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Abstract

Domestic heating demand accounts for around 14% of all UK greenhouse gas emissions

(BEIS, 2018c). Reduction of this demand is necessary if the UK is to meet its emissions

commitments. At the same time, the consensus is that dangerous cold exposure

contributes to winter mortality rates. However, determining when, where and for whom

this dangerous exposure occurs is challenging. Rather than using static measures of

ambient temperature, this study makes use of experienced temperature – a novel measure

of the immediate thermal environment of an individual. The relationships between

experienced temperature and sociodemographic, housing and health factors are examined

using data from a longitudinal observational health study of over 100,000 participants (the

UK Biobank).

Each participant wore an AX3 activity monitor for a week of everyday life between

May 2013 and December 2015, which also measured temperature. The total unprocessed

dataset for all participants was over 27TB. Following a considerable data processing exercise,

each participant’s experienced temperature and activity data were summarised in a series of

metrics designed to characterise cold exposure. The resultant metrics were used in regression

models against the available sociodemographic, housing and health factors to determine the

relationship between cold exposure and health.

Various findings were revealed. The choice of summary metric is important to

characterising the experienced temperature of a participant. The coldest times of the year

are associated with lower experienced temperature for participants. Experienced

temperature increases with age and decreases with activity level, health satisfaction and

whether a solid-fuel open fire is used for home heating. There is clear evidence that low

standard deviation of experienced temperature, named thermal variety in this study, is

associated with poor health. The implications of these findings are discussed, with

particular attention on who might be targeted for domestic carbon reduction schemes

without risking overall population health.
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Impact Statement

Within academia, the impact of this thesis is three-fold. First, from a methods

perspective, it demonstrates that it is possible to measure and analyse the experienced

temperature of individuals at a population level. The number of participants involved in

this study far exceeds any previous studies of experienced temperature or domestic

temperatures in the UK. It is hoped that this thesis demonstrates the viability of the use

of wrist–worn temperature sensors in the real world. The method presented here could be
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be available to other researchers. This opens up potential avenues for future work using
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the months after the completion of this study.
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decarbonised, improvements in the energy efficiency of home heating devices is essential.
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opportunity to critically engage with policy makers regarding the immediate health impacts

of adequate domestic heating for vulnerable populations, and in the longer term, the wider

scale impacts of carbon based heating systems for the population as a whole.
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Chapter 1

Introduction and background

Every act of energy conservation like this is more than just common sense, I tell

you, it is an act of patriotism

Jimmy Carter – A Crisis of Confidence (15 July, 1979)

During the 20th century, global life expectancy rose from 31 to over 65 years (Prentice,

2008). Over the same period, per capita total energy use almost trebled (Brito and Sousa,

2015). These increases were primarily driven by economic development, and while neither

directly causally linked nor equitably distributed, their relation reflects the complex ways

energy use and health are interlinked. Fossil fuel energy sources provide the vastly dominant

portion of this energy – 82% of global primary energy supply was fossil fuel in origin in 2016

(IEA, 2018). Their continued use is the primary driver of anthropogenic climate change

(Hansen et al., 2011).

If catastrophic global warming is to be curtailed, the first half of the 21st century will be

characterised by the drastic decarbonisation of the global economy. This will likely require a

decoupling of many of the interactions between health and carbon intensive energy use. For

example, the use of carbon energy sources has direct impacts through air pollution, from

both supply (Markandya and Wilkinson, 2007) and demand perspectives (Lam et al., 2012).

Global warming and its consequences are increasingly framed as a public health emergency

(Levy and Patz, 2015). This thesis is situated within such a framing.

The focus of the thesis is health within the built environment. Around 40% of global

CO2 emissions and 36% of primary energy use is attributable to buildings (IEA, 2018). In

2007, The Lancet published a series of papers examining the links between energy and health.

As part of this series, Wilkinson et al. (2007) laid out a number of the interconnections

between health, energy and buildings. This study is motivated by questions surrounding

one such link, that of temperature and health. In the broadest sense, it aims to contribute to

understanding of how the temperatures we are exposed to in daily life relate to our health.

In temperate climates such as the UK, home heating practices are clearly important in this
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regard, given that we spend around 90% of our time indoors (Brown, 1983). The following

dilemma is central to this question. Space heating is a major use of energy in such climates.

This energy use is essential for the maintenance of health and the avoidance of the worst

effects of colder winter temperatures. At the same time, it is the use of this highly carbon

intensive heating that carries its own risks in terms of global warming.

The first chapter sets out the context and motivation for the study. It describes the

structure of the thesis and provides an overview of its scope and potential impact. In the

next section, a more detailed examination of the present energy demand context is given,

focusing primarily on the United Kingdom, where the study’s data were collected.

1.1 The energy demand context

Starting with the global picture, and focusing in on the UK and the UK building stock

in particular, this section lays out the energy demand context of the study. According to

IEA estimates, global primary energy demand was 14,050 Mtoe (163,402 TWh) in 2017; an

increase of 2.1% on the previous year and equivalent to 2.4 kW continuous power per capita

(IEA, 2018).

Anthropogenic fossil fuel CO2 emissions grew 1.2% in 2017 to 37.1 Gt CO2 after two

years of stability (Muntean et al., 2018). In more developed countries, the hitherto existing

correlation between economic growth and energy demand has begun to be decoupled. Recent

economic shifts in more developed countries away from manufacturing have allowed these

nations to in effect export carbon emissions overseas, mainly to China (Davis and Caldeira,

2010).

In 2017, approximately 0.8% of the world’s population lived in the UK and used 1.0% of

the total primary energy demand (IEA, 2018). The 149.1 Mtoe (1,734 TWh) of UK demand

was dominated by natural gas (30%), petroleum (45%) and electricity (14%), following a

96% reduction in coal, coke and breeze usage since 1970 (BEIS, 2018a). Domestic usage

accounted for 28% of the UK total (40.1 Mtoe, 466 TWh), with space heating accounting

for 63% of total domestic energy use (25.4 Mtoe, 295 TWh) and 75% of this was provided

by natural gas (18.9 Mtoe, 220 TWh) (BEIS, 2019). The changes that have occurred in the

UK for each sector of the economy are shown in figure 1.1.

UK total greenhouse gas emissions are falling – approximately 2% on average per year

since 1990 – and were 456 MtCO2e in 2017 (BEIS, 2018c). CO2 emissions, which comprise

the vast majority of greenhouse gas emissions, were 367 MtCO2 in 2017, which equates to

just under 6 tCO2 per capita. Residential CO2 emissions have dropped 18% since 1990 levels

and stood at 64.1 MtCO2 in 2017 (17.5% of total CO2). (BEIS, 2018c).

The UK is one of the few countries to have legally binding greenhouse gas reduction

legislation. The Climate Change Act of 2008 was amended in July 2019 to introduce a target
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Figure 1.1: UK Annual energy consumption by sector. The UK population was 55.63 million
people in 1970 and 66.04 million in 2017 (an increase of 18.7%). Total energy
consumption was 156.8 Mtoe (1,824 TWh) in 1970 and 149.1 Mtoe (1,734 TWh) in
2017, a fall of 4.9%. Data source: BEIS (2018a)

of at least net-zero greenhouse gas emissions by 2050 (UK Government, 2008), which now

makes it the most stringent target of any major industrialised economy.

1.2 Housing

Since this thesis focuses on temperature and health within the domestic building stock of

Great Britain, it is instructive to briefly survey the character of the stock in general. There

are around 28 million dwellings in Great Britain. 63% are owner occupied, 19% privately

rented, 10% housing association rented and 7% rented from local authorities. 85% of British

homes are in England. Nearly 56% of these were built before 1965 when building standards

were introduced (MHCLG, 2019). At the time of the survey in 2017, almost a fifth did

not meet the government defined Decent Homes standard (MHCLG, 2006). Over a third of

homes built before 1919 and only 2% of homes built after 1990 were found to be ‘non-decent’.

As of 2017, 80% of buildings are classed as residential (BEIS, 2018b). 17% of people live

in rural areas, and 83% in urban areas. 1.1% of people live in areas described as sparsely

populated (DEFRA, 2019).

Using data derived from the English Housing Survey and other national sources, Palmer

and Cooper (2013) reported on the state of domestic energy use in the UK in 2013. Overall,
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the housing stock changes very slowly - the number of households is increasing at a rate

of less than 0.9% a year, and average household size is falling. The distribution of homes

is shifting towards the South, South West and Midlands, relative to the North of England.

A third of the stock is comprised of flats and detached homes, and they are increasingly

common. The stock is increasingly privately owned; local authorities own four million fewer

homes than in 1970. Home heating energy use increased by two-fifths between 1970 and

2013, although it fell between 2004 and 2009. The average SAP rating, which is a measure of

domestic energy efficiency, is improving slowly. By 2011, 90% of homes had central heating.

According to the report, modelling suggests that the average temperature in UK homes rose

from 13.7°C in 1970 to 17.7°C in 2011 - although it should be noted that these averages do

not necessarily reflect the temperatures experienced by inhabitants. These topics will be

returned to in greater depth in chapter 2.2.1.

1.3 Cold exposure and health

As mentioned above, one of the primary reasons we heat our homes is to avoid the impacts

of cold during winter. In the UK, the majority of homes use natural gas for heating. With

an oceanic climate, the mean UK temperature typically ranges from around 5°C in winter to

15°in summer. Consequently, days where the temperature falls below freezing are common

in winter (Kendon et al., 2018).

The primary epidemiological evidence that cold exposure is linked to health problems is

the peak in mortality in the coldest months. This is demonstrated in figure 1.2, which shows

how monthly numbers of deaths in England and Wales vary with age. In order to remove

the effect of the background mortality rate, the number of excess winter deaths (EWDs) is

typically used. This is calculated using the following relation,

EWD = winter deaths− average non winter deaths. (1.1)

Winter in the northern hemisphere is normally taken to be December to March. There

has been some debate as to whether measuring EWDs is the best way to characterise the peak

in winter mortality (Hajat and Gasparrini, 2016). This, and related issues, are considered

in greater depth in section 2.1.3.

Winter 2017/18 recorded the highest peak in EWDs in England and Wales for over

40 years. The primary causes of death in UK EWDs are circulatory diseases (ICD-10

codes I00 to I99), respiratory diseases (ICD-10 codes J00 to J99) Alzheimer’s disease and

dementia (ICD-10 codes F01, F03 and G30) (ONS, 2018). The International Classification of

Diseases (ICD) code refers to the unique identifier of diseases produced by the World Health

Organisation (the version used in this thesis is ICD-10). These conditions are exacerbated in
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Figure 1.2: Monthly deaths by age in England and Wales at age of death. The bright peaks
correspond to winter time. The diagonal features correspond to the decreased birth
rate in the 1st and 2nd World Wars. Data source: ONS (2016).

the winter and are consequently correlated with lower daily average external temperatures.

However, there is ambiguity as to the relative importance of long duration moderate cold

exposure versus short-term more intense cold stress in the development of these illnesses.

This distinction can be characterised by longer periods in a poorly-insulated home against

short waits at a very cold bus stop. Keatinge and Donaldson (1997) suggest “cold stress

to people waiting at a bus stop in a cold wind can exceed anything experienced indoors.”.

Population level studies show a non-linear relationship between external temperature and

mortality (Gasparrini et al., 2010), but it is unclear what the relevant exposure function is at

the level of an individual. Moreover, cold exposure studies which use ambient temperature

recorded at local weather stations suffer from assuming homogeneity in temperature within

a single study location, and sensors located in the home fail to account for actual exposure.

Problems such as these motivate the concept of experienced temperature, where sensors

record the immediate thermal environment of the participant (Kuras et al., 2015). It is the
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development of this concept that is one of the central concerns of this thesis.

1.4 Problem statement

The above introduction allows the research problem of this thesis to be laid out. Primarily,

this thesis is concerned with defining and measuring the experienced temperature of an

individual. It attempts to understand how this measured experienced temperature relates

to cold exposure. In contrast to subjective determinations of feelings of cold or discomfort,

it aims to understand how possible it is to define an objective experienced temperature

and understand how well this characterises the immediate thermal environment of people.

It then asks how the experienced temperature relates to sociodemographic, building and

health factors more broadly, with a view to understanding and reducing heating energy

demand.

1.5 Data source: UK Biobank

The primary data source for this thesis is the UK Biobank (Sudlow et al., 2015). It is a

large-scale, longitudinal cohort health study which recruited 500,000 people in 2006-2010

aged between 40 and 69 years, principally from major urban centres across Britain. It is

currently funded until 2022, but it is expected that it will follow its participants for many

years to come (Sudlow et al., 2015). Each participant provided detailed baseline health and

demographic information. The resource is also linked to participant health records, which

allows the development of diseases and eventual causes of death to be followed. A sub-sample

of over 100,000 participants wore an Axivity AX3 activity monitor continuously for a single

week within the study period which ran between May 2013 and December 2015 (Doherty

et al., 2017). It is this device that provides the data which are analysed in this thesis. The

AX3 also measures temperature, which is used as the basis of the experienced temperature

variable in this study. A substantial portion of this study involved the processing and

downsampling of the AX3 data, which was over 27 TB in total. This is described fully in

section 4.2.1.

1.6 Scope

As with all interdisciplinary studies, it is important to restrict the scope of the investigation,

in order to prevent it expanding beyond the limits of a standard PhD. With this in mind,

this study focuses on UK domestic energy demand and the health outcomes associated with

cold exposure specifically. Furthermore, questions of thermal comfort and thermal sensation

will not be addressed directly. Fuel poverty – the condition in which households lack the

material means to afford warmth – will also not be considered directly, but aspects of both

fields are relevant to the study as a whole, as will be shown in the literature review in the
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following chapter. While the focus of the study is Great Britain, many of its conclusions

are relevant to other countries with similar climates and built environments, such as Ireland

and New Zealand. While an array of Big Data computing methods have been used during

the course of this thesis, they are not a primary focus of the discussion.

1.7 Relevance

Energy demand reduction as part of the decarbonisation of the economy is one of the most

pressing issues that faces us, and is likely to remain so for at least the next 30 years.

Achieving the net–zero carbon emissions target of 2050 will require deep restructuring of

almost every aspect of daily life. Understanding how to do this as quickly as possible, whilst

also minimising harm to health, is a massive sociotechnical challenge. It is hoped that this

thesis contributes in a meaningful way to the understanding required to meet this challenge.

It is expected that the issues discussed throughout are of immediate relevance, not just

to the energy demand community, but also to physiologists and public health practitioners.

Those working in the field of fuel poverty will likely find some of its methods and conclusions

helpful. In principle, it could aid the development of new forms of heating control systems

which focus on providing warmth for the user at the individual level, as opposed to the

whole-home approach.

A key output of this study is the database of experienced temperatures that result from

the processing of the AX3. As part of the data access agreement, these data will be made

available to other UK Biobank researchers, allowing them to conduct their own analysis.

1.8 Thesis structure and conventions

The following chapter will comprise a comprehensive literature review of the fields briefly

surveyed in this introduction. In Chapter 3, the central conceptual model underlying

experienced temperature is described, as well as how the UK Biobank is structured and

how the AX3 wristband used in this study. It also describes the key research questions and

the hypothesised results. In chapter 4 the main method of the thesis is specified. The

following chapters, (5, 6, 7 and 8) contain the results to each of the research questions in

chapter 3, as well as an analysis of subsequent questions which arose during the analysis.

The results as a whole are critically examined in chapter 9, before the conclusion to the

thesis in chapter 10.

The thesis adopts a number of conventions when reporting results. Confidence intervals

for estimates are given at the 95% level unless otherwise stated and are denoted with square

brackets. Generally, the term outcome variable is used in a manner synonymous to dependent

variable in other studies. Equivalently, explanatory variable is used in place of independent

variable. A full list of the software used in the study is given in appendix F.
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Chapter 2

Literature Review

Winter night in Harlem

Radiator won’t get hot

Well the mean old landlord, he don’t care

If I freeze to death or not

Bill Withers – Harlem (1971)

In the broadest sense, this thesis is motivated by questions surrounding the impacts

of cold exposure on health. It takes a realist philosophical approach, and holds that it

is possible to extract coherent information about these concepts from available sources to

construct falsifiable claims about this information. While there are multiple critiques of the

concepts of ‘health’ from a social scientific perspective (Nordenfelt, 2006; Kingma, 2007),

and to a much lesser extent temperature and other physical variables, it is not the aim of

this thesis to engage with these debates.

Figure 2.1: The three different scales which this literature review focuses on are represented by the
three images above. The first represents the population scale impacts of cold exposure
as demonstrated by epidemiological studies. The second image represents questions
around human physiology and temperatures at the level of housing are considered.
Since the study uses the wrist worn AX3, the third image represents evidence for
variations in wrist temperature.
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At home (%) In bedroom (%) In living areas (%)
Full-time worker 49 30 19
Part-time worker 65 33 32
People who stay at home 69 33 36

Table 2.1: Estimates of the percentage of time in the year spent at home for different subsets of
the UK adult population (reproduced from Daraktchieva (2018))

This chapter gives an in-depth analysis and critical review of the literature related to

this thesis. The literature sits at the intersection of several fields, which will be addressed

in the sections to follow. They are illustrated schematically in figure 2.1. In order to

aid comprehensibility, the topics addressed are split across the three scales illustrated in

the figure. It is important to note that these scales interact with each other, and are not

separated - the widest scale population effects influence individuals and vice versa. From

the widest perspective, the epidemiological evidence suggests strong seasonal variation in

mortality. Since this phenomena occurs at a large scale, this is represented by a cityscape

in figure 2.1. Evidence at this level is usually collected over long periods of time, in some

cases several decades. Studies at this level usually examine broad population features such

as mortality rates or disease prevalence. Consideration of this scale is essential for providing

the backdrop against which more fine level effects of cold exposure occur.

Below this is the household and individual level, illustrated by the person in the

central portion of figure 2.1. At the household level, low indoor temperatures have been

linked to negative health outcomes for occupants, for both mental and physical health.

Substantial variation in building stock characteristics accounts for some of the observed

variation in domestic temperatures. It is important to consider household temperatures as

people spend a large proportion of their time at home. Estimates of this are given in table

2.1. Across the whole UK population, adults are at home approximately 52% of the time.

Including work and other activities, the total percentage of time spent indoors is around

90% (Brown, 1983). Diversity is also evident in the thermophysiological response to

different temperatures, ranging from the observation that cold exposure increases blood

pressure in older people (Collins et al., 1985) to evidence that mild cold exposure may

positively benefit metabolic health (van Lichtenbelt et al., 2017).

The final level is illustrated by the third image in figure 2.1 which shows an AX3

wristband being worn. Since this thesis uses the wrist worn AX3 temperature and activity

monitor, it is essential to understand both previous studies of wearable temperature monitors

and the details of wrist temperature variation. Again, there are links between this level and

the levels above – wrist temperature is influenced by thermophysiological factors as well as

the patterns of daily life that vary throughout the population.

The review as a whole makes use of a number of different methodological approaches
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to literature reviews. Firstly, there is the standard approach using search engines such as

Scopus and Google Scholar to locate papers and books of primary interest to the research

scope. This approach is used for the majority of the papers discussed in this review. It

is used when overviews of the literature are required, as it is less time intensive than the

systematic review (described below). Second, a novel method which traces the references of

a paper to understand the original data source of a particular claim. This method is used

to assess a chapter of a widely used report in the field of the impact of cold homes on health

written by Marmot et al. (2011). This method gives insight into how the bodies of evidence

that are used in this field are constructed. Third, the method of a systematic review is used.

Systematic reviews typically aim to encompass all existing literature on a topic. They are

exhaustive and time consuming but are very useful in instances where it is important to

understand the full extent of the literature covering a particular topic. This method is used

in this thesis for understanding the evidence for the variation of wrist temperatures in the

population.

Prior to exploring these three levels of the literature, it is it is helpful to outline some

of the key temperatures which are relevant to the interactions between humans, health and

the built environment. This helps to contextualise the temperatures found in the literature.

Under typical conditions, humans maintain a core body temperature of around 37°C. The

classical thermal neutral zone is defined as the range of ambient temperatures for which

there are no regulatory changes in metabolic heat production or evaporative heat losses.

For sedentary nude individuals it is between 26.8°C and 28.9°C in the steady state (Kingma

et al., 2014). Clothing, activity levels and thermophysiological responses such as shivering

and sweating expand the range of ambient temperatures for which humans can maintain

their core body temperature. Ultimately, the maintenance of core body temperature is a

key determinant of much of the material make-up of the built environment, the kind of

environments we can live in and the activities which are possible in everyday life.

Under conditions far beyond the thermal neutral zone, the metabolic processes necessary

to life are no longer able to be sustained, and death from hypothermia or hyperthermia

results. However, in the United Kingdom, such outcomes are very rare (ONS, 2017). For

reasons of scope outlined in the thesis introduction, this review is limited to the deleterious

effects of cold exposure – but relevant differences to heat exposure are discussed where

appropriate. Therefore, this review is mostly concerned with the evidence around what

happens in between thermal neutrality and extreme cold exposure.

Jevons et al. (2016) reviewed the available evidence on indoor temperature thresholds for

health. Following a systematic search of UK and similar climate evidence they concluded

that there is limited evidence available on minimum temperature thresholds for homes.

Despite this, they conclude that at least 18°C suffices for the population as a whole, and
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they suggest that this guideline should be accompanied with “nuancing of messages for those

more vulnerable to the effects of cold” (Jevons et al., 2016). The papers that the authors

reviewed are summarised in a separate publication (Wookey et al., 2014). Of the 20 papers

included in the final review, six used blood pressure as a proxy measure of health status (see

below, section 2.3). Others used body mass index and other haematological measures. The

review summary points out that these are ‘reasonable approaches, but are only proxies for

harder health outcomes such as cardiovascular disease or health service use’. None of the

papers included in the review considered mental health outcomes, which is a limitation if

health is considered in broader terms.

Finally, the general temperatures of the UK climate are useful to outline. Kendon

et al. (2019) provide a comprehensive overview of the UK climate in 2018. The UK climate

is warming. In 2018, the mean UK temperature was 9.5°C, which was 0.6°C above the

long-term 1981–2010 mean. The average maximum for 2018 was 13.2°C and the average

minimum was 5.7°C. These were 0.8°and 0.4°C above the respective averages for 1981–

2010. The ten warmest UK years since records began in 1884 have all occurred since 2002.

Seasonal averages for the UK for 1981-2010 are as follows: winter 3.5°C, spring 8.1°C, 15.8°C

and autumn 9.7°C. Scotland’s average temperature for this period was 7.8°C, compared

to 9.7°C for Wales and 10.4°C for England. Between 1993 and 2006 the average Diurnal

Temperature Range (DTR), which is calculated as the difference between the maximum and

minimum recorded temperature in a 24-hour period, was 7.3°C, with a maximum of 20.2°C

and a minimum of 0.8°C (first and third DTR quartiles were 5.1°C and 9.1°C respectively)

(Zhang et al., 2018). These temperatures and those highlighted in the above paragraphs

are summarised in figure 2.2. The goal of the following sections is to expand on this overall

picture and understand how these temperatures relate to health.

0 2 4 6 8 10 12 14 16 18 20 22 26 28 30 32 34 36 38 4024

UK average external 

min mean max

Recommended internal 
Jevons et al. (2016)

Thermal neutral zone 2018
core

Body

UK record external maximum 
Cambridge, 25 July 2019

temperature °C 

nude, sedentary

Figure 2.2: The key temperatures highlighted in the text. On average, UK internal temperatures
are heated to several degrees higher than external temperatures but several degrees
lower than the thermal neutral zone. This is addressed further in section 2.2
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2.1 Epidemiology of cold exposure and health

The field of the epidemiology of cold exposure and health is vast and has been under

development for at least 150 years. In order to render it comprehensible, some notable

early papers are presented first to provide a historical overview. Following this, an

examination of the current state of the literature using a number of key review papers is

given. This incorporates a close analysis of the review paper ‘The Health Impacts of Cold

Homes and Fuel Poverty’ (Marmot et al., 2011), which is frequently cited but has

particular citation limitations. The majority of the papers addressed in the following

sections were published during the 21st century.

2.1.1 History

The observation that ambient temperature is associated with mortality is not a new one.

Macfarlane (1977) traces Western medicine’s concern with the health impacts of short-

term environmental changes back to Hippocrates around 2,400 years ago. Approaches more

recognisable to contemporary epidemiologists emerged in the mid–19th century - Moore’s

1869 study, for example, related the seasonal variation of mean temperature to mortality

in Dublin, noting that “In Winter a fall of mean temperature below the average swells the

numbers of cases of thoracic disease, and increases the mortality therefrom”. Despite having

no knowledge of the underlying causes of the diseases he was studying, he concludes that

the “classes of the community on which climatic variations exercise their baneful influence

in the highest degree” are “the very young, the weakly, and the aged” - this observation,

stated in more contemporary language, largely holds true today.

By the beginning of the 1960’s, epidemiologists were distinguishing between the impact

on mortality of severe cold versus epidemics of influenza. The 1963 British Medical Journal

reported no rise in winter mortality following a record breaking period of persistent cold,

with a lack of influenza given as the explanation.

Rose’s 1966 study into the relationship between cold weather and ischaemic heart disease

is notable for a number of reasons. The paper presents evidence that there is a strong

correlation between low temperatures and deaths from arteriosclerotic heart disease. The

author uses the phrase ‘winter excess deaths’, a slight variant on the now ubiquitous term

(see section 2.1.3). Furthermore, the author suggests the possibility that deaths due to cold

might be subject to a delay. This observation has been made in many contemporary studies,

as will be seen below in 2.1.2.

Macfarlane (1977) conducted a study into the impacts of air pollution following the

1956 Clean Air Act. At this time, the computational power available to most researchers

was limited, indeed, the analysis presented is based on the visual inspection of time-series.

This limitation is acknowledged by the author, but they draw a number of conclusions
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despite this. They suggest that influenza outbreaks are often preceded by periods of very

low temperatures, and that deaths due to respiratory conditions subsequently increase.

Therefore, early literature had already identified many of the primary drivers of the

observed variation in mortality. Subsequent developments, which are discussed in the

following section, mainly improved the mathematical models which describe these

relationships.

2.1.2 Review articles

This section describes a number of contemporary review articles, published since 2012, that

examine the relationships between cold exposure and health. A search was conducted using

Scopus.com, with the criterion of “cold exposure AND health AND review” on abstracts

and titles. 159 results were returned across a wide range of topics such as medicine, biology

and agricultural sciences. The reviews included in this section were selected from these

results based on their relevance to the aims of the review as a whole. Specific condition

reviews were not included. For example, a review into hypothermia caused by antipsychotic

medicine was returned by the search but was deemed too specific for inclusion.

Hajat (2017) conducted a review of the UK cold-exposure literature which sought to

understand potential of future milder winters, which models of climate change project to

occur. The paper sets out several key ideas and observations that are important to this study.

The central epidemiological evidence comes from time-series regression and case-crossover

studies which establish a U or V shaped relationship between ambient temperature and

negative health outcomes - that is, there are peaks in mortality and morbidity rates at both

low and high ambient temperatures.

In terms of morbidity, Hajat cites three papers, the first of which is by McGregor et al.

(1999). The method uses a combination of meteorological factors, including air temperature,

along with PM10 pollution measures (particulates smaller than 10 micrometres in diameter)

to define six “air mass types”. The meteorological factors were used in a principle component

analysis to distinguish the different air mass types. Temperature was included with moisture

levels to produce a ‘hygrothermal’ component. Days with similar air mass types were then

grouped using a clustering technique. Three of the six air mass types had similar temperature

means and ranges, but were combined with different values of the other meteorological

components to distinguish them. These different air mass types and the clustered groups

of days were then used as the basis of an analysis of variance test for the association with

hospital admission rates for respiratory conditions on the respective days with a particular

air mass type. While significant associations were found, the effect of low temperatures is not

distinguished per se, since the air mass types comprise combinations of components. This

makes generalisation to other regions or countries difficult. Principle component analysis
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and cluster analysis are subject to a degree of arbitrariness with respect to the number of

principle components selected and the particular mechanisms of clustering (Agarwal et al.,

2011). While the authors acknowledge these difficulties, it does mean that the results are

potentially sensitive to the particular clustering method that the study used.

In the second paper, Hajat and Haines (2002) focus on low temperatures specifically

and their impact on GP consultations among elderly Londoners. Once air pollution (SO2,

O3, PM10 and pollen levels) were accounted for, the regression model found a 10.5% [7.6 –

13.4] increase in GP consultations relating to respiratory conditions for every degree drop

in average external temperature. They found that this effect was delayed up to 15 days

after the cold period. The paper suggests that it includes ‘all potential confounders’ in the

model. While it does use an extensive list of potential confounders, it is not possible to be

certain that unknown or unmeasured confounders do not influence the observed relationship.

