
ABSTRACT

In general, the machine learning process
can be accelerated through the use of
heuristic knowledge about the problem
solution. For example, monomorphic
typed Genetic Programming (GP) uses
type information to reduce the search
space and improve performance. Unfor-
tunately, monomorphic typed GP also
loses the generality of untyped GP: the
generated programs are only suitable
for inputs with the specified type. Poly-
morphic typed GP improves over mono-
morphic and untyped GP by allowing
the type information to be expressed in a
more generic manner, and yet still
imposes constraints on the search space.
This paper describes a polymorphic GP
system which can generate polymorphic
programs: programs which take inputs
of more than one type and produces out-
puts of more than one type. We also
demonstrate its operation through the
generation of the “map” polymorphic
program.

1  Introduction

The use of heuristic knowledge to assist learning is not new
in Artificial Intelligence [Mitchell, Utgoff and Banerji,
1984]. This knowledge facilitates learning in two ways:
when the existence of a solution is not known, the knowl-
edge can guide the system to search one; when a solution is
known to exist, the knowledge can reduce the search space
for the learning system. In the Genetic Programming (GP)
[Koza, 1992] paradigm, type information is one kind of heu-
ristic knowledge that has been adopted to assist learning
[Montana, 1995; Haynes, Wainwright, Sen and Schoenefeld,

1995; Haynes, Schoenefeld and Wainwright, 1996; Clack
and Yu, 1997]. With type constraints, only type-correct pro-
grams are in the search space. The search space is therefore
reduced.

Type constraints can be applied to GP in two different
ways: Monomorphic GP and Polymorphic GP. Monomor-
phic GP uses monomorphic functions and terminals to gen-
erate monomorphic programs. In contrast, polymorphic GP
can generate polymorphic programs using polymorphic
functions and terminals. In the first instance, inputs/outputs
of a programs can only have one type. In the later case, pro-
grams can accept inputs/outputs of more than one type. Poly-
morphic GP therefore generates more general solutions than
those produced by Monomorphic GP.

The generality of polymorphic GP is achieved through
the use of different type variables. Polymorphic functions
and terminals in the function/terminal sets are presented
using dummy type variables or generic type variables if the
functions and terminals are program inputs/outputs related.
Within program parse trees, polymorphism is expressed by
temporary type variables. To state the polymorphic nature of
the generated program, generic type variables are used. We
have developed a formal type system to handle the instantia-
tion of all of these type variables so that both the type-cor-
rectness and the generality of the programs are maintained.

This paper builds on our previous work in [Clack and Yu,
1997]. In this paper, we have further explored the benefits of
polymorphism in GP. We also present our PolyGP system in
greater details. In particular, we explain how our type system
instantiates different type variables to achieve polymor-
phism. Moreover, the system implementation language,
Haskell, is discussed.

The paper is structured as follows: Section 2 discusses
type and polymorphism; Section 3 summarizes related work;
Section 4 explains our system structure; Section 5 presents
the type system; Section 6 discusses the implementation of
the system; Section 7 demonstrates the system through the
generation of the “map” polymorphic program and Section 8
concludes.
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2  Type and Polymorphism
Conventional typed languages, such as Pascal, are based on
the idea that arguments/return values of functions/proce-
dures have an unique type. Such languages are called Mono-
morphic languages. By contrast, Polymorphic languages
allow arguments and return values to have more than one
type. Programs whose inputs and/or outputs have more than
one type are called polymorphic programs.

[Cardelli and Wenger, 1985] has classified polymor-
phism as the following:

Universal polymorphic functions work on a large number of
types (all the types have a given common structure), whereas
ad-hoc polymorphic functions only work on a finite set of
different and potentially unrelated types. In terms of imple-
mentation, a universal polymorphic function executes the
same code for arguments of any admissible types, whereas
an ad-hoc polymorphic function may execute different code
for each type of argument.

Our PolyGP system is currently implemented with one
particular kind of polymorphism: parametric polymorphism.
Parametric polymorphic functions can take arguments of any
types. The functions perform the same kind of work inde-
pendently of the argument types. It is the purest form of pol-
ymorphism. We will extend the system to include other
kinds of polymorphism in the near future.

