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Summary. We introduce a new method for sparse principal component analysis, based on
the aggregation of eigenvector information from carefully selected axis-aligned random pro-
jections of the sample covariance matrix. Unlike most alternative approaches, our algorithm
is non-iterative, so it is not vulnerable to a bad choice of initialization. We provide theoretical
guarantees under which our principal subspace estimator can attain the minimax optimal rate of
convergence in polynomial time. In addition, our theory provides a more refined understanding of
the statistical and computational trade-off in the problem of sparse principal component estima-
tion, revealing a subtle interplay between the effective sample size and the number of random
projections that are required to achieve the minimax optimal rate. Numerical studies provide
further insight into the procedure and confirm its highly competitive finite sample performance.
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1. Introduction

Principal component analysis (PCA) is one of the most widely used techniques for dimension-
ality reduction in statistics, image processing and many other fields. The aim is to project the
data along directions that explain the greatest proportion of the variance in the population. In
the simplest setting where we seek a single, univariate projection of our data, we may estimate
this optimal direction by computing the leading eigenvector of the sample covariance matrix.

Despite its successes and enormous popularity, it has been well known for a decade or more
that PCA breaks down as soon as the dimensionality p of the data is of the same order as
the sample size n. More precisely, suppose that X1, : : : , Xn ∼IID Np.0, Σ/, with p � 2, are ob-
servations from a Gaussian distribution with a spiked covariance matrix Σ= Ip + v1vT

1 whose
leading eigenvector is v1 ∈Sp−1 :={v∈Rp :‖v‖2 =1}, and let v̂1 denote the leading unit length
eigenvector of the sample covariance matrix Σ̂ :=n−1Σn

i=1XiX
T
i . Then Johnstone and Lu (2009)

and Paul (2007) showed that v̂1 is a consistent estimator of v1, i.e. |v̂T
1 v1|→p 1, if and only if

p=pn satisfies p=n→0 as n→∞. It is also worth noting that the principal component v1 may
be a linear combination of all elements of the canonical basis in Rp, which can often make it
difficult to interpret the estimated projected directions (Jolliffe et al., 2003).

To remedy this situation, and to provide additional interpretability to the principal compo-
nents in high dimensional settings, Jolliffe et al. (2003) and Zou et al. (2006) proposed sparse
principal component analysis (SPCA). Here it is assumed that the leading population eigenvec-
tors belong to the k-sparse unit ball
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Bp−1
0 .k/ :=

{
v= .v.1/, : : : , v.p//T ∈Sp−1 :

p∑
j=1

1{v.j/ �=0} �k

}

for some k ∈ {1, : : : , p}. In addition to the easier interpretability, a large amount of research
effort has shown that such an assumption facilitates improved estimation performance (e.g.
Johnstone and Lu (2009), Paul and Johnstone (2012), Vu and Lei (2013), Cai et al. (2013), Ma
(2013) and Wang et al. (2016)). To give a flavour of these results, let Vn denote the set of all
estimators of v1, i.e. the class of Borel measurable functions from Rn×p to Sp−1. Vu and Lei
(2013) introduced a class Q of sub-Gaussian distributions whose first principal component v1
belongs to Bp−1

0 .k/ and showed that

inf
ṽ1∈Vn

sup
Q∈Q

EQ{1− .ṽT
1 v1/2}� k log.p/

n
, .1/

where an � bn means that 0 < lim infn→∞ |an=bn|� lim supn→∞ |an=bn| < ∞. Thus, consistent
estimation is possible in this framework provided only that k=kn and p=pn satisfy k log.p/=n→
0. Vu and Lei (2013) showed further that this estimation rate is achieved by the natural estimator

v̂1 ∈ arg max
v∈Bp−1

0 .k/

vTΣ̂v: .2/

However, results such as expression (1) do not complete the story of SPCA. Indeed, comput-
ing the estimator defined in expression (2) turns out to be an ‘NP hard’ problem (e.g. Tillmann
and Pfetsch (2014)): the naive approach would require searching through all .

p
k / of the k × k

symmetric submatrices of Σ̂, which takes exponential time in k. Therefore, in parallel with the
theoretical developments that were described above, numerous alternative algorithms for SPCA
have been proposed in recent years. For instance, several references have introduced techniques
based on solving the non-convex optimization problem (2) by invoking an l1-penalty (e.g. Jol-
liffe et al. (2003), Zou et al. (2006), Shen and Huang (2008) and Witten et al. (2009)). Typically,
these methods are fast but lack theoretical performance guarantees. In contrast d’Aspremont
et al. (2007) proposed to compute problem (2) via semidefinite relaxation. This approach and
its variants were analysed by Amini and Wainwright (2009), Vu et al. (2013) and Wang et al.
(2014, 2016) and have been proved to achieve the minimax rate of convergence under certain
assumptions on the underlying distribution and asymptotic regime, but the algorithm is slow
compared with other approaches. In a separate, recent development, it is now understood that,
conditionally on a planted clique hypothesis from theoretical computer science, there is an
asymptotic regime in which no randomized polynomial time algorithm can attain the minimax
optimal rate (Wang et al., 2016). Various fast iterative algorithms were introduced by Johnstone
and Lu (2009), Paul and Johnstone (2012) and Ma (2013); the last of these was shown to attain
the minimax rate under a Gaussian spiked covariance model. We also mention the computa-
tionally efficient combinatorial approaches that were proposed by Moghaddam et al. (2006) and
d’Aspremont et al. (2008) that aim to find solutions to the optimization problem (2) by using
greedy methods.

A common feature to all of the computationally efficient algorithms mentioned above is that
they are iterative, in the sense that, starting from an initial guess v̂[0] ∈Rp, they refine their guess
by producing a finite sequence of iterates v̂[1], : : : , v̂[T ] ∈ Rp, with the estimator defined to be
the final iterate. A major drawback of such iterative methods is that a bad initialization may
yield a disastrous final estimate. To illustrate this point, we ran a simple simulation in which the
underlying distribution is N400.0, Σ/, with
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Σ=
(

10J10
8:9J390 + I390

)
+0:01I400, .3/

where Jq := 1q1T
q =q ∈ Rq×q denotes the matrix with each entry equal to 1=q. In this example,

v1 = .1T
10, 0T

390/T=
√

10, so k = 10. Fig. 1 shows, for several SPCA algorithms, different sample
sizes and different initialization methods, the average values of the loss function

L.u, v/ := sin �.u, v/={1− .uTv/2}1=2, .4/

over 100 repetitions of the experiment. In Figs 1(a) and 1(b), the initialization methods that were
used were the default recommendations of the respective authors, namely diagonal thresholding
(d’Aspremont et al., 2008; Ma, 2013) and classical PCA (Zou et al., 2006; Shen and Huang,
2008; Witten et al., 2009). We note that the consistency of diagonal thresholding relies on a
spiked covariance structure, which is violated in this example. In Figs 1(c) and 1(d), we ran the
same algorithms with 10 independent initializing vectors chosen uniformly at random on Sp−1,
and we selected the solution v̂ from these 10 that maximizes v 
→vTΣ̂v. The main observation is
that each of the previously proposed algorithms that were mentioned above produces very poor
estimates, with some almost orthogonal to the true principal component! The reason for this is
that all the default initialization procedures are unsuccessful in finding a good starting point. For
some methods, this problem may be fixed by increasing the number of random initializations, but
it may take an enormous number of such random restarts (and consequently a very long time) to
achieve this. We demonstrate this in Figs 1(e) and 1(f), where, for n=350 (Fig. 1(e)) and n=2000
(Fig. 1(f)), we plot the logarithm of the average loss as time increases through the number of
random restarts. As an alternative method, in Figs 1(a)–1(d), we also present the corresponding
results for the variants of Wang et al. (2016) of the semidefinite programming algorithm that
was introduced by d’Aspremont et al. (2007). This method is guaranteed to converge from any
initialization and so does not suffer the same poor performance as mentioned above. However,
the semidefinite programming algorithm took even longer to reach algorithmic convergence
than any of the alternative approaches, so, in the setting of Figs 1(e) and 1(f), it finally reached
a logarithmic average loss of around −4 (Fig. 1(e)) and −5:9 (Fig. 1(f)) after an average time
of exp.8/≈3000 s (Fig. 1(e)) and exp.9:25/≈10000 s (Fig. 1(f)); this slow running time means
that it does not appear in Figs 1(e) and 1(f). We refer to Section 4.2 for further comparisons
using different examples.

In Section 2 of this paper, we propose a novel algorithm for SPCA that aggregates estimates
over carefully chosen axis-aligned random projections of the data into a lower dimensional
space. In contrast with the other algorithms that were mentioned above, it is non-iterative and
does not depend on a choice of initialization, so it has no difficulty with the simulation example
above. Indeed, from the blue curve in Fig. 1, we see that it outperforms even the semidefinite
programming algorithm, compared with which it was over 7000 times faster in the n = 2000
case.

