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ABSTRACT
Standard detection algorithms for nonlinearity linkage fail
when applied to typical problems in the analysis of financial
time-series data. We explain how this failure arises when
standard algorithms are applied näıvely, how linkage detec-
tion needs to be applied directly to the observed data sam-
ples, and how this raises problems that are not addressed
by current techniques.

We extend the existing DSMDGA linkage detection al-
gorithm and present a new system that can determine the
required nonlinearity linkage in observed data samples for
financial time series. The new system has been evaluated
on synthetic datasets and experimental results are provided.
The sensitivity of the system to changes in both the problem
and the algorithm parameters has also been explored and we
discuss the results. We present evidence of the success of the
new system and identify areas for further work.

Categories and Subject Descriptors
I.2.M [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Genetic Algorithms, Linkage Learning, Epistasis, Composi-
tion, Perturbation, Hierarchical, Time Series, Finance

1. INTRODUCTION
A typical Genetic Algorithm (GA) or Genetic Program-

ming (GP) problem in financial time-series analysis is to dis-
cover an unknown, often non-linear, relationship between a
number of “predictor” time series and a “target” time series.
These series are all real-valued and are collections of discrete
observations. An example of such a problem would be the
search for relationships between time series of economic fac-
tors (interest rates, gross domestic product, energy prices)
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and the performance of a stock index such as the FTSE100.
It is assumed that the extent of the time series is limited to a
period during which non-linear relationships are unlikely to
vary. The search space is immense and the performance of
evolutionary search would be substantially improved if non-
linear and linear relationships between the predictor series
with respect to the target series could be identified, since
this would permit independent evolutionary search to be
conducted on non-linear blocks of the chromosome, which
may later be combined linearly.

Although our work is driven by the need to analyse finan-
cial time series data, the proposed new system is relevant
to the analysis of more general GA or GP systems where
fitness is an error measure derived from training data that
comprises discrete, real-valued observations.

1.1 The problem
Consider Figure 1: we wish to find the unknown function

that takes as input the values of the four predictor series and
produces as output the corresponding value of the target
series. We will use evolutionary search to do this, and the
fitness function will simply apply the function suggested by
an individual to each set of predictor values and return the
square root of the average squared error from the desired
target values.

Time: t0 t1 t2 t3 t4 t5
Predictor 1: 0.10 0.20 3.50 2.30 2.20 0.01
Predictor 2: 0.01 0.10 2.30 2.20 3.50 3.50
Predictor 3: 3.50 2.10 3.50 2.20 2.30 0.01
Predictor 4: 2.10 0.01 0.01 3.50 2.30 2.10

Target: 7.45 2.02 805.04 513.70 775.29 3.52

Figure 1: Example financial time series data comprising

six observations of four predictors and one target series.

For this example, we assume that the desired function can
be expressed as full tree of depth four; a GA representation
might therefore be a vector of length 15 where the first seven
loci are the dyadic arithmetic operators in the internal nodes
and the final eight loci are the leaves that consist of either
predictor identifiers or real-valued coefficients. See Figure 2.

This problem is very different from, for example, finding
the optimal coefficients to a known equation. Here the equa-
tion is not known in advance, the representation is complex,
and the search space is very large.

Information about linkage could potentially help to reduce
the search space. If we could determine, for example, that
predictors 1 and 4 were a linkage group, linearly separable
from a second linkage group comprising predictors 2 and 3,
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Figure 2: Example tree (above) and corresponding GA

chromosome (below) for time series analysis. The al-

leles for internal nodes are drawn from an alphabet of

standard dyadic arithmetic operators and the leaves are

either reals or predictor identifiers.

then the operator at the top of the tree could be restricted to
a linear operator such as +, and two separate searches could
be undertaken for subtrees of depth 3 — the predictors 1 and
4 appearing in only the left subtree, and the predictors 2 and
3 appearing in only the right subtree. Thus, by determining
information about the (non-)linearity of contributions from
the predictor values to the target values, the search space
would be substantially reduced.

Linkage learning by perturbation
Phenotypic linkage is a measure of properties of the inter-
actions of genes’ contributions to fitness. This contrasts
with “inheritability linkage”, which is interdependence of
the genes’ probability of being inherited. Phenotypic linkage
is a property of the fitness landscape, whereas inheritability
linkage is a property of the representation and genetic algo-
rithm. Our research focuses on a specific type of phenotypic
linkage — non-linearity linkage — where the contribution
to fitness of two or more genes is not simply a linear sum of
the individual contributions to fitness of each gene.

