of last 12-months of cash dividends) ÷ (stock price

(c))
9. (last 6 months’ trailing earnings per share - prev. last

6 trailing earning per share) ÷ (absolute prev. last 6
months trailing earning per share)

10. as above (replace 6 with 12)
11. as above (replace 12 with 36)
12. The rate of change in the reported last 12-month earn-

ings per share over the three year time interval termi-
nating on the date of the last interim period for which
earnings were announced

13. (last 12-month trailing earnings per share) ÷ (closing
market price)

14. (historical book value per share) ÷ (closing monthly
market price)

15. (cash earnings per share) ÷ (closing market price)
16. One month dollar price change
17. One year dollar price change
18. (current year’s net sales or revenue - previous year’s net

sales or revenue) ÷ (previous year’s net sales or revenue)
19. (last 12-month trailing earnings per share - last 12-month

dividend per share) ÷ (last year’s book value per share)

stock mix is held for the duration of the month. At the
beginning of each month, the simulator uses the individual
provided by the GP system as a stock selection model that
quantitatively measures the attractiveness of each stock; this
model is a non-linear combination of technical and funda-
mental factors to predict the return expectation for each
stock over a 4-week forward horizon.

For each month, we apply the stock selection model to
the current month data — this is a table per stock with
19 factors (see Table 1) and 7,680 data points. A return
prediction is assigned to each stock.

The stocks are grouped into 4 market sectors and within
each sector all stocks are ranked according to the expected
return. The portfolio simulator then makes the following
fund management decisions:

• The long/short portfolio is both dollar neutral and sec-
tor neutral. Thus, at all times, 24 stocks are main-
tained in the portfolio with 12 long positions and 12
short positions equally distributed across all the sec-
tors. According to the ranking, the top 3 stocks in
each sector become the top fractile and the bottom 3
become the bottom fractile. The top fractile of each
sector and the bottom fractile of each sector are chosen
to hold long positions and short positions respectively
in the portfolio.

• Sectors are equally weighted and each stock is given
equal weight in the portfolio. Thus, each position ac-
counts for approximately 4% of total portfolio value.

• CFDs (Contract for Differences) are used instead of
conventional shares to trade on stocks. We assume
20% notional trading requirement (margin), 0.25% trad-
ing commission, and 5% financing rate.



Table 2: GP Parameter Settings
Population size (N ) 1000
Method of generation Ramped half and half
Function set {+, -, *, /, Exp}
Terminal set 18 firm-specific factors
Selection scheme Fitness proportionate se-

lection
Criterion of fitness Monthly Sharpe ratio
Trees generated by elitism 10 (1%)
Trees generated by crossover 950 (95%)
Trees generated by mutation 40 (4%))
Termination criterion 100-generation evolution
Max. depth initial generation 6

At the end of each month, all of the positions held in
the portfolio are closed and the profit or loss of the portfolio
during the month is calculated. At the beginning of the next
monthly trading cycle, the simulator updates the expected
return based on the new “current” data and a new desired
long/short portfolio is formed.

5. EXPERIMENT
Our primary research question is: “are the best-of-run in-

dividuals from the two new systems more robust than the
best-of-run individual from SGP when exposed to a volatile
and previously unseen environment?”

Our experiment compares the performance of all three
systems: SGP, MELG and MEVO. The basic GP parame-
ter settings for the three systems are identical, as given in
Table 2.

5.1 Data
All three systems use an Investment Simulator that has

an investment universe of 33 Malaysian stocks. The train-
ing data for all three systems comprises time-series financial
data for the 33 stocks taken from the period 31st January
1999 to 31st December 2004.

SGP and MELG use a training data set of financial time-
series data taken from the period 31st January 1999 to 31st
December 2004 (71 months).

For MELG (last generation only) and MEVO, the follow-
ing three scenarios were chosen:

1. Bull market: 31/05/2003 to 31/12/2004 (19 months);

2. Bear market: 31/01/2000 to 31/05/2001 (16 months);

3. Volatile market: 31/01/1999 to 31/03/2000 (14 months).

Figure 1 shows the overall market index for Malaysian
stocks, and a non-weighted portfolio index of the 33 invest-
ment stocks, for the overall period under study. It also in-
dicates the three scenario periods (bull, bear and volatile)
and the validation period.

