
ABSTRACT

In general, the machine learning
process can be accelerated through the
use of additional knowledge about the
problem solution. For example, mono-
morphic typed Genetic Programming
(GP) uses type information to reduce the
search space and improve performance.
Unfortunately, monomorphic typed GP
also loses the generality of untyped GP:
the generated programs are only suit-
able for inputs with the specified type.
Polymorphic typed GP improves over
monomorphic and untyped GP by
allowing the type information to be
expressed in a more generic manner, and
yet still imposes constraints on the
search space. This paper describes a
polymorphic GP system which can gen-
erate polymorphic programs: programs
which take inputs of more than one type
and produce outputs of more than one
type.

1. Introduction
Automatic programming relies on additional knowledge
about the problem solution to guide code synthesis and
transformation [Lenat, 1984]. Genetic Programming (GP)
[Koza, 1992] automatically generates programs by using a
genetic algorithm to search through the space of all possible
program solutions. In its traditional style, the GP paradigm
does not use type information when performing program
generation due to its inability to distinguish different types:
we use the term “untyped” to refer to such a system.
Untyped GP leads to an unnecessarily large search space.
When type constraints are enforced, the search space can be
reduced since only type-correct programs are allowed in the
search space. Previous work [Montana, 1995; Haynes,
Schoenefeld and Wainwright, 1996; Clack and Yu, 1997] has

demonstrated that such type constraints facilitate GP in pro-
gram generation.

Type constraints can be applied to GP in two different
ways: Monomorphic GP and Polymorphic GP. Monomor-
phic GP uses monomorphic functions and terminals to gen-
erate monomorphic programs. In contrast, polymorphic GP
can generate polymorphic programs using polymorphic
functions and terminals. In the first instance, inputs and out-
puts of a program need to have the specified type. In the lat-
ter case, programs can accept inputs and outputs of more
than one type. Polymorphic GP therefore generates more
general solutions than those produced by monomorphic GP.

The generality of polymorphic GP is achieved through
the use of different type variables (see Section 4.1). Poly-
morphic functions and terminals in the function and terminal
sets are specified using dummy type variables. Within pro-
gram parse trees, polymorphism is expressed using tempo-
rary type variables. To state the polymorphic nature of the
generated program, generic type variables are used. We have
developed a type system to handle the instantiation of all of
these type variables so that both the type-correctness and the
generality of the programs are maintained.

The search space of monomorphic GP (M) vs. polymor-
phic GP (P) vs. untyped GP (U) is as the following:

Monomorphic functions and terminals restrict inputs and
outputs to be the specified types. The number of legal pro-
grams constructed with monomorphic functions and termi-
nals are therefore the most limited. By contrast, type
variables can be instantiated to any type in a program. How-
ever, the same type variables are restricted to be instantiated
to the same type values (see Section 4.3). The search space
of polymorphic GP is therefore less restrictive than mono-
morphic GP but more restrictive than untyped GP.

The paper is structured as follows: Section 2 summarizes
related work; Section 3 explains our system structure; Sec-
tion 4 presents the type system; Section 5 discusses the
implementation of the system and Section 6 concludes.

M P U⊂ ⊂

PolyGP: A Polymorphic Genetic Programming System in Haskell

Tina Yu and Chris Clack
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, U. K.
T.Yu@cs.ucl.ac.uk C.Clack@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/t.yu http://www.cs.ucl.ac.uk/staff/c.clack

2. Related Work
Generic functions in Montana’s Strongly Typed Genetic Pro-
gramming (STGP) system [Montana, 1995] provide a form
of parametric polymorphism. Generic functions are parame-
terized templates that have to be instantiated with actual val-
ues before they can be used. The parameters can be type
parameters, function parameters or value parameters.
Generic functions with type parameters are polymorphic
since the type parameters can be instantiated with many dif-
ferent type values.

In STGP, the function set may contain generic functions.
To be used in a parse tree, a generic function has to be
instantiated by specifying the argument and return types of
the generic function. Instantiating a generic function can be
viewed as making a new copy of the generic function with
specified argument and return types. Instantiated generic
functions are therefore monomorphic functions.