Perturbation linkage learners such as LINC [5, 1] and
LINC-R [6] determine non-linearity linkage between two loci
i and j in a chromosome by calculating the fitness differences
for four points in the search space: a starting point given by
an arbitrary individual Ixy where the two loci respectively
have values x and y, and three further points derived by
keeping the values of all loci the same except that either i

is perturbed to have value x + δx, or j is perturbed to have
value y + δy, or both are perturbed. In this paper we call
these four points a “quadlet”.

Let the fitness of an individual I be given by f(I). If
the fitness difference (f(I(x+δx)(y+δy))− f(Ixy)) is not equal
to the sum of fitness differences (f(I(x+δx)y) − f(Ixy)) and
(f(Ix(y+δy)) − f(Ixy)) then the two loci are non-linearly
linked. The amount by which the two sides in the above
equation differ is called the linkage measure of the corre-
sponding pair of loci.

LINC deals with binary alleles and uses a single quadlet
to test for linkage with binary perturbations, i.e. xy values
of 00, 01, 10 and 11. LINC-R deals with real-valued alleles
and uses several (randomly selected) quadlets to sample the
range of possible values at the two loci between observed
upper and lower bounds of x and y. See Figure 3.

The wrong way
Continuing the example from Figure 1, to determine non-
linearity linkage between Predictor 1 (P1) and Predictor 2
(P2) we might näıvely decide to create a quadlet as follows:
the starting chromosome can be chosen arbitrarily, so we
start from a chromosome that contains one instance each of
P1, P2, P3 and P4; then to create the next three chromo-
somes for the quadlet we perturb the two identifiers P1 and
P2 to become the value 0.0 — first just P1, then just P2,
then both. An example quadlet is given below:

Individual I1: +, +, +, +, +, +, +, 1.0, P1, 1.0, P2, 1.0, P3, 1.0, P4

— fitness 492.53

Individual I2: +, +, +, +, +, +, +, 1.0, 0.0, 1.0,P2, 1.0, P3, 1.0, P4

— fitness 494.42

Individual I3: +, +, +, +, +, +, +, 1.0, P1, 1.0, 0.0, 1.0, P3, 1.0, P4

— fitness 494.41

Individual I4: +, +, +, +, +, +, +, 1.0, 0.0, 1.0,0.0, 1.0, P3, 1.0, P4

— fitness 496.30

The linkage equation calculates (f(I1)−f(I4))−((f(I2)−
f(I4)) + (f(I3) − f(I4))), which gives the value 0.0 and in-
dicates that predictors 1 and 2 are not non-linearly linked.1

But that’s wrong! The target function for our example is
100 ∗ (P1 ∗P2) + (P3 ∗P4) and so we know that predictors
1 and 2 are non-linearly linked.

The problem with this approach is that it measures the
wrong linkage information. In order to reduce the search
space by constraining the structure of the chromosome, we
need to derive information about the linearity of the contri-
bution of the predictors to the target equation — however,
the above approach measures the linearity of the contribu-
tion of the predictors to the fitness landscape of the pro-
posed solutions (i.e. the (root mean square) errors of the
individual chromosomes from the target equation).

Is it therefore true that for this particular kind of problem,
where we are trying to evolve an approximation to an un-
known target function by minimising errors, it is impossible
to determine linkage information that will help us constrain
the structure of the chromosome? Of course not! But we
must work on the observed data samples directly.

Linkage learning from observed samples
If we want to determine the linkage of the predictors, in a
situation where the function relating the predictors to the
target is itself being evolved by minimisation of errors, then
we must look at the observed time-series values directly. In
this case, to determine linkage we need to find quadlets of
predictor observations — for each observation, the “fitness”
is the value of the corresponding target time series.

In the example given above there are far too few observa-
tions to find a suitable quadlet. Fortunately, in time-series
analysis the series are typically quite long with hundreds or
thousands of observations.