3  Related Work
Generic functions in Montana’s Strongly Typed Genetic Pro-
gramming (STGP) system [Montana, 1995] provide a form
of parametric polymorphism. Genetic functions are parame-
terized templates that have to be instantiated with actual
parameter values before they can be used. The parameters
can be type parameters, function parameters or value param-
eters. Genetic functions with type parameters are polymor-
phic since the type parameters can be instantiated with many
different type values.

In STGP, functions in a function set may contain generic
functions. To be used in a parse tree, a generic function has
to be instantiated by specifying the argument and return
types of the generic function. Instantiating a generic function
can be viewed as making a new copy of the generic function
with specified argument/return types. Instantiated generic
functions are therefore monomorphic functions (even the
specified argument/return types are generic data types,
which we will discuss in more details later).

Montana uses a table-lookup approach to create parse
trees using monomorphic functions and terminals. If a func-
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tion takes an argument of type X then this implicitly con-
strains its child to produce a value of type X. There is a type
possibility table which provides type constraints according
to the depth in the tree where type matching occurs: this
extra information constrains the choice of function to create
nodes in the tree to ensure that the tree can grow to its maxi-
mum depth. During the creation of the initial population,
each parse tree is grown top-down by choosing functions and
terminals at random within the constraints of the types in the
table.   In this way, the initial population only consists of
parse trees that are type-correct. (Similar rules are applied
during the genetic operations of crossover and mutation).

To generate generic programs in STGP, generic data
types are introduced. Generic programs have generic data
types as inputs/outputs types. During the generation of the
generic programs, generic data types are treated as built-in
types. Generic functions that are instantiated with generic
data types are therefore also monomorphic. The Generic
data types are not instantiated until the generic program is
executed. Since generic data types can be instantiated with
many different type values, the generated programs are
generic programs.

Our PolyGP is similar to STGP in that it supports para-
metric polymorphism but with the following distinctions:

• we use a type unification algorithm rather than table-
lookup mechanism to instantiate type variables.

• our type system supports higher-order functions: functions
that take functions as arguments and/or return functions as
outputs.

• we use temporary type variables to support polymorphism
within program parse tree as it is being created.

• we use generic type variables to represent polymorphism
of the generated programs. However, unlike generic data
types in STGP, generic type variables are never instanti-
ated. Polymorphic programs generated by our system are
type-correct and are guaranteed to be executed without any
run-time type errors.

4  System Structure

The system has four major components: Creator, Evaluator,
Evolvor and Type System. Figure.1 illustrates the high-level
structure of the system. The creator interacts with the type
system to select type-matched functions and terminals to cre-
ate type-correct programs. Evaluator evaluates each program
using test data as inputs to produce some outputs. The out-
puts are passed over to the fitness function which assigns fit-
ness value for the program according to the correctness of
the outputs. If the fitness value satisfies the requirement, the
system stops and returns the program with the satisfactory
fitness value as the solution. Otherwise, evolvor is invoked
to perform genetic operations to create new programs. The
test-select-reproduction process continues until a satisfactory
program is found.



An extra component of our PolyGP system, compared
with the standard GP system, is the type system. The type
system is used during program creation and evolution (cross-
over and mutation). The purpose of the type system is to
ensure that all programs created are type-correct. To use the
type system, users have to specify a type signature for each
function and terminal in the function and terminal sets. The
type syntax and the details of the type system will be given
in the next section.

Figure 1: high-level system structure

4.1 Creator
The programs created are represented in parse trees. A parse
tree is grown from the top node downwards. There is a
required type for the top node of the tree. The creator
invokes the type system to select a function whose return
type unifies with the required type. The selected function
will require arguments to be created at the next (lower) level
in the tree: there will be type requirements for each of those
arguments, and once again the type system is used to select a
function whose return type unifies with the new required
type.

At any point, if the type system fails to find a function
whose return type unifies with the required type, the creator
stops growing the tree by calling type system to select a ter-
minal whose type unifies with the required type. This
approach of random selection of functions and terminals to
create type-correct parse trees works well most of the time.
We ran an experiment using this approach to create 100
parse trees each with 32 nodes. In 10 runs of the experiment,
the average number of nodes failed was 444. The success
rate was 85%.