Indeed, the paper does not mention PM2.5 levels at all, despite its known impacts on the

respiratory system (Xing et al., 2016). The paper suggests that the reason for the observed

associations might be due to reduced indoor ventilation or increased crowding during cold

periods. This is important as it points out that some of the health impacts observed in

epidemiological studies might not be due to direct cold exposure. The statistical methods

used in the paper mark a step towards the more sophisticated techniques developed later by

Gasparrini et al. (2010).

Finally, the study by Bhaskaran et al. (2010) also uses a smoothed regression model

which incorporates a time lag to find that each degree decrease in mean daily temperature

is associated with a 2% [1.1 – 2.9] increase in myocardial infarction (heart attack) hospital

admissions, with the greatest effect occurring at 2–7 and 8–14 days after the cold event.

Whilst the confounding effect of PM10 concentration is accounted for, the authors point

out that PM2.5 data were not available for inclusion in their model. This underscores the

difficulty of accounting for all potential confounders. Moreover, indoor air pollutants (e.g.

allergens (Carrer et al., 2001)) are likely to impact health and are not measured in this

study.

Hajat (2017) found no consensus in the literature as to the impact of deprivation on

cold-related health, citing a review by Tanner et al. (2013), and other studies which failed

to find an effect. The author suggests that one reason for this may be the relatively higher

quality of social housing in the UK, and the observation that they tend to be warmer than

other tenure types (Wilkinson et al., 2001; Kelly et al., 2013) (see section 2.2 below). Hajat

does not discount the negative impacts of fuel poverty on mental health highlighted by the

Hill’s review (Hills, 2012). While this is not a direct impact of cold-exposure, knock-on

effects of the financial pressure exerted by trying to afford warmth are harmful to mental

health.
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Ryti et al. (2016) produced a meta-analysis and systematic review of the association

between cold spells and negative health outcomes. Summary estimates derived from the

papers included in the study, which analysed data from a range of global locations, were

that cold spells and mortality from all or non-accidental causes have a positive risk ratio

(RR) of 1.10 [1.04 – 1.17]. The specific definition of a cold spell differs across the papers

included. The authors conclude that the despite the increased risk, the ‘relevant patterns of

exposure and induction periods remain unclear’. Furthermore, the findings do not point to

any specific interventions that could aid at-risk populations. Producing meta-estimates of

phenomena that have heterogeneous definitions is potentially problematic, as the estimates

will likely be dominated by the studies which found the largest effects. There is also the

possibility that studies which do not find an effect do not get published, a phenomena known

as reporting bias (McGauran et al., 2010).

Cheng et al. (2014) sought to understand the literature on the health impacts of

Diurnal Temperature Range (DTR). The review included 25 studies, from which the

authors concluded that high diurnal temperature range negatively impacts health, with

elderly people and children particularly susceptible. They found that cardiovascular and

respiratory disease are the leading health impacts associated with DTR. They identified

several knowledge gaps evident from the review. Most studies were conducted in Asia,

which they suggest limits generalisability. Also, studies have not identified specific

thresholds of dangerous diurnal temperature variation. They point to a study by Luo et al.

(2013) which found that the immediate impacts of very low DTR – i.e. more static

temperatures – are worse for health than very high diurnal temperature variation. They go

on to suggest that the current understanding of confounding effects is limited, and that

more work is needed on developing measures to prevent the worst impacts of DTR. A

major problem with studies on DTR is establishing the extent to which the effects of the

DTR variable are independent from other measures such as the maximum and minimum

temperatures.

Deschenes (2014) approaches the problem of understanding the health impacts of

extreme temperature exposure from the perspective of economics, in the context of

improving the accuracy of climate change projections, and specifically with climate change

adaptation in mind. The author finds that the majority of reviewed articles suggest that

there are deleterious effects on health at extreme ambient temperature. Of greatest

relevance to this study is the observation that the function that relates mortality and

temperature is likely nonlinear and potentially confounded by omitted variables,

seasonality and long-term trends. They also point to the diversity of exposure metrics used

in different studies. For example, most public health studies used spline methods, where

trends are smoothed using a weighted regression, whereas approaches from economics
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typically use temperature binning to differentiate varying impacts on health at different

temperatures.

As mentioned above, Tanner et al. (2013) looked specifically at the impact of

socioeconomic status on the relationship between cold exposure and health. Limiting their

review to papers published in English between 2001 and 2011, the authors included 33

studies in total. A wide range of measures of socioeconomic status were used in the studies

considered. The effects of cold on mortality and morbidity were strongest in low income

households, thermally inefficient housing and households in fuel poverty. Several studies

which used different measures of deprivation, such as the Townsend deprivation index,

found non-significant relationships between cold and mortality. The authors suggest that

future studies should examine the effects of interactions between socioeconomic and

behavioural factors. Ye Xiaofang et al. (2012) conducted a review into the impact of

ambient temperature on morbidity. 40 studies published before 2010 were included in the

review. In agreement with Hajat (2017), several studies reported the non-linear U or V

relationship between ambient temperature and morbidity. They found the threshold

temperature at which negative impacts begin varies with location, as was reported in a

later comprehensive work by Gasparrini et al. (2015), discussed below. They found that

the majority of studies found the negative impacts of cold are delayed by up to 2 to 3

weeks. This contrasts studies which find the impacts of heat are more immediate (Sun

et al., 2019; Gasparrini and Leone, 2014; Moghadamnia et al., 2017).

The review by Xu et al. (2012) focused on the health impacts of ambient temperature

on children. After synthesising the findings of 33 papers, the authors conclude that extreme

temperatures are associated with an increase in infectious and allergic diseases in children.

They argue that children are more sensitive to hot and cold due to physiological, metabolic

and behavioural characteristics. They also point to the need for more studies into the

difference of temperature thresholds of the onset of morbidities between children and adults.

This study is of limited direct utility to the present study, but its inclusion aims to highlight

that different portions of the population can have increased sensitivity to the effects of cold.

Gasparrini et al. (2015) conducted a multi-country study of the impact of temperature

on mortality using a database of 74 million deaths from 13 countries in 384 different locations.

They made use of the ’distributed lag non-linear model’, which is now a commonly used

method of determining the risk of mortality associated with external temperature, developed

by Gasparrini et al. in 2010. It is based on a non-linear Poisson distribution model of the

exposure-response relationship, but aggregates the estimation across different lags which

aim to capture the delayed impact of exposure. They report that cold related deaths are

almost 20 times more common than heat related deaths in their study, although the results

are not globally representative. Moreover, they found that the vast majority of deaths
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were attributable to so called non-optimal conditions, as opposed to extreme temperatures.

This suggests that a small deviation away from optimal conditions leads to an increase in

mortality. Overall they found that 7.71% [7.43–7.91] of mortality could be attributed to

non-optimal temperature, however this estimate ranges between countries – in Thailand it

was 3.37% and China 11%. For the 10 UK regions considered, the average effect was that

8.48% [7.72 –9.25] of deaths was attributable to cold, and only 0.30% [0.25 – 0.36] to heat.

For London, they found the optimal temperature at which minimum temperature related

mortality occurs was 19.5°C, which contrasts estimates for Wales at 16.5°C. It is unclear what

contributes to this difference. The risk ratio for mortality in London increases linearly from

the minimum up to a risk ratio of around 1.2 at an external temperature of 4°C. Below 4°C

the risk ratio increases sharply for each degree drop in external temperature, up to a value

of around 2.0 at external temperatures around freezing. The model does not account for the

impact of socioeconomic status, age, or air pollutants. Furthermore, the response function

between exposure and outcome is modelled as a Poisson process. As the first author points

out in an earlier paper (Gasparrini and Leone, 2014), there is some controversy around the

selection of response function. It is unclear how much of an impact this has on the estimates

of risk of mortality.

This portion of the literature review has shown that there is clear evidence from

multiple studies for the seasonal variation in mortality and morbidity. The winter peak in

both mortality and morbidity is strongly associated with low external temperature. Recent

developments in the statistical models used to understand these associations have showed

that mortality increases with any deviation from an optimal external temperature, i.e.

there is an increase in mortality associated with warmer summers as well as cold winters.

The optimum external temperature at which minimum harm occurs varies with country

and even city. There is evidence that the effects of the cold (and to a lesser extent warm)

are delayed, from anyway between a few days to two weeks. The greatest source of

uncertainty in these studies is how to account for co-variates and confounding variables,

such as air pollution, which may also contribute to the observed seasonal effects. As is

common with epidemiological studies, there is little consideration of the exact

circumstances of cold exposure. Before considering the methods used for measures of

Excess Winter Deaths in more detail, the next subsection critically reviews a report into

the health impacts of cold homes.

2.1.2.1 Marmot Review: a critical analysis

In addition to the above reviews, the Marmot Review into The Health Impacts of Cold

Homes and Fuel Poverty is worth particular attention. It was commissioned by Friends of

the Earth and published in May 2011 to review the existing literature on the evidence of
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both the direct and indirect health impacts of fuel poverty and cold homes. As of August

2019, it has been cited 101 times, according to Scopus.com.

Unlike a traditional or comprehensive review, this section takes a different approach

by examining evidence chains, namely the chains of academic references which are used to

support the claims made by the paper. The aim here is not necessarily to critique the

substantive conclusions of the report under examination, but instead to determine the

strength of the evidence behind them. This not only helps identify the most important

studies and methods, but also acts as a means of identifying potential avenues for future

investigations. This approach has been inspired by several papers. First, Rekdal’s 2014

examination of academic urban legends in which he describes the surprising development

and evolution of the broad consensus regarding the nutritional content of spinach, which

was driven by a succession of poor citation practices. He advises that [a]ccurate, complete,

and relevant references to reliable sources are the best tools in order to avoid such a

scenario’ (Rekdal, 2014). Second, the task of tracing the origin of World Health

Organisation guidelines on minimum room temperature recommendations was undertaken

by Ormandy and Ezratty (2012). They note that recommendations are often given

without reference to an original source, and while they suggest the “guidance was based on

evidence and has been supported by subsequent research”, they were not able to determine

why the recommendation was changed for 15-25°C to 18–24°C between the 1960s and

1980s. Finally, Greenberg (2009) takes a related approach in creating a citation network to

analyse the basis of a specific claim in the literature on Alzheimer’s disease. The author

found that biases existed because papers refuting the main claim were cited less than those

supporting it. Even though the approach taken here is narrower in scope, it demonstrates

a potential vulnerability of review papers.

Here, an evidence chain is the series of academic references which a claim relies on.

Chains may extend to two or more papers, creating a genealogy which can extend back

many years and through multiple disciplines. Once the referenced evidence is identified the

process is repeated for subsequent reference levels and the content of the original claim is

traced back in the literature until its source is found. A note is made of the main type of

evidence that is used to support the claim at its origin, whether it be experiment, survey,

interview, expert opinion or of some other type. Finally, the level of reference is noted, be

it primary, secondary or a higher level.

For reasons of time manageability, the analysis was restricted to a single chapter of the

review. The chapter under investigation was decomposed into 49 claims regarding health in

cold homes, covering mortality (14 claims) and morbidity (35 claims). The heterogeneity of

claims makes overall summary difficult. Broadly speaking, 29 of the 49 claims are supported

by their references in a largely unproblematic way - i.e. the claim referred straightforwardly
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to the study results. The review articles in this section described above have largely been of

this character. The remaining 20 claims, nearly half the chapter, rely on documents which

do not provide direct references in the traditional academic sense. For example, three claims

are supported by a Department of Health document from 2007 “Health and winter warmth:

reducing health inequalities”, and a further two claims by “Building regulation health and

safety” Raw et al. (2001). This is a general problem with governmental reports; many of

the claims they include appear to emerge fully formed because they are not directly cited,

and they rely on the expertise of the author to sustain their authority. This makes tracing

claims further extremely difficult.

For 7 out of the 49 claims it was difficult to determine whether the cited documents

support them fully. This was due to either referencing mistakes or the claim relating to

a report which was referred to in general terms. One such example is instructive. The

claim that EWDs are not related to socioeconomic deprivation uses four sources to support

it. However, three of these sources do not discuss deprivation specifically, and the fourth

suggested the opposite finding (Healy, 2003). Of course, this is not to say that the claim is

necessarily false. Indeed, the paper by Hajat (2017) given above reached a similar conclusion.

However, it does highlight a particular difficulty with review articles that need to synthesise

large amounts of contradictory or partly incommensurate findings. This is not a problem

of the Marmot Review alone, but one that effects academia more broadly, as is reflected in

current concerns about the replication crisis in energy research (Huebner et al., 2017). It is

also important to highlight that the authors of the Marmot Review not be singled out, the

approach adopted here could have easily been applied to any of the reports which sit at the

intersection of academia and policy.

The approach adopted in this section is not without limitations. It is time intensive,

and most academics simply do not have time to check every citation in close detail, let alone

second order citations of citations. A large part of the responsibility of the negative impacts

of poor citation practice and the propagation of unsupported evidence must lie at the point

of peer-review, which in the specific instance of the Marmot Review did not take place, since

it was a commissioned report. Due to their informal citation structure, reports conducted

or commissioned by non-academic bodies arguably carry the greatest risk of disseminating

unverifiable claims. Notably, this approach did not uncover any information which challenges

the broad, substantive conclusions of the Marmot Review, such as the observation that more

people die in winter than in summer in the UK. However, producing overarching narratives

across heterogeneous evidence sources, especially when citation and reference practices are

in places poor, risks occluding both uncertainties and the detail of the specific ways that

cold temperatures negatively impact health. This is of particular importance for this thesis

in forming specific understanding of the origin of the observed relationship between cold
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exposure and health.

Taking the executive summary as an indicator of the overall findings of the review

suggests the report relies on the findings of a small number of studies to provide general

conclusions. This is especially the case with regards to the findings on excess winter deaths

(EWDs). The following section reviews some of the important papers on EWD and shows

that it is a useful concept, although not one without problematic methodological aspects.

2.1.3 Excess Winter Deaths (EWD)

The concept of EWD was introduced in the first chapter of this thesis. The EWD

characterises the number of deaths in winter over the average at other times of the year. It

remains widely used in cold-exposure related health studies. This section reviews key

papers relating specifically to EWD, since it is key to understanding the dynamics of cold

related mortality.

Wilkinson et al. (2001) sought to understand the determiners of EWDs using two

linked datasets, one providing mortality data for England between 1986 and 1996, and the

English House Conditions Survey (EHCS) to provide housing and demographic data. The

regression model used to link these data found few significant results. The exception was

the age variable, for which the relative risk of dying in winter increased to 1.28 [1.13 –

1.46] for those aged 85+, compared to those aged 0–44. There was some suggestion that

the relative risk of mortality was lower in newer houses, however this trend was absent

once age, gender, socioeconomic status and modelled indoor temperature were accounted

for. This is an example of where it is important to distinguish between association,

prediction and causation. As Huitfeldt (2016) points out, most epidemiological studies are

very careful to avoid causal claims – but they are often imprecise as to their specific

meaning of the term risk factor. Huitfeldt (2016) argues that whether or not a model

controls for other factors should depend on the research question that the authors hope to

address. In the case of the Wilkinson et al. (2001) paper, living in a new home is

associated with a reduced risk of EWD, but if one wishes to predict such a status, then the

factors (age, gender etc) are better at doing so. The paper, and many of the other papers

reviewed here, would benefit from making this distinction clear.

Using temperatures lagged by 3 days recorded between 1970 and 1999, and mortality

data, Donaldson and Keatinge (2002) calculated that 2.4% [2.0 – 2.7] of EWDs could be

attributed to influenza. The method of attributing cause of death likely creates the largest

uncertainty in their estimate. They conclude that the remaining winter deaths must be

attributable to cold exposure. However, the paper does not discuss any other seasonal

mechanisms that might contribute to the observed winter peaks, such as indoor or outdoor

pollution levels. They conclude by emphasising the importance of outdoor cold exposure,
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and as with all of the studies looked at in this section there is little discussion of exactly

how cold exposure occurs.

Healy’s 2003 paper comparing winter mortality in 14 European countries has been cited

over 550 times according to Google Scholar. Winter was defined as the four months December

to March, and a regression model comparing the relative winter death rate against a number

of variables which characterise health in each country. The model found the highest rates

of seasonal mortality occurred in the mildest countries. This apparent paradox, the author

argues, is resolved by the model’s indication that winter related mortality was found to be

highest in the countries with housing of the poorest thermal efficiency - namely Portugal,

Ireland, Greece and the UK. High levels of poverty, income inequality, deprivation and fuel

poverty status were also found to be significant predictors of the winter mortality rate.

Hajat and Gasparrini (2016) report a number of methodological issues with the

calculation of EWDs in the simple manner described in section 1.3 and above. They point

out that the cold period in England, for example, is concentrated in the four months

December to March, whereas Scandinavian countries have a longer duration cold period.

This makes EWD a largely unsuitable comparison between countries in the manner of

Healy’s paper mentioned above. Furthermore, they argue, many cold related deaths fall

outside the winter period. The measure can also be heavily influenced by a high summer

mortality, which would reduce the apparent number of excess winter deaths. The authors

then compare the simple EWD approach to their own distributed lag nonlinear model,

which is the same method mentioned above in the work by Gasparrini et al. (2010). They

suggest that the use of EWDs led Staddon et al. (2014) to incorrectly conclude that

climate change will not reduce winter related deaths – the use of the distributed lag

nonlinear model would find a strong cold weather effect that will remain even as the

climate warms. A later paper by Gasparrini et al. (2017) examined the effects of future

climates on excess winter mortality across a range of global regions. For Europe, it showed

a moderate reduction in cold related mortality and a sharp increase in heat related

mortality as a function of increasing emissions, thereby challenging the findings of the

Staddon et al. (2014) paper. However, long-term projections are inherently uncertain and

fall outside the scope of this thesis.

A review of different methods for calculating excess winter mortality is given by Liddell

et al. (2016). Alongside the standard EWD method, they outline a method using heating

degree days, which accounts for heating demand, rather than using a fixed winter period to

asses deaths. They observe that only 50% of heating demand in Ireland, for example, occurs

December to March - indeed, for only 2 of 30 European nations does the 4-month method

adequately reflect heating degree days. Overall, despite the convenience of the EWD method,

it is largely ineffective at quantifying the health impacts of cold in comparisons between
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countries. This finding agrees with the results of the paper by Hajat and Gasparrini (2016)

above. Overall, it is apparent from the literature that the EWD measure provides a simple

and useful means of characterising cold-related mortality, but that it is no appropriate for

comparison across different climates. This applies for both differences between countries

with different climates and for future climates within the same country.

2.1.4 Summary

This concludes the first portion of the literature review, examining the large scale features

of the relationship between cold and health. It corresponds to the leftmost image in the

summary figure 2.1. The first sub-section examined the notable literature reviews related

to the epidemiology of cold-exposure. The overall picture is one of clear evidence relating

cold to increases in mortality in morbidity, but, as might be expected from epidemiological

studies, detailed insight into the specific ways that harmful exposure occurs is not addressed

by these studies. There is good evidence to suggest those with health conditions are most

adversely impacted by cold exposure. Older people are also more vulnerable to the impacts

of cold.

There is a ubiquitous issue of how, and indeed whether, to account for confounding

factors such as air pollution and sociodemographic status. The systematic reviews are likely

impacted by issues such as publication bias. A close examination of the citation structure of

the Marmot Review revealed numerous citation errors. The field as a whole would benefit

from improved methods to account for bias when constructing systematic reviews. The

overview of the EWD literature also revealed issues, mainly relating to the difficulty of

generalising EWD across different winter durations. However, the metric itself is useful and

easily calculable for analyses within particular climates.

This portion of the review provides the backdrop for the thesis as a whole. The next

section looks at the next level of the relationship between cold exposure and health, namely

that which occurs at the level of the household and the individual.

2.2 The temperature of UK homes

The previous section gave an overview of the development and contemporary state of the

epidemiological literature relating cold and health. The large majority of these papers do

little to consider specifically where and when harmful cold-exposure occurs. For example,

there is a significant open question as to the relative importance of outdoor versus indoor cold

exposure (Keatinge and Donaldson, 1997). The following section examines the evidence at

the domestic level with a review of what is known about temperature distributions in homes,

in order to better understand the differences in cold exposure as a function of demographics

and housing factors. This is important given that adults spend an average of 52% of their
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time at home (Daraktchieva, 2018). Significant differences as a function of demographic or

building factors may contribute to the differences in observed temperature related mortality

and morbidity rates described in the previous chapters. This is particularly important given

this study aims to understand how exposure to cold varies at the individual level. However,

there are also differences in the physiological responses to cold as a function of demographics.

The section which follows this is therefore devoted to giving an overview of thermophysiology.

Taken together, these sections correspond to the central portion of figure 2.1.

2.2.1 Temperature patterns in homes

The papers considered here have been collected throughout the course of the PhD. They

resulted from searches relating to indoor and domestic temperatures. This section is not

designed to provide a systematic review of the literature, rather it focuses on recent key

papers, as well as some earlier studies, which help to shed light on the current state of

knowledge of domestic temperatures in the UK.

A review by Vadodaria et al. (2014) of UK domestic temperatures provides the history

of field measurements between 1969 and 2010. The article references the government report

of 1961, “Homes for today and tomorrow” which recommended that heating systems in

homes be able to achieve temperatures of at least 55°F (12.8°C) in kitchens and hallways,

and 65°F (18.3°C) in living areas (Morris, 1961). This contrasts the whole-home minimum

temperature recommendation of 18°C of Jevons et al. (2016) described in the opening section.

Based on their review of small scale domestic temperature studies conducted in the 1960s

and 1970s and larger scale studies conducted more recently, Vadodaria et. al conclude that

there has been little or no increase in the temperature of occupied living areas. Bedrooms,

on the other hand, have probably increased in temperature during winter and spring-time

between 1969 and 2010. They suggest that these changes are most likely attributable to the

increased prevalence of central heating in British homes.

As highlighted above in the section on EWDs, the widely cited paper by Wilkinson

et al. (2001) made use of survey data and predicted hall temperatures from 1986 to 1996 to

produce an estimate that the odds ratio (see section 4.7.2.3) for winter vs summer mortality

in the coldest 25% of homes is 1.5, compared to 1.3 for the warmest 25% of homes. However,

the validity of the temperature predictions is difficult to determine because they are not

compared to measured values, and so should be treated with a degree of caution.

Oreszczyn et al. (2006) report standardised temperature readings in English homes,

recorded during the Warm Front home insulation improvement scheme in winter 2001/02

and 2002/03 in Southampton, Newcastle, Manchester, Liverpool and Birmingham.

Standardisation is necessary to compare readings taken at different external temperatures.

Across the whole sample, the median standardised daytime living room temperature was
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19.1°C, and the median standardised night time bedroom temperature 17.1°C. The study

found homes that were older were colder, as were those that had lower insulation levels,

younger inhabitants, and greater difficulty paying bills. An analysis of the Warm Front

scheme (Green and Gilbertson, 2008) found the installation of home energy efficiency

measures increased living room temperatures by 1.6°C on average (from 17.9°C to 19.6°C)

and bedroom temperatures by 2.8°C (from 15.9°C to 18.3°C). A total of 1,600 dwellings

were monitored for the study. Measurements of temperature and humidity were taken at

half-hourly intervals for periods of between 2 to 4 weeks. Given there are around 28

million dwellings in the UK, of which around 10% are fuel poor, and that the winter period

comprises 12 weeks of the year, the total monitored hours represent a maximum of 0.2% of

overall UK winter domestic hours for the target population. The authors do not comment

on the extent to which the population is representative of UK fuel poor households in

general. The authors do report a mismatch between who received the Warm Front

interventions and who was found to be fuel poor. The problem of targeting and methods is

central to the fuel poverty literature (Ambrose and Marchand, 2017), but outside the scope

of this thesis. Moreover, there is no information as to how long the occupants were present

in their homes during the monitoring period, either pre or post intervention. This means it

is difficult to determine the extent to which the occupants were exposed to the conditions

within the homes. The authors acknowledge that the absence of an effect as a function of

socioeconomic status may be due to the fact that the index of multiple deprivation is only

available at a relatively course scale which would not be able to distinguish differences in

the sample that is generally less well off as a whole. Counter-intuitively, while fewer people

reported difficulty with paying their bills after the efficiency measures were installed, the

energy use of the homes was measured to increase. This highlights a complexity associated

with subjective perceptions.

Huebner et al. (2013) use living room temperature data from the Carbon Reduction in

Buildings Home Energy Survey (CarB HES). The mean monitored living room

temperature in winter was calculated across homes in the survey. It revealed that

temperatures drop over night from around 20°C to around 18°C, and then rise again

through the day as the home is heated, first in the morning and then in the evening after

work. They found a significant temperature difference of 0.16°C between weekday and

weekend temperatures. The substantive conclusion of the study is that the level and

duration of heat demand assumed in common UK housing stock models (specifically, the

Building Research Establishment Domestic Energy Model (BREDEM)). The paper would

have benefited from an analysis of what the differences between modelled and observed

heat demand would mean for national domestic heating demand.

Huebner et al. (2015) followed up this study by conducting a cluster analysis on the
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same data. This approach identifies four main home temperature profiles - a significant

relationship between the ages of those present in the household and each of the temperature

profiles, as did the building and main heating type. They also found that while one of the

clusters matched the expectations of building models such as BREDEM, the other 3 made

up over half of homes - which may account for a substantial amount of the performance

gap of such simulations. As with the study by McGregor et al. (1999) discussed above,

clustering techniques are potentially sensitive to the particular choice of clustering algorithm

which defines the study groups. Taken together, these papers underscore the heterogeneity

in internal temperatures, which may or may not correspond to demographic and building

factors. As with all the models described here, unexplained variance is a significant factor

in the actual temperatures of homes.

Kelly et al. (2013) also made use of CarB HES data, but sought to predict whole-year

indoor temperatures using a novel panel method. The model used was able to predict 45% of

the variation in internal temperatures. They calculated that for a mean internal temperature

of 19.6°C the external temperature and geographic location accounted for approximately

6.8°C of the variance. Behavioural variables may explain up to 2.9°C and sociodemographic

factors may explain up to a maximum of 3.7°C. Of this, they found that tenure accounts

for up to approximately 1.4°C of the variation in internal temperatures. They also found

that that tenure also has an impact on internal temperatures. Relative to owner occupied

dwellings, housing association homes were 0.49°C warmer, rented dwellings 0.94°C warmer

and council houses 1.37°C warmer. As with other studies in this section, no consideration

has been made as to the extent to which occupants are exposed to the observed differences

in indoor domestic temperatures. On the basis of the estimates of home occupancy time

given at the beginning of this review, one might expect that those who stay at home would

be more impacted by the average temperature of a dwelling than those who have full–time

jobs.

Mavrogianni et al. (2013) surveyed contemporary and historical data sources to trace

the evolution of average UK indoor temperatures over the last decades. They found, subject

to a good deal of uncertainty surrounding methodological differences, an increase in mean

internal temperature of up to 1.38°C per decade between 1978 and 1996. This is consistent

with the findings of the review by Vadodaria et al. (2014) described above. They also

suggest that this increase, if it is correct, may account in part for increasing obesity rates

in the UK, due to reduced energy expenditure on thermoregulation. They also suggest

that “the study of past exposure is limited to data on room conditions. Future research

should refocus from the average temperature conditions in buildings to measuring the overall

personal exposure of an individual in both domestic and non-domestic environments”. This

finding is particularly relevant to the present study which is motivated by understanding
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cold-exposure of individuals. This point is also highlighted by Johnson et al. (2011) in their

review of temperature homogenisation in the US and UK domestic stock. They conclude

“studies of ambient temperatures in specific locations cannot capture a detailed picture of the

frequency and duration of thermal exposures in the course of an individual’s daily activities,

and there is a need to document personal and socially patterned trends in cold exposure”.

A later study of over 100,000 adults in England found that BMI was inversely related to

domestic temperature (Daly, 2014). Specifically, those living above 23°C were found to

have lower BMI than those whose homes were measured to be cooler. This relationship

persisted when accounting for covariates such as age, social class and health. However, as

was suggested above, the use of spot measurement in the study cannot account for overall

cold and warm exposure.

A study by Hamilton et al. (2017) addressed the determinants of living room and

bedroom temperatures, as measured by the Energy Follow Up Survey (EFUS), a large

cross-sectional survey of dwelling characteristics and indoor temperature measurements in

England. Living room, hallway and bedroom temperatures were monitored using modified

TinyTag Transit 2 data loggers every 20 minutes for 943 households. They found that

standardised living room temperatures of houses built between 1945 and 1990 were

significantly warmer by around 1.3°C than those built pre-1900, when standardised to

external temperatures of 5°C. Local authority living room temperatures were 1.6°C warmer

than owner occupied homes, but bedroom temperatures were not significantly different.