Two problems arise when performing linkage learning on
observed values:

1. the fitness function is only partially defined — fitness
values (from the target series) are only available for the

1There is a possibility of apparent non-linkage even where pre-
dictors are linked, so normally we would sample several quadlets
for different schemata. However, for this example we will assume
such an effect has not occurred.



observed set, and for any other collection of predictor
values the fitness is undefined;

2. the predictor values are typically reals.

Since the predictors are reals, we might try to use LINC-
R for the linkage learning (the upper and lower bounds for
LINC-R’s random perturbations can be derived from the ob-
served values). LINC-R performs the quadlet test for sev-
eral different perturbations δx and δy, in order to sample
the search space between the four outer points — if any one
perturbation shows non-linearity then the two loci are said
to be non-linearly linked. See Figure 3.

Perturbing a data value x by an amount δx is only useful
if the new value x+ δx exists in the observed data set (with
all other loci kept the same). We must search the entire set
of observed predictor values in order to find a match to each
of the four required points in the required quadlet. However,
where the predictor values are reals, even a few thousand ob-
servations may not be sufficient to find the desired quadlets
— there may not be any observed points containing the re-
quired values!

Thus LINC-R fails because it is a perturbation technique
that is unsuited to a fixed set of observations that cannot
be perturbed.

An alternative approach is to use a Dependency Structure
Matrix (DSM) as found in the DSM-Directed Genetic Algo-
rithm (DSMDGA) [11, 10, 9] — this is attractive because it
samples individuals that exist in the population rather than
creating new individuals. It would appear to be appropriate
for discovering linkage in observed time series data except
for the fact that the DSMDGA assumes a binary domain,
whereas time-series data is real-valued. The DSMDGA ap-
proach is explained in greater detail in Section 1.3.

Thus the DSMDGA as it stands cannot be applied to our
problem; but we will investigate how it can be extended to
address our problem.

1.2 Related Work
In the field of linkage learning, various techniques have

been proposed for linkage identification. Below we present
some techniques for linkage learning, the use of which, at
least without important modifications, is precluded by the
intricacies of the problem being studied.

Standard statistical measures of correlation. Stan-
dard correlation functions generally measure linear rather
than nonlinear relationships between variables, though the
coefficient of nonlinear correlation may give some informa-
tion. However, these measures are used to determine cor-
relation between two time series, rather than detect the in-
teraction of two series with respect to a third. Therefore,
while it would be possible to obtain correlation measures for
our predictors based on the available time series data, this
would not give us any information about linkage with respect
to the target. In the wider scope of time series analysis,
a result showing strong correlation between two predictors
might lead to one of the two being dismissed as redundant,
however this is beyond the scope of this paper.

Piecewise Interval Correlation by Iteration (PICI)
[7, 8]. PICI calculates correlation coefficients among real-
valued loci of individuals in the population, and identifies
sets of loci with high correlation as linkage groups. How-
ever, as mentioned above, these mathematical correlations
indicate linear relations rather than non-linear relations.

Limited probing [2]. The limited probing technique
proposed by Heckendorn and Wright identifies linkage by
calculating the Walsh coefficients of the fitness function.
This requires multiple evaluations of the function for specific
inputs, which is precluded by the fact that only a limited
number of input-output pairs is available in a time series.
Some of the required input-output pairs may appear in a
given data set; however, due to the number of necessary
evaluations, the probability of all necessary pairs appearing
in a time series of limited length is low.

Random walk [3]. This method proposed by Li and Li
detects linkage in binary chromosomes by a random walk
method. It might be possible to extend it to real-valued
chromosomes, however its potential usefulness with respect
to the problem being studied is limited by an additional
factor. Since the process described requires a number of
random walks to be made, and only one group of time series
is available to us, we would have to segment this dataset into
a number of smaller datasets in order to represent additional
random walks. This problem is worsened by the fact that
the efficiency of the algorithm in its current form is highly
sensitive to limited data availability. Finally, certain types
of time series (such as financial time series) are rarely truly
random and are most often the result of a Markov process,
therefore the assumption that a sample from this problem
can be used to represent a random walk would not hold.