To handle the small portion of failing cases, we imple-
ment a backtracking mechanism. When the creation of a par-
ticular subtree fails, we backtrack to the particular node and
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regenerate a new subtree. This is an overhead of using our
type system but, considering the small percentage failure
rate, it's a price worth paying.

Our program parse trees are represented in “curried”
form (a function is applied to one argument at a time), thus
allowing partial application to be expressed. The advantages
of such a representation is to provide more crossover loca-
tions so that more diverse new programs can be created.
With more diverse programs in the population pool, we hope
that GP can find solution faster. The result of our initial
experiment is consistent with this conjecture [Clack and Yu
1997].

With “curried” format parse tree, each function applica-
tion has two branches: a function and an argument. Figure 2
is the curried format parse tree for IF-TEST-THEN-ELSE
function. The function (IF (TEST-exp) (THEN-exp) (ELSE-
exp)) has two branches: (IF (TEST-exp) (THEN-exp)) and
(ELSE-exp). The first function branch, (IF (TEST-exp)
(THEN-exp)), also has two branches: (IF (THEN-exp)) and
(THEN-exp). The (IF (THEN-exp) also has two branches: IF
and (THEN-exp).

Figure 2: Curried format parse tree for the IF-TEST-THEN-
ELSE function.

When creating the curried format parse tree, we expand the
tree in a depth-first-right-first manner, i.e. we complete the
creation of the argument subtree before start working on the
function branch subtree. In the IF-TEST-THEN-ELSE parse
tree example, we first create ELSE-exp subtree, then THEN-
exp subtree, then TEST-exp subtree. If any of the subtrees
creation fails, The creator will call the type system to select
another function (other than IF-TEST-THEN-ELSE) to
regenerate a new tree.

4.2 Evaluator
The system generates expression-based programs ( -calcu-
lus). The benefits of using expression-based programs to rep-
resent solutions in GP is discussed in [Clack and Yu, 1997].
Here, we briefly describe the abstract syntax of our pro-
grams:

exp ::  c constant
| x identifier
| f function
| exp1 exp2 application of one exp to another

@

@

@

IF TEST-exp

THEN-exp

ELSE-exp

λ



Constants and identifiers are provided in the terminal set
while functions are provided in the function set. Application
of expressions are constructed by the creator. Currently, we
are working on incorporating  abstractions in our program
syntax to support hierarchical learning in polymorphic
genetic programming [Yu and Clack, 1997].

The generated program is converted into a  abstraction
by wrapping it with  notation and input variables. The
evaluator then applies test data to the  abstraction, one at a
time, to produce some outputs. The evaluation of the appli-
cation of the  abstraction to the test data is a process of
syntax transformation. It involves a sequence of application
of some reduction rules: α, β and δ reduction rules. We first
describe these reduction rules:
•  rule is a renaming rule. It simply renames a variable with

a unique new name.
λx.E => λy.E [y/x], y is an unique new name.

•  rule is the application rule. It substitutes the argument
with test data in the program.

(λx.E) test-data => E [test-data/x].
•  rules are rules associated with each functions in the func-

tion set. For example, the IF-THEN-ELSE function has
one rule to describe how it should be transformed.

Figure 3 shows the syntax transformation of our program
using the rules.

Figure 3: syntax transformation of our program
When applying β-rule, we perform normal order evaluation:
e1 is evaluated before e2. If a program terminates, the order
of evaluation won’t make any difference; they should reach
the same result. Unfortunately, not all programs terminate.
Church-Rosser Theorem II says normal order evaluation is
the most likely to terminate [Rosser, 1982]. We therefore
prefer normal order evaluation than other evaluation order.
Recursion: Our treatment of recursion is very simple. We
give a name to the program that we are growing; at any point
within the parse tree it can use its own name just as if it were
a function.