Homes with double glazing were around 1.4°C warmer than those with single glazing.

Homes with retired occupants had living room temperatures of 1.0°C higher than the

mean, and those who were classified as vulnerable (i.e. on means tested or certain

disability related benefits) were 0.6°C warmer than those who were not. The paper uses

three different temperature standardisation procedures and it is not clear which one

constitutes the most important model.

Huebner et al. (2018) conducted a study which also used data from the EFUS dataset.

This sought to understand whether households met the recommendations of 18°C (per the

recommendation of Jevons et al. (2016)). The study compared the wintertime

temperatures of occupants who reported having a long-term disability (LTD) and those

who did not (no LTD), as well as those aged 64 and younger (the younger group) to those

who were 65 and older (the older group). It found significant differences in mean bedroom

temperatures: LTD mean was 18.35°C; no LTD mean 17.87°C (difference 0.48 [0.03 –

0.94]°C). Significant differences in living room temperature were found for both LTD

status and age. Temperatures were higher in the LTD group (19.37°C) versus the no LTD

group (18.50°C) difference 0.87 [0.44 – 1.30]°C. The older group had warmer mean living

room temperatures (19.32°C) than the younger group (18.55°C), and the difference was
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0.77 [0.34 – 1.21]°C. Risk ratio estimates for the likelihood of having temperatures at or

above 18°C were also given. It found that people with LTD are 1.30 times more likely to

have dwelling temperatures which met the recommendation compared to the no LTD

group. The older group was found to be 1.56 times more likely than those below 65 years

to meet the 18°C recommendation. The study did not report the confidence intervals on

this risk ratio estimate. The authors acknowledge that occupancy is difficult to assess for

these groups – it is plausible that participants without an LTD, and those who are

younger, were at home for less time than the comparison groups. This paper is useful for

the present study as it provides information regarding the different measured dwelling

temperatures as a function of the health of the occupants. Whether those who have LTD

chose warmer temperatures in order to alleviate the symptoms of their conditions, or

because they are less active and have thermal comfort preferences which lead to higher

temperatures, is not determinable from the results.

As a whole, the papers reviewed suggest a deal of heterogeneity across UK domestic

temperatures. Predominantly, homes have been getting warmer on average over the last 50

years, but mainly due to an increase in bedroom temperatures. There is evidence to suggest

that old homes, particularly those built before 1900, tend to be colder than those built

more recently. Local authority housing tends to be warmer than privately owned and rented

housing. The next section considers the thermophysiological response to cold, specifically

to understand whether different demographic characteristics correspond to differences in

responses to cold exposure.

2.3 Thermophysiology

The majority of thermophysiology studies involve highly controlled experiments of small

numbers of participants. This approach is radically different from that of epidemiology,

and trades off generalisability for accuracy, precision and a stronger adherence to the

scientific method. The field as a whole can be considered an enquiry into the physiological

mechanisms which underpin thermoregulation. This entails understanding thermal

sensation and the determiners of thermal comfort, as well as circadian rhythms and longer

term adaptation mechanisms (Hensel and Schafer, 1984). Early studies such as Keatinge

et al. (1964) measured the physiological responses to cold water showers, finding large

increases in blood pressure and heart rate following exposure to an ice shower (with a

water temperature measured to be between 0.0 and 2.5°C) for 2 minutes at 6 litre/minute.

Later studies examined the specific response of physiological systems to cold exposure,

such as Rutkove (2001) who describes the neurological response and potential for damage

to extreme cold and heat exposure. Respiratory conditions, such as chronic obstructive

pulmonary disease (COPD) are understood to be exacerbated by cold weather
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(Serra-Picamal et al., 2018). However, the capacity of the human body to adapt to cold

exposure is also notable - a review by Daanen and Lichtenbelt (2016) describes a number

of cold adaptive mechanisms which can differ as a function of intensity and duration, and

with age, gender, exercise, diet and ethnicity. The effect of repeated life-time cold exposure

is less clear. Cold water immersion can lead to reduced metabolism, but cold air exposure

may increase it. Some degree of insulative adaptation may occur, but it is difficult to

discount the impact of higher calorie diets in cold regions. Furthermore, van Lichtenbelt

et al. (2017) report that mild cold exposure, outside the temperatures at which people are

thermally neutral, can promote glucose metabolism – 10 days of intermittent mild cold

exposure was found to increase insulin sensitivity in patients with type 2 diabetes. The

authors also suggest the cardiovascular system of healthy subjects may be positively

affected by regular exposure to cold and heat. The neurophysiology of skin thermal

sensation is described in detail by Filingeri (2016). While a detailed consideration of these

mechanisms is outside the scope of this study, it is helpful to keep in mind some of the

conclusions of the paper; humans’ ability to detect variations in humidity and temperature

both within our bodies and in the external environment entirely determines our

thermoregulatory behaviour. There is evidence that thermosensory mechanisms are

‘intrinsically intertwined’ with the central processing of pain (Filingeri, 2016). The authors

suggest that understanding this facet of human physiology may lead to novel pain

treatments. Overall, the papers reviewed here suggest that whether or not someone has

morbidities is key in determining the effectiveness of metabolic responses to cold. This

observation is an essential aspect of understanding the relationship between cold and

health. It is contrasted by emerging evidence of the specifics regarding thermal adaptation.

People who are acclimatised to cold exposure may have a diminished risk of cold related

strain. This is important as it suggests that the particular response of exposure to, for

example, an ambient temperature of 12°C (which is far from the thermal neutral zone)

depends on the personal history of the individual, as well as whether or not they have

morbidities. In an editorial for the journal Experimental Physiology, Tipton (2019) uses a

mixture of evidence from multiple studies to take this point even further. He hypothesises

that with regards to humans being healthy, “the dynamic equilibrium that underpins

homeostasis needs to be perturbed”, that is to say, good health is intrinsically linked with

being exposed to thermally varying environments.

This concludes the central portion of the literature review. The next section is concerned

with the final level of the review – the right most portion of figure 2.1 – which relates to the

variation of wrist temperatures between individuals, and attempts which have been made

to measure the local environment of the individual by using sensors worn on the body. The

latter topic is addressed first. The former is considered using a comprehensive review. This
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is to ensure that all available evidence in the literature regarding the variation in wrist

temperature is available. From this, the overall picture of the literature is combined into a

conceptual model. This, and the development of the thesis research questions, will be the

focus of the next chapter.

2.4 Experienced temperature

There is presently no research which seeks to characterise or measure the personal cold

exposure of individuals in real-world settings. Two studies which were carried out in warm

urban environments do provide some insight. First, Kuras et al. (2015) report the results

of a novel study to measure the individually experienced temperature (IET) of study

participants during a Boston heatwave. The study recruited 23 participants who wore an

iButton temperature sensor on a belt loop, or attached to a handbag carried at all times,

for one week at a 5-minute period (which was subsequently averaged to 1-hour). Despite

the adversely hot external conditions, the participants’ IET were significantly cooler than

the prevailing ambient external temperature, but fewer than half of the participants

experienced statistically significant temperature differences between the heat-wave and

reference periods. This may suggest that the participants were seeking refuge from the

adverse levels of heat. Moreover, the study revealed heterogeneities in IET within the

same neighbourhood. They found that older participants were more likely to have higher

IET than younger participants. The authors conclude that ambient temperature may

misrepresent experienced temperature. The study is limited by the lack of consideration of

body heat on the sensor, the small sample size and short duration of the study. The

authors do not estimate the impact of body heat on the iButton readings, but they do

point out that radiant energy from sunlight might have impacted the readings. Despite

these limitations, the study is innovative in its attempt to measure experienced

temperature.

Second, Nakayoshi et al. (2015) sought to measure both the prevalent ambient conditions

along with physiological variables in the urban environment of Tajimi city, Japan. The study

recruited 26 healthy male and female subjects ranging from 23 to 74 years in age. The

Standard Effective Temperature (SET) was recorded for each participant as they traversed

a predetermined urban route. SET is a metric that factors in mean radiant temperature

as well as relative humidity, air velocity, activity level and clothing, in order to standardise

the temperature across different environments. The experiment revealed wide variations in

SET in the complex urban environment. However, the technical complexity of the set-up

used in the study makes its deployment at a population level impractical.

Tamura et al. (2018) gives a review of the current state of wearable thermometers. The

vast majority of them are designed for medical monitoring of body temperature. Aside
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Exposure
type

Description Representative
physiological
processes

Example

Average Arithmetic or
geometric mean of
past exposures

Slowly or partially
reversible effects

Pulmonary irritants

Cumulative Product of
intensity and
duration

Cumulative,
irreversible effects

Silica and silicosis

Duration Start of exposure
to onset of disease

Cumulative,
irreversible effects

High level noise
exposure and hearing
loss

Peak Various measures
of short term, high
exposure periods

Reversible,
inflammatory
processes

Strain on lower back
and back pain

Table 2.2: Common summary measures of exposure (reproduced from Kriebel et al. (2007))

from two studies mentioned, no other studies report the use of monitors which have been

developed with the express task of characterising the immediate thermal environment of the

individual. The next section considers the potential impact of wrist temperature variation

on a wrist worn monitor such as the AX3.

A final important consideration of this section of the review comes from the field of

exposure and dose modelling relating to occupational health. Although this field does not

consider cold exposure to be equivalent to chemical or other pollutant exposure, it is

instructive to understand how exposure and dose are considered by the field. A

comprehensive outline of the various approaches to modelling exposure is given by Kriebel

et al. (2007). They highlight the need for exposure to be quantified in terms of a metric

prior to modelling. Mathematically, this amounts to transforming the time-varying signal

of exposure into a summary which quantifies the total exposure. This exposure will in turn

impact different organs to varying extents. In all but a few instances, measuring the

burden on particular organs is unfeasible. Kriebel et al. (2007) highlight four common

summary measures of exposure, summarised in table 2.2 below.

An explicit assumption of the metrics described in table 2.2, is that a directly

proportional relationship exists between exposure and risk. As the distributed lag

non-linear models described above show this is not the case for exposure to external

temperatures. For more complex relationships a dosimetric approach is more appropriate.

For these, the degree of response to a dose is variable over time, and can depend on an

individual’s previous dose history, as well as other factors. Under this scheme, the weight

given to a particular level of exposure may be a non-linear function of its magnitude. It is

important to keep these observations in mind when understanding experienced

temperature as it relates to cold exposure. At present, Cold ‘dose’ is not a concept that
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appears in the literature.

2.5 Wrist temperature

This final section of the review seeks to understand what evidence exists in the literature

for the variation of wrist temperature as a function of sociodemographics, activities, and

medical conditions. This review in particular was designed to be systematic. A broad

search was conducted on both Scopus.com and PubMed (ncbi.nlm.nih.gov/pubmed/) of

abstracts and titles containing the words “wrist” and “temperature”, which returned 1319

results. Epii-reviewer 4 was used to screen and process the results, as shown in figure 2.3.

A total of 35 papers remained in the review, and are discussed in the following sections.

The papers have been grouped by theme to aid readability.

 

. 

1319 articles returned 

Abstract or title contain 
“wrist AND temperature” 

Scopus PubMed 

938 articles 

73 articles 

35 articles 

381 duplicates 

865 screened, not 
relevant 

14 full-text unavailable 

24 full-text not 
relevant 

Figure 2.3: The screening process for the results returned by the literature search for ‘wrist
temperature’.

2.5.1 General papers

Areas et al. (2006) analysed the temporal variation of oral, axillary (armpit), thorax and

wrist temperature (WT) of 12 healthy 25–year–old men and women. The analysis made

use of the cosinor fitting technique (Cornelissen, 2014) for which temporal variation of a

signal is fitted to cosine wave. From this cosinor analysis, the fitted wrist temperatures
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ranged between 32°C and 36°C, with a mesor (mean) of 33.01°C (sd: 0.14°C). The average

amplitude of the WT variations was 0.79°C (sd: 0.04°C). The paper would have benefited

from reporting the unfitted variation in wrist temperature too. Sarabia et al. (2008) also

measured the variation with time of WT, but instead recruited 99 university students. The

authors found WT positively correlated (r = 0.9) with the sleep periods, suggesting warmer

WT is associated with sleep periods. The studies discussed here tend to be limited by a lack

of consideration of the heterogeneity of populations – they focus on small groups of similar

people. The impact of different seasons on wrist temperature is considered by Wey et al.

(2012). For a group of 24 adult Guarani natives living without access to electricity in Brazil,

winter cosinor fitted mean WTs are lower than summer ones: the summer minimum was

33.7± 0.7°C and the winter minimum 32.0± 1.2°C. The study would have greatly benefited

from the explicit measurement of external temperature, and an understanding of the direct

relationship between that and wrist temperature.

Several studies present evidence that wrist temperature measurements, used in different

ways, can be used as a proxy for thermal sensation. Choi and Loftness (2012) report the use

of the rate of change of wrist temperature as a good predictor of thermal sensation. Jacquot

et al. (2014) measured the skin temperature at 14 locations on the body of 16 healthy

females aged 18 to 30 under two experimental protocols, one of a gradually warming ambient

temperature and the other which gradually cooled. They found that wrist temperature was

the best predictor of thermal sensation. Sim et al. (2016) took measurements from 8 people

in Switzerland and found that a model based on a combination of three wrist temperature

measurements was the best predictor of thermal sensation. In a study of 430 office workers

in China, Wu et al. (2017) also found that upper extremity skin temperatures (finger, wrist,

hand and forearm) are good indicators of thermal sensation. Choi and Yeom (2017) found

that using the back of the wrist temperature combined with its rate of change predicts

thermal sensation vote with 93% accuracy. These studies tend to suggest that the use of

wrist temperature, or its rate of change, is a good proxy for thermal sensation.

The search criteria returned a paper which considered heat flow to the hand. By

using sensors placed at the wrist, Levy et al. (1977) measured the heat flow in the hand

of 10 participants using a water bath. They conclude that “[h]and blood flow is extremely

variable, but always exceeds the hand’s metabolic needs. In effect, hand blood flow is

principally determined by the thermoregulatory requirements of the organism”. This paper

discusses the paradoxical hunter’s reaction, for which immersion in cold water (around 4°C)

leads to a vasodilation, and thus increased blood flow to the finger tips. It is reviewed

extensively by Daanen (2003) and pertains chiefly to cold water immersion and so will not

be considered further in this review.

Campos et al. (2016) do not report a convincing method of distinguishing different age
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groups using WT measurements. They make use of a metric defined as the minimum of a

moving average within a two hour window. From this they suggest they can distinguish the

wrist temperature rhythms of older people from younger people, but the complexity of the

features used in this paper makes generalisation to other studies very difficult. As a result

it is largely unhelpful for understanding wrist temperature variations more generally.

Howell (1983) studied 103 elderly women and the temperature gradient between their

axilla (armpit) and fingertips. They found that “there was a fall of skin temperature between

axillae and thumbs amounting to 4.8°C. ...Skin temperature readings could be correlated

with the temperature of the circumambient air but not with age.” Marin et al. (2011) found

a significant decrease in the phase complexity of wrist temperature with age. However, the

phase complexity is an unwieldy characterisation of a time-series and there is not theoretical

justification given by the authors as to why this is a useful quantity to measure. These

findings are important for the present study as they might suggest that any differences

recorded as a function of age by a wrist worn temperature monitor would correspond mainly

to differences in ambient environmental conditions and not differences in wrist temperature.

Chilcott and Farrar (2000) found no significant difference in WT between genders in

their study of 8 males and 9 females. Again, this finding is important for the present study

as it might suggest that sex differences can be attributed to ambient temperature differences.

However, Shilaih et al. (2017) found that ovulation impacts WT in their study of 136 women

in Switzerland. After monitoring both the WT and menstrual cycle they found the average

early-luteal phase WT was 0.33°C higher than in the fertile window. However, 18% of the

subjects did not show such a pattern, and the authors concluded that WT variation alone

does not capture ovulation events. This does not discount the possibility that during an

ovulation event women might alter their environmental conditions, and thus the readings of

a wrist worn temperature monitor. However, the difference of 0.33°is small, and unlikely to

be detected.

Martinez-Nicolas et al. (2013) sought to understand the different exogenous factors

which mask the underlying variation in WT. The study recruited 103 subjects aged 18 – 24

and measured their WT every 10 minutes, as well as activity, body position and sleep. The

cosinor fitting found that amplitude was most affected by environmental conditions. There

is a potential limitation to this finding in the use of cosinor fitting, since this presupposes

a functional form of the variation in wrist temperature. Despite this, the finding that the

amplitude of variation of WT is most impacted by the environment means that a wrist

worn sensor would be influenced in a manner which accords with ambient temperature. The

counter-factual case, for which wrist temperatures increased in cold conditions and decreased

in warm conditions, would have rendered a wrist worn temperature sensor less sensitive to

ambient temperature.
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2.5.2 Activities

The following subsection considers the evidence for the impact of specific activities on the

WT. This is important for the present study as it provides information on the extent to which

a wrist worn sensor would be impacted by the particular activities of the wearer, separately

from the environmental conditions that they may have chosen for a given activity. This

point will be synthesised in the following chapter on the conceptual model underlying this

study.

Baritz et al. (2013) present evidence from thermographic pictures which indicates that

hands, and to a lesser extent wrists, warm as the participants carry out hand exercises such as

repetitive gripping. This might suggest that a wrist worn temperature monitor would read a

higher temperature when the participant was active, although the differences that the study

reveal are not quantified. Carreiro et al. (2015) report the results of a small scale pilot study

of 3 participants whose bio signals (including WT) were measured in the time surrounding

intravenous administration of opioids, and Carreiro et al. (2016) followed up this trial with

a study of 30 men and women. An average increase of 2.62°C in WT was recorded when

comparing before and after opioid administration. No significant differences as a function

of gender, age or opioid type were found. It is not expected that opioid administration is

sufficiently common to effect wrist temperature. A paper returned by the search criteria

gives a limited description of the measurements of the WT of two participants and reports

that they are not normally distributed (Camargo et al., 2012). There is no reason to expect

that WT measurements should be normally distributed at the level of two participants, so

this paper is of limited use to this study. Finally, Nissilae et al. (1996) report a limited

experiment using two participants which found WT dropped more than thorax and axilla

temperatures when a participant spent 30 minutes at very cold ambient conditions of -10°C.

This finding is commensurate with the observation that vasoconstriction limits blood flow

to the hands during cold exposure.

Several papers have looked at the impact of shift work on circadian rhythm measured

using WT. Jang et al. (2017) report their cosinor analysis of the WT of 68 day workers and

53 night-shift workers in South Korea. They found significant differences between the WT

amplitude between the groups, suggesting that shift work disrupts circadian rhythms. The

amplitude of WT for the shift-workers fell as the night shift progressed (0.92 to 0.85°C) and

continued to do so following a rest period (0.69°C). It rose again during the morning-shift

days (0.82°C). Day workers on the other hand had higher amplitude WT (0.93°C) than

those workers who had gone back onto morning shifts. These results accord with an earlier

study of nurses by Ferreira et al. (2013) which also found that shift work disrupts circadian

rhythms as measured using WT. Bracci et al. (2016) also measured the WT nurses working

in the day and compared them to night–shift workers. Following cosinor fitting, the authors
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found that night–shift workers have a higher mesor, similar maximum and higher minimum,

and so a decreased amplitude. This result is consistent with the other studies mentioned.

Furthermore, they draw a potential link between working shifts and the development of

metabolic syndrome due to the similarities in WT variation in both groups. These findings

are important as they suggest that the disrupted sleep patterns that are associated with shift-

work may impact temperature measurements made by a wrist worn temperature sensor.

2.5.3 Pathologies

This subsection considers the impact of pathologies on wrist temperature and its variation.

Understanding the impact of different illnesses is essential when trying to understand the

link between ambient temperatures (as measured by a wrist worn sensor) and health.

Areas et al. (2006) highlight earlier work, outside the scope of this review, which suggests

associations between variations in circadian rhythms and infections of the central nervous

system and pneumonia (Cunha and Tu, 1988). Harfmann et al. (2017) conducted a study

of subjects aged 50 to 70 to understand the relationship between markers of circadian

rhythm (WT amplitude and stability) and measures of metabolic syndrome. They found

that only triglyceride levels correlated with a low WT amplitude and stability. However,

the monitoring of complex bio-markers of circadian rhythms such as triglyceride is not

practical for a large scale population study.

Corbalán-Tutau et al. (2011) compared the time evolution of WT over a three-day

period of 20 normal-weight women with that of 50 obese women. The WT of the obese

women was found to be significantly lower (by 0.3°C) than the normal weight women.

Their 24-hour WT pattern was also flatter, in a finding consistent with the Harfmann

et al. (2017) study. A later study by Corbalán-Tutau et al. (2015) found that obesity and

metabolic syndrome could be characterised by WT when coupled with questions about

sleep onset and monitored morning levels of salivary cortisol. Ortiz-Tudela et al. (2010)

produce a composite metric of WT, activity and body position which they suggest can

characterise circadian rhythms. The authors suggest that this metric can reveal the links

between circadian disruption and conditions such as metabolic syndrome, diabetes,

cardiovascular disease and even cancer prognosis. However, this metric is complex and not

readily reproducible in real world settings.

Romeijn and va Someren (2011) found WT was inversely proportional to vigilance, as

measured through a clicking response task. This finding correlates with other observations

that WT increases with sleep periods. Ortiz-Tudela et al. (2014) use their metric to show that

phase advances occur in the biological clock of patients with Mild Cognitive Impairment.

Using data from 46 healthy individuals in the Netherlands, Vinkers et al. (2013) found

that stress did not change wrist temperature significantly, even though it does effect the
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temperature readings at other regions of the body. This is a useful observation, and it

provides further evidence that a wrist worn temperature sensor may be the most practical

position for a temperature sensor worn on the body to best characterise the immediate

thermal environment of the wearer.

This final section of the literature review has revealed that wrist worn temperature

monitors have not yet been deployed as a means of characterising the experienced

temperature of the wearer. Moreover, the comprehensive review of wrist temperature

variations reveals that there is no evidence of substantial effects which would significantly

impact a wrist worn monitor as a function of demographics. The clearest effects are the

diurnal variation in wrist temperature, which suggest wrist temperature is highest at

night-time. There is evidence to suggest that obesity and metabolic syndrome reduces the

amplitude of wrist temperature variation. There is also clear evidence that disrupted

circadian rhythms are detectable through wrist temperature measurements. However, at a

population level it would possible to control for both obesity levels and shift-workers.

2.6 Summary

This review sought to examine the literature at three different levels, all of which are relevant

to this study’s research aims. At the largest scale, clear evidence for the winter peal in

mortality is evident. This is most likely related to cold external temperatures, although

the impact of covariates such as air pollution is also important. It is unclear from the

epidemiological evidence at this level as to where, when and for whom this harmful exposure

occurs. As people spend over half their lives at home, it is likely that household temperatures

play a significant role in this regard. Exposure to cold in the work place is less likely, in

large part due to the standardisation of indoor work environments, which according to the

Health and Safety Executive should be at least 16°C (HSE, 2007).

At the level of the household, differences in internal temperatures are observed. There

is evidence to suggest that Local Authority housing is warmer than privately owned homes

(Hamilton et al., 2017; Kelly et al., 2013). Older people and people with long-term disabilities

are found to have warmer dwelling temperatures than younger people and those without

long-term disabilities (Huebner et al., 2018). However, there is concern in the literature that

occupancy may not line up with the measured differences in temperature – it is therefore

useful to consider monitoring the immediate thermal environment of different demographic

groups to understand how dangerous cold exposure occurs.

There has been little attention given to the problem of measuring person cold

exposure at the population level. The systematic review of wrist temperature variation

showed little variation in wrist temperature as a function of demographics. Using a wrist

worn temperature monitor is a feasible method of monitoring the experienced temperature
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of individuals (this is explored in detail in chapter 5). The following chapter discusses the

UK Biobank in detail and synthesises the evidence of this review to develop the study

research questions and hypotheses.
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Chapter 3

UK Biobank and the conceptual model

of the study

My health is better: I lay the blame of its feebleness on the cold weather, more than

on an uneasy mind.

Elizabeth Gaskell – The Life of Charlotte Brontë (1857)

The previous chapter identified a significant gap in the literature regarding the

understanding of the relationship between the temperature directly experienced by an

individual during their everyday life and their health outcomes. In order to explore this

theme, this study makes use of data from the UK Biobank as well as a wrist worn activity

and temperature monitor, the AX3. This chapter describes the UK Biobank more fully,

and outlines the conceptual model which underlies this thesis.

3.1 The UK Biobank

As described in the introductory chapter, the UK Biobank is an on-going prospective cohort

health study of UK adults, which recruited over 500,000 people from the general population.

The cohort was aged between 40 and 69 years when recruited between 2006 and 2010 (Sudlow

et al., 2015). The diversity of data available for researchers is striking and includes both

genotypic and phenotypic information collected using a wide range of methods. The data

are available to any researchers following a detailed application process. The application

for this study was approved in May 2017. Following this, a Material Transfer Agreement

was signed, committing the project to strict data storage protocols (see section 4.1 for more

details). The overall data collection time frame of the UK Biobank is given in table 3.1.

This study is concerned primarily with the data collected by the AX3, but the relationship

between these data and the sociodemographic data collected throughout the UK Biobank

study is also very important.

Of specific interest to this study were the 236,519 participants who were invited to wear
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Name Description Start End
Pilot phase Tested the entire recruitment 03/2006 06/2006
Baseline
assessment

Sociodemographic, lifestyle, health,
environmental, and psychosocial factors were
collected using questionnaires, tests and
biological samples

04/2007 10/2010

Diet Collected using a dietary recall questionnaire 02/2011 06/2012
Baseline
assessment
repetition

A repeat of the above baseline data collection 08/2012 06/2013

Genomics Genome-wide genotyping from blood
sampling on all participants

2013 2015

Registries Participants are linked to death and cancer
registries and inpatient records.

03/2013 2017

AX3
physical
activity
monitor

The primary data for this study, described in
the text, collected for 100,000 participants

05/2013 12/2015

Cognitive
function

A web questionnaire collected for 100,000
participants

11/2014 12/2014

Occupational
history

A web questionnaire collected for 100,000
participants

07/2015 09/2015

Imaging Multimodal body imaging data collected for
100,000 participants

10/2015 2017

Mental
health

A web questionnaire collected for 100,000
participants

08/2016 12/2016

Table 3.1: The data collection time scale for UK Biobank. Adapted from information summarised
by Maelstrom (2019)

an AX3 physical activity wristband sensor for one week, between May 2013 and December

2015. The AX3 encodes accelerometer, temperature and light level data into a single data

file. 103,707 such files were available for analysis in this study. The literature review

identified the need for a study examining the experienced temperature of individuals in

relation to health and energy demand. The following section assesses the suitability of using

the AX3 wristband as a means to measure the experienced temperature. Three principle

experiments are described. Following this, the conceptual model for experienced temperature

which underpins this study is given.

3.2 The Axivity wristband sensor

The Axivity AX3 wristband was designed to measure participant activity levels using an

accelerometer which samples acceleration at 100Hz. The accelerometer’s performance varies

with temperature, and so must be normalised, although these effects only become important

at high temperature (Axivity, 2015). In order to monitor the temperature of the device, a

MCP9700 thermistor is included on board the Axivity device (Microchip Technology, 2007).

It samples temperature with a period between 1.1 to 1.3 seconds. This non-constant data
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Figure 3.1: The Axivity AX3 wristband, worn while painting.
Image source: https://bit.ly/2LsXqTf

collection period results from the way the device collects data. It was therefore necessary to

process and downsample the collected data, in the first instance to create a uniform sampling

time, and in the second to make data more manageable. This served to reduce the file size

for each participant and made producing the regression models more straightforward. This

process is described in more detail in section 4.1.