The Dependency Structure Matrix Driven Genetic
Algorithm (DSMDGA) [11, 10, 9]. The DSMDGA is
an algorithm that detects linkage in binary chromosomes by
utilising a Dependency Structure Matrix, which is a matrix
that captures the linkage of all pairs of genes in a chromo-
some. The linkage is calculated using the nonlinearity check
found in LINC, which requires a small amount of evalua-
tions to test the relationship between two genes. The DSM
is then translated into linkage groups using a Minimum De-
scription Length metric. Because of the small number of
fitness function evaluations necessary to detect linkage, we
find this technique particularly interesting — the standard
formulation fails for our problem, as explained in the previ-
ous section, but it is capable of extension. We will provide
a more detailed description of the DSMDGA in Section 1.3.

1.3 Non-linearity linkage detection for
financial time-series analysis

We wish to design a linkage-learner that operates directly
on the observed data values of financial time series. The
following issues arise:

• the predictor series may have different ranges;

• the fitness function is partially defined — the observed
data are the only points at which fitness is known,
and linear interpolation is often unsafe due to uneven
sampling and excessive volatility; and

• the predictor series comprise real-valued data, which
makes it extremely difficult to find suitable quadlets
for linkage identification.

Our new system is based on, and extends, Yu et al’s
DSMDGA [11, 10, 9], and we start by describing the DSMDGA
in more detail.



DSMDGA
The DSMDGA uses a symmetric Dependency Structure Ma-
trix (DSM) whose dimension is determined by the number
of genes in the chromosome of the problem being studied.
If two genes p and q are linked, then the DSM will have the
value 1 at positions (p, q) and (q, p). If they are not linked,
those positions will both contain the value 0.

The DSM is based solely on chromosomes existing in the
population; this is done to minimise the number of evalua-
tions of the fitness in the overall genetic algorithm. The link-
age identification is the same as LINC, however the test is
performed on observations of schemata instances rather than
perturbing individual members of the population. Thus,
the algorithm does not evaluate arbitrarily defined chromo-
somes, rather relying only on those that are part of the cur-
rent and previous populations.

To obtain a good description of the linkage situation under
these conditions, the algorithm averages the fitness values
of all observed schemata at each generation. These values
are averaged again over generations in order to refine the
calculated average fitness of each schema. A schema is a
chromosome which keeps one or more of its genes fixed, while
the rest are wildcards, i.e. can take any possible value.

After these average fitness values have been calculated,
the standard LINC nonlinearity check is performed on suit-
able schemata (not individuals) to detect linkage between
pairs of genes. LINC is used because it is assumed that
the loci in the schemata that are fixed have values drawn
from a binary alphabet. The fitness values however may be
integers or reals. By calculating the absolute value of the
difference between the two parts of the check’s equation, a
linkage measure is calculated and placed in the DSM.

The DSMDGA requires a binary classification of linkage
(two genes are either linked or not linked) in order to drive
the partitioning of the search space. Therefore, after the
linkage measures for all possible pairs of genes have been cal-
culated, a machine learning algorithm is required to separate
these linkage measures into those that indicate nonlinearity
linkage and those that don’t. If a given pair of genes has a
linkage measure that indicates linkage exists, the value 1 is
placed at the appropriate positions in the DSM. Otherwise,
the value 0 is used.

Problems with the DSMDGA
The DSMDGA faces the following problems when applied
to observed financial time series data, all caused by the fact
that the predictor values are reals:

• depending on the range and accuracy of these reals,
there may be very few instances of exact repetition at
one locus. This undermines the concept of taking an
average fitness across samples of schemata;

• for the same reason, it will be extremely difficult to
find suitable schema quadlets in the observed data;

• it will not be possible to apply the LINC non-linearity
check (which assumes a binary alphabet), though LINC-
R could be used instead.

1.3.1 The new linkage-learning system
Our system makes the following two major extensions to

the DSMDGA:2

2The output of our analysis is always the binary DSM, which we

1. We extend the algorithm to discover linkage where the
data values are drawn from a small, finite (non-binary)
alphabet. The extension is designed to address the
three problems outlined in the previous section, and is
explained in more detail in the following section.

2. In order to make the predictor data values more amen-
able to linkage analysis, we apply a quantisation al-
gorithm. This transforms the data values from reals
into values drawn from a small, finite alphabet, suit-
able for analysis by our extended DSMDGA. If the
alphabet is small, the linkage analysis will be easy but
it will have poor accuracy: a larger alphabet increases
accuracy, but makes analysis more difficult.

Linkage detection for finite non-binary alphabets
The DSMDGA assumes values are binary, and can apply
the LINC test to the schemata quadlet {S00, S01, S10, S11};
as described above, the fitness values used in the calculation
are averages across observed instances of each schema.