Our algorithm, which we refer to as SPCAvRP, turns out to be attractive for both theoretical
and computational reasons. From a theoretical point of view, our algorithm provides a new
perspective on the statistical and computational trade-off that is involved in the SPCA problem.
As we show in Section 3, when the effective sample size is large, the SPCAvRP procedure can
attain the minimax optimal rate with a number of projections that grows only polynomially
in the problem parameters. In contrast, if one were to use a number of random projections
exponentially large in k, SPCAvRP could even achieve this minimax rate in a much smaller
effective sample size regime. Although this exponentially large number of projections may seem
discouraging, we emphasize that it is in fact not a drawback of the SPCAvRP algorithm but
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Fig. 1. Comparison of various approaches by using covariance model (3) ( , Zou et al. (2006); , Shen
and Huang (2008), l1-thresholding; , Shen and Huang (2008), l0-thresholding; , d’Aspremont et al. (2008);

, Witten et al. (2009); , Ma (2013); , semidefinite programming; , SPCAvRP): in (a), (b), (c), (d) average
loss (4) for different sample sizes n; in (a), (c) the normal scale; in (b), (d) the log–log-scale; in (a), (b) default
initialization; in (c), (d) best of 10 random initializations; in (e), (f) average loss (4) against time in seconds
on the log–log-scale when n D 350 in (e) and n D 2000 in (f) (we vary the number of random projections
(A 2 .50, 200/ and B D dA=2e) for SPCAvRP and the number of random initializations (from 1 to 250) for the
other iterative competing methods)
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simply a reflection of the fundamental difficulty of the problem in this effective sample size
regime. Indeed, Wang et al. (2016) established a computational lower bound, which reveals
that no randomized polynomial time algorithm can attain the minimax rate of convergence
for these effective sample sizes. The elucidation of the transition from polynomial to exponen-
tially large number of projections is an illustration of the fascinating fundamental statistical
and computational trade-off in this problem. The computational attractions of the algorithm
proposed include the fact that it is highly scalable because of easy parallelization and does not
even require computation of Σ̂∈ Rp×p, since it suffices to extract principal submatrices of Σ̂,
which can be done by computing the sample covariance matrices of the projected data. This
may result in a significant computational saving if p is very large. Several numerical aspects
of the algorithm, including a finite sample simulation comparison with alternative methods
on both simulated and real data, are considered in Section 4. These reveal that our SPCAvRP
algorithm has very competitive performance and, furthermore, it enjoys robustness properties
that iterative algorithms do not share. The proofs of all of our results are given in Appendix A.

Algorithms based on random projections have recently been shown to be highly effective for
several different problems in high dimensional statistical inference. For instance, in the context
of high dimensional classification, Cannings and Samworth (2017) showed that their random
projection ensemble classifier that aggregates over projections that yield small estimates of the
test error can result in excellent performance. Marzetta et al. (2011) employed an ensemble of
random projections to construct an estimator of the population covariance matrix and its inverse
in the setting where n<p. Fowler (2009) introduced a so-called compressive projection PCA that
reconstructs the sample principal components from many low dimensional projections of the
data. Finally, to decrease the computational burden of classical PCA, Qi and Hughes (2012) and
Pourkamali-Anaraki and Hughes (2014) proposed estimating v1.Σ/ by the leading eigenvector
of n−1Σn

i=1PiXiX
T
i Pi, where P1, : : : , Pn are random projections of a particular form.

1.1. Notation
We conclude this introduction with some notation that is used throughout the paper. For r ∈
N, let [r] := {1, : : : , r}. For a vector u ∈ Rp, we write u.j/ for its jth component and ‖u‖2 :=
{Σp

j=1.u.j//2}1=2 for its Euclidean norm. For a real symmetric matrix U ∈ Rp×p, let λ1.U/ �
λ2.U/� : : :�λp.U/ denote its eigenvalues, arranged in decreasing order, and let v1.U/, : : : , vp.U/

denote the corresponding eigenvectors. In addition, for m∈ [p], we write Vm.U/ := .v1.U/, : : : ,
vm.U// for the p×m matrix whose columns are the m leading eigenvectors of U. In the special
case where U =Σ, we drop the argument and write λr =λr.Σ/, vr =vr.Σ/ and Vm =Vm.Σ/. For
a general U ∈Rp×m, we define U.j,j′/ to be the .j, j′/th entry of U, and U.j,·/ the jth row of U,
regarded as a column vector. Given S ⊆ [p] and S′ ⊆ [m], we write U.S,S′/ for the |S|× |S′| matrix
that is obtained by extracting the rows of U indexed by S and columns indexed by S′; we also
write U.S,·/ :=U.S,[m]/. We write ‖U‖op := supx∈Sm−1 ‖Ux‖2 and ‖U‖F := .Σp

j=1Σ
m
j′=1|U.j,j′/|2/1=2

for the operator and Frobenius norms of U respectively. We denote the set of real orthogonal
p × p matrices by Op and the set of real p × m matrices with orthonormal columns by Op,m.
For matrices U, V ∈Op,m, we define the loss function

L.U, V/ :=‖ sin{Θ.U, V/}‖F,

where the sine function acts elementwise, and where Θ.U, V/ is the m×m diagonal matrix whose
jth diagonal entry is the jth principal angle between U and V , i.e. cos−1.σj/, where σj is the jth
singular value of UTV . Observe that this loss function reduces to expression (4) when m=1.

For any index set J ⊆ [p] we write PJ to denote the projection onto the span of {ej : j ∈J},
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where e1, : : : , ep are the standard Euclidean basis vectors in Rp, so that PJ is a p×p diagonal
matrix whose jth diagonal entry is 1{j∈J}. Finally, for a, b∈R, we write a�b to mean that there
is a universal constant C> 0 such that a�Cb.

2. Sparse principal component analysis via random projections

2.1. Single principal component estimation
In this section, we describe our algorithm for estimating a single principal component v1 in detail;
more general estimation of multiple principal components v1, : : : , vm is treated in Section 2.2. Let
x1, : : : , xn be data points in Rp and let Σ̂ :=n−1Σn

i=1xix
T
i . We think of x1, : : : , xn as independent

realizations of a zero-mean random vector X, so a practitioner may choose to centre each
variable so that Σn

i=1x
.j/
i =0 for each j ∈ [p]. For d ∈ [p], let Pd :={PS : S ⊆ [p], |S|=d} denote

the set of d-dimensional, axis-aligned projections. For fixed A, B∈N, consider projections {Pa,b :
a ∈ [A], b ∈ [B]} independently and uniformly distributed on Pd . We think of these projections
as consisting of A groups, each of cardinality B. For each a∈ [A], let

bÅ.a/ := sarg max
b∈[B]

λ1.Pa,bΣ̂Pa,b/

denote the index of the selected projection within the ath group, where sarg max denotes the
smallest element of the arg max in the lexicographic ordering. The idea is that the non-zero entries
of Pa,bÆ.a/Σ̂Pa,bÆ.a/ form a principal submatrix of Σ̂ that should have a large leading eigenvalue,
so the non-zero entries of the corresponding leading eigenvector v̂a,bÆ.a/;1 of Pa,bÆ.a/Σ̂Pa,bÆ.a/

should have some overlap with those of v1. Observe that, if d = k and {Pa,b : b ∈ [B]} were to
contain all .

p
k / projections, then the leading eigenvector of Pa,bÆ.a/Σ̂Pa,bÆ.a/ would yield the

minimax optimal estimator in problem (2). Of course, it would typically be too computationally
expensive to compute all such projections, so instead we consider only B randomly chosen
projections.

The remaining challenge is to aggregate over the selected projections. For this, for each co-
ordinate j ∈ [p], we compute an importance score ŵ.j/, defined as an average over a∈ [A] of the
squared jth components of the selected eigenvectors v̂a,bÆ.a/;1,

ŵ.j/ := 1
A

A∑
a=1

.λ̂a,bÆ.a/;1 − λ̂a,bÆ.a/;2/.v̂
.j/
a,bÆ.a/;1/2, .5/

weighted by the eigengap λ1.Pa,bÆ.a/Σ̂Pa,bÆ.a//−λ2.Pa,bÆ.a/Σ̂Pa,bÆ.a//. This means that we take
account, not just of the frequency with which each co-ordinate is chosen, but also their corre-
sponding magnitudes in the selected eigenvector, as well as an estimate of the signal strength.
Finally, we select the l indices Ŝ corresponding to the largest values of ŵ.1/, : : : , ŵ.p/ and output
our estimate v̂1 as the leading eigenvector of PŜΣ̂PŜ . Pseudocode for our SPCAvRP algorithm
is given in algorithm 1 in Table 1.

Besides the intuitive selection of the most important co-ordinates, the use of axis-aligned pro-
jections facilitates faster computation as opposed to the use of general orthogonal projections.
Indeed, the multiplication of Σ̂∈ Rp×p by an axis-aligned projection P ∈Pd from the left (or
right) can be recast as the selection of d rows (or columns) of Σ̂ corresponding to the indices of
the non-zero diagonal entries of P . Thus, instead of the typical O.p2d/ matrix multiplication
complexity, only O.pd/ operations are required. We also remark that, instead of storing P , it
suffices to store its non-zero indices.

More generally, the computational complexity of algorithm 1 can be analysed as follows.
Generating AB initial random projections takes O.ABd/ operations. Next, we need to compute
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Table 1. Algorithm 1: pseudocode for the SPCAvRP algorithm for a single principal
component

Input: x1, : : : , xn ∈Rp, A, B∈N, d, l∈ [p]
Generate {Pa,b : a∈ [A], b∈ [B]} independently and uniformly from Pd

Compute {Pa,bΣ̂Pa,b : a∈ [A], b∈ [B]}, where Σ̂ :=n−1Σn
i=1xix

T
i

for a=1, : : : , A do
for b=1, : : : , B do

Compute λ̂a,b;1 :=λ1.Pa,bΣ̂Pa,b/, λ̂a,b;2 :=λ2.Pa,bΣ̂Pa,b/ and v̂a,b;1 ∈v1.Pa,bΣ̂Pa,b/
end
Compute

bÅ.a/ := sarg max
b∈[B]

λ̂a,b;1

end
Compute ŵ = .ŵ.1/, : : : , ŵ.p//T, where

ŵ.j/ := 1
A

A∑

a=1
.λ̂a,bÆ.a/;1 − λ̂a,bÆ.a/;2/.v̂

.j/
a,bÆ.a/;1/2,

and let Ŝ ⊆ [p] be the index set of the l largest components of ŵ
Output: v̂1 := sarg maxv∈Sp−1 vTPŜΣ̂PŜv

Pa,bΣ̂Pa,b for all a and b, which can be done in two ways. One option is to compute Σ̂, and
then for each projection Pa,b to select the corresponding d ×d principal submatrix of Σ̂, which
requires O.np2 +ABd2/ operations. Alternatively, we can avoid computing Σ̂ by computing the
sample covariance matrix of the projected data {Pa,bx1, : : : , Pa,bxn : a∈ [A], b∈ [B]}, which has
O.ABnd2/ complexity. If p2 �ABd2, then the second option is preferable.