Unfortunately, there will always be the problem of infi-
nite recursion. It is impossible to know at tree-generation
time which recursive call will stop and which will not (c.f.
the Halting Problem) We therefore use a restricted form of
recursion, which limits the number of recursive calls to
avoid infinite loops [Brave, 1996]. In our experiments, we
limit the number of recursive calls by the length of the input
list.During the evaluation of a program, a variable is
increased every time a recursive called is made. When the
limit is reached, the evaluator stops evaluating the program
and aborts with a flag indicating that the program may not
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eval (fun e1 e2) = δ-rule (eval e1)(eval e2)
eval (apply e1 e2) = β-rule e1 e2
eval (lambda x e) = (lambda x e)

halt. This flag is used in the computation of the fitness value
of the program.
Run-Time-Errors: The evaluator handles two kinds of run-
time errors. Both errors are reflected in the fitness value of
the program:
• Non-terminating recursion: When this error occurs, we flag

an error and cause the program evaluation to terminate
immediately.

• Taking the HEAD or TAIL of an empty list: When this
error occurs, we return a default type value for the
expected type and keep on evaluating the program. We do
so because we believe that even trees with this type of error
may still contain good genetic material. The only way to
reuse these good genetic building block is to complete the
evaluation and score the program accordingly. The default
type values are listed in [Clack and Yu, 1997].

4.3 Evolvor
The evolvor performs two genetic operations:
Crossover: The system restricts crossover to be performed
on application nodes only (these include full application and
partial application nodes). This is to promote the recombin-
ing of large structures. Crossover at the leaf level is more
akin to point mutation rather than true crossover. By refer-
ence to our abstract syntax, this means that any occurrence
of the application expression (exp1 exp2) appearing at
any place in one tree is a possible crossover location.

When performing crossover, we first select a crossover
node from one parent. The return type with the depth of the
node is passed over to the second parent to select another
crossover node. In the second parent tree, a crossover node
will be selected according to two criteria:
•  Its return type value must unify with the given return type

value. There is one extra constraint when performing type
unification on crossover node. This constraint prevents
type-correct but syntax-incorrect (in particular function
provided with wrong number of argument) programs to be
generated. We will explain the constraint using an example
in section 8.

•  Its depth must be such that the new tree will satisfy the
maximum tree depth parameter.

Mutation: Mutation is straight-forward: we first choose a
mutation node in the tree randomly; A new subtree is created
whose root has the same return type as the mutation node
with tree depth that would make the new tree satisfies the
maximum tree depth parameter. The new subtree then
replaces the mutation node subtree.

Like crossover, mutation can be performed on either par-
tial or full application nodes. Our creator is capable of creat-
ing subtrees whose root returns a function type.

5  Type System
Our PolyGP system needs a type system to check that
invalid parse trees are never created. We define a syntax of



valid types which annotate the nodes and leaves of program
parse trees. This type information is used by the type system
to validate program parse trees.

5.1 Type Syntax
Our abstract type syntax is given by:

σ :: τ built-in type
      | υ type variable
      | σ1 −> σ2 function type
      | [σ1] list of elements all of type σ1
      | (σ1 −> σ2) bracketed function type

τ :: int | string | bool | generici
υ :: dummyi | temporaryi

Every expression in the program may be annotated with a
type:
• Constants such as 0 and identifiers such as x have a type

pre-defined by the user;
• Functions also have pre-defined types (for example, the

function HEAD has the type [α] -> α);
• Applications have a type given as follows:

if exp1 has type (σ1 −> σ2)
and exp2 has type σ1
then (exp1 exp2) has type σ2
else there is a type error.

Our type system also supports higher-order functions.
Higher-order functions are indicated by the use of the brack-
eted function type. The brackets can also be used to indicate
the use of a function as a return type (though this is not
strictly necessary).