By contrast, where the values are drawn from a small fi-
nite alphabet — for example, [a, b, c] corresponding to three
quantisation bins — then to determine linkage between pre-
dictors P1 and P2 we must consider at least the two quadlets
{Saa, Sab, Sba, Sbb} and {Saa, Sac, Sca, Scc} and preferably
also the three other quadlets in the plane: {Sba, Sca, Sbb, Scb},
{Sbb, Scb, Sbc, Scc} and {Sab, Sbb, Sac, Sbc}. The fitness val-
ues, as with the standard DSMDGA, are averages from all
relevant schemata in the observed data. See Figure 3 (mid-
dle) for an example with an alphabet of four values [a, b, c, d].

0,0 1,0

0,1 1,1

a,a b,a c,a d,a

a,b b,b c,b d,b

a,c b,c c,c d,c

a,d b,d c,d d,d

1.0,0.00.0,0.0

0.0,1.0 1.0,1.0

dx

dy

Figure 3: Linkage detection in three situations: with a

binary alphabet (left), a small finite non-binary alpha-

bet (middle), and a (normalised) continuous alphabet of

reals (right). The first uses a single quadlet, the sec-

ond either samples or uses all quadlets shown, and the

third must sample from the potentially infinite number

of quadlets.

Algorithm
The algorithm proceeds as follows:

1. All predictor data is normalised and quantised. This is
done using a simple normalisation and rounding pro-
cedure: the values for each predictor are normalised
independently of the other predictors to the interval
[0, 1] and then that space is evenly separated into an
arbitrary number of partitions. 3

inspect manually for linkage groups, so we do not implement an
automatic grouping method.
3This is the simplest form of quantisation conceivable, but one
that could separate values that might be best left in the same
quantisation group. An example of this would be observing a
time series such as (0.80, 0.89, 0.90). If we used the aforemen-
tioned method with 10 quantisation groups, 0.80 and 0.89 would



2. For all pairs of predictors (p,q):

(a) for all possible quantum values i from predictor p
and j from predictor q, viewed as schemata:

• create a mean fitness matrix MF containing
at each entry MF (i, j) the mean fitness of all
observed incidences of schema(i,j)

Each entry MF (i, j) corresponds to a specific schema
which only holds stable the predictors being tested,
and all the observed target values for each schema
are averaged. The average value is then used to
represent all instances of that particular schema
in the algorithm.

A square of four entries in this matrix corresponds
to a “quadlet” suitable for the nonlinearity check.
The use of this data structure greatly facilitates
an exhaustive search for such groups of data points.

(b) Initialise an empty linked-list L

(c) For each entry (i,j) in MF (i, j):

• if (i,j) is the top left locus of a valid quadlet
(i.e. four loci (i,j),(i+x,j)(i,j+y),(i+x,j+y) with
non-zero values) then measure its linkage value
and add that value to the linked-list L

(d) Set the real-valued DSM matrix entry DSMr(p, q)
to be the average of the values held in the linked-
list L

3. Analyze the DSMr to calculate an appropriate thresh-
old to be used to distinguish “linked” from “not linked”.

4. Use the calculated threshold to create a binary DSM
matrix DSM , with entries DSM(p, q) that are either
1 indicating linkage or 0 indicating no linkage.

2. EXPERIMENTS
Two experiments were conducted with the new system:

1. Accuracy and Specificity: is the proposed method
capable of identifying linkage in a given predictor-target
set with a satisfactory degree of accuracy?

2. Sensitivity: how sensitive is the method to changes
in both the problem (time series length, number of
predictors) and the algorithm parameters (number of
quantisation groups)?

Synthetic data was constructed for these experiments, us-
ing a fitness function for which the linkage was predeter-
mined. The target time series was therefore computed di-
rectly, using the predictors and fitness function. The DSM
output by the algorithm was then compared to the “true”
DSM, and sensitivity/specificity measures were calculated.

The experiment structure and datasets are essentially the
same for the two experiments. The fitness function was cho-
sen to be the simplest possible while still displaying the nec-
essary linkage: it is the sum of all the products of linked
genes, i.e. f(x) =

P

i

Q

j
xij where x is a chromosome and

xij is the j-th gene in the i-th linkage group of that chro-
mosome. The predictor functions are uniformly distributed
random variables in the range [0,1].

be placed in one group while 0.90 would be placed in another.
However, a better grouping could arguably have been to place
0.80 in one group and 0.89, 0.90 in the other, depending on the
problem being studied.