5.2 Out-of-Sample Validation
All three systems are validated on a previously unseen

“out of sample” data set, comprising time-series financial
data for the 33 stocks taken from the period 31st July 1997
to 31st December 1998. During this period the Malaysia
stock market suffered great volatility including both the
highest and lowest monthly returns in the entire period un-
der study. From May 1998 to October 1998, the stock index
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Figure 1: Market and portfolio indices (fractional

monthly returns, 31st July 1997 to 31st December 2004),

scenarios and validation period.

lost more than 42%. Then from November 1998 onwards,
there was a remarkable performance from the market index,
rising 23.3% in November.

We have deliberately chosen this period as a real test of
robustness of individuals in a dynamic and hostile environ-
ment. One expects episodes of extreme volatility in world
stock markets, and in emerging markets in particular. A
successful hedge fund stock selection model must be robust
— be able to perform in both (extreme) up and down mar-
kets.

For the out-of-sample validation, we performed 25 com-
plete training runs (each run being seeded with a differ-
ent random number) of each of the three systems (SGP,
MELG, and MEVO) and the best-of-run individual was se-
lected from the final generation of each run.

The selected individuals were then validated on the pre-
viously unseen data; the results of the 25 runs are discussed
in the following section.

6. DISCUSSION OF RESULTS
Figure 2 shows the mean monthly returns (over 25 runs)

on the validation data for all three systems (SGP, MELG
and MEVO), together with the porfolio index returns. The
portfolio index (constructed from the stocks in which our
simulator invests) shows considerable volatility — it is more
volatile than the overall market index seen in Figure 1, and
so beneficial effects displayed by our GP system cannot be
due solely to “cherry-picking” the least volatile stocks. SGP
is not very volatile, but neither does it make much profit.
Both MELG and MEVO appear to be adept at avoiding
losses yet still able to make good gains in positive months.
Figure 3 show vividly the difference between the large cu-
mulative losses of the portfolio index compared with the
cumulative gains of MELG and MEVO.

Figure 4 gives another view of the mean monthly returns
by plotting the frequency distributions of returns in the val-
idation period. The portfolio index (dashed) is very volatile,
whereas all three GP systems are much less volatile (though
with significant positive fat tails).



Out-of-Sample Performance: Mean Monthly Returns
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Figure 2: Mean monthly fractional returns.

Out-of-Sample Performance: Cumulative Mean 

Monthly Returns
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Figure 3: Cumulative monthly fractional returns.

6.1 Robustness
So what does this tell us about “robustness”, and how do

we measure it? Simplistically, we might take robustness to
be synonymous with “low variance” — i.e. the performance
of the individual does not alter much, despite the extreme
volatility of the market environment. However, in practice
we have a much more exacting requirement: it is not help-
ful to an investor to know that an individual robustly (i.e.
with low variance) makes a loss regardless of the market! A
much more helpful measure is to know that the individual
combines two qualities of (i) high return on investment and
(ii) low variance in the face of extreme volatility.

In Section 1 we stated our three measures of robustness:

1. when exposed to an out-of-sample volatile validation
data-set, a more robust solution will have a lower stan-
dard deviation of returns, while the returns themselves
do not decrease; or

2. when exposed to an out-of-sample volatile validation
data-set, a more robust solution will have higher re-
turns while the standard deviation does not increase;
or

Frequency distributions of mean monthly ROIs
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Figure 4: Frequency distributions of mean monthly frac-

tional returns.

3. when exposed to an out-of-sample volatile validation
data-set, the mean return per unit of risk of a more
robust solution will not significantly reduce from that
measured during training.

The performance of our three systems, using robustness
measures 1 and 2 above, are illustrated in Figure 5, which
shows standard deviation plotted against returns. Specifi-
cally, the figure plots returns in excess of the risk free rate,
and we have added data for the portfolio index and for a
popular non-genetic technical strategy (using Moving Aver-
age Convergence Divergence (MACD) to select stocks). The
portfolio index is shown to be not at all satisfactory, with
both low returns and high standard deviation; the MACD
approach performs much better than the portfolio index,
but not as well as any of the three GP systems. In terms of
robustness:

1. The three GP systems and MACD all have similar
standard deviations (a ranked T-test indicates no sig-
nificant difference in the GP distributions) and so by
this measure no one system is more robust than an-
other.