The activity information which the AX3 records was processed to a 5-second period,

from an initial rate of 100Hz. Very little meaningful information about a participant’s

experienced temperature exists below the 5-second period, and indeed home monitoring

programs tend to operate at a minimum period of 5 minutes (see section 4.2.2). Therefore, a

period of 1-minute was chosen for the final downsampled data, for both the temperature and

activity data. This is a conservative compromise between file size and potential information

loss. The file format for data from the Axivity wristband is CWA. For a week of data,

the CWA files are around 260 MB each. The whole unprocessed data set for all 103,707

participants is therefore 27 TB. Processed to a 5-second period each file is approximately

13 MB, which makes the whole data set 1.3 TB. The further downsampling to a 1-minute

period made the entire dataset 165 GB in all.
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Parameter Measurement
Dimensions 23 x 32.5 x 7.6 (mm)
Weight 11g
Moisture Ingress IPx8 1.5m for 1hr
Dust Ingress IP6x
Memory 512Mb flash non-volatile
Accelerometer Sample Rate 12.5 - 3200Hz Configurable
Battery Life 30 days @ 12.5Hz; 14 days @ 100Hz
Accelerometer Range 2 / 4 / 8 / 16g Configurable
Accelerometer Resolution Up to 13 bit
Thermistor frequency 1.1-1.3s
Thermistor response time Similar to HOBO monitor
Thermistor accuracy ±1°under standard operating conditions
Thermistor resolution 0.3°

Table 3.2: The physical parameters and functionality of the AX3 (Axivity, 2015; Microchip
Technology, 2007)

It is important to note that the AX3 was not designed as a temperature monitor per

se. The accelerometer’s functionality can be impacted by the device temperature, although

usually not under normal operating conditions. The on-board thermistor’s primary

function is to provide calibration for the accelerometer. However, as will be shown in

chapter 5, the AX3 can be used successfully to measure temperature which reflects the

ambient environment and the heat from the wearer’s wrist.

3.3 The conceptual model of experienced temperature

In general, the thermal environment of humans is highly complex (Gagge and Nishi, 2011).

The primary pathways for heat transfer are conduction, convection, radiation and

evaporative exchange. Since these pathways can be highly anisotropic and heavily

influenced by local heat flows, clothing, air movement, moisture levels and many other

factors, characterising this environment is difficult. No single temperature will capture an

individual’s thermal environment fully.

However, a wrist worn temperature sensor reflects the thermal environment well because

it is generally further away from the core. As depicted in figure 3.2, when an individual is in

a cold environment, blood flow is restricted from the extremities, which means a wrist worn

sensor reads a colder temperature in line with the ambient environmental temperature.

Wrist temperature varies diurnally with a peak during sleeping hours. However, as

was shown in chapter 2.5, there is little variation in amplitude reported as a function of

either gender or age. Therefore, recorded differences between demographic groups likely

correspond to environmental differences between these groups, all other things being equal.

The complicating factor of clothing should also be considered. As demonstrated in

figure 3.3, the addition of layers of clothing worn over the AX3 increases the temperature

reading relative to an uncovered AX3. An ambiguity therefore exists as to whether a warm
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Figure 3.2: The approximate distribution of body heat in warm and cold conditions. Generally,
in colder conditions, blood flow to the extremities is restricted to reduce heat loss.
Dark areas indicate temperatures around 30°C, light areas indicate 37°C. The exact
meaning of warm and cold conditions depends on clothing levels, metabolism, gender
and many other factors. Adapted from White et al. (2011)

Figure 3.3: The AX3 registers a warmer reading when worn under clothing than on top of it, even
in the same external environment
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reading (e.g. above 30°C) is the result of a warm room, or a sensor worn under clothing. The

same is not true for the converse situation: a low reading (e.g. below 20 °C) corresponds to

a cold environment, as there are no physical mechanisms which allow the wrist to be colder

than the environment in cold conditions. It is therefore not possible for a cold reading on

the AX3 to be the result of anything other than the participant being in a cold environment.

This minimises the risk of a Type I error regarding whether the participant was exposed to

cold. Type II errors are more difficult to discount, since it is plausible that a participant

might have breathed cold air while wearing an AX3 that was covered by clothing. However,

it is probable that such instances were rare given the 5-day monitoring period.

Following on from the gaps identified in the literature, and the conceptual model

outlined above, the following section sets out both the preliminary and main research

questions for this study.

3.4 Research questions and hypotheses

Two preliminary research questions, denoted P1 and P2, seek to answer the following

questions:

P1. Does the AX3 function accurately as a temperature recording device?

P2. If so, to what extent does it record the immediate thermal environment of the

wearer while being worn?

The AX3 device pilot testing, which is described in full in chapter 5, shows that the AX3

records temperature with sufficient accuracy to allow for the characterisation of experienced

temperature. The specific tests that were carried out, their rationale, and the hypotheses

which were formulated prior to them being carried out are also addressed in chapter 5. The

main research questions that are addressed by this thesis are more general than P1 and P2,

but answering them in the manner described in this thesis logically requires that the AX3

is shown to be an adequate temperature recording device. Therefore, the results to P1 and

P2 are given prior to the main results section. The main research questions of this thesis

are as follows:

RQ1. Does experienced temperature vary with sociodemographic and building

variables [e.g. sex, age, ethnicity, income, building type, tenure]?

RQ2. Are there associations between experienced temperature and the health

conditions related to excess winter deaths, i.e. cardiovascular and respiratory

diseases [ICD 10 I00 – I99 and J00-J99]?
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RQ3. Do combinations of sociodemographic factors, building factors and the health

conditions related to excess winter deaths (as above) have associations with low

experienced temperature?

Following on from these research questions, the subsequent hypotheses are given, based on

the evidence available in the literature. These hypotheses will be revisited in chapter 9 and

critically discussed based on the findings reported in chapters 6, 7 and 8. The hypotheses

below relate to the dataset for which shift–workers, those with health conditions that lead to

unusually cold hands, and those with dementia and Alzheimer’s disease have been excluded.

This is discussed further in section 4.8.

Hyp1. No significant differences in experienced temperature will be measured as a

function of sex, ethnicity and income. Experienced temperature will increase as

a function of increasing age and decreasing health satisfaction. Experienced

temperature will be higher for those who live in Local Authority housing than

those who live in owner-occupied accommodation.

Hyp2. Those who have health conditions associated with excess winter deaths will be

more likely to have higher experienced temperature.

Hyp3. Those who have health conditions associated with excess winter deaths will not

be more likely to have higher experienced temperature if they are also in low

income households.

3.4.1 Discussion

Hypothesis 1 follows from the reading of the literature that there are no significant differences

in wrist temperature as a function of demographics. Therefore, the observed differences

will be due to ambient conditions. The literature review showed the clearest evidence for

increased ambient temperatures as a function of increasing age, and for those who live

in Local Authority housing. There was also evidence which showed that those with long

term disabilities had higher domestic temperatures (details of exactly how the variables are

operationalised is given in chapter 4).

Hypothesis 2 again follows from the evidence that those with long term disabilities

have higher domestic temperatures. These participants likely increase their domestic

temperature, and consequently their experienced temperature, in order to alleviate the

symptoms of chronic health conditions (such as respiratory problems). However, others

may not have such the financial capability to do so. Therefore, hypothesis 3 follows from

the assumption that participants who are less able to afford home heating, i.e. those whose
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income is low, might ration home heating. This final hypothesis is made with less direct

evidence from the literature, although there is evidence to suggest that rationing of

heating does occur in certain low–income households.

3.5 Pre-analysis plan

As was shown above, the number of available variables in the UK Biobank is very high.

Data dredging or p-hacking is the practice of searching large databases to find statistically

significant relationships which are identified only because of the databases size, and not

because of some real underlying relationship. In order to guard against this, the variables

of interest and statistical tests undertaken in this thesis were pre-specified in a Pre–analysis

plan (PAP). This was uploaded to an online repository prior to the data analysis stage

(Kennard et al., 2017) and is reproduced in appendix E. However, slight modification of the

research design was required following additional literature reviews. The language of the

research questions was also improved relative to what was published, since statements in

the original version lacked clarity.

The next chapter goes into detail about the specific ways in which the main research

questions given above will be addressed in the study. The results of the main research

questions are given in chapters 6, 7 and 8.
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Chapter 4

Method

. . . it is extremely desirable that Bed and Sitting Rooms for Winter occupation,

should have a Southern aspect – when the Thermometer is below 30, the proper

place for people beyond 60, is their own Fire-side. . .

William Kitchiner – The Art of Invigorating and Prolonging Life (1822)

4.1 Methodology

The first section of this chapter discusses the methodology of the study as the whole. Here,

methodology is taken to mean a collection of methods deployed to address a research

question (Kothari, 2012). The main research questions outlined in the previous chapter

lend themselves most appropriately to a quantitative methodology. This choice is partly

based on the constraints of the broader research design of the UK Biobank, which was set

up with a purely quantitative structure in mind. However, it is also the case that

qualitative data is very challenging to collect and synthesise at the scale of 100,000

participants. Moreover, the primary variable of interest is temperature, which makes

quantitative methods appropriate.

The nature of the PhD limits the possibilities for measuring experienced temperature

at a population level – it would have been impossible to deploy thousands of sensors within

the timescale and budget of the study. The previous chapter laid out the conceptual model

of why a wrist worn sensor is a good method of measuring experienced temperature.

Alternatives might have been an ankle work sensor, or an iButton worn on clothing (cf.

the method of Kuras et al. (2015)). Following this, the most appropriate methodology to

analyse the data collected by the AX3 is that of an epidemiological approach. For this,

multiple-regression models estimate the strength of associations between variables. As

mentioned in the previous chapter, the core of the study was pre–specified in the

Pre–analysis plan (PAP), which is reproduced in appendix E and was published online

before the data were analysed (Kennard et al., 2017). Following this, extensive pilot
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Figure 4.1: An overview of the study as a whole. Ambient temperature and health are highlighted
as they are of primary interest. Other factors and processes which influence the results
are shown

testing was conducted in order to answer the preliminary research questions given in the

previous chapter pertaining to whether the AX3 records temperature accurately and

whether the temperature it records reflects the immediate thermal environment of the

wearer. These tests are discussed in full, including the methods used, in the following

chapter. The next chapter also goes into more detail about how the AX3 compares to

using an iButton. The conclusion from these tests was that the AX3 is sufficiently

accurate at measuring temperature, and that the temperature it measures reflects the

thermal environment of the wearer. The remainder of this chapter is therefore devoted to

describing the methods for the main analysis of this thesis. As suggested above, the most

appropriate method for determining the relationship between variables in epidemiology is

using regression. However, before discussing the regression models, the variables must be

introduced, and most importantly, the method by which the experienced temperature

variable is derived. This portion of the study involved processing over 27 TB of data.

Designing and implementing the data processing workflow took just under half of the

available time for the research portion of the PhD, which was around 30 months in total.

The methods of collecting, processing and analysing the information available to this
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study are represented in figure 4.1. Here, the term information is used in an abstract sense

– it refers to the variety of ways data were collected and analysed. Two key input sources of

information are highlighted in figure 4.1, namely the ambient temperature of a participant

and their general health status. The diagram aims to capture how these variables were

operationalised, both through the concept of experienced temperature and the UK Biobank

variables in general, before being passed to the regression analysis stage, which ultimately led

to the results of the thesis. Separating the information flow in this way helps to summarise

what has been carried out and provides a structure to aid the explanation.

The following section describes how the UK Biobank data were processed. However,

prior to this, access to the data resource had to be gained. The study began with the

supervisory team identifying that the UK Biobank resource and the temperature variable

recorded by the AX3 would constitute an interesting program of study. The data were

initially identified through the UK Biobank Data Showcase (UK Biobank, 2019). The

variable of primary interest at this early stage was the average temperature recorded by

the AX3 (which was erroneously given the value 20.9°C by the UK Biobank team, as is

discussed in detail in section 5.1 of the next chapter.)

The work began with a formal application for data access to the UK Biobank, which was

done in conjunction with the supervisory team. This required setting out the research plan

in detail, and providing a list of all required variables. This list was longer than those which

were eventually included in the PAP (see appendix E), because the final list of variables had

not been determined at that early stage.
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4.2 CWA Processing

Figure 4.2: The CWA processing pathway. The processing and downsampling stages were the
most time intensive aspects of the study. The Material Transfer Agreement (MTA)
and Research Data Services (RDS) storage space are also indicated.

Once the application was submitted, work on determining the minimal set of variables which

would allow the research questions to be answered began. This required consultation of the

literature, and clear understanding of the nature of the Biobank variables. One example

of a variable that was initially requested, but then not made use of, was the Townsend

Deprivation index. This was because the index was only defined at Census Output Area level,

which have a minimum of 40 households or 100 residents (ONS, 2019), and was therefore

not specific enough to the participants of this study to be of use. Other unused variables

were included in order to facilitate potential further research which fell outside the scope of

this thesis. As will be described further in section 4.6, further literature review work and

consultation with colleagues who had more medical expertise revealed that the inclusion of

three further variables would be required.

The application process proceeded in two stages. It was approved in principle following

an initial application in January 17th 2017, and in full on May 8th 2017. Following this,

a formal Material Transfer Agreement (MTA) was signed on September 18th 2017 (UK

Biobank, 2017). This required accepting the condition that the data would be held in

a secure system. The system where the majority of the primary data were stored was

password protected with encryption, with the password known only to the author. The UK

Biobank data is anonymised, so determining the identity of the participants is generally not

possible. Exceptions to this were considered, for example, instances in which a person with
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specific sociodemographic characteristics living in an area of low population. However, since

the home location variable is rounded, it would be extremely challenging to identify such an

individual, it was deemed to be an acceptably low risk. At this stage an ethics audit was

conducted which required the study to be outlined to the UCL Energy Department lead

on Ethics. Since the UK Biobank data are anonymised, it was concluded that a separate

application to the UCL Ethics board was not required for the study.

The data were divided into two portions. The first comprised the sociodemographic,

health and housing data of the participants. These were around half a GB in size, so were

able to be stored on the local secure system. The second portion comprised the CWA files

were much larger. Each CWA file was around 250 MB, which meant the whole dataset was

over 27 TB in size. This required the use of the UCL Research Data Systems to store them

securely. At this stage, Dr Stuart Grieve and Raquel Alegre were taken on using funding

from the Centre of Energy Epidemiology (CEE) budget. They provided one week’s worth

of support for the specific computing tasks required to process the CWA files, and they also

assisted in refactoring the Python and Java scripts that were written by the Axivity team

at Newcastle University (NU) to process the CWA files. The modified scripts are available

at https://github.com/UCL/AX3-temp-output. Furthermore, they assisted with teaching

the necessary SQL programming techniques to build the database which held both the

sociodemographic data and the processed CWA data. However, as is indicated in figure 4.2,

this step was later deemed to be superfluous as the R programming language was sufficient

to allow direct incorporation of the sociodemographic data and the summary metric of the

processed CWA files. It was initially expected that this would not be possible, but as the

research design evolved it became clear that the complete database of sociodemographic and

summary metric data would be small enough for R to be able to process directly.

4.2.1 Processing CWA files

Processing of the CWA files was divided into two distinct phases. Step one was the initial

processing which decodes the CWA and converts it into a CSV file. This was conducted

using the UCL computing cluster with the modified NU Python and Java scripts mentioned

above. The second stage, once the CSV file was produced, involved further downsampling

to a 1-minute period. This work was conducted on the local system using Python scripts

(see below section 4.2.2). These time-series were then summarised into a number of different

metrics, as described below in section 4.3.1.

The details of the workflow for step one using the UCL computing clusters are given

in appendix A.1 which was created by Stuart Grieve. The workflow is an idealised

representation of the practical process, which included multiple technical drawbacks and

complications. These difficulties are described in the next section. The workflow was
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created with assistance from Stuart Grieve and Raquel Alegre. The broad scheme was as

follows. First the unprocessed CWA files were downloaded using the UK Biobank data

downloading tool, which was automated using a BASH script. Then, the processing script

was compiled in a virtual environment on the computing cluster. The virtual environment

acts like an isolated operating system that has very specific software libraries that hold the

code that the script requires. This step was complex as the NU script required specific

libraries which were not available by default on the UCL cluster. Once the virtual

environment was established and the NU script was running correctly, the CWA were

copied securely (using the SCP command) from the RDS storage to the cluster. These files

were then processed in batches using the NU script, up to a maximum of 100 at any one

time (depending on how many other users were running jobs). Each CWA file took around

1 minute 40 seconds to process. It was this batch processing that allowed the totality of

the 100,000 participant files to be processed within the time frame of the PhD. Without

batch processing the CWA files would have taken over 3 months to process. Once each file

was processed the resultant CSV files and JSON files, which contained the default

summaries of wear time and average temperature as well as notification of any errors, were

sent by SCP back to the RDS storage system. The NU script developed by Doherty et al.

(2017) was designed to calculate average activity for every hour using the AX3. The AX3

is a triaxial activity monitor, which means it is sensitive to acceleration in all three

orthogonal directions. It is configurable in a number of ways; Doherty et al. (2017) chose

to sample acceleration over a seven day period at 100Hz - the range of possible

acceleration measured by the device were ±8g (where g is the acceleration due to gravity).

The device is capable of sampling at higher rates, which allow high intensity activities,

such as boxing, to be captured, but this compromises battery life. Stationary episode were

defined as periods when the accelerometer measured a standard deviation of less than 13.0

mg (Doherty et al., 2017).

4.2.1.1 Difficulties

Processing 27 TB of data is challenging, even using modern computing methods. Most of

the difficulties encountered arose from simple errors in the processing scripts which were

rectified by carefully examining the code. For example, the file path of a process not being

properly defined would prevent a process completing. The nature of the cluster system

meant such errors were not always easy to track down. Other setbacks occurred due to

system shutdowns or overuse and so were outside the control of the author.

A more substantive error in the NU script was discovered several months after the entire

process had been completed. The error affected around 5% of the processed files, and so

was not evident at first. It was caused by a single number being incorrect in one line of NU
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script (which is over 900 lines long). This error was the result of the refactoring of the script

during the early stages of the processing exercise. The number in question referred to the

column number of the CWA data – for the 5% of files affected the activity and temperature

columns would be exchanged and the temperature readings replaced by nonsensical activity

readings. The discovery and correction of this error took around a week. Unfortunately,

there was no way of determining which files had been affected, since the error did not appear

on any of the output error files, and the entire dataset had to be re-processed. UCL Research

Data Services (RDS) had brought on-line a new cluster system named Myriad, which was in

the early testing stages. This meant no other researchers were using it at the time and the

whole data set was reprocessed in 3 days - this was far quicker than the original processing

time.

4.2.2 Downsampling

The resultant time-series CSV files containing temperature, activity and light level readings

were sampled at a rate of once every 5-seconds. As will be discussed in chapter 5 on

the pilot studies, the light level readings were too inaccurate to be of use. The 5-second

sampling period was deemed unnecessarily short for practical use in the research project.

Most physiologically relevant processes to this study take place on a time scale longer than

this 5-second period. 1-minute was chosen as it created a more manageable file size, but

still contained a sufficiently fine temporal resolution – domestic temperature studies use a

variety of sampling periods, typically between 5 and 45 minutes (e.g. Kane (2013) uses 5

minutes; French et al. (2007) use 10 minutes; Hamilton et al. (2017) use 20 minutes; K Firth

and Wright (2008) use 45 minutes) . The downsampling to 1-minute period was achieved

using a Python script (given in appendix C.1). This stage also converted the wear time

summary that is given as one of the outputs of the NU script to a simple binary variable (0

for unworn and 1 for worn) for each time-stamp. This meant all the relevant information

was contained in a single file, which made the summary stage described in the next section

much more straight forward.

Downsampling always involves removing information from a time-series. If conducted

properly, the information removed is of little or no value, and serves to remove random

fluctuations from the data resulting in time-series of lower temporal resolution that has

been smoothed out. Correct downsampling procedure ensures that measures such as the

mean value of the data are not affected by the smoothing. Tests were conducted during this

process to ensure the Python algorithm was accurate in these regards. This was done in two

ways. Firstly, a simple method of plotting both the downsampled and original time-series

on the same axes to see that they followed the same pattern. This was followed up by

calculating the overall average temperature reading for a particular test example – all tested
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files had near identical averages, agreeing to at least 2 d.p. Downsampling reduces the level

of noise in a time-series, and so very high frequency variations are averaged out. This can

result in a mild reduction of range in the downsampled time-series. It was ensured that the

downsampling algorithm did not result in dramatic range reductions. In the spot checks

conducted, no range was reduced by more than 1°C, and most were reduced by around

0.1°C.

4.3 Experienced temperature

The final data comprised a 1-minute period time-series of temperature readings from the

AX3 as well as the average activity level (acceleration measured in units of g) recorded for

that minute. For each minute in the time-series an estimation of whether the AX3 was

being worn was also given, as a binary variable. The combination of these data allowed the

exposure metric to be derived, which is described in the following section.

4.3.1 Exposure metrics

As mentioned above, once the 1-minute period time-series of temperature readings were

produced, they were summarised into the various metrics that this study uses. The script

which produced these summaries is given in appendix C.2. The most straightforward way to

input the experienced temperature into a regression model is to summarise it, that is, convert

it from a time-series of 7,200 minutes into a single value which captures the characteristics

of the data (the 7,200 minute time-series results from the five included days, measured at

minutely intervals, see section 4.3.1.1). This can be done in a number of different ways.

The most intuitive is the mean. Examples of other summary metrics of time-series are the

median, maximum or minimum, or the standard deviation. The details of the metrics are

given in table 4.1, which includes a subscript notation used throughout the remainder of the

thesis. There are several reasons why such alternative summary metrics should be taken into

account. First, since most people spend around 8 hours per day in the warm micro-climate

of the bed, the mean is likely dominated by this temperature, which is relatively static.

Second, as pointed out in the conceptual model in chapter 3, using an AX3 to measure cold

exposure is ambiguous at warmer temperatures, due to the argument that a warm reading

on the AX3 could either be because of a warm environment or layers of clothing over the

device in a colder environment.
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Metric Description Notation
minimum the lowest value in the data tmin
first decile the value corresponding to the lowest 10% of

the data
t10

lower quartile the value corresponding to the lowest 25% of
the data

t25

mean the first moment of central tendency tµ
median the value separating the upper and lower half

of the data
t50

upper quartile the value corresponding to the lowest 75% of
the data

t75

ninth decile the value corresponding to the lowest 90% of
the data

t90

maximum the highest value in the data tmax
standard deviation a measure of dispersion tsd

Table 4.1: A table of some of the some of the potential summary metrics of a time-series Bowley
(1920)

The argument was made in the PAP that the first decile be chosen as a summary

metric. However, the decision was made that a single metric may be too restrictive in

the final analysis. Therefore, the potential metrics (given in table 4.1) were divided into

two types. These were the lower experienced temperature metrics and measures of thermal

variety. The lower experienced temperature metrics are those which aim to characterise

cold exposure, as described in the conceptual model. Specifically, these are the minimum

recorded temperature and the first decile. However, the minimum is potentially impacted

by outliers as it is a reading which only corresponds to a single minute of exposure. By

contrast, the first decile corresponds to a reading of 12 hour’s worth of exposure (i.e. 10%

of the total 7,200 minute monitoring period). The two metrics are compared in the results

chapter which follows. There is no a priori justification for taking the first decile over, for

example, over the 5th or the 15th percentile, other than it providing a good balance between

capturing periods spent in cold conditions, which might not be picked up by the average,

and the minimum temperature, which might be the result of a single brief minute–long cold

exposure that is not representative of the participants experienced temperature as a whole.

It was expected that between these two variables the cold exposure would be captured

(subject to the caveat regarding clothing outlined in the previous chapter). It is important

to stress that these arguments were made on the basis of the pilot studies alone, prior to

analysis of the general UK Biobank data set. The mean itself was included as a metric

since it is a very widely used summary metric. Even though it likely does not characterise

cold exposure per se, it could be argued that having a lower average temperature could be

the mode of action for the harmful effects of cold to be felt. These considerations will be

discussed further in the discussion chapter 9.

The second kind of metric is the thermal variety, defined in this study as the standard
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deviation of experienced temperature. This aims to capture the diversity of the temperatures

that the participant was exposed to. Unlike the first decile it uses the whole time-series in its

calculation. The expectation was that the greatest diversity of readings would result from

different levels of cold exposure. That is to say, the bedroom and sleep related readings

were expected to be relatively similar between participants. For this reason, the thermal

variety was thought to be dominated by cold exposure, and therefore worth investigating.

The outline of the following chapters matches this division of metric types: chapter 6 focuses

on the lower metrics, and 7 on the thermal variety. The metrics included are given in table

4.2. The next consideration for the metrics, discussed below, regards the inclusion of the

activity data.

Metric Notation Comments
Minimum tmin the coldest value recorded during the study

period
First decile t10 the value corresponding to the lowest 10% of

the data
Mean tµ The mean was not expected to be a good

means of characterising cold exposure, but is
included for completeness

Standard deviation tsd a common measure of dispersion, expected to
characterise cold exposure

Table 4.2: The summary metrics used in the thesis, the notation used and a description of what
they measure.

4.3.1.1 Activity

A second consideration for the data summary method was how to incorporate activity data

into the analysis. The central problem arises because there is no information available which

indicates when a participant is indoors. This means it has to be estimated in a different

way. For this, all periods of time where participant’s activity was above their median activity

level was excluded. In order to denote this, a superscript ‘m’ is added to the notation given

in table 4.1. For example, the first decile screened by median activity level is denoted tm10.

When no exclusions to the time-series are conducted, no superscript is given. An example

of a temperature time-series, summarised by the minimum and first decile is given in figure

4.3a, and the same data represented as a histogram in figure 4.3b.
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(a) Example participant experienced temperature time-series, shaded by whether they
were active or not (Y or N). Higher night-time measurements correspond to both the
warm micro-climate of the bed and the mildly increased temperature of the wrist
during sleep.

(b) Experienced temperature histograms shaded by whether the participant was active
or not (Y or N).

Figure 4.3: Example experienced temperature time-series and histogram. In both figures, the
dotdash line denotes tmmin of the data, and the dashed line denotes tm10 (the first
decile).
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This decision was made for two principle reasons. Under the assumption that little time

is spent outside while sedentary during cold periods of the year, the lower activity periods

are more likely to reflect internal environments. Since this study is primarily motivated by

energy use in buildings, it was decided that focusing on periods for which the participants

were likely inside was most appropriate. Second, since the metabolic response of people

is higher during periods of moderate activity, the negative impacts of cold are likely to be

greater during sedentary periods. Both of these assumptions will be critiqued in section 6.4.

For the study due to Doherty et al. (2017), which produced the raw data processed

and analysed in this study, participants were asked to wear the device continuously, and

put it on as soon as they received it in the mail. It was programmed to activate two days

after the postal date. Participants were asked to return the device at the end of the 7-day

wear period using a pre-paid envelope. The devices were calibrated using industry

standard procedures to local gravity levels. Periods where the device was not moving

(accelerating) were identified by a 10-second window during which all three axes of the

device read less than 13mg. These stationary periods were then used to optimise the local

gravity readings which were subtracted from the final acceleration readings. For instances

when the device was never determined to be stationary, this calibration was determined by

the next time the device was used (since the same device was used to measure multiple

participants activity consecutively). The acceleration signal was then normalised, by

computing the Euclidean norm of each axis reading, finally a fourth order Butterworth low

pass filter was used to remove noise. These individual sampling periods were then

combined into five second epochs – these determined the output period of the processing

described above. A non-wear period was then defined as consecutive stationary periods

lasting for 60 minutes. It is for this reason that temporary removal of the device for a very

short period would not be registered as stationary, which is discussed below. Activity

levels during non-wear periods were imputed using the average of the similar time of day

from other measurement periods. Since the present study uses fundamentally the same

script to analyse the CWA data, the processed data are equivalent, with exceptions that

will be noted. During the investigation to determine whether the AX3 accurately records

temperature, described in the following chapter, it became clear that that the algorithm

that determines whether the device is worn or not are not 100% accurate. This is because

it relies only on detecting device motion, so in effect a wear-period is detected irrespective

of whether it actually being worn, but rather whether the device is moving. In terms of

this study, issues occurred particularly at the start and end periods of the wear time. Since

the device was programmed to automatically start at the beginning of the monitoring

period, it activated whether or not it was actually being worn. Although no direct evidence

of this was available, it is likely that some participants experienced postal delays that
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prevented them from wearing the device. This would have meant the device could have

been switched on and recording temperature and activity data. If during the postal process

it was moved this would lead the device to assess such times intervals as being worn, when

in fact they were in transit. The evidence for this was that the AX3 temperature reading

would be around 20°C whilst also being registered as worn - given that heat from the wrist

is also detected from the device, readings of 20°C are rare, especially given the relatively

mild climate conditions of the UK. Therefore, as a conservative precaution, the first and

last days of each participant were removed, even if the requirement of a 90% wear-time

was satisfied. This reduced the likelihood of such errors effecting the study.

4.4 Measurement

It is helpful to review exactly what is measured by the AX3 device, and how well this

approximates the variables of interest. This section corresponds to the top portion of figure

4.1. The AX3 device records temperature with an accuracy of approximately ±1°C. One

key assumption of the analysis is that these errors are distributed at random across the

AX3 devices used in the study. Once participants are grouped by sociodemographic data,

for example, these errors cancel each other out, and the estimates produced by regression

analysis are centred around the true values. This is a reasonable assumption given that the

AX3 devices were randomly distributed to participants.