Montana uses a table-lookup approach to create parse
trees using monomorphic functions and terminals. If a func-
tion takes an argument of type X then this implicitly con-
strains its child to produce a value of type X. There is a type
possibility table which provides type constraints according
to the depth in the tree where type matching occurs: this
extra information constrains the choice of function to create
nodes in the tree to ensure that the tree can grow to its maxi-
mum depth. During the creation of the initial population,
each parse tree is grown top-down by choosing functions and
terminals at random within the constraints of the types in the
table. In this way, the initial population only consists of
parse trees that are type-correct. (Similar rules are applied
during the genetic operations of crossover and mutation).

To generate generic programs in STGP, generic data
types are introduced. “Generic programs” are those that have
generic data types as input or output types. During the gen-
eration of the generic programs, generic data types are
treated as additional built-in types. An instantiated generic
function whose argument or return types are specified as
generic data types is therefore a monomorphic function. The
generic data types are not instantiated until the generic pro-
gram is executed. Since generic data types can be instanti-
ated with many different type values, the generated
programs are generic programs.

The PolyGP is similar to STGP in that it supports para-
metric polymorphism but with the following distinctions:

• it uses a type unification algorithm rather than table-lookup
mechanism to instantiate type variables.

• it uses temporary type variables to support polymorphism
within a program parse tree as it is being created.

• it uses generic type variables to represent polymorphism of
the generated programs. However, unlike generic data
types in STGP, generic type variables are never instanti-
ated.

• the type system supports higher-order functions (functions
that take functions as arguments and/or return functions as
outputs). [Yu and Clack, 1998] shows how higher-order
functions can be used to support module creation and
implicit recursion in GP.

A performance comparison between PolyGP and STGP can
be found in [Clack and Yu, 1997].

3. System Structure
The system has four major components: Creator, Evaluator,
Evolver and Type System. Figure 1 illustrates the high-level
structure of the system. The creator interacts with the type
system to select type-matched functions and terminals to cre-
ate type-correct programs. The evaluator evaluates each pro-
gram using test data as inputs to produce some outputs. The
outputs are passed over to the fitness function which assigns
a fitness value for the program according to the correctness
of the outputs. If the fitness value satisfies the requirement,
the system stops and returns the program with the satisfac-
tory fitness value as the solution. Otherwise, the evolver is
invoked to perform genetic operations to create new pro-
grams. The test-select-reproduction process continues until a
satisfactory program is found.

An extra component of the PolyGP system, compared
with the standard GP system, is the type system. The type
system is used during program creation and evolution (cross-
over and mutation). The purpose of the type system is to
ensure that all programs created are type-correct. To use the
type system, users have to specify input and output types for
each function and terminal in the function and terminal sets.
The type syntax and the details of the type system are given
in Section 4.

Figure 1: High-level system structure

Test
Data

Terminals
Functions

Creator

Pop

Evolver

Evaluator

Fitness
Function

Type
System

Done

Correct
Outputs

3.1 Creator
The programs created are represented as parse trees. A parse
tree is grown from the top node downwards. There is a
required type for the top node of the tree. The creator
invokes the type system to select a function whose return
type unifies with the required type. The selected function
will require arguments to be created at the next (lower) level
in the tree: there will be type requirements for each of those
arguments. If the argument has a function type, a λ abstrac-
tion (see next paragraph) will be created to represent it. Oth-
erwise, the type system will randomly select a function (or
terminal-see later) whose return type unifies with the new
required type to construct the argument node.

Arguments of function type are created as λ abstractions.
λ abstractions are local function definitions, similar to func-
tion definitions in a conventional language such as C. The
following is an example λ abstraction together with an
equivalent C function.

(λ x (+ x 1)) (λ abstraction)

Inc (int x) (C function)
{return (x+1);}

λ abstractions allow GP to perform module creation and
reuse which are essential for GP to be effective with larger
and more complex problems. By using λ abstractions, we are
able to solve the Even-N-Parity problem [Koza, 1992] very
efficiently [Yu and Clack, 1998].

λ abstractions are created using the same function set as
that used to create the main program. The terminal set, how-
ever, consists only of the arguments of the λ abstraction to be
created; no global variables are included. Argument naming
in λ abstractions follows a simple rule: each argument is
uniquely named with a hash symbol followed by an unique
integer, e.g. #1, #2. This consistent naming style allows
crossover to be easily performed between λ abstractions with
the same number of arguments (see Section 3.3).