Our type system supports 3 kinds of type variables:
Generic Type Variables: The “generic” types are used
when evolving polymorphic programs such as MAP, which
has type (G1->G2) -> [G1] -> [G2] where G1 and
G2 are generic type variables. While the program is being
evolved the generic type variable must not be instantiated: it
therefore takes on the role of a built-in type.
Dummy and Temporary Type Variables: Dummy types
are those which express the polymorphism of functions in
the function set and terminals in the terminal set: whenever
they are used in a parse tree they must be instantiated to
some other type (and the type must not involve a dummy
type). Note that if a dummy type variable occurs more than
once in the type, then when the dummy type is instantiated it
is necessary to instantiate all occurrences to the same type.
This is done through the process of contextual instantiation
which will be discussed in section 5.3. Typically, the con-
straints imposed by the target type of the program being
evolved mean that the dummy type will be instantiated as a
known type. However, there are also situations where there
are no such constraints and so the dummy type is instantiated
as a new temporary type variable. This delay binding of tem-
porary type variables provides greater flexibility and gener-

ality; essentially it supports a form of polymorphism within
the parse tree as it is being created.

Within a parse tree, temporary type variables must be
instantiated consistently to maintain the legality of the tree.
One tricky situation involves the unification of a dummy
type variable and a temporary type variable. In this case, the
dummy type variable is first instantiated to a unique tempo-
rary type variable before unifying with the other temporary
type variable. A global type environment is maintained for
each parse tree during the process of tree generation: this
environment records how each temporary type variable is
instantiated. Once a temporary type variable is instantiated,
all occurrences of the same variable in the parse tree are
instantiated to the same type.

5.2 Unification Algorithm
Our type system uses Robinson’s unification algorithm
[Robinson, 1965] to select functions and terminals whose
return types “unify” with the required type. We now give a
brief explanation of the unification algorithm.

The unification algorithm takes two types and determines
whether they unify, i.e. whether they are equivalent in the
context of a particular set of instantiation of type variables
(called a “substitution”, or a “unifier”).   If the two type
expressions unify, it returns their most general unifier, other-
wise it flags an error.
• A substitution, , is a finite set (possible empty) of pairs of

the form (Xi, ti) where Xi is a type variable and ti is a type
value or a type variable. For example:  = {(a, int)}.

• The result of applying a substitution to a type A, denoted
by A , is the type obtained by replacing every occurrence
of X in A by t, for each pair (X, t) in . For example:
α -> α {(α, int)}   =   int -> int

• Two types A and B unify if there exists a substitution
which makes the types identical A  = B . For example, if
A = T1-> int and B = [string] -> T2, A and B
unify with  ={(T1, [string]),(T2, int)}

• There may be more than one substitution which unifies two
types. The “most general unifier” of two types A and B is a
substitution  that unifies A and B such that A  is more
general than any other common instance of A and B.   For
example, if A 1 = T1 -> int and A 2 = int ->
int, then A 1 is more general than A 2 and 1 is the
most general unifier.

5.3 Contextual Instantiation
Type expressions which contain several occurrences of the
same type variable, like in α -> α, express contextual
dependencies [Cardelli, 1987]. Whenever an occurrence of a
type variable is instantiated, all the other occurrences of the
same type variable must be instantiated to the same value.
This is done through the process of contextual instantiation:
applying substitution , which contains the instantiation of
type variables, to the type expression. The process is applied
in two places in the type system:
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• During the instantiation of dummy type variables of a poly-
morphic function. In this case, dummy type variables get
instantiated and bound to type values.

• During the instantiation of temporary type variables in a
parse tree. In this case, temporary type variables get instan-
tiated and bound to type values.

6  Implementation
In this section we give details of our implementation of the
system. First we describe our genetic algorithms and then we
discuss the language we used to implement the system.

6.1 Genetic Algorithms
We use steady-state replacement [Syswerda, 1989] to per-
form population updates. Initially, we create a population
with a specified size. Within the population, every tree is
unique. During evolution, we select two trees to perform
crossover. The system ensures that the newly created tree is
unique before putting it back into the same population pool
to replace the tree with a lowest fitness score. The size of the
population therefore remains constant. The advantage of
steady-state replacement is that a tree with a good fitness
score is immediately available as a parent for reproduction
rather than having to wait until the next generation.

The scheme we use to select parents for reproduction is
exponential fitness normalization [Cox, Davis and Qiu,
1991]. This means:
• We use rank selection instead of fitness-proportionate

selection, and
• The probability of selecting the n-th best individual is
Parent-Scalar times the probability of selecting the
(n-1)-th best individual. The Parent-Scalar is a
parameter provided by users.