A second type of sensor error was encountered during processing of the data. When

examining the time-series of the outliers of tm10 in detail, it was found that those with very

low or very high readings (i.e. < 20°C or > 40°C) had several issues. One such issue was that

of the catastrophic sensor failure, for which the temperature sensor produced readings that

varied so widely that they could not conceivably correspond to any physical circumstances.

A second failure were brief periods where the temperature times series dropped sharply and

then recovered to the previous value – these periods likely corresponded to time periods when

the sensor was removed, but the accelerometer processing algorithm did not detect them

as such. The method for determining these exclusions was as follows. First, using the tm10

metric, the time-series of outliers (i.e. < 20°C or > 40°C) were saved to a file. Each of these

files was then inspected to understand why the particular time-series had extremal values.

The reason was noted in a separate log file which gave the participant ID number and the

particular kind of error (i.e. apparent sensor failure or brief flat lining of the temperature

time-series). The resultant participant ID numbers were then excluded from the dataset.

This process was repeated for tmin and tsd, with a total of 118 such exclusions made. The

overall impact of these exclusions was very small, and did not impact the findings of the

study. This is most likely because the outliers were randomly distributed within the data.

Given the evidence that the AX3 faithfully records the device temperature, which is
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described fully in the following chapter, it is useful to consider the impact of temperature

fluctuations in the region of the wrist which are not correlated to the overall thermal

environment of the wearer. Examples of such sources of local atypical temperature

fluctuations are clothing, circadian rhythms, incident radiation, local air movement and

water immersion. Without primary data on clothing level on the wrist, such effects are all

but impossible to quantify or account for. In the next section the temperature time-series

recorded by the AX3 are considered, with a view to determining whether any evidence of

these effects exists in the data.

4.4.1 Temperature time-series

Since there were 101,801 time–series which were successfully downsampled to 1–minute

period, it would not have been possible to inspect them all. Therefore, in order to limit

the potential for bias, consideration of specific features was not included in the method.

However, it is instructive to briefly review what the time-series tend to look like.

Figure 4.4: A sample of nine randomly selected participant temperature time-series.

Nine randomly selected temperature time-series are shown in figure 4.4. Each shows

the 5-day period included in the analysis. Quasi-periodicity is evident in all time-series with

variation evident around a 5-day period, with the exception of c, for which the signal is

noise dominated. Panels a, d and f exhibit particularly clear diurnal variation, with the

warmer periods associated with night-time. Panels a and d have distinct isolated spikes
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which may correspond to periods of bathing or showering, which is discussed more in the

chapter 5 in section 5.4. However, beyond this is impossible to determine what a particular

fluctuation corresponds to. It is therefore not possible to estimate the impact of local atypical

temperature fluctuations on the metrics. If a participant were to have more showers than

average, for example, it is likely that the AX3 would record higher temperature readings.

Following this, a higher value of tm10 would be calculated. Therefore, such fluctuations

would no longer be atypical because the participant would have indeed experienced a higher

temperature than a participant who did not take as many warm showers. A similar argument

was made regarding clothing levels in chapter 3. Further consideration of the specific features

of the time-series will be the subject of a follow up study (see section 10.2) for which more

detailed information will be collected on the activities of daily living which correspond to

particular temperature patterns.

4.5 External temperature

The external temperature for the week during which the AX3 was worn was given by

gridded NASA MEERA-2 data for daily surface temperature, averaged over the week.

Each participant’s approximate home location was matched to the corresponding grid

square and the 5-day average temperature calculated. The grid resolution in the NASA

MERRA-2 dataset is 0.625° × 0.5° which corresponds to approximately 70 × 35km, which

means around 200 grid squares cover the UK (GMAO, 2015, 2016).

Developing this measure of external temperature was not straight-forward. The home

location data that the UK Biobank uses is the Ordnance Survey National Grid (OSGB)

reference, rounded to the nearest kilometre. The NASA MERRA-2 dataset uses latitude

and longitude °values. These two co-ordinate systems are not straightforwardly convertible

because of the curvature of the Earth. Therefore, a script was written using a mixture

of available Python modules and new code to convert between each system. The two co-

ordinate systems are shown in 4.5. This allowed the home location data in the OSGB system

to be linked to the specific grid square in the NASA MERRA-2 system. For the particular

week that the AX3 was worn the external temperature was taken for the particular grid

square that their home was in. The script then used the readings for to external temperature

to calculate an average over the week. This average was then inputted into the R database

along with the other UK Biobank variables.

4.6 UK Biobank explanatory variables

In addition to the variables of temperature and activity which were derived from the AX3,

the following variables were included from the set of possible UK Biobank variables. A brief

description is given, including the exact wording of the question presented to participants
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Figure 4.5: The OS grid system (in black) and the latitude longitude grid (in blue).
Wikimedia contributor attribution: cmglee, Strebe, MansLaughter, Alexrk2 from
naturalearthdata, Pethrus and nandhp https://commons.wikimedia.org/wiki/

File:Ordnance_Survey_National_Grid.svg licence: https://creativecommons.

org/licenses/by-sa/3.0/legalcode

during data collection for each variable. Variables were recorded in three instances. The

initial assessment visit took place between 2006 and 2010. The first repeat assessment

(instance 2) was carried out between 2012 and 2013, on a much smaller subset of participants.

The most recent assessment was taken at the imaging visit. These first took place in 2014

and are still ongoing (as of July 2019). For participants who attended more than one session,

the most recent response was used in this study. The fact that some participant’s data is

more recent than others is unlikely to impact the results since no participant group’s data

is systemically more recent than others.

Following the specification of the PAP, discussion with colleagues prompted a further

review of the literature that showed was essential that three further variables be included.

First, the body mass index (BMI) is an important general measure of health. Given that

conditions associated with excess winter deaths are not solely associated with cold

exposure, including BMI controls, albeit imperfectly, for the general health of the

participant. Moreover, obesity is found to be associated with modified variation in wrist

temperature (Corbalán-Tutau et al., 2011). Second, the exclusion of time points in the

metric for experienced temperature for which the participant was active only controls for

high activity within the tm10 variable itself, as a proxy for whether the participant was likely

indoors. Given that research question 3.4 uses conditions associated with excess winter

deaths (CEWD) as its outcome variable, the activity level recorded by the AX3 needed to

be included as an explicit co-variate. Third, the variable of health satisfaction was

available for a subset of participants (the same subset as financial situation satisfaction
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and heating type). Given this is a measure of health, albeit subjective, it was determined

that its inclusion would be very useful for answering the research questions.

For the variables fuel type and heating Type participants were able to select more than

one option. For these variables, the choices were combined into composite subcategories, as

described below.

For each variable, the UK Biobank identification code is given in parenthesis, followed

by the official variable name and finally the short title, if required, in square brackets which

is used in the results section which follows this chapter. The question that participants saw

is also given, including any capitalisation that was used for emphasis.

(54) Assessment centre [centre]. During the initial stages of data collection,

participants were invited to one of 21 assessment centres located throughout Britain to

gather baseline characteristics. Recruited participants lived within 25 miles of one of these

centres at the time of recruitment Fry et al. (2017).

• Barts

• Birmingham

• Bristol

• Bury

• Cardiff

• Cheadle (revisit)

• Croydon

• Edinburgh

• Glasgow

• Hounslow

• Leeds

• Liverpool

• Manchester

• Middlesborough

• Newcastle

• Nottingham

• Oxford

• Reading

• Sheffield

• Stockport (pilot)

• Stoke

• Swansea

• Wrexham

(31) Sex. A binary coding of participant sex, acquired from the central UK Biobank

registry.

(20074, 20075) East and north rounded co-ordinate of home location at

assessment + NASA data [External temperature]. The home location, which is a

rounded to 1km resolution was combined with NASA data, as described above, to provide

the approximate average external temperature at the time of wearing the AX3.

(34, 52) Year and month of birth [Age]. These variables were combined to compute

the approximate age of each participant, accurate to a month, at the time of wearing the

AX3.

(6139) Gas or solid-fuel cooking/heating [Fuel type]. Using the touchscreen

interface, participants were asked “Do you have any of the following in your home? (You

can select more than one answer)”. The following options were available:
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• A gas hob or gas cooker

• A gas fire that you use regularly in winter time

• An open solid fuel fire that you use regularly in winter time

• A gas hob or gas cooker & a gas fire that you use regularly in winter time

• A gas hob or gas cooker & an open solid fuel fire that you use regularly in winter time

• A gas fire that you use regularly in winter time & an open solid fuel fire that you use

regularly in winter time

• A gas hob or gas cooker & a gas fire that you use regularly in winter time & an open

solid fuel fire that you use regularly in winter time

• None of the above

• Do not know

• Prefer not to answer

(6140) Heating type in home [Heating type]. Using the touchscreen interface,

participants were asked “How is your home mainly heated? (You can select more than one

answer)”. The following options were available:

• Gas central heating

• Electric storage heaters

• Oil (kerosene) central heating

• Portable gas or paraffin heaters

• Solid fuel central heating

• Open fire without central heating

• Two heating types

• Three heating types

• None of the above

• Do not know

• Prefer not to answer

(670) Type of accommodation lived in [Accommodation type]. Using the

touchscreen interface, participants were asked “What type of accommodation do you live

in?” The following options were available:

• A house or bungalow

• A flat, maisonette or apartment

• Mobile or temporary structure (i.e.

caravan)

• Sheltered accommodation

• Care home

• None of the above

• Prefer not to answer
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(680) Own or rent accommodation lived in [Tenure type]. Using the touchscreen

interface, participants were asked “Do you own or rent the accommodation that you live

in?”. The following options were available:

• Own outright (by you or someone in

your household)

• Own with a mortgage

• Rent - from local authority, local

council, housing association

• Rent - from private landlord or letting

agency

• Pay part rent and part mortgage

(shared ownership)

• Live in accommodation rent free

• None of the above

• Prefer not to answer

(738) Average total household income before tax [Household income]. Using

the touchscreen interface, participants were asked “What is the average total income before

tax received by your HOUSEHOLD?”. Using the help feature on the touchscreen gave

participants the weekly and monthly equivalents. The following options were available:

• Less than 18,000

• 18,000 to 30,999

• 31,000 to 51,999

• 52,000 to 100,000

• Greater than 100,000

• Do not know

• Prefer not to answer

During the development of the PAP it was expected that the household income levels

could have been adjusted so that, for example, a household with six occupants earning

between £18,000 and £30,999 would be assigned a lower per occupant income than the same

household earning over £100,000. However, it was later discovered that it is not possible to

do this calculation without introducing as many systematic errors as were hoped that the

procedure would solve. The two variables were therefore left separate.

(709) Number in household [Household size]. Participants responded to the

question “Including yourself, how many people are living together in your household?

(Include those who usually live in the house such as students living away from home

during term, partners in the armed forces or professions such as pilots)”. An integer

between 1 and 100 was recorded. Options for ‘Do not know’ and ‘Prefer not to answer’

were also included. In order to simplify the analysis, this integer was converted to the

following categories: 1, 2, 3 and 4+.

(6142) Current Employment status [Employment status]. The participants

were asked to select “Which of the following describes your current situation?”
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• In paid employment or self-employed

• Retired

• Looking after home and/or family

• Unable to work because of sickness or

disability

• Unemployed

• Doing unpaid or voluntary work

• Full or part-time student

• None of the above

• Prefer not to answer

(4581) Financial situation satisfaction Participants were asked “In general how

satisfied are you with your FINANCIAL SITUATION?”. The following options were

available:

• Extremely happy

• Very happy

• Moderately happy

• Moderately unhappy

• Very unhappy

• Extremely unhappy

• Do not know

• Prefer not to answer

It was expected that financial situation satisfaction could provide a proxy for how easily

participants were able to afford energy. If those who are unhappy with their financial state

were found to have lower experienced temperatures this could be indicative of heat rationing.

(21000) Ethnic background [Ethnicity]. Participants were asked to categorise

their ethnic background based on a series of sequential branching questions. This provided

granular detail which distinguished between, for example, Black Caribbean and Black

African. However, this level of granular detail was deemed unnecessary, so the responses

were grouped under the following top-level categories, which corresponds to the first of the

sequential branching questions that participants were given.

• Asian or Asian British

• Black or Black British

• Chinese

• Mixed

• Other ethnic group

• White

• Do not know

• Prefer not to answer

(4548) Health satisfaction [Health satisfaction]. Participants were asked to “In

general how satisfied are you with your HEALTH?”. The following options were available:
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• Extremely happy

• Very happy

• Moderately happy

• Moderately unhappy

• Very unhappy

• Extremely unhappy

• Do not know

• Prefer not to answer

(21001) Body mass index [BMI]. This variable was constructed from the weight

and height measurements which were recorded during the initial assessment visit. If either

of these values was missing, BMI was recorded as NA. The numerical value of the BMI was

factored into the standard brackets (Eby and Colditz, 2008) as follows:

• Underweight (BMI < 18.5)

• Normal (BMI 18.5 to < 25))

• Overweight (BMI 25.0 to < 30)

• Obese (BMI > 30))

(41280) Conditions associated with excess winter deaths (CEWD). Conditions

associated with excess winter deaths (CEWD) was given a value of 1 if a participant had

received a diagnosis of a condition associated with any of the three leading causes of excess

winter deaths. These are highlighted by the ONS (2018) report into excess winter deaths.

As has been highlighted earlier, the CEWD conditions are circulatory diseases (ICD-10 codes

I00 to I99), respiratory diseases (ICD-10 codes J00 to J99). A value of 0 was given to all

other participants. Participants with Alzheimer’s disease and dementia will be discussed

further below in section 4.8.

4.6.0.1 Mean activity level [activity].

The key aspects of the activity level variable were discussed in section 4.3.1.1. Where

it appears in the regression models, it is categorised into quintiles. The lowest recorded

5th of the average activity readings appear in the 1st quintile (percentile 0-20), quintile 2

corresponds to percentile 21 – 40, and so on. The decision was made to divide the activity

data this way to allow for the possibility of a non-linear effect as activity increases. In fact,

such an approach does not presuppose a monotonically varying relationship at all, and could

account for a U-shaped relationship between activity and experienced temperature.

4.7 Multilevel modelling

Multilevel Modelling (MLM) is a method of regression analysis which allows grouped or

clustered data to be accounted for (Diez-Roux, 2000; Finch et al., 2014). One common

use is in the education system. Typically, student’s performance is modelled and compared

while taking account of the nested group structure of students within classes, schools and

local authorities. Using standard multiple regression models in this context would result in
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the miscalculation of the errors associated with estimates. In the context of this study, the

clearest potential group structure corresponds to the regional centres that the participants

attended when the baseline sociodemographic and health data were recorded. These centres

were given in section 4.6. Using MLM allows the differences in experienced temperature as a

function of sociodemographics to be understood between the different regional centres. Had

the study design been one that made use of the time-series data without being summarised

as a metric, the MLM structure would have had individual time samples at the lowest level,

nested in individuals and then nested in regions.

4.7.1 Statistical analysis

The method for making use of MLM for this study was informed by the tutorials provided

by Bristol University’s Centre for Multilevel Modelling (Szmaragd and Leckie, 2011).

Before describing the regression equations that model the multilevel structure of the

regional UK Biobank centres, the initial tests to determine whether multilevel structure

exists are described. First, a null multilevel model is constructed. For an outcome variable

which depends on individuals labelled i nested in groups labelled j, this has the following

form

yij = β0 + u0j + eij (4.1)

In this study the outcome y is the experienced temperature, and the groups j each UK

Biobank centre. β0 is the overall mean across all groups and u0j the effect of each group.

The final term eij is the residual error of the regression.

This null model is then compared to a single level model which has no multilevel term

u0j , and has the following form,

yij = β0 + eij . (4.2)

In order to determine if there is a significant difference between these two models, the

Likelihood Ratio (LR) is calculated using the following equation:

LR = −2(ln(A)− ln(B)) (4.3)

where A and B are the likelihoods of models A and B (the multilevel and single level models

in this case). The 5% point of a chi-squared distribution on 1 d.f. is 3.841 and the 1%

point is 6.635. Therefore, a value of LR which exceeds 6.635 will provide evidence that there

is a significance difference between the two models, and therefore suggests that multilevel

structure exists in the data. Finally, in order to determine the magnitude of the variance that

can be attributed to this multilevel structure, the variance partition coefficient is calculated.
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V PC =
σ2
u0

σ2
u0 + σ2

e

(4.4)

where σ2
u0 is the variance attributed to between group differences, σ2

e is the variance

attributed to within group differences. Equation 4.4 is a ratio of the variance due to

differences between groups to the total variance. Although there is no limit as to what size

of VPC should be interpreted as meaningful, a VPC of 0.1 is typical for education studies

which analyse the impact of school level differences in attainment Szmaragd and Leckie

(2011).

4.7.2 Regression equations

In the circumstance where there is sufficient evidence for multilevel structure, the

regression equations take the form described in this section, with variables given the

subscript k according to the following list.

4.7.2.1 Variables

The following table summarises the regression variables used in the primary regression.

Variable numbers Term Description
20074 + 20075 + NASA x1 Mean external temperature (°C)
90004 + processing x14 Mean activity level (mg)
34 + 52 x2 Age in years
31 x3. Sex (binary)
738 x6 Household income (categorical)
20119 x7 Employment status (categorical)
21000 x9 Ethnic background (categorical)
21001 x13 BMI (categorical)
670 x4 Accommodation type (categorical)
680 x5 Tenure type tenure (categorical)
709 x6 Number in household (categorical)
6139 x8 Fuel type(categorical)
6140 x10 Heating type (categorical)
4581 x11 Financial situation satisfaction (categorical)
4548 x12 Heat satisfaction(categorical)

Table 4.3: The regression variables used in the primary regression. Three variables were added
to those prespecified in the PAP, and are denoted as variables x12, x13 and x14 (mean
activity over the study period). The first grouping corresponds to sociodemographic
variables, the second to housing variables and the third to additional variables which
were only available for a smaller sub-sample of participants (see 4.6)

4.7.2.2 Regression equations for Research question 1

“Does experienced temperature vary with sociodemographic and building variables [e.g. sex,

age, ethnicity, income, building type, tenure]?”

Multiple regression is the appropriate method for estimating the associations between

tm10 and other variables. Given the PAP (appendix E) required multilevel structure to be
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analysed, the regression equations require multilevel structure to be present. The following

equation allows for this structure:

tm10ij = β0 + u0j +

11∑
k=2

(βk + ukj)xkij × x1ij + eij (4.5)

where tm10ij is the experienced temperature of the ith participant in the jth regional centre.

eij denotes the error term, which quantify the offset between the estimate and the

measured value of the experienced temperature for a particular participant. The variables

run through the k index, as outlined above. The potential of an interaction between each

variable and external temperature is provided by the cross term. In practice there may be

insufficient statistical power to estimate interactions. All variables are assumed to be

linear; this assumption, as well as the others which underpin multiple regression will be

examined in chapter 9. Finally, since the number of participants in this study is very high,

the significance level for determining whether estimates are statistically significant is set at

99% (H. Kim, 2015) for all regressions in the study.

4.7.2.3 Regression equations for Research question 2

“Are there associations between experienced temperature and the health conditions related

to excess winter deaths, i.e. cardiovascular and respiratory diseases, Alzheimer’s disease and

dementia. [ICD 10 J00J99 F01, F03, G30]?”

As described above, the variable CEWD is a binomial variable which captures whether

or not a participant has been diagnosed with a condition associated with EWDs. One of

the key requirements for standard multiple regression is that the residuals are normally

distributed. A binomial outcome variable will not have normally distributed residuals, and

so a generalisation of standard multiple regression is needed. Before describing this, some

essential concepts are reviewed (Bonita et al., 2006).

The odds of an outcome are defined as the ratio of the probability of an outcome

occurring to the probability of it not occurring, or p
1−p , for an event with probability p.

For simple cases, OR is estimated from a 2 × 2 frequency table of exposure and outcome.

An example might count the number of people exposed to some level of radiation, and the

number of people who develop cancer. The odds ratio would be calculated as follows

OR =
a/c

b/d
(4.6)

a is the number people exposed to the radiation who develop cancer.

b the number who are exposed and do not develop cancer.

c the number of people not exposed who develop cancer.
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d the number who are not exposed and do not develop cancer.

For OR = 1 exposure has no effect on the odds of the outcome. OR > 1 is associated

with higher odds of the outcome, and OR < 1 are associated with lower odds of the outcome.

A closely related concept is that of the risk ratio (RR), which is defined as the ratio of the

probability of the outcome in an exposed group to the probability of the outcome in an

unexposed group.

RR =
a/(a+ b)

c/(c+ d)
(4.7)

Again, a value of RR = 1 suggests no effect on the risk of the outcome, RR > 1 is

associated with an increased risk, and RR < 1 a decreased risk. For this second research

question, the outcome variable is now CEWD , which is a binomial variable, taking the values

either 0 or 1.

As mentioned above, standard multiple regression is not appropriate for binary

outcome variables. In order to carry out a regression with such variables, a Generalised

Linear Model (GLM) (McCullagh and Nelder, 1989) is required, which allows for

non-normal error distributions. The first choice to make when producing a GLM is what

kind of error distribution for the outcome variable is appropriate. Since this research

question, and the one that follows consists of binomial outcome variables, a binomial error

distribution is appropriate.

Following this, a second choice is required. A GLM consists of three components; the

systematic component η (the co-variates given by βkxk in the equation 4.5 for example),

the random components µ (the error term e in equation 4.5) and a link function, which is

a function between the first two components η = g(µ). In standard regression the function

g is simply 1. In general, the only requirement on g is that it varies smoothly between

its extremes, so a large number of choices of link functions are available. Once the link

function is chosen, the regression is performed in a similar manner to simple least squares,

where the deviations between the regression line and the data are minimised. In certain

cases this cannot be done analytically like in simple least squares, but has to be estimated

using numerical techniques. OR is estimated using a logit link function, which is defined as

ln( µ
1−µ ) and sometimes called the log-odds. The RR is estimated using a log link function.

Once the parameters are estimated using regression, they must be exponentiated to give the

numerical values of OR and RR. Since the form of the regression equations is the same for

estimating both OR and RR, the symbol L is used to denote both the logit and log link

function below.

The regression equation for research question 2 tests associations between the variable
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CEWD and the experienced temperature y of the ith participant.

L(CEWDij
) = β0 + yij + eij (4.8)

In practical terms this is implemented in R using the glm function, which carries out

generalised linear regression. For outcomes which are rare, OR and RR take the same value,

but when the outcome is not rare (around 10% prevalence) the OR is larger than the RR

(Davies et al., 1998). Since the outcome variable CEWD is not rare in the data, the risk ratio

and odds ratio will have different values. Since RR is much easier to interpret intuitively

than OR it will be used in the remainder of this thesis. Whereas as an RR of 0.5 can be

interpreted as the risk of an outcome being cut in half, an OR of 0.5 must be interpreted as

an odds reduction of 0.5, which is not as straightforward to understand.

4.7.2.4 Regression equations for Research question 3

“Do combinations of sociodemographic factors, building factors and the health conditions

related to excess winter deaths (as above) have associations with low experienced

temperature?”

This final regression equations combines the variables used in research questions 3.4

and 3.4. The variable CEWD now takes subscripts i and j to denote the ith participant in

the jth regional centre, as above.

L(CEWDij ) = β0 + u0j + (β1 + u1j)x1ij +

10∑
k=3

(βk + ukj)xkij × x2ij + eij (4.9)

These regression equations are converted to single level regression equations by dropping the

subscript j. As with the regression equation 4.8, the parameter estimates given by equation

4.9 need to be exponentiated to give the estimates of RR.

4.8 Participant exclusion procedure

The first section of this chapter outlined the process of determining the measure of

experienced temperature. The second described the multiple regression models which are

used to understand associations between variables. In the final section which follows, the

process by which participants are included or excluded in the study is described.

The UK Biobank invited 236,519 participants to wear the AX3 wristband for one week

(Doherty et al., 2017). Of these, 103,707 successfully returned the wristband. 102,342

CWA files were successfully processed, and after downsampling to 1-minute period, 101,801

remained. Imposing a minimum wear-time of 90% (in line with Doherty et al. (2017))

reduced the number of participants to 80,046.

The next participant exclusion phase was more complex. The decision was made
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during the research design stage that participants with either conditions that cause

unusually cold hands directly, or those which disrupt circadian rhythms and therefore

impact wrist temperature, be excluded. Based on the literature review, the following

conditions were identified; Dementia and Alzheimer’s disease, anaemia, carpal tunnel

syndrome and Raynaud’s disease. There are two ways that illnesses are recorded in the UK

Biobank database, the self–reported conditions variable and the ICD-10 diagnosis variable.

It was decided that self–reporting should be the main way of determining exclusions, since

it was important that the condition be sufficiently developed that a participant be aware of

it. The exception to this rule of thumb is dementia and Alzheimer’s, which may cause

cognitive impairment. Alongside these conditions, participants who carried out night

shift-work were also excluded, since the literature review identified that the wrist

temperature of workers who regularly change their sleeping time is impacted (Jang et al.,

2017; Bracci et al., 2016; Ferreira et al., 2013). The impact of this decision is estimated in

section 6.3.2. A total of 1,487 participants were excluded on the basis of the above criteria

– the number qualifying under each condition is given in table 4.4.

Variable numbers Description Number
20002 Dementia/Alzheimer’s/cognitive impairment 2
20002 Anaemia 262
20002 Carpal tunnel syndrome 32
20002 Raynaud’s phenomenon/disease 47
3426 Night shift (always and usually) 1702
41202 Dementia (including F02 and F03) 6
41202 Alzheimers 4
41202 Raynaud’s disease 20

Total 2081
Unique Total 2072

Table 4.4: The number of participants who with the given medical condition or who carried out
night shift-work

During the course of the study 6 participants decided to no longer participate. Their

data was immediately deleted from the database. 118 participants were removed because

of data problems, as described in section 4.4. Finally, 49 participants were removed

because they had extreme average activity readings (> 0.1g), these readings were 8

standard deviations from the mean, and therefore most likely the result of sensor error.

This left 78,403 participants in the study. Not all data variables were available for each of

these participants. Since multiple linear regression requires complete cases only to be

included the number of participants in each model is less than 78,403 - the number of

missing or NA values for each explanatory variable is given in table 4.5
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Variable numbers Number of NAs
Average external temperature 0
Sex 0
Age 0
Accommodation type 30
Tenure type 119
Income 291
Employment 27
Household size 263
Fuel Type 206
Ethnic background 83
BMI 157
Average activity level 0
Health satisfaction 40,189
Financial situation satisfaction 40,189
Heating type 40,446

Table 4.5: The number missing or NA values for each variable. The horizontal line divides the
two regression models, as health satisfaction, financial situation satisfaction and heating
type had similar numbers of missing values
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Chapter 5

Results 1: Pilot Studies

...north winds which sadden the most beautiful days produce exactly the effect of

those puffs of cold air which enter a warm room through the cracks of a badly fitting

door or window.

Victor Hugo – Les Misérables (1862)

5.1 Introduction

This chapter considers the following preliminary research questions, which were first laid

out in chapter 3:

P1. Does the AX3 accurately record temperature?

P2. To what extent does it record the immediate thermal environment of the wearer while

being worn?

In order to answer these questions, a series of pilot tests were carried out. For each test,

the rationale for each test is given, and the results which were expected prior to carrying

out the test described. First, a calibration test against a HOBO room temperature monitor

is described. Second, a comparison to the approach used by Kuras et al. (2015) is outlined

and third, a ten-day trial to understand the device’s functionality in real world conditions.

Finally, subsidiary pilot studies are described.

Before describing the pilot studies, it is important to highlight the discovery of an error

in the original NU processing script. At the start of the pilot studies, three alternative

scripts existed for processing the CWA files produced by the AX3. The first of these was a

Windows program which was also created by Dan Jackson of Newcastle University, called

the OmGUI (https://github.com/digitalinteraction/openmovement/wiki/AX3-GUI).

This did not provide a way of converting the CWA into a temperature time-series. The

second script type was written in MATLAB, and the third in a mixture of Python and Java.

Investigations revealed that the output of these two scripts did not match. Following an
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extensive process to understand each part of the code of both of the scripts, it was discovered

that the calibration coefficients included in the Python/Java script did not match the of the

MATLAB script. After a series of tests, it was established that the Python/Java script

contained an error. Subsequent email exchanges with Dan Jackson of Newcastle University,

who developed the software for the AX3, confirmed that the software had been written

with the incorrect calibration, and that the author’s modification to this was correct. The

following code snippet gives the line (1) which was substituted for the correct line (2) in the

down-sampling script.