When selecting functions to construct an argument node,
it is possible that there is no function in the function set
whose return type can unify with the required type. In this
case, the creator stops growing the tree by calling the type
system to select a terminal at random whose type unifies
with the required type. This approach of random selection of
functions and terminals to create type-correct parse trees
works well most of the time (85%). A backtracking mecha-
nism is implemented to regenerate a new subtree when the
creation of a particular subtree fails [Clack and Yu, 1997].

The program parse trees are represented in a “curried”
form (a function is applied to one argument at a time), thus
allowing partial application to be expressed [Peyton-Jones,
1987 Ch.10]. The advantage of such a representation is to
provide more crossover locations so that more diverse new
programs can be created. With more diverse programs in the
population pool, we hope that GP can find a solution faster.
The result of our initial experiment is consistent with this

conjecture [Clack and Yu 1997]. More detailed analysis of
the partial application node crossover (see Section 3.3) is
underway.

With a “curried” format parse tree, each function applica-
tion has two branches: a function and an argument. Figure 2
is the curried format parse tree for the IF-TEST-THEN-
ELSE function. The @ denotes an application node and is a
possible crossover location.The function (IF (TEST-exp)
(THEN-exp) (ELSE-exp)) has two branches: (IF (TEST-exp)
(THEN-exp)) and (ELSE-exp). The first function branch, (IF
(TEST-exp) (THEN-exp)), also has two branches: (IF
(TEST-exp)) and (THEN-exp). The (IF (TEST-exp) also has
two branches: IF and (TEST-exp).

When creating the curried format parse tree, we expand
the tree in a depth-first-right-first manner, i.e. we complete
the creation of the argument subtree before start working on
the function branch subtree. In the IF-TEST-THEN-ELSE
parse tree example, we first create the ELSE-exp subtree,
then the THEN-exp subtree, then the TEST-exp subtree. If
any of the subtree creation fails, the creator will call the type
system to select another function (other than IF-TEST-
THEN-ELSE) to regenerate a new tree.

Figure 2: Curried format parse tree for the IF-TEST-
THEN-ELSE function.

3.2 Evaluator
The system generates expression-based programs (-calcu-
lus). The benefits of using expression-based programs to rep-
resent solutions in GP are discussed in [Clack and Yu, 1997].
Here, we describe the abstract syntax of our programs:

exp :: c constant
| x identifier
| f built-in function
| exp1 exp2 application of one exp to another
| λ x . exp lambda abstraction

Constants and identifiers are given in the terminal set while
functions are provided in the function set. Application of
expressions and λ abstractions are constructed by the creator.

To evaluate a generated program, the program is first con-
verted into a abstraction by wrapping it with notation
and input variables which have been made available to the
program as members of the terminal set. The evaluator then
applies test data to the abstraction, one at a time, to pro-
duce some outputs. The application of the abstraction to
the test data is a process of syntax transformation. It involves

@

@

@

IF TEST-exp

THEN-exp

ELSE-exp

λ

λ λ

λ
λ

a sequence of applications of β and δ reduction rules [Pey-
ton-Jones, 1987 Ch. 2]. We first describe these reduction
rules:

• rule is the function application rule. It produces a new
instance of the function body by substituting the arguments
of the function with the formal parameters.

(λx.E) M => E [M/x].
The notation E[M/x] means the expression E with M sub-

stituted for free occurrences of x.

• rules are rules associated with the functions in the func-
tion set. For example, the IF-THEN-ELSE function has
one rule to describe how it should be transformed.

When applying the β-rule, we perform normal order evalua-
tion: the leftmost outermost expression is evaluated first, i.e.
exp1 is evaluated before exp2. Intuitively, this means the
body of a function is evaluated first and the arguments are
evaluated when necessary. If a program terminates, the order
of evaluation should not make any difference; they should
reach the same result. Unfortunately, not all programs termi-
nate. The Church-Rosser Theorem II says normal order eval-
uation is the most likely to terminate [Rosser, 1982]. We
therefore prefer normal order evaluation rather than any
other evaluation order.