6.2 Programming Language
The system is implemented in Haskell 1.4 using Glasgow
Haskell Compiler version 2.02. Haskell is a non-strict purely
functional programming language. Non-strict languages
evaluate expressions by need. This is beneficial for our GP
system because program parse trees normally contain
“redundant expressions” (introns). When there is run-time
error (such as recursion error) in a parse tree, not-yet-needed
expressions would never be computed. The “purity” feature
of Haskell, however, slows down our GP system because it
does not support global storage for population pool. Instead,
the population pool (implemented as a list) has to be passed
around as an argument for updating during the GP run.

Haskell is also a typeful programming language [Hudak,
Peterson and Fasel, 1997]. We have benefited from Haskell’s
rich type system in the following ways:
• Our expression-based language and type language are

defined using “User-Defined Recursive Type”. With recur-
sive types, we can implement recursive functions that use
the types. Figure 5 is the recursive function “applySub”,

which performs the contextual instantiation operation for a
type expression.

• A user-defined type can declare to be a derived type of any
existing type classes supported by the Haskell language.
Haskell will automatically generate codes to perform the
type classes associated operation for the user-defined type.
Figure 4 is our TypeExp type declaration. TypeExp is an
user-defined recursive type which is also derived from
“Eq” and “Text” type classes. Haskell would generate
“==” and “print” functions for our TypeExp type.

Figure 4: TypeExp type declaration

Figure 5: the applySub recursive function

7  The MAP Polymorphic Program
This section presents a worked example, the MAP polymor-
phic program, to demonstrate the operation of our system.
Problem Description: The MAP program takes two argu-
ments, a function F and a list L, and returns the list obtained
by applying F to each element of L.
Output Type: The output has generic type [G2].
Arguments Type: The argument F has generic type G1-
>G2 and the argument L has generic type [G1].
Terminal Set:

T = {L:: [G1], NIL:: [α], F:: (G1->G2)}

Function Set:
F = {HEAD:: [α] -> α,

IF-THEN-ELSE:: bool -> α -> α -> α,
TAIL :: [α] -> [α],
CONS :: α ->[α] -> [α],

data TypeExp = IntNum |
Boolean |
Str |
ListType TypeExp |
Arrow TypeExp TypeExp |
Brackets TypeExp |
TempType String |
DummyType String |
GenType String |
deriving (Eq, Text)

applySub :: Theta -> TypeExp -> TypeExp
applySub theta typeExp =

case typeExp of {
(TempType v) -> replaceVar v theta;
(DummyType v) -> replaceDummy v theta;
(ListType t) -> ListType (applySub theta t);
(Arrow t1 t2) -> Arrow (applySub theta t1)

(applySub theta t2);
(Brackets e) -> Brackets (applySub theta e);
_ -> typeExp
}



NULL :: [α] -> bool,
F :: G1 -> G2,
MAP :: (G1->G2)-> [G1] -> [G2]}

Notice that polymorphic functions and terminals are nor-
mally expressed using dummy type variables, such as α.
However, if they are program arguments/outputs, they use
generic type variables, such as G1, to express polymor-
phism. During the program parse trees creation, dummy type
variables are instantiated while generic type variables are
never instantiated.
Maximum Tree Depth: 3.
Program Creation: Creator calls the type system to select a
function whose return type unifies with the MAP program
return type: [G2]. The IF-THEN-ELSE function is
selected, α is instantiated to [G2] and the contextual instanti-
ation process is applied to its arguments type:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2] ARG2[G2])[G2]->[G2]ARG3[G2])[G2]

The system first expands the right branch of the curried pro-
gram, i.e. ARG3. The type system selects MAP whose return
type [G2] unifies with the type of ARG3:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2]ARG2[G2])[G2]->[G2]((MAP(G1->G2)->[G1]-
>[G2] ARG4(G1->G2))[G1]->[G2]ARG5[G1])[G2])[G2]

The depth-first-right-first approach makes ARG5 the next
node to be expanded. Since we have reached the maximum
tree depth, we can only select terminals. L is selected by the
type system:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2]ARG2[G2])[G2]->[G2]((MAP(G1->G2)->[G1]-
>[G2] ARG4(G1->G2))[G1]->[G2]L[G1])[G2])[G2]