1 doubletemperature=(getUnsignedShort ( buf , 2 0 ) ∗150.0− 20500) /1000 ;

2 doubletemperature=(getUnsignedShort ( buf , 2 0 ) ∗75.0− 12800) /256 ;

The UK Biobank website published the incorrect average value of the temperature

time-series as 20.8°C, since it was calculated using the script which included the error. The

correct average temperature reading across all devices is 30.26°C. The process of determining

whether the AX3 accurately measures temperature is the topic of the next section.

5.1.1 Calibration study

In order to answer the first of the research questions described above, a calibration study

was carried out. The manufacturer’s specification indicates that the MCP9700 thermistor

used in the AX3 is typically accurate up to ±1°C under the conditions expected for this

study with a resolution of 0.3°C (Axivity, 2015). Full specifications were given in section

3.2. Under a wider range of temperature (i.e. above 40°) the inaccuracy can be as much

as ±4°C. In order to test these specifications, two unworn AX3 monitors were placed in a

small climate chamber. The temperature recorded was compared to a standard calibrated

HOBO monitor. The temperature in the chamber was varied between just above 0°C and

40°C over 16 hours, as shown in figure 5.1. This range was selected as it was deemed very

likely larger than the possible range of experienced temperatures. The expectation for this

study was that the AX3 device readings would agree with the HOBO readings to within the

accuracy set out by the manufacture’s specification.

A linear regression of the resultant temperature time-series was conducted. AX3 sensor

1 was found to accord with the temperature recorded by the HOBO device with the following

regression equation.

TAX3:1 = 0.997THOBO + 0.289 (5.1)

with R2 = 0.9998 . The second device was found to have the following relationship with the

HOBO monitor

TAX3:2 = 0.991THOBO − 0.191 (5.2)
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Figure 5.1: The temperature recorded by two AX3 sensors, along with a calibrated HOBO monitor
over 16 hours over night in a climate chamber

with R2 = 0.9994. Both devices register different off-sets from the reference HOBO device

consistent with the manufacturer’s specification. Given that such offsets are not

systematically related to the participant classes this study aims to compare, this is not a

problem (see section 4.2.1.1).

The thermal response time is a measure of how quickly a sensor responds to temperature

changes (Meyer et al., 2008). Typically these are determined under controlled laboratory

settings. Since the AX3 sensor reading is determined by ambient temperature as well as other

heat gradients, such as incident radiation, the thermal response time will vary depending

on environmental conditions. Since the time-series of the AX3 follow the HOBO device, as

shown in figure 5.1, the sensitivity to changes is sufficient for this study.

5.1.2 The impact of heat from the wrist

The next pilot test sought to quantify the impact of heat from the wrist on the readings

of the AX3. The expectation here was that the AX3 would be influenced by heat from the

wrist, but it was unclear to what extent. In order to understand this, the output of the

AX3 was compared to two other measurements. The first measured the wrist temperature

of the wearer directly by using an iButton temperature monitor directly in contact with

the wrist, and secured with medical tape. The second aimed to insulate a sensor worn at

the wrist from wrist heat to measure local ambient temperature. For this, a 4cm layer

of SpaceTherm Aerogel blanket insulation was placed over the first sensor, taking care to
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Figure 5.2: The iButton used to recreate the method of Kuras et al. (2015).

ensure that it remained wrapped in its protective packaging. On top of this, another iButton

was attached. Finally, the AX3 was worn alongside this sensor sandwich. In the following

results summary, parentheses denote the maximum and minimum temperatures recorded. In

the office environment of mean 25.4°C (24.4 –25.3), the mean AX3 temperature was 30.1°C

(30.0 – 30.2). Wrist temperature was 34.1°C (33.9 –34.2) and the insulated iButton 26.2°C

(26.0 –26.3).

The second phase of this test involved going outside into an ambient temperature of

approximately 12°C for 5 minutes. During this period the WT dropped by 1.5°C. Both

the temperature readings on AX3 and the insulated iButton dropped sharply, by 7.3°C and

7.9°C respectively. The minimum reading on the insulated iButton was 18.4°C and the on

AX3 was 22.8°C. Together, these results were taken as evidence that the AX3 is capable

of capturing changes in ambient temperature. The thermal response time of the iButton is

given as ‘up to 130 seconds’ by the manufactures. During the period in ambient conditions

of 12°C the AX3 registered a drop in temperature at the same rate as the iButton, which

suggests the thermal response time is a similar order as the iButton. It should be emphasised

that these pilot studies were conducted with an AX3 that was not covered by clothing; an

increase of around 2°C was measured when it was covered by a light sweater (it would also be

expected that the thermal response time would be longer for a device covered by clothing).

Upon returning to the office environment, both the insulated iButton and the AX3 took

around 6 minutes to return to the value recorded previously.

5.1.3 Comparison to the method of Kuras et al. (2015)

The next portion of the pilot studies sought to address the second question outlined above,

namely to understand the extent to which the temperature recorded by the AX3 reflects

the immediate thermal environment of the wearer. As the conceptual model in chapter 3

laid out, the exact definition of the ‘immediate thermal environment’ is difficult define

precisely because it depends on more than just the ambient temperature – incident
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radiation, moisture levels and wind speed are all important factors for determining heat

flow (Gagge and Nishi, 2011). However, the expectation here was that the AX3 would

respond to ambient temperature in such a way as to read lower values in cold ambient

conditions and higher values in warmer conditions. The counter-factual situation is worth

highlighting in this instance. It is perfectly plausible that human thermophysiological

responses could be so strong as to mask the impact of changing thermal environments,

that is to say, that vasodilatory responses could aim to keep the wrist temperature and its

immediate thermal environment at a constant temperature. However, there is no evidence

to suggest this is a reasonable expectation, so this portion of the pilot studies was carried

out with the expectation that the AX3 would be able to distinguish cold environments

from warm ones.

To this end, the next study compared the output of the method used by Kuras et al.

(2015), for which an iButton temperature monitor on a fob was worn on the belt (see figure

5.2), with that of the AX3. The set-up was as follows: the AX3 was worn on the wrist,

not covered by clothing. An iButton was attached to the belt-loop. Both devices were

worn by the author during an afternoon of everyday activity, initially starting out in an

office environment before spending time outside in ambient conditions around 9°C, entering

a library around 1 hour later, and then returning to the office. The relationship is shown in

5.3. Under stable ambient temperature in the office, the difference between the Axivity and

iButton methods was approximately 4°C. The relationship between the iButton and AX3

is not characterised by a simple offset, but generally they agree in form. The origin of the

differences observed are likely to be a combination of heat from the wrist which the AX3 is

sensitive to, and the smaller amount of heat from the body which the iButton device picks

up, as well as different sensitivities to incident radiation. A small transient period is visible

at the start of the AX3 time-series where the device warms up due to the proximity of the

wrist.

This study showed that the AX3 was able to detect the changes in the thermal

environment of the wearer in a way that was commensurate with the iButton.

5.1.4 A group test

A follow-up experiment was conducted for which three colleagues wore an AX3 for the

duration of a meeting. The aim of this experiment was to see if AX3 temperature readings

were different when worn by different people within the same room. The expectation was

that heterogeneity would be observed. The result of this study was that each device

recorded different temperatures (each were within 4°C of one another) which varied very

little during the course of the 1.5 hour meeting. The room had a perceptible temperature

gradient towards the window. Those who were sat closest to the window registered lower
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Figure 5.3: The experienced temperature recorded by the AX3 and iButton. The wearer left the
office at approximately 13:30 and went outside, before entering a library just after
15:00, going outside and then returning to the office just before 16:00. A transient
period at the start of the experiment is visible in the AX3 time-series.

temperatures. There was also an increase in the temperature reading on one device when

the wearer decided to roll down their sleeve over the device. However, it was not possible

to determine what exactly individual differences in the AX3 readings corresponded to.

Large temperature heterogeneity has been observed within rooms, particularly near

ceilings – (for example Kane (2013) monitored a single room with 27 different monitors

and found substantial temperature variation within the room). It was concluded that the

observed variation results from a combination of different local temperature environments

in the room as well as differences in how tightly each participant wore the AX3.

5.1.5 Ten-day trial

In order to understand how the AX3 performs under conditions of everyday use, a volunteer

consented to wear the device for 10 days. This is three days longer than the wear time

used in the UK Biobank, and double amount of time used by this study. The temperature

output of this study is shown in 5.4. Temperature peaks at night-time are visible, which

correspond to both the increase in wrist temperature while sleeping as well as the warm

micro-climate that a bed provides. Indeed, for a simple model of hygrothermal conditions in

the bed, (Pretlove et al., 2005) suggests a comfort temperature in bed of 34°C. The night–

time temperatures recorded by the AX3 are in the region of 34-36°C, each followed by an
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early morning sharp peak which corresponded to showering (according to the volunteer).

During the day time, the experienced temperature is lower than at night and occasionally

features readings lower than 20°C, which likely correspond to periods spent outside.

Figure 5.4: The results of a 10-day trial wearing the AX3. Experienced temperature readings
vary between 14°C and 38°C

Figure 5.5 show a histogram of the temperature readings for the 10-day trial period.

As with the time-series data, a distinct peak is observable at 34°C to 35°C, which

corresponds to sleeping periods. The frequency of cold exposure decreases with decreasing

temperature, away from the modal reading of 27°C. The wearer experienced a lower

frequency of low temperatures and moderate temperatures. It is important to reiterate

that these readings do not correspond to the room or environmental temperature directly,

but rather the temperature of the on-board thermistor in the AX3 device, which itself

reflects ambient conditions.

5.1.6 Light meter

It was initially hoped that the on-board light meter, which purported to measure lux

levels, would be of benefit in determining whether the wearer of the AX3 was in bright

sunlight. In order to test this, the device was worn during three conditions: bright day

time conditions, standard office lighting and in a dark room. Unfortunately neither AX3

test devices registered consistent differences between these conditions. It was therefore

concluded that the lux meter is insufficiently accurate to be used in the study.
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Figure 5.5: The frequency of different experienced temperatures. Two peaks are evident, the peak
on the right is associated with sleeping and the central peak to waking periods, most
likely spent indoors.

5.1.7 Conclusion

The answer to the research questions for this chapter are as follows. The tests showed

that the AX3 measures temperature with sufficient accuracy to justify undertaking the

research outlined in the chapter 4. No evidence was found that the AX3 operates outside

the tolerances defined by the manufacturers – an individual device measures temperature

within ± 1°C of a reference calibrated HOBO monitor.

The second research question of this chapter, regarding the extent to which it records

the immediate thermal environment of the wearer is more difficult to answer in a quantitative

manner, since a reference device is more difficult to define. However, the tests showed that

the AX3 meets the requirement that the reading reflect the ambient temperature. The

test using the sensor sandwich suggested the AX3 records a temperature around 5°C higher

than room temperature. This finding must be caveated by the fact that the AX3 was not

covered by clothing during this test. The impact of clothing on a given reading is one of the

greatest sources of uncertainty in this study. However, as was discussed in the conceptual

model given in chapter 3, a low reading on the device almost certainly corresponds to the

wearer being in a cold environment, even though the converse may not be the case. A full

program of study would be necessary to fully determine the impact of clothing on the AX3

readings, which is outside the scope of this thesis. This concludes the first results chapter.
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The next chapter explores the relationship between the summary metrics of the experienced

temperature introduced in chapter 4, and the sociodemographic factors which were collected

as a part of the UK Biobank study.
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Chapter 6

Results 2: Experienced Temperature

Lower Metrics

I’m cold when the temperatures dip below 70s

Frank Ocean – Biking (2017)

6.1 Introduction

This chapter reports the results of the investigations into the associations between the lower

metrics of experienced temperature and the building and sociodemographic factors outlined

in the method. Four metrics in total (tm10, t10, tmmin, tmmin) fall into the category of the lower

metrics, which were chosen as they are most likely to capture cold exposure. In order to

improve the clarity of the discussion, the first decile metrics (tm10, t10) are addressed first in

full. The results for the minimum (tmmin, tmin) metrics then follow. The key findings of this

chapter were published in April 2019 in the Journal of Public Health (Kennard et al., 2019).

This chapter focuses on answering the first of the core research questions of this thesis,

namely “does experienced temperature vary with sociodemographic and building variables

[e.g. sex, age, ethnicity, income, building type, tenure]?”.

6.2 Space and time

The following section considers the spatial and temporal variation of the recorded

experienced temperature. The method outlined in chapter 3 described the multi-level

modelling approach, which will be discussed in this section.

6.2.1 Geographical Variation

Understanding whether participants had different experienced temperatures in different

parts of Britain is important. It might be expected that different building quality in

different parts of the country might lead to different experienced temperatures. It is also

plausible that differences in sociodemographics between regions might account for any
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difference. The regression models used here aim to address this as far as possible with the

available variables.

Figure 6.1: The variation in tm10 across Britain. Each point corresponds to an individual
participant. It is clear that regional variation is minimal. The tm10 measurement
is seasonally adjusted, as described in the text.

6.2.1.1 Multi-level modelling

In section 4.7 of the methods chapter, the multilevel modelling approach was described as

an extension to standard multiple regression which accounts for hierarchical structuring in

the dataset. In the UK Biobank dataset, the recruitment centre provides the most natural

geographical grouping. The following subsection assesses whether there were significant
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differences accounted for by these regional centres.

The first measure of difference is the Likelihood Ratio (LR) test (equation 4.3) of the

difference between a multilevel model (i.e. one which has regional groupings) and a single

level model. This was computed for the whole dataset (N = 77,762) and had the following

value:

LR = 109 (df = 1) (6.1)

There is only 1 degree of freedom difference between the multilevel and single level model,

so at the 1% significance level 6.635 is the critical value for the chi-squared distribution.

Given that 109 is much greater than 6.635, this is good evidence that multilevel structure

exists in the data.

However, the next step requires the magnitude of these differences to be assessed. This

was calculated using the Variance Partition Coefficient (VPC) (equation 4.4).

V PC = 0.002 (6.2)

This value means that 0.2% of the variance in the data can be attributed to regional

differences. Since this value is very small, the decision was made not to use a multilevel

structure in the analysis of the data. The following results are therefore produced using

standard multiple least squares regression. The lack of regional variation in the experienced

temperature is shown in figure 6.1, which gives the value of tm10 for each participant at their

home location rounded to the nearest kilometer. The seasonal adjustment was achieved

by first subtracting the predicted tm10 value obtained from the regression against external

temperature, and then adding the mean of tm10. For t10 the values of the VPC was 0.003 and

the LR was 192, again indicating good evidence of a negligibly small multilevel effect.

6.2.2 Time of Year

Data collection using the AX3 took place between May 2013 and December 2015. The

number of participants monitored in each month of the study is show in figure 6.2, which

shows that once the study was established there was good representation of each month

during the study period.

6.2.3 External temperature

Figures 6.3 and 6.4 show the relationship between external temperature and experienced

temperature for the two metrics discussed in this chapter. Alongside a standard least squares

regression line, the locally estimated scatterplot smoothing LOESS regression is included

(Jacoby, 2000). LOESS is a generalisation of least squares regression which uses a small

region of data - known as the span - to create a local least squares regression. Adjacent

regions are then connected together to show if any non-linearities exist in the data. The
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Figure 6.2: The number of participants monitored during each month of the study.

span in the images used here was selected to equate to 1°C average external temperature,

which is approximately the accuracy of the measurement. A small deviation from linearity

is visible at high temperatures.

Finally, the number of participants monitored at each degree average external

temperature is given in figure 6.5. This histogram is equivalent to the average density of

figures 6.3 and 6.4 integrated along the vertical experienced temperature axis, and shows

that there were fewer readings available at low (< 4°C) and high (> 16°C) external

temperature.
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Figure 6.3: The relationship between external temperature and tm10. The red line is the least
squares fit of the data (β 0.08 [0.08 - 0.09], p < 2 × 10−16). The black line is the
LOESS regression (see text). Since 77,762 data points are plotted, the data are
represented as a density cloud, as given in the key.

Figure 6.4: The relationship between external temperature and t10. The red line is the least
squares fit of the data (gradient 0.12 [0.12 - 0.12], p < 2 × 10−16). The black line is
the LOESS regression (see text). 77,762 data points are again represented as a density
cloud.
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Figure 6.5: The number of participants monitored at each degree average external temperature.

6.3 Sociodemographic and housing factors

This section looks at the combined effect of external temperature and the other variables

described in the method. Since multilevel structure is not included, the regression equation

tested is simpler than that given in equation 4.5 and has the following form.

yi = β0 +

11∑
k=1

βkxki + ei (6.3)

The index j has been dropped, so that the above equation is for the experienced

temperature of the ith participant. The sociodemographic and building variables are given

by the index k.
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Explanatory variable 
(relative subcategory, N)  Sub‐category (N)  t10 tm10 
Intercept  ‐  26.00  [25.91 – 26.09] ***  27.65  [27.56 – 27.73] *** 
External temperature  ‐  0.12  [0.12 – 0.12] ***  0.08  [0.08 – 0.09] *** 
Age (40‐49, 6075)  50‐59 (21320)  0.06 [0.01 – 0.12]   0.06 [0.01 – 0.11]  

60‐69 (35407)  0.16  [0.10 – 0.22] **  0.18  [0.13 – 0.24] *** 
70‐79 (14960)  0.33  [0.26 – 0.40] ***  0.28  [0.21 – 0.34] *** 

Sex (Female, 43770)  Male (33992)  ‐0.10  [‐0.13 – ‐0.07] ***  ‐0.10  [‐0.13 – ‐0.07] *** 
Ethnic background 
(White, 75365) 

Mixed (398)  ‐0.08 [‐0.27 – 0.11]   ‐0.11 [‐0.29 – 0.07] 
Asian (654)  0.23  [0.08 – 0.38] *  0.12 [‐0.02 – 0.27] 
Black (582)  0.09 [‐0.07 – 0.25]   0.11 [‐0.04 – 0.26]  
Chinese (157)  ‐0.36 [‐0.66 – ‐0.06]  ‐0.62  [‐0.90 – ‐0.33] ** 
Other ethnic group (395)  0.00 [‐0.19 – 0.19]  ‐0.11 [‐0.29 – 0.07]  
Do not know (20)  0.02 [‐0.82 – 0.86]  ‐0.20 [‐1.00 – 0.60]  
Prefer not to answer (191)  0.06 [‐0.22 – 0.33]  ‐0.02 [‐0.28 – 0.24]  

Household Income £ 
(Less than 18,000, 
10592) 

18,000 to 30,999, (17779)  0.06 [0.01 – 0.11]   0.05 [0.01 – 0.10] 
31,000 to 51,999 (20016)  0.03 [‐0.02 – 0.07]  0.01 [‐0.04 – 0.06] 
52,000 to 100,000 (17021)  0.03 [‐0.02 – 0.09]  0.01 [‐0.04 – 0.06] 
Greater than 100,000 (4850)  0.06 [‐0.01 – 0.13]  0.00 [‐0.06 – 0.07] 
Prefer not to answer (5475)  ‐0.19 [‐0.60 – 0.23]  0.08 [0.01 – 0.14] 
Do not know (2029)  ‐0.52 [‐1.60 – 0.55]  0.15  [0.06 – 0.24] * 

Accommodation type 
(House/bungalow, 
71554) 

Flat (6058)  0.19  [0.13 – 0.24] ***  0.13  [0.07 – 0.18] ** 
Temporary (54)  ‐0.07 [‐0.59 – 0.44]  0.07 [‐0.42 – 0.55] 
None of above (83)  ‐0.05 [‐0.18 – 0.08]  ‐0.14 [‐0.54 – 0.25] 
Prefer not to answer (13)  ‐0.17 [‐0.51 – 0.17]  ‐0.36 [‐1.39 – 0.66] 

Tenure type (Own 
outright, 44537) 

Mortgage (28498)  0.06  [0.02 – 0.09] *  0.01 [‐0.02 – 0.04] 
Rent Local Authority (2096)  0.23  [0.14 – 0.32] **  0.12  [0.03 – 0.20] * 
Rent private (1497)  ‐0.03 [‐0.13 – 0.07]   ‐0.10 [‐0.20 – ‐0.00] 
Shared (174)  ‐0.01 [‐0.30 – 0.27]  ‐0.03 [‐0.31 – 0.24] 
Rent free (469)  0.16 [‐0.01 – 0.34]  0.01 [‐0.16 – 0.18] 
None of above (276)  0.09 [‐0.14 – 0.32]  0.00 [‐0.22 – 0.22] 
Prefer not to answer (215)  ‐0.14 [‐0.41 – 0.12]  ‐0.19 [‐0.45 – 0.06] 

Household size (single 
occupant, 12854) 

Two (37905)  0.11  [0.07 – 0.15] **  0.19  [0.15 – 0.23] *** 
Three (12141)  0.09  [0.04 – 0.14] **  0.14  [0.09 – 0.18] ** 
Four or more (14862)  0.07 [0.01 – 0.12]   0.10  [0.05 – 0.15] ** 

Table 6.1: The results of the regression model of the associations between the experienced
temperature summary metric and the sociodemographic and building variables. The
table gives results for using both t10 and tm10 as outcome variables. N = 77,762 after
incomplete cases were removed. Square brackets denote the 95% confidence intervals
on the model parameter estimates. Significance levels: * p < 0.01, ** p < 0.001, ***
p < 1 × 10−9.
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Explanatory variable 
(relative subcategory, N)  Sub‐category (N)  t10 tm10 
Employment status (In 
paid employment or self‐
employed, 39797)  

Retired (27472)  ‐0.05 [‐0.08 – ‐0.01]  0.03 [‐0.01 – 0.07]  
Looking after home/family (3235)  ‐0.04 [‐0.11 – 0.03]  ‐0.04 [‐0.10 – 0.03]  
Unable to work, sickness/disability (1411)  0.21 [0.11 – 0.32] **  0.10 [‐0.01 – 0.20]  
Unemployed (901)  ‐0.02 [‐0.15 – 0.11]  ‐0.09 [‐0.21 – 0.03]  
Doing unpaid or voluntary work (3759)  ‐0.07 [‐0.13 – ‐0.00]  ‐0.03 [‐0.09 – 0.03]  
Full/ part‐time student (738)  ‐0.11 [‐0.25 – 0.03]  ‐0.11 [‐0.24 – 0.02]  
None of the above (350)  ‐0.20 [‐0.40 – 0.01]  ‐0.20 [‐0.39 – ‐0.01] 
Prefer not to answer (99)  0.17 [‐0.21 – 0.55]  0.19 [‐0.17 – 0.56]  

Fuel type (Gas hob or gas 
cooker, 28957) 

Gas fire (6379)  ‐0.02 [‐0.07 – 0.03]  0.00 [‐0.05 – 0.05] 
Open solid fuel fire (2335)  ‐0.27 [‐0.35 – ‐0.19] ***  ‐0.15 [‐0.22 – ‐0.07] ** 
Gas hob & Gas fire (20188)  ‐0.02 [‐0.06 – 0.01]  0.00 [‐0.03 – 0.03] 
Gas hob & Open fire (4481)  ‐0.18 [‐0.24 – ‐0.12] **  ‐0.08 [‐0.14 – ‐0.02] * 
Gas fire & Open fire (195)  ‐0.45 [‐0.72 – ‐0.18] *  ‐0.39 [‐0.65 – ‐0.13] * 
Gas hob & Gas fire & Open fire (956)  ‐0.23 [‐0.35 – ‐0.10] **  ‐0.22 [‐0.33 – ‐0.10] ** 
None of the above (14221)  0.06 [0.02 – 0.09] *  0.06 [0.02 – 0.10] * 
Prefer not to answer (37)  0.50 [‐0.14 – 1.13]  0.40 [‐0.21 – 1.00] 
Do not know (13)  ‐0.47 [‐1.52 – 0.57]  ‐0.72 [‐1.71 – 0.28] 

Body Mass Index 
(Normal, 30562 ) 

Underweight (477)  ‐0.11 [‐0.28 – 0.06]  ‐0.17 [‐0.33 – ‐0.00] 
Overweight (45722)  0.15 [0.12 – 0.18] ***  0.05  [0.02 – 0.08] ** 
Obese (1001)  0.19 [0.07 – 0.31] *  ‐0.17  [‐0.28 – ‐0.05] * 

Activity level quintile (1st 
quintile, 15463 ) 

2nd quintile (15567)  ‐0.40 [‐0.44 – ‐0.36] ***  ‐0.07  [‐0.11 – ‐0.03] * 
3rd quintile (15567)  ‐0.69 [‐0.73 – ‐0.64] ***  ‐0.16  [‐0.20 – ‐0.11] *** 
4th quintile  (15578)  ‐0.97 [‐1.01 – ‐0.92] ***  ‐0.26  [‐0.30 – ‐0.22] *** 
5th quintile (15587)  ‐1.44 [‐1.48 – ‐1.39] ***  ‐0.45  [‐0.50 – ‐0.41] *** 

Table 6.2: The continuation of table 6.1.

Explanatory variable 
(relative subcategory, N)  Sub‐category (N)  t10 tm10 
Financial situation 
satisfaction (Extremely 
happy, 3808) 

Very happy (14498)  0.02 [‐0.05 – 0.09]  0.01 [‐0.06 – 0.08] 
Moderately happy (15732)  0.01 [‐0.06 – 0.09]  0.00 [‐0.07 – 0.06] 
Moderately unhappy (2473)  0.05 [‐0.05 – 0.16]  0.01 [‐0.09 – 0.11] 
Very unhappy (737)  0.20 [0.04 – 0.36]   0.13 [‐0.03 – 0.28] 
Extremely unhappy (369)  0.10 [‐0.11 – 0.31]  0.03 [‐0.17 – 0.24] 
Prefer not to answer (57)  0.03 [‐0.47 – 0.54]  ‐0.26 [‐0.74 – 0.22] 
Do not know (56)  0.20 [‐0.31 – 0.71]  0.08 [‐0.41 – 0.56] 

Health satisfaction 
(Extremely happy, 2230) 

Very happy (13771)  0.06 [‐0.03 – 0.15]  0.01 [‐0.07 – 0.09] 
Moderately happy (17767)  0.14 [0.05 – 0.22] *  0.03 [‐0.05 – 0.11] 
Moderately unhappy (2955)  0.20 [0.09 – 0.31] **  0.05 [‐0.06 – 0.15] 
Very unhappy (661)  0.27 [0.10 – 0.45] *  0.07 [‐0.09 – 0.24]  
Extremely unhappy (249)  0.36 [0.09 – 0.62] *  0.14 [‐0.11 – 0.39] 
Prefer not to answer (10)  ‐0.39 [‐1.59 – 0.80]   ‐0.21 [‐1.35 – 0.93] 
Do not know (87)  0.20 [‐0.22 – 0.61]   0.14 [‐0.26 – 0.53] 

Heating type (Gas 
central heating, 34999) 

Electric storage heaters (798)  0.06 [‐0.08 – 0.20]   0.10 [‐0.03 – 0.24] 
Oil (kerosene) central heating (979)  ‐0.14 [‐0.27 – ‐0.01]  ‐0.06 [‐0.19 – 0.06] 
Portable gas or paraffin heaters (10)  ‐0.05 [‐1.24 – 1.14]   0.12 [‐1.01 – 1.26] 
Solid fuel central heating (128)  ‐0.43 [‐0.76 – ‐0.09]  ‐0.14 [‐0.46 – 0.19] 
Open fire without central heating (109)  ‐0.18 [‐0.54 – 0.19]  ‐0.23 [‐0.58 – 0.12] 
Three heating types (5)  0.49 [‐1.19 – 2.17]  0.15 [‐1.45 – 1.75] 
None of the above (676)  ‐0.07 [‐0.22 – 0.08]  ‐0.07 [‐0.21 – 0.08] 
Prefer not to answer (15)  0.78 [‐0.33 – 1.88]  0.70 [‐0.35 – 1.75] 
Do not know (11)  ‐0.37 [‐1.52 – 0.78]  ‐0.55 [‐1.65 – 0.55] 

Table 6.3: The results of the extended regression model, including all variables given in tables 6.1
and 6.2 but with financial situation satisfaction, heating type and health satisfaction
added. The table gives results for using both t10 and tm10 as outcome variables. N
= 37,730 after incomplete cases removed. Square brackets denote the 95% confidence
intervals on the model parameter estimates. Significance levels: * p < 0.01, ** p <
0.001, *** p < 1 × 10−9.
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Broadly speaking, tm10 is designed to quantify differences in cold exposure for sedentary

or low activity periods of the participant’s daily life. These will most likely correspond to

times when the participant was indoors, although not exclusively. t10 on the other hand uses

all activity levels in the calculation of the metric, so will capture cold exposure in general.