The rest of algorithm 1 entails computing an eigendecomposition of each d ×d matrix, and
computing {bÅ.a/ : a ∈ [A]}, ŵ, Ŝ and v̂1, which altogether amounts to O.ABd3 + Ap + l3/

operations. Thus, assuming that n�d, the overall computational complexity of the SPCAvRP
algorithm is

O.min{np2 +ABd3 +Ap+ l3, ABnd2 +Ap+ l3}/:

We also note that, because of the use of random projections, the algorithm is highly parallelizable.
In particular, both ‘for’ loops of algorithm 1 can be parallelized, and the selection of good
projections can easily be carried out by using different (up to A) machines.

Finally, we note that the numbers A and B of projections, the dimension d of those projections
and the sparsity l of the final estimator need to be provided as inputs to algorithm 1. The effect of
these parameter choices on the theoretical guarantees of our SPCAvRP algorithm is elucidated
in our theory in Section 3, whereas their practical selection is discussed in Section 4.1.

2.2. Multiple principal component estimation
The estimation of higher order principal components is typically achieved via a deflation scheme.
Having computed estimates v̂1, : : : , v̂r−1 of the top r − 1 principal components, the aim of
such a procedure is to estimate the rth principal component based on modified observations,
which have had their correlation with these previously estimated components removed (e.g.
Mackey (2009)). For any matrix V ∈ Rp×r of full column rank, we define the projection onto
the orthogonal complement of the column space of V by Proj⊥.V/ := Ip −V.V TV/−1V T if V �=0
and Ip otherwise. Then, writing V̂ r−1 := .v̂1, : : : , v̂r−1/, one possibility to implement a deflation
scheme is to set x̃i := Proj⊥.V̂ r−1/xi for i ∈ [n]. Note that in sparse PCA, by contrast with
classical PCA, the estimated principal components from such a deflation scheme are typically
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Table 2. Algorithm 2: pseudocode of the modified deflation scheme

Input: x1, : : : , xn ∈Rp, A, B∈N, m, d, l1, : : : , lm ∈ [p]
Let v̂1 be the output of algorithm 1 with inputs x1, : : : , xn, A, B, d and l1
for r =2, : : : , m do

let Hr :=Proj⊥.V̂ r−1/, where V̂ r−1 := .v̂1, : : : , v̂r−1/
let ṽr be the output of algorithm 1 with inputs Hrx1, : : : , Hrxn, A, B, d and lr
let S̃r :={j ∈ [p] : ṽ.j/

r �=0} and H
S̃r

:=Proj⊥.P
S̃r

V̂ r−1/
Compute

v̂r :=v1.H
S̃r

P
S̃r

Σ̂P
S̃r

H
S̃r

/

end
Output: v̂1, : : : , v̂m

Table 3. Algorithm 3: pseudocode of the SPCAvRP algorithm for eigenspace estimation

Input: x1, : : : , xn ∈Rp, A, B∈N, d, l∈ [p], m∈ [d]
Generate {Pa,b : a∈ [A], b∈ [B]} independently and uniformly from Pd

Compute {Pa,bΣ̂Pa,b : a∈ [A], b∈ [B]}, where Σ̂ :=n−1Σn
i=1xix

T
i

for a=1, : : : , A do
for b=1, : : : , B do

for r ∈ [m+1], compute λ̂a,b;r :=λr.Pa,bΣ̂Pa,b/ and the corresponding eigenvector v̂a,b;r ,
with the convention that λ̂a,b;d+1 :=0

end
Compute bÅ.a/ := sarg maxb∈[B] Σ

m
r=1λ̂a,b;r

end
Compute ŵ = .ŵ.1/, : : : , ŵ.p//T with

ŵ.j/ := 1
A

A∑

a=1

m∑

r=1
.λ̂a,bÆ.a/;r − λ̂a,bÆ.a/;m+1/.v̂

.j/
a,bÆ.a/;r/

2

Let Ŝ ⊆ [p] be the index set of the l largest components of ŵ
Output: V̂ m = .v̂1, : : : , v̂m/, where v̂1, : : : , v̂m are the principal eigenvectors of PŜΣ̂PŜ

not orthogonal. In algorithm 2 in Table 2, we therefore propose a modified deflation scheme,
which in combination with algorithm 1 can be used to compute arbitrary m ∈ [p] principal
components that are orthogonal (as well as sparse), as verified in lemma 1 below.

Lemma 1. For any m∈ [p], the outputs v̂1, : : : , v̂m of algorithm 2 are mutually orthogonal.

We remark that, in fact, our proposed deflation method can be used in conjunction with any
SPCA algorithm.

Although algorithm 2 can conveniently be used to compute sparse principal components up
to order m, it requires algorithm 1 to be executed m times. Instead, we can modify algorithm
1 to estimate directly the leading eigenspace of dimension m—the subspace that is spanned
by the columns of matrix Vm = .v1, : : : , vm/—at a computational cost that is not much higher
than that of executing algorithm 1 only once. For this, we propose a generalization of the
SPCAvRP algorithm for eigenspace estimation in algorithm 3 in Table 3. In this generalization,
A projections are selected from a total of A×B random projections, by computing

bÅ.a/ := sarg max
b∈[B]

m∑
r=1

λr.Pa,bΣ̂Pa,b/

for each a ∈ [A]. We can regard Σm
r=1.λ̂a,bÆ.a/;r − λ̂a,bÆ.a/;m+1/.v̂

.j/
a,bÆ.a/;r/

2 as the contribution of
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the ath selected projection to the importance score of the jth co-ordinate, and, analogously to
the single-component-estimation case, we average these contributions over a ∈ [A] to obtain a
vector of final importance scores. Again, similarly to the case m=1, we then threshold the top
l importance scores to obtain a final projection and our m estimated principal components. A
notable difference, then, between algorithm 3 and the deflation scheme (algorithm 2) is that now
we estimate the union of the supports of the leading m eigenvectors of Σ simultaneously rather
than one at a time. A consequence is that algorithm 3 is particularly well suited to a sparsity
setting known in the literature as ‘row sparsity’ (Vu and Lei, 2013), where leading eigenvectors
of interest may share common support, because it borrows strength regarding the estimation
of this support from the simultaneous nature of the multiple-component estimation. However,
algorithm 2 may have a slight advantage in cases where the leading eigenvectors have disjoint
supports; see Section 4.2.2 for further discussion.

Observe that, for m = 1, both algorithm 2 and algorithm 3 reduce to algorithm 1. Further-
more, for any m, up to the step where ŵ is computed, algorithm 3 has the same complexity
as algorithm 1, with the total complexity of algorithm 3 amounting to O.min{np2 + ABd3 +
Amp+ l3, ABnd2 +Amp+ l3}/, provided that n�d.

3. Theoretical guarantees

In this section, we focus on the general algorithm 3. We assume that X1, : : : , Xn are independently
sampled from a distribution Q satisfying a restricted covariance concentration (RCC) condition
that was introduced in Wang et al. (2016). Recall that, for K > 0, we say that a zero-mean
distribution Q on Rp satisfies an RCC condition with parameter K, and write Q∈ RCCp.K/,
if, for all δ> 0, n∈N and r ∈ [p], we have

P

(
sup

u∈Bp−1
0 .r/

|uT.Σ̂−Σ/u|�K max
[√{

r log.p=δ/

n

}
,
r log.p=δ/

n

])
� δ: .6/

In particular, if Q = Np.0, Σ/, then Q ∈ RCCp[8λ1{1 + 9= log.p/}]; and if Q is sub-Gaussian
with parameter σ2, in the sense that

∫
Rp exp.uTx/dQ.x/ � exp.σ2‖u‖2

2=2/ for all u ∈ Rp, then
Q∈RCCp[16σ2{1+9= log.p/}] (Wang et al. (2016), proposition 1).

As mentioned in Section 2.2, our theoretical justification of algorithm 3 does not require that
the leading eigenvectors enjoy disjoint supports. Instead, we ask for Vm to have not too many
non-zero rows, and for these non-zero rows to have comparable Euclidean norms (i.e. to satisfy
an incoherence condition). More precisely, writing nnzr.V/ for the number of non-zero rows of
a matrix V , for μ�1, we consider the setting where Vm belongs to the set

Op,m,k.μ/ :=
{

V ∈Op,m, nnzr.V/�k,
maxj:‖V .j, ·/‖2 �=0 ‖V .j,·/‖2

minj:‖V .j, ·/‖2 �=0 ‖V .j,·/‖2
�μ

}
: .7/

Writing S0 := {j ∈ [p] : V
.j,·/
m �= 0} for the set of indices of the non-zero rows of Vm, since

Σj∈S0‖V
.j,·/
m ‖2

2 = ‖Vm‖2
F = m, a consequence of our incoherence parameter definition is that,

for Vm ∈Op,m,k.μ/, we have

m1=2

k1=2μ
�‖V .j,·/

m ‖2 � m1=2μ

k1=2 , ∀ j ∈S0: .8/

The following theorem is our main result on the performance of our SPCAvRP algorithm.