The following is an example to demonstrate the operation
of the program evaluation; here x is a program input variable
existing in the terminal set.

(λ x (+ x (λ #1 (* #1 #1)) 5)) 10
β=> (+ 10 (λ #1 (* #1 #1)) 5)
β=> (+ 10 (* 5 5))
δ=> (+ 10 25)
δ=> 35

3.3 Evolver
The evolver performs three kinds of genetic operation: appli-
cation node crossover, λ modular crossover and mutation.
We first explain the crossover location selection scheme and
the point-typing constraints the system uses. The three oper-
ators are then presented.

3.3.1 Crossover Location Selection
A crossover location selection scheme which biases toward
root crossover is used. This selection scheme is designed to
accommodate the premature convergence of the root nodes
which we have observed during our experiments and has
been reported in [Gathercole and Ross 1996]. In brief, due to
the restriction of tree depth, the standard crossover operator
is not able to swap all possible pairs of subtrees between two
parents and still produce “legal” trees. Instead, most of the
genetic exchanges take place near the leaf nodes, with nodes
near the root left unchanged. The premature convergence of
the root node can severely impair GP performance if the
behavior of a program depends highly on the program root
node. This is the case with the “map” program [Clack and Yu
1997]. We modified the crossover selection scheme so that

β

δ

program root nodes have more opportunities to be replaced
with new nodes.

To select a crossover point, program trees are traversed in
a depth-first, right-to-left manner. Moreover, the possibility
of the node selection decreases exponentially, i.e. 50%, 25%,
12.5%, 6.25% and so on. Once the crossover node in the first
program tree is selected, the same scheme is used to select a
crossover location in the second parent program tree. This
selection scheme has produced the expected effect of more
diversified root nodes in the program populations. Currently,
we are investigating other effects the scheme might have
brought into the GP process.

3.3.2 Point-Typing Structure-Preserving Crossover
We perform the “point-typing” structure-preserving cross-
over [Koza, 1994, pp. 532] in our programs: a point is first
selected from the first parent program; depending on the
source of the node (the main program or a λ abstraction), a
node with the same source is selected from the second parent
program. This assures the produced offspring has valid syn-
tax.

Two other constraints are imposed when performing
crossover: type constraint and maximum tree depth con-
straint. After a node is selected from the first parent program
using the described scheme, the type and the depth of the
node are used to select a crossover point in the second par-
ent; we use the same selection scheme to find a node whose
type value unifies with the given type value and whose depth
is such that the new tree will satisfy the maximum tree depth.

3.3.3 Application Node Crossover
Application node crossover can be performed on full appli-
cation or partial application nodes appeared in either the
main program body or any λ abstractions. By reference to
the abstract syntax, this means that any occurrence of the
application expression (exp1 exp2) appearing at any
place in one tree is a possible crossover location. We do not
perform crossover on leaf level because it is more akin to
point mutation rather than true crossover.

3.3.4 λ Modular Crossover
λ modular crossover swaps a λ abstraction in one program
with a λ abstraction in another program. We view λ abstrac-
tions as structured building blocks and crossover is allowed
be performed on them like other program segments. This
operation is similar to the modular crossover in [Kinnear, Jr.,
1994]. However, with the benefit of the type system, there is
no problem of arguments mismatching in our implementa-
tion. Each λ abstraction is annotated with a type (see Section
4) which indicates the number and type of its arguments. The
type system assures that λ modular crossover is only per-
formed using two λ abstractions with the same number and
type of arguments.

3.3.5 Mutation
Mutation is straight-forward: we first use the described
scheme to choose a mutation node in the tree; a new subtree

is created whose root has the same return type as the muta-
tion node, with tree depth that would make the new tree sat-
isfy the maximum tree depth parameter. The new subtree
then replaces the mutation node subtree.

Mutation can be performed on partial or full application
nodes. Our creator is capable of creating subtrees whose root
returns a function type.

4. Type System
Our PolyGP system employs a type system to perform type
checking so that invalid programs are never created. We
define a syntax of valid types which annotate the nodes and
leaves of program parse trees. This type information is used
by the type system to validate program parse trees.