All the results are given in tables 6.1 and 6.2, but for clarity each variable will be addressed

individually. The model revealed a number of significant differences of at least 0.1°C at the

< 1% significance level for both tm10 and t10.

Mean external temperature. For the relationship between external temperature

and tm10, and external temperature and t10, figures 6.3 and 6.4 show regression gradients 0.08

and 0.12 respectively. After the other explanatory variables were included the relationships

do not change. This suggests these gradients are robust since they are not influenced by the

inclusion of other variables. These estimates can be compared to one given by Chambers

and Oreszczyn (2019), who estimated the gradient of the average change in internal domestic

temperature with external temperature in the UK to be 0.17.

Age. Relative to those aged 40-49, tm10 was found to be 0.16°C higher for those aged

60-69 and 0.33°C higher for those aged 70-79. A similar result is found for t10, which found

increases of 0.18°C and 0.28°C respectively.

Sex For both tm10 and t10, male participants were 0.10°C colder than female participants

Ethnic background. For tm10, the only significant difference relative to those who

identified their ethnic background as White was for those who identified as Chinese - tm10

was found to be 0.62°C colder. A single significant difference was found for t10 – Asian

participants (excluding Chinese) were 0.23°C warmer than White participants.

Household income. No significant results were found as a function of income level,

with the exception of those who reported not knowing their household income. The

differences relative to those earning less than £18,000 for this category were 0.13°C and

0.14°C for tm10 and t10 respectively.

Accommodation type and tenure type. For accommodation type, only

participants who lived in flats had significantly different tm10 and t10, at 0.13°C and 0.19°C

warmer respectively. For tenure type, those living in accommodation rented from the Local

Authority had tm10 0.12°C warmer than those who owned their home outright and for tm10

the difference was 0.19°C.

Household size. Almost all categories of household size differed significantly from

the reference single occupant household. The greatest effect was for two person households,

for whom tm10 and t10 were 0.19°C and 0.11°C higher, respectively, than those who lived

alone. The differences from single person occupancy became less large as the number in the

household increased after this initial level.

Employment status. Those who were unable to work due to sickness or disability
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were the only participant type found to be significantly different from those in paid or

self–employment. The difference for t10 was 0.21°C. For tm10 no significant difference was

observed.

Fuel type. The key significant difference between the reference category of those who

only had a gas fire or gas cooker was the presence of an open solid fuel fire. All sub-categories

that included an open solid fuel fire were significantly colder in terms of tm10 and t10.

Body Mass Index. Compared to normal BMI participants, overweight and obese

participants had higher t10 by 0.15°C and 0.19°C respectively. For tm10 there was a very

small but significant difference for overweight participants of 0.05°C. Interestingly, the effect

direction reversed for obese participants, whose tm10 was found to be 0.17°C colder than those

of normal BMI.

Mean Activity. Higher activity levels were consistently associated with lower tm10 and

t10. This was the only variable for which all subcategories were significantly different from

the reference.

Additional variables. For the variables of financial situation satisfaction and heating

type there were no significant differences for tm10 or t10. However, for health satisfaction t10

increased monotonically as a health satisfaction decreased. It is notable that this difference

was found even when the effect of activity level was controlled for. The fact that this

difference was not observed for tm10 may indicate that those with lower health satisfaction

are exposed to less cold temperatures when not sedentary.

In the PAP, the possibility of testing for interactions between explanatory variables was

included. It was decided that including these in the models reported here would result in

too great a level of complexity, so they are not explicitly considered further.

6.3.1 Statistical checks

The method of multiple regression used in this section relies on the use of the Ordinary Least

Squares (OLS) method of fitting a line to data. For a given variable, the process estimates the

gradient and intercept of a linear relationship between explanatory and outcome variables

by minimising the sum of the square deviations between the data and the line. The use of

OLS depends upon several requirements about the data that should be met in order for it

to be applied. The following section examines these assumptions in turn, and determines

the extent to which the statistical approach used here is mathematically justified given the

data.

6.3.1.1 Linearity

The first requirement for linear regression is that all continuous variables, in the case of the

model above that is external temperature, have a monotonic relationship with the outcome

variable. This means that any complex relationship, such as a U-shaped or S-shaped form,
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should not be fitted with linear regression. Graphical confirmation that the relationship

between external temperature and both tm10 and t10 conforms to this requirement is given in

figures 6.3 and 6.4.

6.3.1.2 Residuals

The second requirement is that the residuals – the difference between the predicted and

actual values of the regression – are normally distributed. Again, this can be confirmed

visually, as is done in figure 6.6.

Figure 6.6: The residuals for the above fit of tm10. They are normally distributed. The standard
deviation of the residuals 1.83°C

6.3.1.3 Multicollinearity

If explanatory variables in a multiple regression are correlated, the parameter estimates

might be incorrect. In order to check for multicollinearity, the Variance Inflation Factor

(VIF) is calculated. Values for the VIF of each variable of the model using tm10 are given in

table 6.4. The table also includes the VIF adjusted for the degrees of freedom (df) of the

variables (Fox and Monette, 1992). The critical value at which multiple collinearity is likely

a problem is 10. Since all values in table 6.4 are much smaller than 10, multicollinearity is

not a problem for this model.

6.3.1.4 Regression dilution

Another important requirement for the correct application of OLS is that the explanatory

variables should be measured without error. If this condition is not met, the result is
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Variable VIF df V IF 1/(2df)

External temperature 1.0 1 1.0
Age 2.0 1 1.4
Sex 1.1 1 1.0
Accommodation 1.3 4 1.0
Tenure 1.8 7 1.0
Income 1.5 6 1.0
Household size 1.3 1 1.2
Employment 2.0 8 1.0
Fuel type 1.1 9 1.0
Ethnicity 1.1 7 1.0
BMI 1.1 3 1.0
Activity level 1.2 4 1.0
Heat 2.0 9 1.0
Financial situation satisfaction 1.0 7 1.0
Health satisfaction s 1.4 7 1.0

.

Table 6.4: Variance inflation factor (VIF) and VIF adjusted for degrees of freedom (df) to 1 d.p
for the model for tm10

a systematic bias of the estimated gradient towards zero, known as attenuation bias or

regression dilution (Kennard et al., 2018). In multiple regression models, this can result in

the remaining variance being shifted onto the other variables, so that the effects estimates

of those variables are over-estimated. It is therefore important to check whether this is

likely to impact the results described in this section. This is carried out by estimating the

ratio of the error on the explanatory and outcome variable. In situations where the error

on the explanatory variable approaches that of the outcome variable, regression dilution

can start to have an impact, although determining specific thresholds is a matter of some

discussion in the literature (Berglund, 2012; Hutcheon et al., 2010). However, as the following

argument demonstrates, making a specific calculation is unnecessary in this instance. For

external temperature, the error can be separated into two separate terms. First, there is

the random error associated with whether the NASA MERRA-2 data accurately captures

the average external temperature for a given week at a given location. Simple estimates

of the error associated with NASA MERRA-2 temperature measurements are not common.

However, one study of sea surface temperatures, which are affected by moisture levels and

therefore subject to error, reports error estimates. For these challenging conditions, the

difference between satellite temperature measurements, from which NASA MERRA-2 is

derived, and in-situ temperature measurements have an average error of around ±0.5°C.

Land measurement temperature errors are likely to be less than this. The error on an

individual AX3 wristband is certainly greater than this value (±1°C), and so the respective

ratio is probably not large enough to cause a problem in this case. The second kind of

error is harder to quantify, and corresponds to the ambiguity in defining the variable of

interest – this is the same question as asking if at the time of measurement was a particular
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participant’s local external temperature well described by the NASA MERRA-2 reading.

For example, given that the external temperature reading was derived from the participant’s

home location, there is a chance they were not in the same location as their home for some

portion of the study week. It is possible, for example, that they collected the AX3 device at

their home in Scotland, left for France, and then returned before the study week was over.

The external temperature difference between these two locations would lead to a significant

systematic error in the external temperature reading. This problem is extremely hard to

quantify exactly, but it is very unlikely that a significant proportion of the participants were

not in the vicinity of their home for the study period. The fact that the device was sent to

the participant’s home goes some way to guarding against issues in this regard, though it is

certainly the case the validity of this variable relies on the assumption that the participant’s

external temperature is sufficiently well described by the NASA MERRA-2 data.

6.3.2 Robustness

6.3.2.1 Excluded participants with particular conditions

In the method chapter 4.8, the exclusion criteria for participants with particular conditions

was outlined. As part of this, it was decided that self-reported conditions associated with

particularly cold hands should be excluded. In order to understand the impact of this

decision, a robustness check using anaemia was carried out. The various conditions of

anaemia were chosen because they had the largest disparity between self-reported and health

practitioner diagnosed rates. This involved excluding the additional participants who had

ICD-10 codes associated with anaemia. Over 2,000 such participants were excluded, in

addition to those already removed. This had almost no impact on the results. Where effect

estimates differed it was by no more than 0.02°C, and all were within the confidence intervals

of the original dataset which only used self–described exclusions. A complete analysis of the

impacts of night-shift work on experienced temperature is one potential avenue for future

work, described in section 10.2, but is outside the scope of this study.

6.3.3 First decile

The calculations of the experienced temperature metrics discussed here make use of midpoint

interpolation to calculate the first decile in the event that it lies between two values (see

appendix C.2 for the code). However, it is also possible to use linear interpolation in this

function. Midpoint interpolation takes the mean of two adjacent points, whereas linear

interpolation incorporates the gradient of the line between the two points to determine the

intermediate value. The difference between linear and midpoint interpolation in the decile

computation algorithm was found to account for at most a difference of ±0.01°C within a

particular time-series – the final impact of the regression estimates is therefore smaller than

this, and is not observed in their estimation. While this difference is small, it is important
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to note that computational techniques necessarily involve approximation.

6.3.3.1 The median level of activity

The final portion of this section examines the robustness of the methodological choice of

using a participant’s median activity level as a cut off to divide high activity periods from

low activity or sedentary periods. The simplest method of assessing this was to re-run

the analysis using different criteria. The most obvious alternative is to use a hard cut-off

which is defined for the population in general and not one that varies from person to person.

Determining what this cut-off should be challenging. The literature suggests that the cut-off

for Moderate to Vigorous Physical Activity (MPVA) is a recording of 100mg on an activity

wrist band (Menai et al., 2017). Specifically, in order to be classified as MPVA the authors

used a method for which “mean acceleration in the 5s-epoch... needed to be at or above

100mg. To remove signals related to random wrist movement, we only retained activities

lasting at least 1 minute for which 80% of the activity satisfied the 100mg threshold criteria.”

Given the downsampled AX3 data used in this study has a 60-second period, a requirement

of 100mg across the entire minute would be stricter than the method used by Menai et

al. to classify a 60-second period as MPVA. The lowest average activity level that could

be considered MPVA using the Menai et al. method can be calculated by considering the

slightly artificial scenario in which activity of 100mg is measured for 80% of the 5-second

readings in a minute (10 epochs), and zero otherwise. This would be equal to 83.3mg on

average. This threshold of 83.3mg per 60-second period would still tend to include some

periods of mild activity. Therefore, a lower threshold of 10mg was chosen as an average

over the 60-second period to ensure that periods of MPVA were more likely to be excluded,

so that the time periods remaining in the metric would almost certainly be low-activity

periods. This limit was denoted as tf10. As a check, another fixed threshold of 100mg for

the 60-second period was also assessed, and given then name tq10.

Since the motivating questions of this thesis are around energy use in buildings

specifically, it is worth reiterating that the goal of the method of excluding activity above

the median was to ensure that temperature time periods included in the metric

corresponded to times of low activity, and therefore periods for which the participant was

more likely than not to be indoors. The 10mg limit was designed to be stricter to exclude

high activity behaviour, as opposed to a method which would delineate the boundary

between low and moderate activity. This is doubly important since the converse of the

above argument does not hold – it is not true to say that high levels of activity necessarily

mean an occupant is likely outside, even though it is probably more often the case, all

other things being equal.

In order to test if these thresholds produced different results to those screened by the
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median individual activity levels, the whole dataset was reprocessed, and the regressions

described above carried out with both tf10 and tq10.

The results showed that the tf10 metric produced very similar regression estimates as tm10.

The root mean squared difference between the effect estimates for the tm10 and tf10 regressions

was 0.04°C, with a mean difference of -0.01°C. All explanatory variables which were found

to be significant for tm10 were also significant for tf10. Two further variables for tf10 showed

statistical significance below the p < 0.01 level. Namely, participants who identified their

ethnic background as Black had tf10 of 0.2°C higher than White participants (p < 0.01),

(cf. an insignificant difference of 0.12°C for tm10 for the same variable). Those who had a

mortgage were found to be significantly warmer by 0.04°C than those who owned their own

home (p < 0.01) for tf10. The same effect estimate was found for tm10 but the difference

was not significant. Performing an OLS regression of the effect estimates for tm10 against

tf10 found a relationship of gradient β = 0.98 and intercept α = 0.0001 with an R2 = 0.96.

Taken together this suggests a very similar outcome using the median activity level at the

individual level versus a general threshold of 10mg to examine temperature time periods in

which the participant is most likely to be sedentary.

For tq10 the outcome is much closer to the t10 metric, as might be expected, since fewer

periods qualify for exclusion under this less strict threshold and the temperature time-series

is closer to the unfiltered case. All but two variables which were found to have significant

differences for t10 are significant for tq10. The exceptions are that those who identify their

ethnic background as Asian are found to be significantly warmer than those who identify

as White. Similarly, those who live rent free are also not found to be significantly warmer

to those who own their own home. An OLS fit between the regression estimates found a

relationship with R2 = 0.97, gradient β = 0.90 and intercept α = 0.001. The root mean

squared difference between the coefficients was 0.04°C and the mean difference was 0.01°C.

The full list of regression coefficients is given in appendix B. The heterogeneity of the kinds

of results described in the previous two paragraphs makes summarising them difficult, but

the overall picture is that tf10 and tm10 are very similar to each other, and tq10 and t10 are also

similar.

Direct comparison between the effect sizes for tm10 and t10 is not meaningful since they

aim to describe different phenomena (however the standardised effect sizes are compared in

figure 6.10). t10 aims to capture general cold exposure, tm10 aims to capture cold exposure

which occurs indoors. There are a number of counter examples that can be considered

which test the validity of these assumptions, such as times sitting waiting for a bus. In these

situations however it is more likely that a participant is wearing a higher level of clothing

than when indoors. If certain groups of people were systematically spending a lot of time

outdoors, poorly dressed, and at a sedentary level of activity it is expected that such groups
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would be shown to have significantly different experienced temperatures than the reference

group using tm10 – in this specific and somewhat artificial example it would be beneficial that

the model identified these groups as being different. The converse situation, in which people

are sedentary outdoors during the warmer summer months is more likely, but for these times

there is much less chance of cold exposure occurring. Considerations such as these will be

examined further in chapter 9.

6.4 Exploring the first decile

The relationship between tm10 and the unfiltered metric t10 has not yet been considered

in detail. This section examines the relationship between them with a view to justifying

alternatives. The relationship between them is given in figure 6.7. The figure shows that the

majority of participants which lie along the X = Y line have low activity. Equivalently, the

majority of the lighter coloured points, which correspond to the participants that recorded

the highest activity during the study week, appear below the X = Y line. In general, the

points appearing below the line indicate that having a higher activity level is associated with

a lower t10 for a given value of tm10. Given that the average temperature inside UK homes

is warmer than the outside for all but the hottest summer days, it can be concluded that

the decision to remove higher activity periods does reflect times when the participant was

in a warmer environment, which is most likely to correspond to indoor environments. As

a comparison, plotting figure 6.7 coloured by external temperature quintile reveals no such

pattern.

In assessing whether an improvement upon the tm10 and t10 metrics can be made, it is

helpful to consider their shortcomings. Firstly, it can be noted that the choice of the 10th

percentile was arbitrary. On the one hand, it was chosen as a compromise between the

minimum, which was expected to be prone to outliers in the time-series (see section 6.5),

and the mean, which was expected to be dominated by warm periods in bed that would

not be able to characterise cold exposure. In these regards the tenth percentile functions

well. On the other hand, there is no reason why any other lower percentile value would not

have functioned as well the tenth. Therefore, it is helpful to consider whether alternative

metrics may perform the role of characterising cold exposure effectively without the issue of

arbitrariness being present.

6.5 Standardised effect size and the minimum

experienced temperature

In this section the results are expanded to include minimum experienced temperature

metrics. A plot of the relationship between tmin and t10 is given in figure 6.8. The two
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Figure 6.7: Comparing t10 with tm10. Each data point is coloured by the activity level quintile.
The X = Y line is given.

Figure 6.8: The relationship between tmin and t10. The red line is the least squares fit of the data
tmin = 1.21t10 − 11.62, R2 = 0.56. The data points are represented as a density cloud
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metrics are highly correlated, with R2 = 0.56. Before examining the regression results for

the minimum experienced temperature (tmin and tmmin), it is instructive to consider

standardised effect sizes, which will allow a means of comparing the first decile and

minimum metrics. It is common to estimate the standardised effect size when reporting the

results of quantitative studies. Broadly, there are two classes of standardised effect size.

Firstly, the r class includes measures of correlation such as r2 and Pearson’s r. The second

class d comprises measures such of standardised difference, such as Cohen’s d, Hedge’s g,

or Glass’s ∆. The latter type is typically calculated by normalising effect estimates by the

standard deviation. Baguley (2009) points out that simple, unstandardised effect size is

often preferable, because the standardisation procedure may be biased by restricted

sampling practices, wherein the standard deviation is artificially reduced and the

standardised effect size over-estimated. For example, this would occur if outliers were

systematically removed from one group and not another. However, given this does not

occur in this study, standardisation is a robust means of comparing the metrics used here.

The approach adopted here is to standardise the metrics prior to their inclusion in the

regression model. This is mathematically equivalent to calculating Cohen’s d (defined as

the difference between group means divided by the population standard deviation (Rosnow

and Rosenthal, 2003)). As a rule of thumb, Sawilowsky (2009) gives the following levels of

interpretation of Cohen’s d; d = 0.01 =⇒ very small, d = 0.2 =⇒ small, d = 0.5 =⇒

medium, d = 0.8 =⇒ large, d = 1.2 =⇒ very large, and d = 2.0 =⇒ huge. It is

important to stress that these rules of thumb do not define universal equivalence scales -

even Cohen himself warned against the blind use of such rules of thumb with respect to

the interpretation of d (Cohen, 1988). Much like the choice of p-value provides a means of

distinguishing significant from insignificant effects, setting a threshold of standardised effect

size, for example d = 0.1, gives a way of focusing only on the effects which are large enough

to warrant particular attention. Again, there is no a priori reason why d = 0.1 should be

chosen, but since no other work has been conducted on the relevant effect size of differences

in large sample experienced temperature studies, this threshold provides structure.

With these restrictions on interpretation in mind, the lower panel of figure 6.10 gives

the effect sizes, denoted d(x), for the significant results (p< 0.01%) for tm10 and t10 metrics.

The upper portion of the figure gives the comparison standardised effect size values of tmmin

and tmin . For completeness, the numerical values findings of using tmin and tmmin are given

in the appendix in tables B.1, B.2 and B.3. The findings for the subcategories which are

significantly different to the reference category for this metric are similar to that of t10 and

tm10. Unsurprisingly, tmin and tmmin are found to increase with average external temperature

with comparable effect sizes as for t10 and tm10.

In general, figure 6.10 shows that standardised effect sizes for the significant results in t10
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Metric Summer-winter standardised effect size Effect size interpretation
tmin 0.96 large
tmmin 0.72 medium
t10 0.72 medium
tm10 0.48 medium

.

Table 6.5: The estimates for the summer-winter effect size difference of average external
temperature

are larger than tm10. This is likely reflective of the observation that domestic temperatures

are generally warmer than external temperatures in the UK, so that sedentary periods,

which the tm10 aims to capture, necessarily involved less cold exposure than times where the

participant is active.

The effect size for average external temperature per degree is very small for all of the

lower metrics, but given a typical 12°C variation in external temperature between summer

and winter in the UK, the overall effect size is larger for the summer-winter difference taken

together. The overall summer-winter standardised effect size estimates for the impact of

average external temperature is given in table 6.5.

Figure 6.9: The distribution of UK Biobank homes with and without a solid fuel open fire in the
North East of England, in the areas near Newcastle and Sunderland. It is evident
that those homes with solid fuel open fire are more likely to be located outside the
urban areas

There is a consistent effect that living in a house with an open solid fuel fire, whether

coupled with other gas heating or cooking appliances, is associated with colder tm10, t10,
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tmin and tmmin. Several explanations for this are plausible. Open fires tend to heat a much

more local area of the home than central heating, so participants may be exposed to lower

temperatures in rooms of the house which are not near the open fire. Moreover, homes

with open fires tend to be located in more rural areas. This is demonstrated in figure 6.9.

Participants living in more rural environments might be exposed to colder temperatures than

their more urban counterparts due to an absence of the urban heat island effect, especially

if living in older housing stock which is often harder to heat than more modern buildings

(Palmer and Cooper, 2013). This possibility would require further in-depth research (see

10.2). The use of the external temperature variable would not be able to account for this

difference, since the spatial resolution is unable capture the differences between rural and

urban locations.

In terms of ethnic background, the standardised effect estimates across the four lower

experienced temperature metrics are inconsistent. The effect that participants of Chinese

ethnic background have tm10 effect size of -0.35 relative to participants with a White ethnic

background is not significant in other metrics. This may be due to the relatively small

sample size for those who identify as having a Chinese ethnic background (n=157). One

anecdotal explanation of the effect, if it is a real one, given by colleagues at the UCL Energy

Institute is that the use of electric blankets for personal heating while sedentary, which is

common in China, might account for the difference. Since the AX3 is worn on the wrist, it

would measure ambient air temperature as lower for periods of time where it was not covered

by the blanket than in homes that made more use of central heating systems which heat air

to provide comfort. Again, such a speculation would require in-depth work to assess. Asian

participants (excluding Chinese) have higher tmin, tmmin and t10 than White participants.

Again, the sample size is relatively small (n=654). tmin shows significantly higher readings

for participants whose ethnic background is Black (n=582). Again, even though significant

results are found, they should be treated with a degree of caution as they are difficult to

justify theoretically, but could be used as a basis for further investigation.

A similar effect as a function of age is shown for the minimum metrics as to the first

decile metrics. Minimum temperatures increase with age, and there is again almost no

difference between the unfiltered and median filtered metrics. Like with t10, this likely

reflects the uniformity of the thermal experience as a function of whether the participant

was active or not and probably that older people spend less time outdoors.

Household size shows consistent but very small differences across the lower

experienced temperature metrics. Compared to those living alone, households of size two

show consistently warmer experienced temperatures. This is difficult to account for. It

could be that homes with multiple occupants have longer heating periods on average

because they have to cater to more than one thermal comfort preference. This could
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reduce the amount of cold periods that the occupant living in a multi-occupant home

would be exposed to.

For the sex variable, there is a small effect size difference. Males have a lower minimum

temperature than females. This is consistent with the findings for both t10 and tm10 discussed

above.

Unlike the first decile metrics, a clear income effect is evident for the minimum

temperature. Both tmin and tmmin decrease with income level. Those who live in

households earning more than £100,000 per year, have tmin -0.46 [-0.57 - -0.35]°C and tmmin

of -0.21 [-0.31 - -0.11]°C, relative to those living in household earning less than £18,000 per

year. As figure 6.10 shows these differences correspond to standardised effect sizes of -0.14

and -0.07 respectively. Intermediate income levels follow this trend. This finding will be

discussed more in the following chapter that considers the diversity of temperatures

experienced using the thermal variety metric.

There is evidence that those who live in Local Authority rented accommodation have

higher minimum experienced temperatures than those who own their homes outright, but the

difference is not significant for tmmin. This accords with the picture presented by t10, although

a significant difference was also found using tm10. There are no significant differences for those

who live in flats for the minimum temperature metrics.

Body Mass Index results for overweight participants are consistent across the four

metrics, each show a slightly increased experienced temperature relative to normal BMI

participants. The picture is less clear for the obese participants. While tmin and t10 are

significantly higher for obese participants compared to those with normal BMI, the

findings for tmmin and tm10 are not consistent. The effect for tmmin is still that obese

participants have higher minimum experienced temperature, but the finding is not

significant (p = 0.02).

The findings for recorded activity level are consistent with expectations. Minimum and

first decile experienced temperatures reduce monotonically with increased activity levels.

This result is also seen for tm10 and t10.

From the additional variables which were only available for a smaller subset of the data,

the clearest findings are for tmin and t10. Both metrics show experienced temperatures

increases with health dissatisfaction. These results are not significant for tm10, but for tmmin

there is a similar but smaller effect which is consistent with tmin and t10. Overall it is

possible to conclude that participants who are more satisfied with their health experience

colder temperatures than those who are more dissatisfied. These findings generally accord

with the only significant variable as a function of employment status. This finds that those

who are unable to work due to sickness of disability are have higher tmin, tmmin and t10

experienced temperatures.
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Figure 6.10: Effect size estimates for tmin, tmmin, t10 and tm10, for significant subcategories only.
The 95% confidence intervals are denoted by error bars. N=77,762 for all variables
other than health and heating, for which N=37,730.
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The findings given here suggest the minimum experienced temperature to be a useful

compliment to the first decile metric. Generally, but with some noted exceptions, the two

pictures agree. The meaning of these findings will be discussed in depth in chapter 9.

6.6 Alternative metrics

It is useful to consider the distribution of the metrics in general in order to contextualise

the above findings. Figure 6.11b gives the distribution of the values of each of the metrics,

with the addition of the first quartile tm25, and its equivalent for the unfiltered time-series,

t25. The figure makes clear that the variance in the metrics which use the minimum value

is greatest, and the mean shows least variation. The minimum values are generally much

further away from the first decile, first quartile and mean measurements than they are from

each other. A minimum value reflects a brief sampling of the lowest experienced temperature,

whereas the metrics of the first decile and first quartile function as a compromise between

the minimum and mean values. However, while it is true to say that for an individual

participant the minimum is prone to outliers, this is not true when use the minimum in a

regression model. For a regression model, each regression group estimate effectively averages

over the individuals in the group. Therefore, if one or even several of the individual minimum

readings are themselves outliers, a group estimate in a regression will not be as prone to

being affected by outlying values.

Although they are not reflective of cold exposure, the metrics from the upper portion

of the distribution are also important (see table B.1). The 3rd quartile, t75 and maximum

reading tmax, are most likely associated with bathing/showering and the warm

micro-climate of the bed, since neither internal, external nor wrist temperatures are

associated with temperatures around 37°C (cf. Pretlove et al. (2005)). If it is indeed the

case that the temperatures experienced during the micro-climate of the bed exhibits less

variation in the population than everyday temperatures, then measures of range or

standard deviation in experienced temperature would characterise cold exposure, more

than heat exposure, in the UK. Put another way, a large standard deviation measured on

the AX3 is more likely to reflect a participant experiencing cold than heat, with the

exception of frequent use of saunas or other unusually warm practices. It is this

observation that suggests the standard deviation may be a possible characterisation of cold

exposure for climates such as the UK. Moreover, such a measure does not suffer from the

problem of arbitrariness that affects the first decile metric. The next chapter explores the

metric tsd, named here the thermal variety, to determine the extent to which this assertion

is supported. However, before moving to the next chapter, the mean experienced

temperature is considered.
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(a) The density distribution of all metrics: tmmin, tm10, tm25 and tmµ .

(b) The density distribution of all metrics: tmin, t10, t25 and tµ.

Figure 6.11: The density distributions of all metrics. The values of the metrics for which activity
above the median level is excluded (superscript m) are warmer than those which are
not filtered in such a manner.
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(a) The relationship between external temperature and tµ. The least squares fit of the
data has gradient 0.05[0.05 – 0.05], p < 2 × 10−16).

(b) The relationship between external temperature and tmµ . The least squares fit of the
data has gradient 0.01 [0.01 – 0.02], p < 2 × 10−16). The relationship is essentially
flat.

Figure 6.12: The relationship between external temperature and tµ (sub-figure (a)) and tmµ (sub-
figure (b)). For both plots, the red line denotes the least squares fit, the black line
is the LOESS regression as described in chapter 6.

6.6.1 Mean experienced temperature

The decision was made early on that the mean experienced temperature (tµ) would not be

a good a metric for summarising a time-series of each participant to capture cold exposure.

141



The following section addresses whether or not this was a good assumption. In the

appendices, tables B.1, B.2 and B.3 lay out the results for the regression of tµ and tmµ

against the sociodemographic, building and health factors used in the study. Figure 6.13

gives the standardised effect size for the significant results for both tµ and tmµ .