2.1 Accuracy and Specificity
For the first experiment, we ran the algorithm on a num-

ber of datasets created as explained above, with the prob-
lem parameters held constant. The number of iterations
was meant to mitigate the effects of any randomly occurring
beneficial datasets. After a thousand runs on a 6-predictor
dataset using a 5-digit alphabet for quantisation and a time
series length of 500 observations, the algorithm showed a
97.7% percentage of True Positive (TP) results, along with
an 81.8% percentage of True Negative (TN) results. The
overall success ratio of the algorithm in these sets was 85%
correctly identified DSM elements. The actual figures on
the 15,000 gene pairs tested are given in Table 1.

Table 1: Accuracy and Specificity of the technique

Linkage No Linkage
Positive result 2930 (97.7%) 2181 (18.2%)
Negative result 70 (2.3%) 9819 (81.8%)

2.2 Sensitivity
The second experiment comprises a set of tests to mea-

sure the effects of different problem or algorithm parameters
on the success ratio of our method. Each time all param-
eters except one are kept constant; the algorithm is run a
number of times while changing that one parameter. In the
case of altering problem parameters, since it is impossible
to use the same dataset, the algorithm was run a number
of times to mitigate the effects of randomly occurring ben-
eficial datasets which might skew the results. In the case
of algorithm parameters the same dataset is used for all the
values of the variable being tested; this is then repeated for
another dataset, and so on for (say) twenty repetitions. This
should remove any anomalous effects of a specific dataset.

Three experiments were used to test parameter sensitivity:
two tested sensitivity to the problem (number of predictors,
and time series length) and the third tested sensitivity to a
key aspect of the algorithm (quantisation alphabet length).

Number of predictors
Difficulties arise from a dataset with an increasing number
of predictors. As the number of predictors increases, the
noise in each linkage calculation is increased. This makes
it more difficult to identify the true DSM. In the tests, the
algorithm was run on datasets of 500 observations and n
predictors, using values of n from 4 to 20 with a step of 2.
The quantisation alphabet length was 5. There were 20 runs
for each value of n and the results were averaged to reduce
the effects of outliers. The average measures are plotted
in Figure 4 and show an initial deterioration that starts to
flatten once the number of predictors exceeds 12. At all
times the TP rate is better than the TN rate.

Time series length
Increasing the time series length means increasing the po-
tential for the appearance of suitable quadlets which will be
used for the calculation of linkage measures. The more of
these we are able to calculate, the more the effects of noise
will be reduced, and the more accurate the DSM will be. We
therefore explored the sensitivity of the algorithm to time
series length using lengths from 100 to 1,000 with steps of
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Figure 4: As the number of predictor series increases,

linkage discovery becomes more difficult.

100. The alphabet length was 5 and the datasets consisted
of 10 predictor time series and the target. At each length in-
crement, the algorithm was run on twenty datasets and the
specificity/sensitivity measures were averaged. The plot of
these averages over the time series length clearly shows how
the algorithm’s performance improves as the population of
chromosomes increases — see Figure 5.

Sensitivity measures over time series length
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Figure 5: As the time series length increases, linkage

discovery becomes easier.

Alphabet length
The only quantitative parameter of the algorithm is the al-
phabet size used in the quantisation. It can be shown that
the magnitude of the effect that the alphabet size has on
performance is problem specific. For example, an integer
dataset with values from 1 to 5 would be completely unaf-
fected by increasing alphabet size above 5. In a real-valued
dataset, too many quantisation groups might split the avail-
able time points in such a way that not enough linkage mea-
sures are calculated, making the results sensitive to outliers.

We explored the sensitivity to alphabet length for our
standard problem (see above). Specifically, we used 6 pre-
dictors of 500 observations with uniformly distributed real
values in the range [0, 1] and the target series was created

using the function target = P1∗P2+P3∗P4+P5∗P6. The
alphabet length was varied from 5 to 15 with a step of 1.
There were 20 runs for each increment of alphabet length,
and the results were averaged. The plot of the averages over
alphabet length is given in Figure 6.
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Figure 6: The effect of quantisation alphabet length

(number of quantisation groups) is problem-specific: in

this case increasing the alphabet length makes linkage

discovery more difficult.