Theorem 1. Suppose that Q ∈ RCCp.K/ has an associated covariance matrix Σ = Ip +
VmΘV T

m , where Vm ∈ Op,m,k.μ/ and Θ= diag.θ1, : : : , θm/, with θ1 � : : :� θm > 0. Let X1, : : : ,
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Xn ∼IID Q and let V̂ m be the output of algorithm 3 with input X1, : : : , Xn, A, B, m, d and l.
Suppose that d �max{m+1, k}, l�k, and

32K

√{
d log.p/

n

}
� θm

kμ2 : .9/

Then, with probability at least 1−2p−3 −p exp{−Aθ2
m=.50p2μ8θ2

1/}, we have

L.V̂ m, Vm/�4K

√{
ml log.p/

nθ2
m

}
:

An immediate consequence of theorem 1 is that, provided that A�p2μ8θ2
1θ

−2
m log.p/ and

p−3 �K

√{
ml log.p/

nθ2
m

}
,

our SPCAvRP algorithm achieves the bound

E{L.V̂ m, Vm/}�K

√{
ml log.p/

nθ2
m

}
.10/

under the conditions of theorem 1. The salient observation here is that this choice of A, together
with the algorithmic complexity analysis given in Section 2.2, ensures that algorithm 3 achieves
the rate in bound (10) in polynomial time (provided that we consider μ, θ1 and θm as constants).
The minimax lower bound that is given in proposition 1 below complements theorem 1 by
showing that this rate is minimax optimal, up to logarithmic factors, over all possible estimation
procedures, provided that l � k, that m � log.p=k/ � log.p/ and that we regard K and μ as
constants (as well as other regularity conditions). It is important to note that this does not
contradict the fundamental statistical and computational trade-off for this problem that was
established in Wang et al. (2016), because condition (9) ensures that we are in the high effective
sample size regime defined in that work. Assuming the planted clique hypothesis from theoretical
computer science, this is the only setting in which any (randomized) polynomial time algorithm
can be consistent.

The following proposition establishes a minimax lower bound for principal subspace esti-
mation. It is similar to existing minimax lower bounds in the literature for SPCA under row
sparsity, e.g. Vu and Lei (2013), theorem 3.1. The main difference is that we show that imposing
an incoherence condition on the eigenspace does not make the problem any easier from this
minimax perspective. For any V ∈Op,m and θ>0, we write PV ,θ :=Np.0, Ip +θVV T/, and recall
the definition of Op,m,k.μ/ from expression (7).

Proposition 1. Assume that p � 5k, k � 4m, k log{.p − m/=k} � 17 and nm2θ2 �
k2 max{m, log.p=k/}. Then

inf
Ṽ

sup
V∈Op,m,k.3/

EPV ,θ{L.Ṽ , V/}�
√[

k{m+ log.p=k/}
nθ2

]

where the infimum is taken over all estimators Ṽ = Ṽ .X1, : : : , Xn/ and the expectation is with
respect to X1, : : : , Xn ∼IID PV ,θ.

An interesting aspect of theorem 1 is that the same conclusion holds for every B ∈ N. It is
attractive that we do not need to make any restrictions here; however, we would also expect
the statistical performance of the algorithm to improve as B increases. Indeed, this is what we
observe empirically; see Fig. 2 in Section 4.1.1. It turns out that we can demonstrate the effect of
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Fig. 2. Average loss L.v̂1, v1/ against the sample size n, on the log–log-scale, when B D 1 ( ) and
B > 1 ( ) (in each case, n observations are generated from Np.0, Ip C v1v>

1 /, with p D 50 and
k D 7, and the loss L.v̂1, v1/ is computed for v̂1 as in algorithm 1, with d D l D k and A and
B selected as described next, which is then averaged over 100 repetitions; light to dark grey curves,
A 2{50, 100, 200, 300, 400, 500, 600} and B D A=2; light to dark grey broken curves, A 2{50 � 25, 100 � 50,
200 � 100, 300 � 150, 400 � 200, 500 � 250, 600 � 300} and B D 1): (a) v1 D k�1=2.1>
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p�k/>; (b) v1 /

.k, k �1,. . . , 1, 0>
p�k/>
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increasing B theoretically in the special setting where all signal co-ordinates have homogeneous
signal strength, i.e. Vm ∈Op,m,k.1/. As illustrated by the following corollary (to theorem 1) and
its proof, as B increases, signal co-ordinates are selected with increasing probability by the best
projection within each group of B projections, and this significantly reduces the number of
groups A that are required for rate optimal estimation.

Recall that the hypergeometric distribution HyperGeom.d, k, p/ models the number of white
balls that are obtained when drawing d balls uniformly and without replacement from an urn
containing p balls, k of which are white. We write FHG.·; d, k, p/ for its distribution function.

Corollary 1. In addition to the conditions of theorem 1, assume that μ=1, θ1 = : : :=θm and
that B=�2−1{1−FHG.t −1; d, k, p/}−1� for some t ∈ [k]. Then

P

[
L.V̂ m, Vm/> 4K

√{
ml log.p/

nθ2
m

})
�2p−3 +p exp

(
− At2

800k2

)
:

Since, in this corollary, we use lemma 4 in Appendix A.5 instead of expression (16) in Appendix
A.2 to control the inclusion probability of signal co-ordinates, the condition d �k from theorem
1 is in fact no longer needed. We note that, for any fixed t, the function FHG.t − 1; d, k, p/ is
decreasing with respect to d ∈ [p]. Thus, corollary 1 also illustrates a computational trade-off
between the choice of d and B. This trade-off is also demonstrated numerically in Fig. 6 in
Section 4.1.2.

Finally, we remark that our algorithm enables us to understand the statistical and computa-
tional trade-off in SPCA in a more refined way. Recall that, in the limiting case when B=∞, the
estimator that is produced by algorithm 3 (with d = l = k and, for the simplicity of discussion,
m = 1) is equal to the estimator v̂1 given in problem (2), i.e. the leading k-sparse eigenvector
of Σ̂. In fact, this is already true with high probability for B � .

p

k /. Hence, for B exponentially
large, the SPCAvRP estimator is minimax rate optimal as long as n � mkθ−2

m log.p/, which
corresponds to the intermediate effective sample size regime that was defined in Wang et al.
(2016). For such a choice of B, however, algorithm 3 will not run in polynomial time, which is
in agreement with the conclusion of Wang et al. (2016) that there is no randomized polynomial
time algorithm that can attain the minimax rate of convergence in this intermediate effective
sample size regime. In contrast, as mentioned above, SPCAvRP is minimax rate optimal, using
only a polynomial number of projections, in the high effective sample size regime as discussed
after theorem 1. Therefore, the flexibility in varying the number of projections in our algorithm
enables us to analyse its performance in a continuum of scenarios ranging from where consistent
estimation is barely possible, through to high effective sample size regimes where the estimation
problem is much easier.

4. Numerical experiments

In this section we demonstrate the performance of our proposed method in different examples
and discuss the practical choice of its input parameters. We also compare our method with several
existing sparse principal component estimation algorithms on both simulated and experimental
data. All experiments were carried out using the R package SPCAvRP (Gataric et al., 2018).

4.1. Choice of input parameters
4.1.1. Choice of A and B

In Fig. 2, we show that choosing B>1, which ensures that we make a non-trivial selection within
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Fig. 3. Average loss L.v̂1, v1/ as the sample size n increases for various choices of A or B (the distribu-
tion is Np.0, Ip C v1v>

1 / with v1 D k�1=2.1>
k , 0>

p�k/>, p D 50 and k D 7, and the other algorithmic param-
eters are d D l D 7): (a) B D 100 and A is varied ( , A D 5; , A D 10; , A D 15; , A D 20; , A D 25;

, A D 30; , A D 35; , A D 40; , A D 50; , A D 100); (b) A D 200 and B is varied ( , B D 5; , B D 10;
, B D15; , B D25; , B D40; , B D75; , B D100; , B D150; , B D200; , B D300)
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each group of projections, considerably improves the statistical performance of the SPCAvRP
algorithm. Specifically, we see that, using the same total number of random projections, our
two-stage procedure has superior performance over the naive aggregation over all projections,
which corresponds to setting B = 1 in the SPCAvRP algorithm. Interestingly, Fig. 2 shows
that simply increasing the number of projections, without performing a selection step, does
not noticeably improve the performance of the basic aggregation. We note that, even for the
relatively small choices A = 50 and B = 25, the SPCAvRP algorithm does significantly better
than the naive aggregation over 180000 projections.

Fig. 3 demonstrates the effect of increasing either A or B while keeping the other fixed. We
can see from Fig. 3(a) that increasing A steadily improves the quality of estimation, especially
in the medium effective sample size regime and when A is relatively small. This agrees with
the result in theorem 1, where the bound on the probability of attaining the minimax optimal
rate improves as A increases. Thus, in practice, we should choose A to be as large as possible
subject to our computational budget. The choice of B, however, is a little more delicate. In some
settings, such as the single-spiked homogeneous model in Fig. 3(b), the performance appears to
improve as B increases, though the effect is only really noticeable in the intermediate effective
sample size regime. In contrast, we can also construct examples where, as B increases, some
signal co-ordinates will have increasingly high probability of inclusion compared with other
signal co-ordinates, making the latter less easily distinguishable from the noise co-ordinates.
Hence the performance does not necessarily improve as B increases; Fig. 4.

In general, we find that A and B should increase with p. On the basis of our numerical
experiments, we suggest using B=�A=3� with A=300 when p≈100, and A=800 when p≈1000.