4.1 Type Syntax
Our abstract type syntax is given by:

σ :: τ built-in type
 | υ type variable
 | σ1 −> σ2 function type
 | [σ1] list of elements all of type σ1
 | (σ1 −> σ2) bracketed function type

τ :: int | string | bool | generici
υ :: dummyi | temporaryi

Every expression in the program may be annotated with a
type:

• Constants such as 0 and identifiers such asx have a type
pre-defined by the user;

• Functions also have pre-defined types (for example, the
function HEAD has the type [a] -> a) where a is a
dummy type variable;

• Applications have a type given as follows:

if exp1 has type (σ1 −> σ2)
and exp2 has type σ1
then (exp1 exp2) has type σ2
else there is a type error;

• λ abstractions have the following type:

if x has type σ1
and exp has type σ2
then (λ x.exp) has type σ1 -> σ2.

Our type system also supports higher-order functions whose
types are indicated by the use of the bracketed function type.

The type system supports three kinds of type variables:
Generic Type Variables: The “generic” types are used to
specify the polymorphic feature of evolved programs such as
LENGTH, which has type [G1] -> Int where G1 is a
generic type variable. While the program is being evolved a
generic type variable must not be instantiated: it therefore
takes on the role of a built-in type.

Dummy and Temporary Type Variables: Dummy types
are used to express polymorphism of functions in the func-
tion set and terminals in the terminal set: whenever they are
used in a parse tree they must be instantiated to some other
type (and the type must not involve a dummy type, but it
may be a generic or temporary type). Note that if a dummy
type variable occurs more than once in the type, then when
the dummy type is instantiated it is necessary to instantiate
all occurrences to the same type. This is done through the
process of contextual instantiation which will be discussed
in section 4.3. Typically, the constraints imposed by the
return type of the functions mean that the dummy type will
be instantiated as a known type. However, there are also situ-
ations where there are no such constraints and so the dummy
type is instantiated as a new temporary type variable. This
delayed binding of temporary type variables provides greater
flexibility and generality; essentially it supports a form of
polymorphism within the parse tree as it is being created.

Within a parse tree, temporary type variables must be
instantiated consistently to maintain the legality of the tree.
A global type environment is maintained for each parse tree
during the process of tree generation: this environment
records how each temporary type variable is instantiated.
Once a temporary type variable is instantiated, all occur-
rences of the same variable in the parse tree are instantiated
to the same type value.

4.2 Unification Algorithm

Our type system uses Robinson’s unification algorithm
[Robinson, 1965] to select functions and terminals whose
return types “unify” with the required type. The unification
algorithm takes two type expressions and determines
whether they unify, i.e. whether they are equivalent in the
context of a particular set of instantiation of type variables
(called a “substitution”, or a “unifier”). If the two type
expressions unify, it returns their most general unifier, other-
wise, it indicates the two type expressions do not unify. A
more detailed description of the unification algorithm can be
found in [Clack and Yu, 1997].

4.3 Contextual Instantiation

Type expressions which contain several occurrences of the
same type variable, like in a -> a, express contextual
dependencies [Cardelli, 1987]. Whenever an occurrence of a
type variable is instantiated, all the other occurrences of the
same type variable must be instantiated to the same type
value. This is done through the process of contextual instan-
tiation: applying a substitution , which contains the instan-
tiation of type variables, to the type expression. The process
is applied in two places in the type system:

• During the instantiation of dummy type variables of a poly-
morphic function. In this case, dummy type variables get
instantiated and bound to type values.

θ

• During the instantiation of temporary type variables in a
parse tree. In this case, temporary type variables get instan-
tiated and bound to type values.

5. Implementation
Both steady-state [Syswerda, 1989] and generational
replacement are implemented in the system.

The system is implemented in Haskell 1.4 [Peterson and
Hammond 1997] using the Glasgow Haskell Compiler ver-
sion 2.02. Haskell is a non-strict purely functional program-
ming language. Non-strict languages evaluate expressions
by need. This is beneficial for our GP system because pro-
gram parse trees normally contain “redundant expressions”
(introns). Not-needed expressions would never have to be
computed. The “purity” feature, however, is a disadvantage
to our system because no side-effects are allowed in a pro-
gram. The population pool (implemented as a list) in the sys-
tem has to be passed around as an argument for updating
during the GP run. Each time the population is updated, a
new copy has to be made. This is a computationally expen-
sive process.