3. DISCUSSION
This section comprises three parts: a discussion of the

results of the experiments; a discussion of an issue that arises
in generating the binary DSM; and further work.

3.1 Discussion of results
On simple cases with few predictors, the algorithm was

able to fully identify the linkage situation of a given dataset.
The performance of the algorithm predictably deteriorated
as the dataset length was reduced and/or as the number
of predictors was increased. The alphabet size used in the
quantisation process also affected the algorithm’s ability to
correctly identify linkage. These changes in performance are
consistent across multiple runs of the algorithm on similar
datasets; one positive aspect of this is that the algorithm’s
success is not merely the result of random factors. Yet how
are we to interpret these results? Are they good or bad?

Discovering linkage in real-valued datasets is a difficult
problem, and we should not expect 100% accuracy. But
what constitutes an acceptable level of accuracy? We might,
arbitrarily and subjectively, decide to aim for 90% success
or better. But 90% of what measure? This depends on
the context in which the linkage learner is being used. For
the purposes of using linkage information to optimise the
performance of a GA or GP, there are two cases to consider:

1. if we identify linkage where it does not exist, the conse-
quence will be that the GA/GP misses an opportunity
for full optimisation — it will not perform as quickly
as perhaps it could, but at least it is still able to find
an approximation to the globally optimal solution;

2. if we identify linearity where there is none (i.e. if ex-
isting linkage is not detected), the consequence will be
that the GA/GP will attempt an optimisation that is



not well founded, and there is a possibility that the
GA/GP will no longer be able to find an approxima-
tion to the globally optimal solution.

The first of these cases corresponds to the False Positive
rate: the second corresponds to the False Negative rate. If
we assume that it is much more important to find a better
solution than it is to optimise performance, then the False
Negative rate is the most important factor to consider.

This is good news for our system! Table 1 gives a False
Negative Rate for our system of 2.3% which is impressive.
However, Figure 4 shows that the False Negative Rate rises
to 10% or more4 for 8 or more predictors, which is bad.

Taking the results of all our experiments as a whole, it
is clear that to get acceptable performance from the system
(i.e. a False Negative Rate of 10% or less) it is necessary
to ensure that the length of the time series is appropriate
for the number of predictors — if there are more predictors,
the time series need to be longer in order to get acceptable
performance. This is plotted quantitatively in Figure 7.
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Figure 7: Increasing time series length can retain ac-

ceptable performance for larger numbers of predictors.

In summary therefore, we have shown that it is possible
to obtain acceptable performance from the new algorithm
as long as time series of appropriate length are available for
higher numbers of predictors.

3.2 Thresholding
The binary DSM is constructed by dynamic determina-

tion of an appropriate threshold for the real-valued DSM.
There is an assumption that pairs of predictors that are
non-linearly linked will not have a low linkage value, and
pairs that are not linked will not have a high linkage value.

The DSMDGA used a 2-means algorithm to find the ap-
propriate threshold,5 and we apply the same technique since
it is straightforward to implement and relatively efficient.
However, there are two possible variants:

1. Apply the 2-means algorithm to the values held in the
real-valued DSM (each item DSMpq is the mean of the
linkage measures calculated for all occurrences of the
schema that corresponds to the predictors p and q).

4The FalseNegativeRate = 1 − TruePositiveRate
5The DSMDGA must do this; not because it deals with real-
valued predictors, but because it creates real valued averages of
real-valued fitness.

2. Apply the 2-means algorithm to the raw linkage values
that were used to create the averages that are stored
in the real-valued DSM.

Using the averaged linkage measures renders the algo-
rithm unable to deal with extreme cases, i.e. cases where
there is no linkage, or where the entire set of predictors is
linked. This happens because the algorithm always sepa-
rates the available measures into two groups, even though
they might all belong to the same group. Consequently there
will always be a non-zero number of ones and zeros in the
binary DSM constructed using this method. This is not a
problem in most cases since it would be rare for a problem to
display either complete linkage or complete lack of linkage.