4.1.2. Choice of d

So far in our simulations we have assumed that the true sparsity level k is known and we took
the dimension d of the random projections to be equal to k, but in practice k may not be known
in advance. In Fig. 5, however, we see that, for a wide range of values of d, the loss curves are
relatively close to each other, indicating the robustness of the SPCAvRP algorithm to the choice
of d. For the homogeneous signal case, the loss curves for different choices of d merge in the
high effective sample size regime, whereas, in the intermediate effective sample size regime, we
may in fact see improved performance when d exceeds k. In the inhomogeneous case, the loss
curves improve as d increases up to k and then exhibit little dependence on d when d �k.

Although decreasing d reduces computational time, for a smaller choice of d it is then less
likely that each signal co-ordinate will be selected in a given random projection. This means that
a smaller d will require a larger number of projections A and B to achieve the desired accuracy,
thereby increasing computational time. To illustrate this computational trade-off, in Fig. 6, for
a single-spiked homogeneous model, we plot the trajectories of the average loss as a function
of time (characterized by the choices of A and B), for various choices of d. Broadly speaking,
the figures reveal that choosing d < k needs to be compensated by a very large choice of A and
B to achieve similar statistical performance to that which can be obtained with d equal to, or
even somewhat larger than, k.

In practice, we suggest using d = k where k is known but, when k is not given in advance,
we would advocate erring on the side of projecting into a subspace of dimension slightly larger
than the level of sparsity of the true eigenvectors, as this enables a significantly smaller choice
of A and B, which results in an overall time saving.

4.1.3. Choice of l

The parameter l corresponds to the sparsity of the computed estimator; large values of l increase
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Fig. 4. Trade-off in the choice of B (the distribution is Np.0, Ip C 10v1v>
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k ,

0>
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p�k�3/>, pD50 and k D7, and algorithmic parameters AD200

and d D l D7): (a) average loss as a function of n, on the log–log-scale, where B is varied ( , BD10; , BD15;
, B D25; , B D50; , B D75; , B D100; , B D125; , B D150; , B D200; , B D250; , B D300); (b)

logarithm of average loss as a function of B, where n is varied ( , nD68; , nD123; , nD302; , nD408;
, nD551; , nD743)
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Fig. 6. Computational trade-off in the choice of d and A and B (we generated n D 600 observations from
distribution Np.0, Ip Cv1v>

1 /, where pD100, k D10 and v1 Dk�1=2.1>
k , 0>

p�k/>; for a fixed d 2{4,. . . , 30} we
plot the trajectory realized) ( , d D4; , d D6; , d D8; , d D10; , d D12; , d D15; , d D20; , d D30):
(a) A2{30,. . . , 300}, B D50; (b) AD100, B 2{20,. . . , 300}; (c) A2{30,. . . , 300}, B DA=2

the chance that signal co-ordinates are discovered but also increase the probability of including
noise co-ordinates. This statistical trade-off is typical for any algorithm that aims to estimate the
support of a sparse eigenvector. It is worth noting that many of the SPCA algorithms that are
proposed in the literature have a tuning parameter corresponding to the level of sparsity, and
thus cross-validation techniques have been proposed in earlier works (e.g. Witten et al. (2009)).

A particularly popular approach in the SPCA literature (e.g. Shen and Huang (2008)) is to
choose l by inspecting the total variance. More precisely, for each l on a grid of plausible values,
we can compute an estimate v̂1,l ∈Bp−1

0 .l/ and its explained variance varl := v̂T
1,lΣ̂v̂1,l, and then

plot varl against l. As can be seen from Fig. 7, varl increases with l, but plateaus off for l � k.
An attractive feature of our algorithm is that this procedure does not significantly increase the
total computational time, since there is no need to rerun the entire algorithm for each value of
l. Recall that ŵ in expression (5) ranks the co-ordinates by their importance. Therefore, we need
to compute ŵ only once and then to calculate varl by selecting the top l co-ordinates in ŵ for
each value of l.
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Fig. 8. Comparison of various principal component estimators (average loss against sample size n, on the
log–log-scale, using two different covariance structures from expression (11) ( , Zou et al. (2006) with given
k; , Shen and Huang (2008), l1-thresholding; , Shen and Huang (2008), l0-thresholding; , d’Aspremont
et al. (2008); , Witten et al. (2009) with parameters chosen by their default cross-validation; , Ma (2013)
with the default parameters; , semidefinite programming; , SPCAvRP with (a), (b) AD300 and B D150 or
(c), (d) AD800 and B D300): (a) Σ.1/ with pD100 and k D10; (b) Σ.2/ with pD200 and k D10; (c) Σ.1/ with
pD1000 and k D30 (d) Σ.2/ with pD2000, k D30

In cases where higher order principal components need to be computed, namely when m>1,
we can choose l = nnzr.Vm/ in algorithm 3, and lr =‖vr‖0, r ∈ [m], in algorithm 2, when these
quantities are known. If this is not so, we can choose l in algorithm 3 in a similar fashion to
that described above, by replacing v̂1,l with V̂ m,l where nnzr.V̂ m,l/ � l, or we can choose lr by
inspecting the total variance at each iteration r of algorithm 2.

4.2. Comparison with existing methods
In this subsection, we compare our method with several existing approaches for SPCA. We
first present examples where only the first principal component is computed, followed by
examples of higher order principal component estimation and an illustration on some genetic
data.
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Table 4. Comparison of various subspace estimators when mD2†

Estimator L(V̂ 2,V2) L(v̂1,v1) L(v̂2,v2) |v̂T
1 v̂2|

S1 ∩S2 �=∅
Algorithm 2 8:51×10−2 9:18×10−2 9:58×10−2 < 10−15

Algorithm 3 6:72×10−2 1:59×10−1 1:68×10−1 < 10−15

Ma (2013) 7:89×10−2 1:51×10−1 1:61×10−1 < 10−15

Witten et al. (2009) 9:26×10−2 1:50×10−1 1:52×10−1 5:04×10−4

Zou et al. (2006) 1:80×10−1 2:06×10−1 2:23×10−1 2:59×10−4

S1 ∩S2 =∅
Algorithm 2 5:42×10−2 4:18×10−2 5:32×10−2 < 10−15

Algorithm 3 8:03×10−2 1:64×10−1 1:75×10−1 < 10−15

Ma (2013) 8:91×10−2 1:43×10−1 1:53×10−1 < 10−15

Witten et al. (2009) 8:97×10−2 1:11×10−1 1:09×10−1 1:36×10−3

Zou et al. (2006) 9:97×10−2 7:13×10−2 9:62×10−2 < 10−15

†Observations are generated from Np.0,Σ/, Σ= Ip +Σ2
r=1 θrvrv

T
r , θ1 =50, θ2 =30,

p = 200 and n = 150, where v1 and v2 have homogeneous signal strengths with
S1 ={1, : : : , 14}, and S2 ={7, : : : , 20} (top) and S2 ={15, : : : , 28} (bottom). The SP-
CAvRP estimators computed by algorithms 2 and 3, with A=300, B =150, m=2,
d = l1 = l2 = k and l = |S1 ∪ S2|, are compared with estimators computed by algo-
rithms proposed by Zou et al. (2006), Witten et al. (2009) and Ma (2013), which are
used with their default parameters.

4.2.1. First principal component
In addition to the example that was presented in Fig. 1 in Section 1, we consider four further
examples with data generated from an Np.0, Σ/ distribution, where Σ takes one of the two
following forms:

Σ.1/ =
(2Jk

Jk

0

)
+ Ip,

Σ.2/ =
(

kJk

0:99kJ3k

I.p−4k/

)
+0:01Ip,

.11/

with various choices of p ∈ {100, 200, 1000, 2000} and k ∈ {10, 30}. Observe that v1 =
k−1=2.1T

k , 0T
p−k/T in all of these examples. The covariance matrix Σ.1/ is double spiked with

θ1 = 2, θ2 = 1 and v2 = k−1=2.0T
k , 1T

k , 0T
p−2k/T. We compare the empirical performance of our

algorithm with methods proposed by Zou et al. (2006), Shen and Huang (2008), d’Aspremont
et al. (2008), Witten et al. (2009) and Ma (2013), as well as the semidefinite programming method
that was mentioned in Section 1, by computing the average loss for each algorithm over 100
repetitions on the same set of data. We note that these are all iterative methods, whose success,
with the exception of the semidefinite programming method, depends on good initialization, so
we recall their default choices. The methods by Zou et al. (2006), Shen and Huang (2008) and
Witten et al. (2009) use eigendecomposition of the sample covariance matrix, i.e. classical PCA,
to compute their initial point, whereas d’Aspremont et al. (2008) and Ma (2013) selected their
initialization according to the largest diagonal entries of Σ̂.

In Fig. 8, we see that although the average losses of all algorithms decay appropriately with the
sample size n in the double-spiked Σ.1/-setting, most of them perform very poorly in the setting
of Σ.2/, where the spiked structure is absent. Indeed, only the SPCAvRP and SDP algorithms
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, Ma (2013); , SPCAvRP, algorithm 2 (AD400, BD200 and mD3, and d D l1 D l2 D l3 D10); , SPCAvRP,

algorithm 3 (AD400, B D200 and mD3, and d D l DjS1 [S2 [S3j): average loss L.V̂ 3, V3/ is plotted against
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produce consistent estimators in both settings, but the empirical performance of the SPCAvRP
algorithm is much better in both Fig. 8(a) and Fig. 8(b); moreover, since semidefinite program-
ming takes such a long time when p∈{1000, 2000}, we do not present it in Figs 8(c) and 8(d).