6. Conclusion
We have presented a PolyGP system which utilizes type
information to generate general purpose and type-correct
solutions. The solutions are presented as polymorphic pro-
grams: programs that can take inputs of more than one type
and produce outputs of more than one type. The PolyGP sys-
tem uses 3 different kinds of type variables to represent poly-
morphism: dummy type variables, temporary type variables
and generic type variables. We demonstrate our type system
which handles the instantiation of all of these type variables
so that both the type-correctness and the generality of the
programs are maintained. The code for PolyGP can be found
at http://www.cs.ucl.ac.uk/staff/t.yu/PolyGP.tar.z and an
example of the system applied to the LENGTH function can
be found at http://www.cs.ucl.ac.uk/staff/t.yu/Example.

Acknowledgments
We thank Benjamin Goldberg for his implementation of the
unification algorithm in SML, which the type system is
based on. The first author also likes to thank Amanda Clare
for her comments on the paper.

Bibliography
Cardelli, L. 1987. Basic polymorphic type checking. Science

of Computer Programming. Vol. 8, pp. 147-172.

Clack, C., and Yu, T. 1997. Performance enhanced genetic
programming, Proceedings of the Sixth International
Conference on Evolutionary Programming, Angeline,
P.J., Reynolds, R., McDonnell, J., and Eberhart, R. (eds.),
Springer-Verlag, Berlin, pp.87-100.

Gathercole, C., and Ross, P. (1996). An adverse interaction
between crossover and restricted tree depth in genetic pro-
gramming. Genetic Programming 1996: Proceedings of
the First Annual Conference Genetic Programming.
Koza, J.R., Goldberg, D.E., Fogel, D.B., and Riolo, R.L.
(eds.), MIT Press, Cambridge, MA. pp. 291-296.

Haynes, T.D., Schoenefeld, D.A., and Wainwright, R.L.
1996. Type inheritance in strongly typed genetic program-
ming. Advances in Genetic Programming II, Angeline,
P.J. and Kinnear, Jr., K.E.(eds), MIT Press, Cambridge,
MA, pp. 359-376.

Kinnear, Jr., K. E. 1994. Alternatives in automatic function
definition: A comparison of performance. Advances in
Genetic Programming, K.E. Kinnear, Jr.(ed.), MIT Press,
Cambridge, MA, pp. 119-141.

Koza, J. R. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA.

Koza, J. R. 1994. Genetic Programming II: Automatic Dis-
covery of Reusable Programs. MIT Press, Cambridge,
MA.

Lenat, D. 1984. The role of heuristics in learning by discov-
ery: Three case studies. Machine Learning: An Artificial
Intelligence Approach, Michalske, R., Carbonell, J., and
Mitchell, T. (eds.), chapter 9, Springer-Verlag, pp. 243-
306.

Montana, D. J. 1995. Strongly typed genetic programming.
Evolutionary Computation, Vol. 3:3, pp. 199-230.

Peterson, J., and Hammond, K. editors 1997. Report on the
programming language Haskell, a non-strict purely func-
tional language (version 1.4). Technical Report YALEU/
DCS/RR-1106, Yale University, Department of Computer
Science, 1997.

Peyton-Jones, S. 1987. The Implementation of Functional
Programming Languages. Prentice-Hall International.

Rosser, J.B. 1982. Highlight of the history of the lambda cal-
culus. Proceedings 1982 ACM Conference on LISP and
Functional Programming. ACM, pp. 216-225.

Robinson, J.A. 1965. A machine-oriented logic based on the
resolution principle. Journal of ACM. Vol. 12:1, pp. 23-
49, January.

Syswerda, G. 1989. Uniform crossover in genetic algo-
rithms. Proceedings of the Third International Conference
on Genetic Algorithms and Their Applications, Schaffer,
J.D. (ed.), Morgan Kaufmann, San Mateo, CA, pp. 2-9.

Yu, T., and Clack, C. 1998. Recursion, lambda abstractions
and genetic programming. Genetic Programming 1998:
Proceedings of the Third Annual Conference Genetic Pro-
gramming. (to appear)