The next node to be expanded is ARG4 whose type is a
higher-order function type (G1->G2). We are in leaf level
now. The only terminal that unifies with the expected type is
F:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2]ARG2[G2])[G2]->[G2]((MAP(G1->G2)->[G1]-
>[G2] F(G1->G2))[G1]->[G2]L[G1])[G2])[G2]

The next node to be expanded is ARG2. The type system
selects IF-THEN-ELSE whose dummy type variable α is
instantiated to [G2]:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2](((IF-THEN-ELSEbool->[G2]->[G2]->[G2]

ARG6bool)[G2]->[G2]->[G2]ARG7[G2])[G2]->[G2]

ARG8[G2])[G2]((MAP(G1->G2)->[G1]->[G2]F(G1-
>G2))[G1]->[G2]L[G1])[G2])[G2]

The next node to be expanded is ARG8 whose type is [G2].
We have again reached the maximum tree depth and have to
select terminals. The only choice is NIL:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2](((IF-THEN-ELSEbool->[G2]->[G2]->[G2]

ARG6bool)[G2]->[G2]->[G2]ARG7[G2])[G2]->[G2]

NIL[G2])[G2]((MAP(G1->G2)->[G1]->[G2]F(G1-
>G2))[G1]->[G2]L[G1])[G2])[G2]

The next node to be expanded is ARG7 whose type is [G2].
We have again reached the maximum tree depth and have to
select terminals. The only choice is NIL:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2](((IF-THEN-ELSEbool->[G2]->[G2]->[G2]

ARG6bool)[G2]->[G2]->[G2]NIL[G2])[G2]->[G2]

NIL[G2])[G2]((MAP(G1->G2)->[G1]->[G2]F(G1-
>G2))[G1]->[G2]L[G1])[G2])[G2]

The next node to be expanded is ARG6 whose type is bool.
Unfortunately there is no terminal whose type unifies with
bool. We have to back track to select another function to
replace IF-THEN-ELSE. The system selects HEAD:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2](HEAD[[G2]]->[G2]ARG9[[G2]])[G2])[G2]-
>[G2] ((MAP(G1->G2)->[G1]->[G2]F(G1->G2))[G1]-
>[G2] L[G1])[G2])[G2]

The next node to be expanded is ARG9 whose type is [[G1]].
The only terminal whose type unifies with the required type
is NIL whose dummy type variable α is instantiated to [G2]:

(((IFbool->[G2]->[G2]->[G2]ARG1bool)[G2]->[G2]-
>[G2](HEAD[[G2]]->[G2]NIL[[G2]])[G2])[G2]->[G2]

((MAP(G1->G2)->[G1]->[G2]F(G1->G2))[G1]->[G2]

L[G1])[G2])[G2]

The next node to be expanded is ARG1 which has type bool.
The only function whose return type unifies with the
required type is NULL. Because there is no contextual
dependency between the argument and return type, the
dummy type variable α is instantiated to a temporary type
variable T1 which is allowed to be bound to other type later:

(((IFbool->[G2]->[G2]->[G2](NULL[T1]->bool

ARG10[T1])bool)[G2]->[G2]->[G2](HEAD[[G2]]-
>[G2]NIL[[G2]])[G2])[G2]->[G2] ((MAP(G1->G2)-
>[G1]->[G2]F(G1->G2))[G1]->[G2] L[G1])[G2])[G2]

The next and last node to be expanded is ARG10. We are in
the leaf level and both L and NIL unify with the required
type [T1]. The type system selects NIL. Note that dummy
type variable is not allowed to perform unification algorithm
with temporary type variable. The dummy type variable α is
first instantiated to an unique temporary type variable T2. T2
then unifies with T1, i.e. T1 is bound to T2.