4.2.2. Higher order components
In Table 4 and Fig. 9 we compare algorithms 2 and 3 with existing SPCA algorithms for subspace
estimation, namely those proposed by Zou et al. (2006), Witten et al. (2009) and Ma (2013).
For this we simulate observations from a normal distribution with a covariance matrix which
is two and three spiked respectively. From Table 4 and Fig. 9, we observe that the SPCAvRP
estimators computed by algorithms 2 and 3 perform well when compared with the alternative
approaches. When the supports of leading eigenvectors are disjoint, namely Sr ∩Sq =∅, r �= q,
r, q∈ [m], where Sr :={j ∈ [p] :v.j/

r �=0}, we observe that the deflation scheme that is proposed in
algorithm 2 may perform better than algorithm 3, since it estimates each support Sr individually.
In contrast, if their supports are overlapping, algorithm 3 may perform better than algorithm
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Fig. 10. (a) varl , (b)Wasserstein distance Wl between the empirical distributions of the two classes projected
along v̂1,l and (c) p-value of Welch’s t-test for the two classes projected along v̂1,l , where v̂1,l is the estimator
of v1 for varied sparsity level l ( , Zou et al. (2006); , Shen and Huang, l0-thresholding; , d’Aspremont
et al. (2008); , SPCAvRP (d D30, AD1200 and B D200))
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2, since it directly estimates ∪m
r=1 Sr. From Table 4, we also see that only SPCAvRP algorithms

and the algorithm that was proposed by Ma (2013) compute components that are orthogonal
in both cases S1 ∩S2 =∅ and S1 ∩S2 �=∅.

4.2.3. Microarray data
We test our SPCAvRP algorithm on the Alon et al. (1999) gene expression data set, which con-
tains 40 colon tumour and 22 normal observations. A preprocessed data set can be downloaded
from the R package datamicroarray (Ramey, 2016), with a total of p= 2000 features and
n=62 observations. For comparison with alternative SPCA approaches, we use algorithms that
accept the output sparsity l as an input parameter, namely those proposed by Zou et al. (2006),
d’Aspremont et al. (2008) and Shen and Huang (2008). For each l considered, we computed the
estimator v̂1,l of the first principal component, and in Fig. 10 we plot the explained variance
varl := v̂T

1,lΣ̂v̂1,l as well as two different metrics for the separability of the two classes of observa-
tions projected along the first principal component v̂1,l, namely the Wasserstein distance Wl of
order 1 and the p-value of Welch’s t-test (Welch, 1947). Furthermore, in Fig. 11, we display their
corresponding values for l=20 together with the boxplots of the observations projected along
v̂1,20. From Figs 10 and 11, we observe that the SPCAvRP algorithm performs similarly to those
proposed by d’Aspremont et al. (2008) and Shen and Huang (2008), all of which are superior
in this instance to the SPCA algorithm of Zou et al. (2006). In particular, for small values of
l, we observe a steep slope of the blue Wasserstein and p-value curves corresponding to the
SPCAvRP algorithm in Fig. 10, indicating that the two classes are well separated by projecting
the observations along the estimated principal component which contains expression levels of
only a few different genes.
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Appendix A: Proofs of theoretical results

A.1. Proof of lemma 1
To verify that v̂r is orthogonal to v̂1, : : : , v̂r−1, observe that, since the support of v̂r is contained in S̃r, we
have

v̂T
r V̂ r−1 = v̂T

r PS̃r
V̂ r−1 + v̂T

r PS̃
c
r
V̂ r−1

v̂T
r HS̃r

PS̃r
Σ̂PS̃r

HS̃r
PS̃r

V̂ r−1

λ1.HS̃r
PS̃r

Σ̂PS̃r
HS̃r

/
=0,

where the final equality follows from the fact that HS̃r
is a projection onto the orthogonal complement of

the column space of PS̃r
V̂ r−1, so HS̃r

PS̃r
V̂ r−1 =0.

A.2. Proof of theorem 1
For notational simplicity, we drop the subscript m from V̂ and V in this proof, write X := .X1, : : : , Xn/ and
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define .
[p]
d / := {S ⊆ [p] : |S|= d}. For any S ∈ .

[p]
d /, we note that Σ.S,S/ = Id + V .S, ·/Θ.V .S, ·//T is a rank (at

most) m perturbation of the identity. Hence,
m∑

r=1
λr.Σ.S,S//= tr.Σ.S,S//− .d −m/=m+ tr{V .S, ·/Θ.V .S, ·//T}=m+

m∑
r=1

∑
j∈S∩S0

θr.V
.j,r//2: .12/

By the definition of RCCp.K/ in expression (6), there is an event ΩRCC with probability at least 1 − 2p−3

such that, on ΩRCC, we have

sup
u∈Bp−1

0 .d/

uT.Σ̂−Σ/u�2K

√{
d log.p/

n

}

and

sup
u∈Bp−1

0 .l/

uT.Σ̂−Σ/u�2K

√{
l log.p/

n

}
:

On ΩRCC, by equation (12), Weyl’s inequality (Weyl (1912) and Stewart and Sun (1990), corollary IV.4.9)
and expression (9), we have for any S ∈ .

[p]
d / that∣∣∣∣ m∑

r=1
λr.Σ̂.S,S//−m−

m∑
r=1

∑
j∈S∩S0

θr.V
.j,r//2

∣∣∣∣=
∣∣∣∣ m∑
r=1

{λr.Σ̂.S,S//−λr.Σ.S,S//}
∣∣∣∣

�2Km

√{
d log.p/

n

}
� mθm

16kμ2
: .13/

By expression (8), we have Σm
r=1θr.V

.j,r//2 � θm‖V .j, ·/‖2
2 �mθmk−1μ−2 for every j ∈S0, which is more than

twice the right-hand side of inequality (13). Thus, an important consequence of inequality (13) is that on
ΩRCC, for any S, S′ ∈ .

[p]
d /,

if S ∩S0 �S′ ∩S0, then
m∑

r=1
λr.Σ̂.S,S//<

m∑
r=1
λr.Σ̂.S′ ,S′//: .14/

Fix a ∈ [A], and for any j̃ ∈ [p] define qj̃ := P.j̃ ∈ Sa,bÆ.a/|X/. Now, fix some j ∈ S0 and j′ ∈ [p] \ S0. We
claim that

qj �qj′ on ΩRCC: .15/

Before proving the claim, we first observe that, if result (15) holds, then, since the same inequality would
hold if we replace j′ by any other index in Sc

0, we would have on ΩRCC that

qj �
∑

j̃∈.[p]\S0/∪{j} qj̃

p−k +1
= d −∑j̃∈S0\{j} qj̃

p−k +1
� d −k +1

p−k +1
� 1

p
: .16/

To verify the claim, define for j̃ ∈{j, j′} and b∈ [B] the following sets:

Sb, j̃ :={.Sa,1, : : : , Sa,B/ : bÅ.a/=b, j̃ ∈Sa,b}
and

Sb :={.Sa,1, : : : , Sa,B/ : bÅ.a/=b}:

Let ψ : . [p]
d /→ .

[p]
d / be defined such that ψ.S/ := .S \{j′}/∪{j} if j′ ∈S and j �∈S and ψ.S/ :=S otherwise.

Since, for every S ∈ .
[p]
d /, we have either ψ.S/ = S or S ∩ S0 �ψ.S/ ∩ S0, by result (14) we have on ΩRCC

that Σm
r=1λr.Σ̂.S,S//�Σm

r=1λr.Σ̂.ψ.S/,ψ.S///. Thus, for any b∈ [B] and any fixed Σ̂ satisfying ΩRCC, the map ψ
induces an injection Ψ :Sb,j′ →Sb,j , given by Ψ.Sa,1, : : : , Sa,B/ := .Sa,1, : : : , Sa,b−1,ψ.Sa,b/, Sa,b+1, : : : , Sa,B/,
which in particular means that |Sb,j′ |� |Sb,j|. Therefore, on ΩRCC, we have for all b∈ [B] that

P{j ∈Sa,bÆ.a/|X, bÅ.a/=b}= P{j ∈Sa,bÆ.a/, bÅ.a/=b|X}
P{bÅ.a/=b|X} = |Sb,j|

|Sb|
� |Sb,j′ |

|Sb| = P{j′ ∈Sa,bÆ.a/, bÅ.a/=b|X}
P{bÅ.a/=b|X} =P{j′ ∈Sa,bÆ.a/|X, bÅ.a/=b},

and consequently qj �qj′ as claimed in expression (15).
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For b∈ [B] and r ∈ [d], define va,b;r :=vr.Pa,bΣPa,b/ and λa,b;r :=λr.Pa,bΣPa,b/. Note that λa,b;m+1 =: : :=
λa,b;d =1. Write Va,b := .va,b;1, : : : , va,b;m/, V̂ a,b := .v̂a,b;1, : : : , v̂a,b;m/, Θa,b :=diag.λa,b;1 −λa,b;m+1, : : : ,λa,b;m −
λa,b;m+1/ and Θ̂a,b :=diag.λ̂a,b;1 − λ̂a,b;m+1, : : : , λ̂a,b;m − λ̂a,b;m+1/. By lemma 2 in Appendix A.5, on ΩRCC, we
have for all j̃ ∈{j, j′} that