2. By contrast, the three GP systems and MACD differ
in their returns while their standard deviations do not
differ, so by measure 2 they are not equally robust.
In order (from least to most robust) we have MACD,
then SGP, the MEVO and finally (the best) MELG.
We further quantify this below.

Fund managers use a very similar approach to our robust-
ness measures 1 and 2 — they use the Sharpe Ratio [26] (see
Section 4.1) which determines the ROI (in excess of the risk
free rate) per unit of risk (given by the standard deviation).
Since the standard deviations in this case are the same, a
Sharpe Ratio comparison also provides a quantitative com-
parison of returns and thus of our robustness measure 2.
Therefore, we have calculated the Sharpe Ratios (across 25
runs) for each of the three GP systems.

Comparison of the Sharpe Ratio distributions shows that
all three systems achieve substantially better results than
the portfolio index (as expected from Figure 5) and a ranked
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Figure 5: Robustness comparison.

T-test comparison of the Sharpe Ratios indicates a statis-
tically significant difference between all three systems. The
p-values (the probabilities that two compared distributions
are from the same population) are presented in Table 3. The
means of the Sharpe Ratio distributions are: 0.125 (SGP),
0.305 (MEVO), and 0.421 (MELG) — MELG is substan-
tially the most robust system of the three.

Table 3: Summary of Ranked T-test (p-values)

Compare SGP with MELG: 4.01 × 10−16

Compare SGP with MEVO 4.13 × 10−16

Compare MEVO with MELG 4.62 × 10−9

Our third measure of robustness determines how much the
mean return per unit of risk reduces when moving from the
training set to the validation set. This is shown in Figure 6.
The percentage reductions in Sharpe Ratio (and associated
p-values from a ranked T-test) were 65% for SGP (1.4 ×
10−11) , 25% for MEVO (3.1 × 10−8) and just over 2% for
MELG (0.92), indicating a substantial robustness advantage
for MELG.

7. SUMMARY AND CONCLUSION
In a volatile and unforgiving financial environment, the

use of carefully selected scenarios of extreme market be-
haviour during GP training can produce more robust trained
individuals than those produced by a standard GP system.

We investigated two different mechanisms for presenting
the extreme scenarios to the population:

1. the first (Multiple-scenario Evaluation in Last Gener-
ation — MELG) used a complete set of training data
for n−1 generations and then used three extreme sce-
narios (taken from the complete training set) to test
the individuals in the final generation;

2. the second (Multiple-scenario Evolution — MEVO)
did not see the complete set of training data, but in-
stead the three extreme scenarios were used to deter-
mine fitness throughout all generations.
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Figure 6: Robustness measure: drop in Sharpe Ratio.

In Section 3 we introduced Volatility-Adjusted Fitness as
a mechanism for assessing the robustness of an individual
when exposed to multiple training scenarios; this is the mean
fitness across all scenarios divided by the root mean squared
errors from the mean. The fitness of an individual assessed
on a single scenario was given by the Sharpe ratio [26].

Our system used a GP system to evolve a non-linear factor
model for stock-picking, coupled with an Investment Sim-
ulator that modelled a long-short, market-neutral, sector-
neutral hedge fund trading Contracts for Difference (CFDs)
in the highly volatile Malaysian stock market. Historical
stock data (both technical and fundamental) was used from
the period 1997–2004.

We introduced three practical measures of robustness: the
first two compared volatility against returns on investment,
and the third compared the Sharpe Ratio during training
with the Sharpe Ratio during validation (see Section 1). Ex-
periments were run on three GP systems (MELG, MEVO
and a “standard” GP system — SGP) with 25 runs of each,
and comparisons were made with both a portfolio index and
a non-genetic simple technical analysis for stock picking.

Although robustness measure 1 showed no difference be-
tween the three GP systems, statistical analysis of measures
2 and 3 indicated overwhelmingly that MELG provides the
most robust individual, with SGP being the least robust.
All three GP systems were shown to have better perfor-
mance than the non-genetic technical analysis, and this in
turn performed very much better than the portfolio index.

Further work in this area includes extending the experi-
ment to a larger universe of stocks; combining the scenarios
mechanism with other robustness-enhancing techniques; and
investigating better ways to present the extreme scenarios to
the population. For example, we are trying to gain a better
understanding of why using the complete training set as a
separate scenario for MEVO did not give good results.
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