(((IFbool->[G2]->[G2]->[G2](NULL[T2]->bool

NIL[T2])bool)[G2]->[G2]->[G2](HEAD[[G2]]-
>[G2]NIL[[G2]])[G2])[G2]->[G2]((MAP(G1->G2)-
>[G1]->[G2]F(G1->G2))[G1]->[G2] L[G1])[G2])[G2]

The generated program is polymorphic since its arguments L
and F can be of more than one type. The program also con-
tains a temporary type variable T2. One important note is
that after the completion of the program generation, neither
of the type variables will ever be instantiated. As long as the



inputs L and F exhibit the constraints imposed by the generic
type variables, i.e. L has the same type as the argument type
of F, MAP will generate output that is the same type as the
return type of the function F. Programs generated by the
PolyGP system are guaranteed to have no run-time type
errors.
Crossover: We use the parse tree generated in the previous
section as the first parent:

(((IFbool->[G2]->[G2]->[G2](NULL[T2]->bool

NIL[T2])bool)[G2]->[G2]->[G2](HEAD[[G2]]-
>[G2]NIL[[G2]])[G2])[G2]->[G2]((MAP(G1->G2)-
>[G1]->[G2]F(G1->G2))[G1]->[G2] L[G1])[G2])[G2]

The second parent is given below. We made the program
with return type T1 to help to demonstrate our crossover
operation. Note the double-underlined type in both programs
indicates the partial application node where the crossover
operation occurs.

(((IFbool->T1->T1->T1(NULL[G1]->boolL[G1])
bool)T1->T1->T1(HEAD[T1]->T1NIL[T1])T1)T1->T1

(HEAD[T1]->T1NIL[T1])T1)T1

The following program is generated by the crossover opera-
tion. Note that T1 is instantiated to [G2].

(((IFbool->[G2]->[G2]->[G2](NULL[G1]->bool

L[G1])bool)[G2]->[G2]->[G2](HEAD[[G2]]-
>[G2]NIL[[G2]])[G2])[G2]->[G2]((MAP(G1->G2)-
>[G1]->[G2]F(G1->G2))[G1]->[G2] L[G1])[G2])[G2]

When performing crossover, we don’t permit temporary type
variables to unify with function types. This is to prevent the
generation of syntax incorrect programs. For example, if we
perform crossover on nodes whose types are in strike-
through style (T1 is instantiated to [G1]->[G2]), a type-cor-
rect yet syntax incorrect program will be generated:

(((IFbool->[G2]->[G2]->[G2](NULL[T2]->bool

NIL[T2])bool)[G2]->[G2]->[G2](HEAD[[G2]]-
>[G2]NIL[[G2]])[G2])[G2]->[G2]((HEAD[(G1->G2)]-
>(G1->G2)NIL(G1->G2))[G1]->[G2] L[G1])[G2])[G2]

The underlined expression is syntactically incorrect. HEAD
should only take one argument but is provided with two. Our
evaluator will report a run-time error.
Mutation: Again, we use the same parse tree to demonstrate
our mutation operation:

(((IFbool->[G2]->[G2]->[G2](NULL[T2]->bool

NIL[T2])bool)[G2]->[G2]->[G2](HEAD[[G2]]-
>[G2]NIL[[G2]])[G2])[G2]->[G2]((MAP(G1->G2)-
>[G1]->[G2]F(G1->G2))[G1]->[G2] L[G1])[G2])[G2]

The creator generates a subtree whose root has the double-
lined type [G2]->[G2]:

(CONSG2->[G2]->[G2](HEAD[G2]->G2NIL[G2])G2)
[G2]->[G2]

The new tree is used to replace the mutation node subtree.

(((CONSG2->[G2]->[G2](HEAD[G2]->G2NIL[G2])G2)
[G2]->[G2]((MAP(G1->G2)->[G1]->[G2]F(G1->G2))
[G1]->[G2] L[G1])[G2])[G2]

8  Conclusion
We have presented a PolyGP system which utilizes type
information to generate general and type-correct solutions.
The solutions are presented as polymorphic programs: pro-
grams that can take inputs of more than one type and pro-
duce outputs of more than one type. Our PolyGP system uses
3 different kinds of type variables to represent polymor-
phism: dummy type variables, temporary type variables and
generic type variables. We demonstrate our type system
which handles the instantiation of all of these type variables
so that both the type-correctness and the generality of the
programs are maintained.
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