|.V̂ a,bÆ.a/Θ̂a,bÆ.a/V̂
T
a,bÆ.a//

.j̃, j̃/ − .Va,bÆ.a/Θa,bÆ.a/V
T
a,bÆ.a//

.j̃, j̃/|

�4m‖Pa,bÆ.a/.Σ̂−Σ/Pa,bÆ.a/‖op �8Km

√{
d log.p/

n

}
� mθm

4kμ2
, .17/

where we used expression (9) in the last inequality. Observe that

Va,bÆ.a/Θa,bÆ.a/V
T
a,bÆ.a/ =

d∑
r=1

.λa,bÆ.a/;r −1/va,bÆ.a/;rv
T
a,bÆ.a/;r =Pa,bÆ.a/.Σ− Ip/Pa,bÆ.a/: .18/

Also, we have

.V̂ a,bÆ.a/Θ̂a,bÆ.a/V̂
T
a,bÆ.a//

.j̃, j̃/ =
m∑

r=1
.λ̂a,bÆ.a/;r − λ̂a,bÆ.a/;m+1/.v̂

.j̃/
a,bÆ.a/;r/

2 =: ŵ.j̃/
a : .19/

By expressions (8), (17), (18) and (19), we have on ΩRCC ∩{j ∈Sa,bÆ.a/} that

3mθm

4kμ2
�θm‖V .j, ·/‖2

2 − mθm

4kμ2
�Σ.j,j/ −1− mθm

4kμ2
� ŵ.j/

a

�Σ.j,j/ −1+ mθm

4kμ2
�θ1‖V .j, ·/‖2

2 + mθm

4kμ2
� 5mθ1μ

2

4k
: .20/

Moreover, on ΩRCC ∩{j′ ∈Sa,bÆ.a/}, we have

− mθm

4kμ2
� ŵ.j′/

a � mθm

4kμ2
: .21/

Recall that for all j ∈ [p], if j �∈Sa,bÆ.a/, then ŵ.j/
a =0. Combining the lower bound on ŵ.j/

a in inequality (20)
and the upper bound on ŵ.j′/

a in inequality (21), we have by inequalities (15) and (16) that, on ΩRCC,

E.ŵ.j/
a − ŵ.j′/

a |X/=E.ŵ.j/
a 1{j∈Sa, bÆ.a/} − ŵ.j′/

a 1{j′∈Sa,bÆ.a/}|X/� qjmθm

2kμ2
� mθm

2pkμ2
: .22/

Now, let a, j and j′ be freely varying again, and define Ω :={minj∈S0 ŵ.j/ >maxj �∈S0 ŵ.j/}. Since inequality
(22) holds for arbitrary j ∈S0 and j′ �∈S0, and, since ŵ.j/ =A−1ΣA

a=1ŵ.j/
a , we have

Ωc ⊆
⋃
j∈S0

{
ŵ.j/ −E.ŵ.j/|X/�− mθm

4pkμ2

}
∪
⋃

j′ �∈S0

{
ŵ.j′/ −E.ŵ.j′/|X/� mθm

4pkμ2

}
:

Observe that .ŵ.j/
a :a∈ [A]/ are independent and identically distributed conditionally on X. By inequalities

(20) and (21), ŵ.j/
a is bounded on ΩRCC for all j ∈ [p]. Thus, we can use a union bound and apply Hoeffding’s

inequality conditionally on X to obtain that, on ΩRCC,

P.Ωc|X/�p exp
{

− A

2

(
mθm

4pkμ2

)2/(5mθ1μ
2

4k

)2}
�p exp

(
− Aθ2

m

50p2μ8θ2
1

)
:

Since l� k, on Ω, we have Ŝ ⊇S0. Therefore, by Yu et al. (2015), theorem 2, on ΩRCC ∩Ω,

L.V̂ , V/� 2m1=2‖PŜ.Σ̂−Σ/PŜ‖op

θm

�4K

√{
ml log.p/

nθ2
m

}
:

The desired result follows from the fact that

P.ΩRCC ∩Ω/�1−P.Ωc
RCC/−E{P.Ωc|X/1ΩRCC}�1−2p−3 −p exp

(
− Aθ2

m

50p2μ8θ2
1

)
:
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A.3. Proof of proposition 1
Let Op,m,k :={V ∈Op,m : nnzr.V/�k}. Writing k =qm+h for q∈N and h∈{0, : : : , m−1}, for r ∈ [m], we
define

ur :=
{

.q+1/−1=2.0T
.r−1/.q+1/, 1T

q+1, 0T
p−r.q+1//

T if 1� r �h,
q−1=2.0T

h.q+1/+.r−h−1/q, 1T
q , 0T

p−h.q+1/−.r−h/q/
T if h+1� r �m,

and write U := .u1, : : : , um/ ∈ Rp×m. By construction, UTU = Im, so there exists Ũ ∈ Op whose first m
columns are U. Moreover, for j ∈ [k], we have

4m

5k
� m

k +m
� 1

q+1
�‖U.j, ·/‖2

2 � 1
q

� m

k −m
� 4m

3k
: .23/

Now, fix some ε∈ .0,
√{m=.16k/}] to be specified later. For any J ∈Op−m,m,k−m, define

VJ := Ũ
(√

.1− ε2/Im

εJ

)
=U + Ũ

({√
.1− ε2/−1}Im

εJ

)
=: U + ŨΔJ :

For any matrix M ∈Rp×m, we define its two-to-infinity norm as

‖M‖2→∞ := sup
v∈Sm−1

‖Mv‖∞ =max
j∈[p]

‖M.j, ·/‖2:

Then, for J ∈Op−m,m,k−m, we have

‖VJ −U‖2→∞ �‖Ũ‖2→∞‖ΔJ‖op =‖ΔT
J ΔJ‖1=2

op �√
2ε: .24/

Combining inequalities (23) and (24), and, since ε� √{m=.16k/}, we have ‖V
.j, ·/
J ‖2 ∈ [0:54.m=k/1=2,

1:51.m=k/1=2] for all j ∈ [k], which implies that VJ ∈Op,m,k.3/.
Using the definition of VJ and the triangle inequality, we have that, for any J , J ′ ∈Op−m,m,k−m,

‖V T
J VJ ′ ‖F =‖.1− ε2/Im + ε2JTJ ′‖F � .1− ε2/‖Im‖F − ε2√m‖JTJ ′‖op = .1−2ε2/

√
m: .25/

Writing DKL.P‖Q/ for the Kullback–Leibler divergence from a distribution P to a distribution Q and
ΣJ := Ip +θVJ V T

J , we have for any J , J ′ ∈Op−m,m,k−m that

DKL{Np.0, ΣJ /‖Np.0, ΣJ ′/}= 1
2

tr.Σ−1
J ′ ΣJ − Ip/= θ

2
tr{.Ip +θVJ ′V T

J ′/
−1.VJ V T

J −VJ ′V T
J ′/}

= θ

2
tr
{(

Ip − θ

1+θ
VJ ′V T

J ′

)
.VJ V T

J −VJ ′V T
J ′/

}
= θ2

2.1+θ/
{m− tr.VJ ′V T

J ′VJ V T
J /}

= θ2

2.1+θ/
.m−‖V T

J VJ ′ ‖2
F/� 2mε2θ2

1+θ
, .26/

where we used inequality (25) in the final inequality. In contrast, we also have

L.VJ , VJ ′/= 1√
2
‖VJ V T

J −VJ ′V T
J ′ ‖F ={ε4L2.J , J ′/+ ε2.1− ε2/‖J −J ′‖2

F}1=2 � εL.J , J ′/, .27/

where we used Vu and Lei (2013), proposition 2.2, in the last inequality. Thus, if we can find some finite
subset J ⊆ Op−m,m,k−m such that 3 � |J | � exp.nm2θ2=k/ and minJ ,J ′∈J :J �=J ′ L.J , J ′/ � cm1=2 for some
universal constant c>0, then by expressions (26) and (27) and Fano’s lemma (see, for example, Yu (1997),
lemma 3), we have

inf
Ṽ

sup
V∈Op,m,k.3/

EPV , θ{L.Ṽ , V/}� inf
Ṽ

max
J∈J

EPVJ , θ{L.Ṽ , VJ /}

� cm1=2ε

2

{
1− 2nmε2θ2=.1+θ/+ log.2/

log |J |
}

� cm1=2ε

2

(
1
3

− 2nmε2θ2

log |J |
)

,

where we used the fact that |J |�3 in the final inequality. Choosing

ε=
√(

log |J |
16nmθ2

)

(noting that the condition log |J |�nm2θ2=k ensures that ε�√{m=.16k/}), we obtain
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inf
Ṽ

sup
V∈Op, m, k.3/

EPV , θ{L.Ṽ , V/}� cm1=2ε

10
�

√(
log |J |

nθ2

)
: .28/

It remains to construct a suitable J . By Szarek (1982) (see also Pajor (1998), proposition 8), there is a
finite subset J̃ ⊆Ok−m,m such that |J̃ |=�exp{m.k −2m/}� and L.J̃ , J̃

′
/� cm1=2 for all distinct J̃ , J̃

′ ∈ J̃ .
Define J :={.J̃

T
, 0T

.p−k/×m/T : J̃ ∈ J̃ }. We have minJ ,J ′∈J :J �=J ′ L.J , J ′/=min
J̃ , J̃

′∈J̃ :J̃ �=J̃
′ L.J̃ , J̃

′
/�cm1=2 and

|J |= |J̃ |. Since k �4m and nmθ2 � k2, we have 3� |J |� exp.nm2θ2=k/ as desired. Hence, by expression
(28),

inf
Ṽ

sup
V∈Op,m,k.3/

EPV , θ{L.Ṽ , V/}�
√(

mk

nθ2

)
: .29/

Alternatively, we can also construct J as follows. Recall the definition of .
[p−m]

k / from the proof of theorem
1. For any S ∈.