By contrast, when using all available linkage measures,
the performance of the thresholding algorithm can be highly
influenced by outliers. If there is a single value that is ex-
tremely high, it will drive the threshold upwards, possibly
enough that other values which actually indicate nonlinear-
ity would be below the threshold. This is a common oc-
currence, since in many problems a small number of linkage
measures can be influenced more by the fluctuations of irrel-
evant predictors (i.e. the ones not part of the current non-
linearity check) than the predictors actually being tested. A
telling example of this is given in Figure 8.

Figure 8: 2-means thresholding with averaged linkage

measures (top left) and raw linkage measures (top right).

Both were derived from the same underlying linkage

data; the original real-valued DSM for this test problem

is at the bottom left, and the ideal binary DSM for this

test problem is at the bottom right. The threshold calcu-

lated using averaged linkage (left) is considerably better

than that calculated using all the raw data (right).

3.3 Further Work
During development, certain modifications and extensions

were considered, but could not be implemented due to time
constraints. In our opinion, these represent valid subjects
for further research, which could lead to substantial improve-
ment in the algorithm’s performance.

Different Quantisation Techniques. Preliminary experi-
mentation with variations in the techniques used to convert



the real-valued chromosomes to a discrete alphabet showed
this can influence results. The intuition is that more sophis-
ticated clustering algorithms will be better able to identify
clusters and therefore reduce noise in the linkage calculation
— we speculate that this improvement would be uniform
across all cases, improving all true positive results and lead-
ing to a flatter surface for Figure 7. Since these effects are
problem-specific, it will be important to observe the algo-
rithm’s behaviour on more structurally diverse datasets.

Different Thresholding Techniques. A key feature of the
method proposed in this paper is the calculation of the
threshold. Alternate clustering methods could be used in
order to produce more sophisticated thresholds. While this
was unnecessary in previous applications of dependency struc-
ture matrices, it is important to calculate the best possible
threshold for use by this method since the algorithm must
produce a final result on its first run.

More sophisticated problems. The eventual aim of this
work is to identify the linkage of real financial time series in
a way that is beneficial to the performance of a GA/GP
application. It is important, therefore, to test the algo-
rithm’s performance in (i) problems more closely approxi-
mating actual time series; and (ii) real-world financial time
series where the underlying linkage is understood. An ex-
ample of the former would be the use of predictors following
the Gaussian distribution, or even predictors constructed
as Martingales, i.e. as a Markov process with zero-mean
shocks. The results of these experiments might also better
indicate which aspects of the algorithm would, if refined,
improve performance the most.

Different problem domains. Though this work was mo-
tivated by our desire to analyse financial time series data,
it is not restricted to that problem domain. Our extension
to the DSMDGA is applicable to any situation where the
underlying domain is a finite set of discrete real-valued ob-
servations. It would therefore be of interest to extend our
work to the consideration of other suitable domains.

4. SUMMARY AND CONCLUSIONS
Standard linkage-learning algorithms fail for typical GA

or GP analysis of financial time series. The problem ex-
tends to any situation where linkage must be detected in
series of discrete real-valued observations. We have demon-
strated that perturbation techniques cannot be used, and
the DSMDGA as it stands cannot be used. We therefore
introduced a new algorithm, an extension of the DSMDGA,
to learn linkage directly from the observed real values.

We have assessed the accuracy of the new algorithm and
provided a characterisation of its sensitivity to the num-
ber of predictors and the dataset length. We propose that
the most important accuracy metric for linkage learning in
our context is the False Negative Rate, which we further
propose should be 10% or less. We have shown how this
accuracy can be achieved or bettered by the new algorithm
as long as the length of the time series dataset is appropri-
ate for the number of predictors. Figure 7 suggests that for
ten or fewer predictors the required dataset length is ap-
proximately 100+NumberOfPredictors ∗ 50, and for more
predictors the required length is NumberOfPredictors∗50.

Financial time series vary in length according to whether
the data is observed monthly, daily or on a “per-tick” basis.
A monthly dataset for twenty years would have 240 observa-
tions, which would be sufficient to support accurate linkage

analysis of up to 4 predictors. By contrast, daily data for
five years would have just over 1,800 observations, sufficient
to support accurate linkage analysis of 36 predictors.

We conclude that the new algorithm exhibits good be-
haviour within practical limits and is suitable for determin-
ing non-linearity linkage to support GA or GP analysis of
financial time series data.
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