[p−m]
k /, define JS ∈R.p−m/×m such that J

.S, ·/
S =U.[k], ·/ and J

.Sc , ·/
S =0. By the Gilbert–Varshamov

lemma (see, for example, Massart (2007), lemma 4.10) and, since p�5k, there exists S ⊆ .
[p−m]

k / such that

|S|=
⌊

exp
{

1
15

k log
(

p−m

k

)}⌋

and, for any distinct S, S′ ∈S, |S ∩S′|�k=2. Let J :={JS : S ∈S}. Then |J |= |S| and

min
J ,J ′∈J :J �=J ′ L.J , J ′/= min

J ,J ′∈J :J �=J ′.m−‖JTJ ′‖2
F/1=2 �

(
m− k

2q

)1=2

�
√(m

3

)
,

where the final inequality uses inequality (23). Since k log{.p − m/=k}� 17 and nm2θ2 � k2 log.p=k/, we
have 3� |J |� exp.nm2θ2=k/ as desired. Hence, by expression (28),

inf
Ṽ

sup
V∈Op,m,k.3/

EPV , θ{L.Ṽ , V/}�
√{

k log.p=k/

nθ2

}
: .30/

We complete the proof by combining expressions (29) and (30).

A.4. Proof of corollary 1
The proof of theorem 1 remains valid for the setting of corollary 1. Fix a specific a∈ [A]. Since Vm ∈Op,m,k.1/
and θ1 = : : := θm, we have by expression (13) that on ΩRCC, for any S, S′ ∈ .

[p]
d /, if |S ∩S0|< |S′ ∩S0|, then

Σm
r=1λr.Σ̂.S,S//<Σm

r=1λr.Σ̂.S′ ,S′//. Thus, in particular, |Sa,bÆ.a/ ∩S0|=maxb∈[B] |Sa,b ∩S0| on ΩRCC.
Observe that |Sa,b ∩ S0|∼IID HyperGeom.d, k, p/. Let M := maxb∈[B] |Sa,b ∩ S0| and R := |{b ∈ [B] :

|Sa,b ∩ S0| = M}|. Conditionally on R = 1 and X such that ΩRCC holds, each signal co-ordinate j ∈ S0
has the same probability of being included in Sa,bÆ.a/, which is the unique subset of maximal intersection
with S0. Thus, we have on ΩRCC that

P.{j ∈Sa,bÆ.a/}∩{R=1}|X/=P.{j′ ∈Sa,bÆ.a/}∩{R=1}|X/ .31/

for j, j′ ∈S0. Recall the definition of qj from the proof of theorem 1. By equation (31), for any j ∈S0, we
have on ΩRCC that

qj �P.{j ∈Sa,bÆ.a/}∩{R=1}|X/= 1
k

∑
j̃∈S0

E.1{j̃∈Sa,bÆ.a/}1{R=1}|X/

= 1
k

E.|Sa,bÆ.a/ ∩S0|1{R=1}|X/� t

k
P.M � t, R=1/� t

4k
, .32/

where the penultimate inequality uses Markov’s inequality and the fact that the pair .M, R/ is indepen-
dent of X, and the final bound follows from lemma 4 below. Now, using expression (32) in place of
expression (16), we find that E.ŵ.j/

a − ŵ.j′/
a |X/ � tmθm=.8k2/ instead of inequality (22). Thus, P.Ωc|X/ �

p exp{−At2=.800k2/}. The desired result is then concluded in a similar fashion to that in theorem 1.
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A.5. Additional lemmas
Lemma 2. Suppose that Σ and Σ̂ are symmetric d ×d matrices. For r∈ [d], let λr :=λr.Σ/ and vr :=vr.Σ/
be the eigenvalues and corresponding eigenvectors of Σ, and let λ̂r :=λr.Σ̂/ and v̂r :=vr.Σ̂/ be the eigen-
values and corresponding eigenvectors of Σ̂. Also, for r ∈ [d], define Vr := .v1, : : : , vr/, V̂ r := .v̂1, : : : , v̂r/,
Θr := diag.λ1 −λr+1, : : : ,λr −λr+1/ and Θ̂r := diag.λ̂1 − λ̂r+1, : : : , λ̂r − λ̂r+1/ (with the convention that
λd+1 = λ̂d+1 :=0). Then, for any m∈ [d],

‖V̂ mΘ̂mV̂
T
m −VmΘmV T

m‖op �4m‖Σ̂−Σ‖op:

Proof. By the Davis–Kahan theorem (see, for example Stewart and Sun (1990), theorem V.3.6) and
Weyl’s inequality, we have for any r ∈ [d] that

.λr −λr+1 −‖Σ̂−Σ‖op/‖ sin{Θ.V̂ r, Vr/}‖op �‖Σ̂−Σ‖op:

After rearranging, while noting that ‖ sin{Θ.V̂ r, Vr/}‖op �1, we obtain that

.λr −λr+1/‖ sin{Θ.V̂ r, Vr/}‖op �2‖Σ̂−Σ‖op: .33/

Now, we can rewrite

VmΘmV T
m =

m∑
r=1

.λr −λm+1/vrv
T
r =

m∑
r=1

.λr −λr+1/VrV
T
r ,

and, similarly, V̂ mΘ̂mV̂
T
m =Σm

r=1.λ̂r − λ̂r+1/V̂ rV̂
T
r . Thus,

‖V̂ mΘ̂mV̂
T
m −VmΘmV T

m‖op �
m∑

r=1
‖.λ̂r − λ̂r+1/V̂ rV̂

T
r − .λr −λr+1/VrV

T
r ‖op

�
m∑

r=1
{|λ̂r −λr − .λ̂r+1 −λr+1/|‖V̂ rV̂

T
r ‖op + .λr −λr+1/‖V̂ rV̂

T
r −VrV

T
r ‖op}

�
m∑

r=1
[|λ̂r −λr|+ |λ̂r+1 −λr+1|+ .λr −λr+1/‖ sin{Θ.V̂ r, Vr/}‖op]�4m‖Σ̂−Σ‖op,

where we used lemma 3 below in the penultimate inequality, and Weyl’s inequality and inequality (33) in
the final inequality.

Lemma 3. For U, V ∈ Od,r with r � d, let λ1, : : : ,λs (where s � r) denote the non-zero eigenvalues of
sin{Θ.U, V/}. Then the non-zero eigenvalues of UUT −VV T are given by λ1, : : : ,λs, −λ1, : : : , −λs. In
particular, ‖UUT −VV T‖op =‖ sin{Θ.U, V/}‖op and ‖UUT −VV T‖2

F =2‖ sin{Θ.U, V/}‖2
F.

Proof. We need to prove only the first statement. First assume that 2r �d. By the first part of Stewart
and Sun (1990), theorem I.5.2, there are Q∈Od and G, H ∈Or such that

U =Q

(
Ir

0r×r

0.d−2r/×r

)
G,

V =Q

( Γ
Σ

0.d−2r/×r

)
H ,

where Γ= diag.γ1, : : : , γr/, Σ= diag.σ1, : : : ,σr/, 0 �γ1 : : :�γr, σ1 � : : :�σr � 0 and Γ2 +Σ2 = Ir. Hence,
UTV =GTΓH has singular values γ1, : : : , γr and sin{Θ.U, V/}=diag{√

.1−γ2
1 /, : : : ,

√
.1−γ2

r /} has eigen-
values σ1, : : : ,σr. However, we compute that

QT.UUT −VV T/Q=
( Σ2 −ΓΣ 0

−ΣΓ −Σ2 0
0 0 0

)
,

which after permuting rows and columns is a block diagonal matrix with diagonal blocks(
σ2

j −σjγj

−σjγj −σ2
j

)
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for j ∈ [r]. Each of these diagonal blocks has eigenvalues ±σj . Thus, the eigenvalues of UUT − VV T are
±σ1, : : : , ±σr, 0, : : : , 0.

Now, assume that 2r > d instead. Then by the second part of Stewart and Sun (1990), theorem I.5.2,
there are Q∈Od and G, H ∈Or such that

U =Q

(
Id−r 0.d−r/×.2r−d/

0.d−r/×.d−r/ 0.d−r/×.2r−d/

0.2r−d/×.d−r/ I2r−d

)
G,

V =Q

( Γ 0.d−r/×.2r−d/

Σ 0.d−r/×.2r−d/

0.2r−d/×.d−r/ I2r−d

)
H ,

where Γ=diag.γ1, : : : , γd−r/, Σ=diag.σ1, : : : ,σd−r/ and Γ2 +Σ2 =Id−r. We may assume thatσ1 � : : :�σd−r.
Hence,

UTV =GT

(
Γ 0
0 I2r−d

)
H

has singular values γ1, : : : , γd−r, 1, : : : , 1 and sin{Θ.U, V/} has eigenvalues σ1, : : : ,σd−r, 0, : : : , 0. However,
we again have

QT.UUT −VV T/Q=
( Σ2 −ΓΣ 0

−ΣΓ −Σ2 0
0 0 0

)
:

Thus, UUT −VV T has eigenvalues ±σ1, : : : , ±σd−r, 0, : : : , 0 as desired.

Lemma 4. Let Y1, : : : , YB be independent and identically distributed on N ∪ {0} with distribution
function F . Define M := maxb∈[B] Yb and R := |{b : Yb = M}|. Then for B = �2−1{1 − F.t − 1/}−1�, we
have P.M � t, R=1/� 1

4 .

Proof. For m∈N∪{0}, define pm :=P.Y1 =m/ and qm :=P.Y1 �m/. By the definition of B, we have
.B−1/qt � 1

2 �Bqt . Also, observe that

P.M =m, R=1/=BP.X1 =m/
B∏

b=2
P.Xb <m/=Bpm.1−qm/B−1:

Therefore,

P.M � t, R=1/=
∞∑

m=t

P.M =m, R=1/=
∞∑

m=t

Bpm.1−qm/B−1 �Bqt{1− .B−1/qt}� 1
4

as desired.
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