The first thing that is evident is that there are far fewer significant results, compared to

the other metrics considered so far. In order to analyse the results clearly, first the variables

which show similar significance for the two metrics are described. The intercept, which is

equal to the overall average, for tµ is 30.31 [30.23 – 30.39]°C, and for tmµ it is 32.02 [31.94

– 32.09]°C. This difference of 1.71°C reflects the average difference in mean experienced

temperature between times when the participant was sedentary versus all other times.

For external temperature, there is a small but significant relationship for both metrics.

For tµ it is 0.05 [0.05 – 0.05]°C, and tmµ it is 0.01 [0.01 – 0.02]°C. These relationships are

shown in the gradient of figures 6.12a and 6.12b. For both metrics there is a single significant

difference as a function of age for those aged 70 – 79 versus those aged 40-49. For tmµ the

difference is 0.11 [0.05 – 0.17]°C, and tµ 0.13 [0.08 – 0.19]°C. The similarity of these readings

is likely a result of the oldest people in the sample spending least time outdoors, so that

the experienced temperature is approximately the same whether or not highest activity is

removed.
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Figure 6.13: Standardised effect size estimates for tµ and tmµ , for significant subcategories only.
N=77,762. In order to calculate this, the estimates for tmµ were divided by the
sd(tmµ ) = 1.68°C, and for tµ by sd(tµ) = 1.65°C.

Males’ mean experienced temperatures are significantly colder than females. For tmµ the

difference is -0.31 [-0.33 – -0.28]°C and tµ it is -0.17 [-0.19 – -0.14]°C. This is one of the few
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instances for which the effect size for a median screened metric is larger than the data set

as a whole. This may be evidence of different thermal comfort preferences being evident.

One might expect this to be especially the case for participants who live alone, since they

establish their thermal environment without consideration of other occupants. However,

restricting the analysis to only those who live alone (n=12,887) does not modify the results

dramatically; for tmµ the difference between females and males is -0.27 [-0.33 – -0.21]°C, which

is in line with the estimate based on the whole sample, and tµ it is -0.12 [-0.18 – -0.06]°C.

As a function of household size itself, only the category of two person occupancy is

significantly different from single occupancy. For tµ, those living with one other person are

0.07 [0.03 – 0.10]°C warmer than those living alone. For tmµ the difference is almost identical

at 0.08 [0.05 – 0.12]°C. It is difficult to interpret this result without more information on

the physical parameters of the dwellings, but it may point to longer heating periods (as

suggested above for the lower experienced temperature metrics).

There are two significant differences as a function of ethnic background. For those

who identify their ethnic background as Black, tmµ is 0.34 [0.21 – 0.48]°C warmer than those

who identify as White. The difference for tµ is 0.28 [0.14 – 0.41]°C. A significant difference

between those who identify their ethnic background as Asian, versus White, is also found.

For tmµ it is 0.28 [0.15 – 0.41]°C and tµ it is 0.27 [0.14 – 0.39]. This finding was not anticipated

in either the literature review on wrist temperature or on internal temperatures. As with the

previous results for ethnicity, it is difficult to interpret these findings but they may warrant

further investigation.

There is evidence that mean experienced temperature is correlated with BMI. For tmµ ,

obese participants are 0.68 [0.58 – 0.79]°C colder than those who have a normal BMI. In

terms of effect size this difference is 0.4, which is between small and moderate. For tµ the

effect is smaller at 0.30 [0.20 – 0.40]°C. This difference is also evident for overweight

participants (tmµ =0.25 [0.22 – 0.27]°C colder than normal BMI, tµ=0.07 [0.05 – 0.07]°C

colder). Again, this is an example of where the effect size is greater for sedentary periods.

There are several plausible factors that might influence experienced temperature

measurements. Studies discussed in the literature review found that obesity was associated

with lower wrist temperature with reduced amplitude of variation than those of normal

weight (Corbalán-Tutau et al., 2011, 2015; Harfmann et al., 2017). The lower temperatures

found in this study may be partially explained by these differences. Furthermore, a study

of office based thermal comfort by Rupp et al. (2018) found that obese participants prefer

cooler conditions. At least two possibilities arise from this finding, either obese

participants choose cooler conditions or they wear systemically fewer clothes than

participants of normal BMI – either of these possibilities is consistent with the finding that

the experienced temperature of obese participants is significantly lower than those of
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participants with normal BMI.

Clear effects are evident as a function of activity level. Those in the highest quintile have

a tµ 0.78 [0.72 – 0.84]°C lower than those in lowest activity quintile. Intermediate quintiles

show a similar trend, with a decrease of approximately 0.16°C per quintile. This result is

consistent with the observation that most physical activity takes place outdoors and/or with

less clothing than at sedentary times. The results for tmµ is more complex, a significant effect

only begins at the fourth quintile, with a difference of -0.09 [-0.13 – -0.05]°C compared to

the first quintile. The fifth quintile is -0.17 [-0.21 – -0.13]°C. It is important not to discount

the potential impact of length of sleeping period. Those with higher recorded activity levels

may well be awake for longer than those with lower values – since the micro-climate of the

bed is warmer than most ambient room temperature in the UK this would result in lower

tµ and tmµ readings for most active people. This point will be returned to in section 10.2.

There are two results that are significantly different for tmµ but not for tµ, both in

the tenure type variable. Compared to those who own their home outright, those with a

mortgage are 0.06 [-0.09 – -0.03]°C colder, and those who rent privately are 0.14 [-0.23 –

-0.05]°C colder. There is some evidence that those living in fuel poverty are more likely

to live in privately rented accommodation, which could contribute to heat rationing and

reduced indoor temperatures (DECC, 2015).

With the addition of the variables financial situation satisfaction, health satisfaction

and heating type there was only one significant difference for either metric, for tmµ , those

who were very unhappy with their financial situation were 0.19 [0.05 – 0.34]°C warmer.

Given that none of the other subcategories in this variable showed a significant result it is

difficult to interpret.

6.7 Summary

This chapter has reported the results pertaining to research question 1, which asked whether

experienced temperature varies with sociodemographic, health and building factors. The

lower metrics of experienced temperature show significant variation with sociodemographic

and building factors. Less variation was shown using mean experienced temperature. The

following chapter considers metrics of thermal variety and their relationship with the same

factors considered in this chapter. These results, together with those presented in chapter

8, will be discussed as a whole in chapter 9 and considered in relation to the hypotheses set

out in chapter 3 and the literature more widely.
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Chapter 7

Results 3: Thermal variety

In a country where the winters are so cold as in Great Britain, fuel is, during that

season, in the strictest sense of the word, a necessary of life

Adam Smith – Wealth of Nations (1776)

This chapter introduces and explores metrics which capture the diversity of

temperatures experienced by participants. It focuses principally on the standard deviation

of the experienced temperature, named the thermal variety, and denoted tsd, along with

the analogue to tm10 denoted tmsd. A brief background justification of why the thermal

variety is an independent and useful extension of the metrics considered so far is also

given. The results of using tsd as the outcome variable are then examined, as was done in

chapter 6 for the lower metrics of experienced temperature. Two alternative metrics of

diversity are also considered, namely the range and interquartile range. Finally, the

metrics are examined together, to determine which best characterises cold exposure and is

most useful for the research aims of this study.

7.1 Thermal variety

The variation in ambient temperature enters the epidemiological literature principally

through the concept of Diurnal Temperature Range (DTR) (see section 2.1.2). The review

by Cheng et al. (2014), for example, found that DTR has been associated with negative

health outcomes, especially for cardiovascular and respiratory conditions. However, the

impacts of DTR may be confounded by socioeconomic status and season. The equivalent

of DTR for this study is a measure of variation of experienced temperature.

The thermal variety was computed using the AX3 time-series data. As with the other

metrics analysed thus far, the first and last days of the time-series recorded by the AX3 were

removed to minimise the impact of end effects of the periods when the AX3 was unworn.

Before considering whether or not the tsd and tmsd metrics are a useful means of establishing

the relationship between experienced temperature and health, the question of the extent to

145



which they constitute metrics in their own right, independent of t10 and the other metrics

considered thus far.

7.1.1 An independent measure?

The extent to which thermal variety and the first decile of experienced temperature are

independent of each other is shown in figure 7.1. Figure 7.1a shows a negatively correlated

linear relationship between t10 and tsd, with a large degree of scatter. The equation for the

linear relationship is tsd = −0.21t10 + 6.84, R2 = 0.40. The value of R2 = 0.40 suggests

the two metrics are not wholly independent. The LOESS fit is also shown, which shows

some deviation from linearity at extremal values of t10, but the values at high t10 are sparse.

There is a clear colour gradient evident, suggesting that high thermal variety tsd and lower

experienced temperature t10 is associated with high activity levels.

Figure 7.1b again shows a negatively correlated linear relationship, this time between

tm10 and tmsd again with a large degree of scatter. The equation for the linear relationship is

tmsd = −0.15tm10 + 6.84, R2 = 0.26. The LOESS fit is also shown, which shows some deviation

from linearity at extremal values of tmsd. The value of R2 = 0.26 suggests the two metrics

are more independent than tsd and t10, but that including both in a single regression would

likely cause issues of collinearity. The absence of a clear pattern in the colouring of the

data points by activity levels suggests that removing the data points within a particular

time-series which correspond to high activity is an adequate method of screening times of

high activity from the analysis.

For a normally distributed variable x the following relation holds for the nth percentile,

xsd =
xn
zn
− xµ
zn

(7.1)

where z is the z-score for a particular percentile n (z = −1.282 for n = 10).

Comparing the form of this equation with those above, using the computed values of tmµ

and tµ respectively, reveals the following differences in coefficients.

observed : tmsd = −0.15tm10 + 6.84 (7.2)

normal : tmsd = −0.78tm10 + 24.86 (7.3)

observed : tsd = −0.21t10 + 8.49 (7.4)

normal : tsd = −0.78t10 + 23.74 (7.5)

These comparisons suggest that the data for tmsd and tm10 are further from normally
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(a) tsd = −0.21t10 + 8.49, R2 = 0.40. (p < 2 × 10−16)

(b) tmsd = −0.15tm10 + 6.84, R2 = 0.26. (p < 2 × 10−16),

Figure 7.1: Comparing the relationships between the thermal variety and experienced
temperature for the unscreened data, and those which have been screened to exclude
activity levels above the median.
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Figure 7.2: The relationship between external temperature and tsd. The red line is the least
squares fit of the data (gradient -0.05 [-0.05 – -0.05], p < 2 × 10−16). The black line
is the LOESS regression as described in chapter 6. Since over 77,762 data points are
plotted, the data are represented as density cloud, as given in the key

distributed than the data for tsd and t10. Since the former are subset of the latter, produced

by removing periods of time associated with high activity, this stands to reason. The next

section gives the results of including tsd and tmsd as the outcome variable of a multiple linear

regression model, in the same manner as used above for the alternative metric, but with

more detail. The structure of the results presented here is similar to that of the previous

results chapter. First, the variation of thermal variety with external temperature is given

in 7.2. This shows a clear effect, with a higher thermal variety evident at the colder times

of the year than the warmer. This accords with the observation that the difference between

external and internal temperatures is greatest during the winter months in Britain, and so

participants experience more thermal variety during these months.

7.1.2 Multiple linear regression

This section follows the approach given in chapter 6. The results of the multiple regression

model with tsd and tmsd used as outcome variables are given in tables 7.1 and 7.2, with the

results of the additional explanatory variables given in 7.3.

In line with figure 7.2, the thermal variety decreases with external temperature. The

estimates for tsd and tmsd are similar, at -0.05°C and -0.04°C respectively. It is notable that

tmsd is higher in winter. This suggests increasing thermal variety during sedentary periods

as the average external temperature drops. The relative effect size for both metrics is given

below in section 7.1.3.

As age increases, the thermal variety decreases monotonically, again with similar
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magnitude for tsd and tmsd. The explanation for this is likely the same as that given above

for the minimum temperature variables – as a function of age, the differences between the

median activity filtered data and the unfiltered data are small.

There is a small but significant difference in thermal variety as a function of sex. Men

have a lower thermal variety than women. The difference is greater for tmsd in both absolute

and relative terms (as an effect size, see table B.8). It is difficult to speculate what the basis

for this observed sex difference might be.

As with other metrics, some differences are observed as a function of ethnicity. For tsd

only those whose ethnic background is Black are significantly different from White

participants. The thermal variety of Black participants is 0.09°C higher than White. This

finding is reflected in tmsd which finds the same magnitude of difference. Two further

differences are recorded; participants who identify their ethnic background as Chinese have

higher thermal variety during likely sedentary periods of 0.20°C, and those who describe

their background as “other ethnic background” also show increased thermal variety under

this metric. As with the differences highlighted in the previous section, it is very difficult

to interpret these results without further information.

Notably, there were no significant differences as a function of household income. This

contrasts the findings for tmin and tmmin, which found that higher income participants had

lower minimum temperatures. This will be discussed further in section 7.1.4 below.

Those living in flats show lower thermal variety, under both metrics, than those living

in houses or bungalows. This may relate to the building properties of flats, for which

the internal temperatures likely vary less than for other accommodation types due to the

proximity of other flats which would moderate large changes in temperature. It could also

be that flats are much more likely to be located in urban and semi urban areas, which

experience lower swings in temperature (although higher absolute temperatures) due to the

urban heat island effect.

A similar argument might account for the observed differences by tenure type; those

renting from the Local Authority have lower variety than those who own their home outright.

The build quality of Local Authority properties is also generally higher than privately owned

homes. The differences observed for those who have mortgages are small and difficult to

account for. There is a small but clear effect as a function of household size. Participants

living in homes with two, three or four or more inhabitants show significantly lower thermal

variety than those living alone.

Those who are unable to work due to sickness or disability have slightly reduced tmsd

relative to those who work. Those doing voluntary work have both reduced tsd and tmsd, and

those for whom none of the available categories apply have slightly increased thermal variety

for both metrics. It is not clear why the thermal variety of those doing voluntary work would
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Predictor (relative 
subcategory, N)  Sub‐category (N)  tsd tmsd 
Intercept  ‐  3.46 [3.43 – 3.48] ***  3.10 [3.08 – 3.13] *** 
External temperature  ‐  ‐0.05 [‐0.06 – ‐0.05] ***  ‐0.04 [‐0.04 – ‐0.04] *** 
Age (40‐49, 6075)  50‐59 (21320)  ‐0.06 [‐0.08 – ‐0.04] ***  ‐0.06 [‐0.08 – ‐0.05] *** 

60‐69 (35407)  ‐0.10 [‐0.12 – ‐0.08] ***  ‐0.12 [‐0.14 – ‐0.10] *** 
70‐79 (14960)  ‐0.16 [‐0.18 – ‐0.14] ***  ‐0.15 [‐0.17 – ‐0.13] *** 

Sex (Female, 43770)  Male (33992)  ‐0.05 [‐0.06 – ‐0.04] ***  ‐0.09 [‐0.10 – ‐0.09] *** 
Ethnic background 
(White, 75365) 

Mixed (398)  0.07 [0.01 – 0.13]   0.07 [0.02 – 0.12] * 
Asian (654)  ‐0.01 [‐0.05 – 0.04]  0.03 [‐0.01 – 0.07]  
Black (582)  0.09 [0.04 – 0.14] **  0.09 [0.05 – 0.13] ** 
Chinese (157)  0.11 [0.02 – 0.21]   0.20 [0.12 – 0.28] ** 
Other ethnic group (395)  0.03 [‐0.03 – 0.09]   0.09 [0.04 – 0.14] ** 
Do not know (20)  0.08 [‐0.18 – 0.35]   0.11 [‐0.11 – 0.34]  
Prefer not to answer (191)  ‐0.05 [‐0.13 – 0.04]   ‐0.01 [‐0.09 – 0.06]  

Household Income £ 
(Less than 18,000, 
10592) 

18,000 to 30,999, (17779)  ‐0.02 [‐0.04 – ‐0.01] *  ‐0.02 [‐0.03 – ‐0.01] * 
31,000 to 51,999 (20016)  ‐0.01 [‐0.03 – 0.00]  ‐0.01 [‐0.02 – 0.01] 
52,000 to 100,000 (17021)  ‐0.01 [‐0.03 – 0.01]  ‐0.01 [‐0.02 – 0.01] 
Greater than 100,000 (4850)  ‐0.02 [‐0.04 – 0.01]  ‐0.01 [‐0.03 – 0.01] 
Prefer not to answer (5475)  ‐0.01 [‐0.03 – 0.01]  ‐0.02 [‐0.04 – ‐0.00]  
Do not know (2029)  ‐0.07 [‐0.10 – ‐0.04] **  ‐0.06 [‐0.08 – ‐0.03] ** 

Accommodation type 
(House/bungalow, 
71554) 

Flat (6058)  ‐0.07 [‐0.09 – ‐0.05] ***  ‐0.05 [‐0.06 – ‐0.03] *** 
Temporary (54)  0.02 [‐0.14 – 0.18]  ‐0.03 [‐0.17 – 0.11] 
None of above (83)  ‐0.05 [‐0.18 – 0.08]  ‐0.05 [‐0.16 – 0.06] 
Prefer not to answer (13)  ‐0.17 [‐0.51 – 0.17]  ‐0.22 [‐0.51 – 0.07] 

Tenure type (Own 
outright, 44537) 

Mortgage (28498)  ‐0.05 [‐0.07 – ‐0.04] ***  ‐0.03 [‐0.04 – ‐0.02] *** 
Rent Local Authority (2096)  ‐0.16 [‐0.18 – ‐0.13] ***  ‐0.11 [‐0.14 – ‐0.09] *** 
Rent private (1497)  ‐0.04 [‐0.07 – ‐0.01]   0.00 [‐0.03 – 0.03] 
Shared (174)  ‐0.07 [‐0.16 – 0.02]   ‐0.06 [‐0.14 – 0.01] 
Rent free (469)  ‐0.09 [‐0.15 – ‐0.04]   ‐0.02 [‐0.07 – 0.02] 
None of above (276)  ‐0.07 [‐0.14 – 0.00]   ‐0.02 [‐0.08 – 0.04] 
Prefer not to answer (215)  ‐0.01 [‐0.09 – 0.08]   0.01 [‐0.07 – 0.08]  

Household size (single 
occupant, 12854) 

Two (37905)  ‐0.04 [‐0.05 – ‐0.02] **  ‐0.07 [‐0.08 – ‐0.06] *** 
Three (12141)  ‐0.05 [‐0.06 – ‐0.03] ***  ‐0.06 [‐0.07 – ‐0.05] *** 
Four or more (14862)  ‐0.03 [‐0.05 – ‐0.01] ***  ‐0.04 [‐0.06 – ‐0.03] *** 

Table 7.1: The results of the regression model of the associations between tsd and explanatory
variables, and tmsd and explanatory variables, as described in the text. Significance
levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9. N=77,762

be significantly different from other categories. The category size is large enough (n=3,759)

that this result would seem statistically valid.

As with the findings for tmmin and tmin, the presence of an open solid fuel fire is associated

with increased thermal variety. Unlike the findings for the minimum temperature metrics,

both thermal variety metrics, tmsd and tsd, are significantly higher when an open fuel solid

fire is present in all such subcategories.

The results also suggest a coherent picture for BMI in terms of thermal variety. All

subcategories are significantly different from normal BMI. Those who are underweight have

higher thermal variety. Those who are overweight and obese have lower thermal variety. In

this sense, BMI is monotonically inversely related to both tsd and tmsd. These findings accord

with the papers due to Nissilae et al. (1996) and Harfmann et al. (2017). This suggests a

degree of decreased variety is likely due to reduced wrist temperature variation. However, the
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Predictor (relative 
subcategory, N)  Sub‐category (N)  tsd tmsd
Employment status 
(In paid employment 
or self‐employed, 
39797)  

Retired (27472)  0.03 [‐0.03 – 0.09]  0.02 [‐0.03 – 0.08]  
Looking after home/family (3235)  0.03 [‐0.09 – 0.15]  ‐0.01 [‐0.12 – 0.09]  
Unable to work, sickness/disability (1411)  0.01 [0.00 – 0.02]   ‐0.02 [‐0.03 – ‐0.01] ** 
Unemployed (901)  0.02 [‐0.00 – 0.04]  0.02 [‐0.00 – 0.04] 
Doing unpaid or voluntary work (3759)  ‐0.10 [‐0.13 – ‐0.06] **  ‐0.05 [‐0.08 – ‐0.03] ** 
Full/ part‐time student (738)  ‐0.02 [‐0.06 – 0.02]   0.00 [‐0.04 – 0.03]  
None of the above (350)  0.04 [0.01 – 0.06] **  0.03 [0.01 – 0.05] * 
Prefer not to answer (99)  0.04 [‐0.00 – 0.08]   0.04 [0.00 – 0.08]  

Fuel type (Gas hob or 
gas cooker, 28957) 

Gas fire (6379)  0.01 [‐0.00 – 0.03]   0.01 [‐0.01 – 0.02]  
Open solid fuel fire (2335)  0.12 [0.09 – 0.14] ***  0.07 [0.05 – 0.09] *** 
Gas hob & Gas fire (20188)  0.01 [‐0.00 – 0.02]  0.01 [‐0.00 – 0.01] 
Gas hob & Open fire (4481)  0.09 [0.07 – 0.11] ***  0.06 [0.05 – 0.08] *** 
Gas fire & Open fire (195)  0.21 [0.12 – 0.29] **  0.19 [0.12 – 0.27] ** 
Gas hob & Gas fire & Open fire (956)  0.08 [0.04 – 0.12] **  0.09 [0.06 – 0.12] ** 
None of the above (14221)  ‐0.01 [‐0.02 – 0.00]   ‐0.01 [‐0.02 – ‐0.00]  
Prefer not to answer (37)  ‐0.21 [‐0.41 – ‐0.01]   ‐0.20 [‐0.37 – ‐0.03]  
Do not know (13)  ‐0.18 [‐0.50 – 0.15]   ‐0.15 [‐0.43 – 0.14]  

Body Mass Index 
(Normal, 30562 ) 

Underweight (477)  0.11 [0.06 – 0.17] **  0.11 [0.07 – 0.16] ** 
Overweight (45722)  ‐0.18 [‐0.19 – ‐0.18] ***  ‐0.14 [‐0.15 – ‐0.13] *** 
Obese (1001)  ‐0.37 [‐0.41 – ‐0.34] ***  ‐0.24 [‐0.27 – ‐0.21] *** 

Activity level quintile 
(1st quintile, 15463 ) 

2nd quintile (15567)  0.14 [0.13 – 0.16] ***  0.04 [0.03 – 0.05] *** 
3rd quintile (15567)  0.24 [0.22 – 0.25] ***  0.08 [0.07 – 0.09] *** 
4th quintile  (15578)  0.33 [0.31 – 0.34] ***  0.11 [0.10 – 0.12] *** 
5th quintile (15587)  0.50 [0.49 – 0.51] ***  0.19 [0.18 – 0.20] *** 

Table 7.2: The continuation of table 7.1. The results of the regression model of the associations
between tsd and explanatory variables, and tmsd and explanatory variables, as described
in the text. Significance levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9. N=77,762

magnitude of the differences observed by the present study cannot be accounted for by wrist

temperature changes alone. This suggests that both the participants’ thermal environment

and their wrist temperature variation are associated in a coherent way with BMI level.

In a manner that agrees with the previous metrics, activity level shows a significant

positive association with both tsd and tmsd. Again, the simple explanation for this is that

more active people have access to a wider variety of thermal environments.

The single significant difference as a function of financial situation satisfaction does not

lend itself to coherent interpretation. On the other hand, health satisfaction shows a much

clearer trend. Compared to participants who are extremely satisfied with their health, those

who are increasingly unhappy show diminished thermal variety, for both metrics.

Finally, there is evidence that those who have oil central heating systems installed in

their home have greater thermal variety, again for both metrics. The explanation for this

likely lies in the observation that oil central heating systems are more common in rural areas,

in older, larger, less well insulated homes.

7.1.2.1 Statistical checks

As with the previous regression models, it is important to check that the residuals are

normally distributed. These are given as histograms in figure 7.3.

Figure 7.2 shows the relationship between mean external temperature and tsd. While

there is slight deviation from linearity at very low average temperature, it is likely insufficient
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Predictor (relative 
subcategory, N)  Sub‐category (N)  tsd tmsd 
Financial situation 
satisfaction 
(Extremely happy, 
3808) 

Very happy (14498)  0.01 [‐0.01 – 0.04]  0.02 [‐0.00 – 0.04] 
Moderately happy (15732)  0.01 [‐0.01 – 0.03]  0.02 [0.00 – 0.04]  
Moderately unhappy (2473)  ‐0.02 [‐0.05 – 0.02]  0.01 [‐0.02 – 0.04] 
Very unhappy (737)  ‐0.07 [‐0.12 – ‐0.02] *  ‐0.03 [‐0.07 – 0.02] 
Extremely unhappy (369)  ‐0.06 [‐0.13 – 0.00]  ‐0.03 [‐0.09 – 0.03] 
Prefer not to answer (57)  ‐0.09 [‐0.25 – 0.07]  ‐0.02 [‐0.16 – 0.11] 
Do not know (56)  ‐0.12 [‐0.28 – 0.03]  ‐0.09 [‐0.23 – 0.05] 

Health satisfaction 
(Extremely happy, 
2230) 

Very happy (13771)  ‐0.04 [‐0.07 – ‐0.01] *  ‐0.02 [‐0.04 – 0.00] 
Moderately happy (17767)  ‐0.10 [‐0.12 – ‐0.07] ***   ‐0.05 [‐0.07 – ‐0.03] ***  
Moderately unhappy (2955)  ‐0.15 [‐0.19 – ‐0.12] ***  ‐0.09 [‐0.12 – ‐0.06] *** 
Very unhappy (661)  ‐0.16 [‐0.21 – ‐0.11] ***  ‐0.08 [‐0.13 – ‐0.03] ** 
Extremely unhappy (249)  ‐0.15 [‐0.23 – ‐0.07] **  ‐0.07 [‐0.14 – ‐0.00]  
Prefer not to answer (10)  0.05 [‐0.32 – 0.42]  ‐0.05 [‐0.37 – 0.27]  
Do not know (87)  ‐0.04 [‐0.17 – 0.08]  ‐0.03 [‐0.14 – 0.09]  

Heating type (Gas 
central heating, 
34999) 

Electric storage heaters (798)  ‐0.01 [‐0.05 – 0.03]  ‐0.02 [‐0.06 – 0.02] 
Oil (kerosene) central heating (979)  0.09 [0.05 – 0.13] **  0.07 [0.03 – 0.10] ** 
Portable gas or paraffin heaters (10)  0.17 [‐0.20 – 0.54]  0.04 [‐0.28 – 0.36] 
Solid fuel central heating (128)  0.09 [‐0.01 – 0.20]  ‐0.01 [‐0.10 – 0.08] 
Open fire without central heating (109)  ‐0.02 [‐0.14 – 0.09]  ‐0.01 [‐0.11 – 0.09] 
Three heating types (5)  ‐0.17 [‐0.69 – 0.35]  ‐0.05 [‐0.50 – 0.40] 
None of the above (676)  ‐0.01 [‐0.05 – 0.04]  0.00 [‐0.04 – 0.04] 
Prefer not to answer (15)  ‐0.19 [‐0.53 – 0.16]  ‐0.22 [‐0.52 – 0.07] 
Do not know (11)  ‐0.17 [‐0.52 – 0.19]  ‐0.19 [‐0.49 – 0.12] 

Table 7.3: The results of adding the health satisfaction, financial situation satisfaction and
heating type variables to the regressions models reported in tables 7.1 and 7.2. These
explanatory variables were only available for a smaller subset of participants. While
all variables were included, only Financial situation satisfaction and Heating type are
shown. Again, the other variables agreed with the previous regression to within the
confidence intervals. Significance levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9..
N=37,730
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Figure 7.3: The residuals for the above fits of tmsd and tsd. They are both normally distributed.
The residuals for tmsd have a slight positive skew which is probably insufficient to cause
problems.
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Figure 7.4: Effect size estimates for tmsd and tsd.

to affect the model. It is therefore reasonable to conclude that the models are valid from a

statistical standpoint. The next section considers the effect size of the observed statistically

significant differences using tsd and tmsd as outcome variables.

7.1.3 Effect size

As with the results given in chapter 6, it is instructive to examine the effect size of the

associations revealed by the multiple regression model. These are plotted in figure 7.4. Over

a total range of a 12°C change between summer and winter external temperatures, tsd is

0.6°C lower in summer than winter. This equates to an effect size of 0.87, which is large

under the rule of thumb given by Sawilowsky (2009).

Overall, aside from average external temperature, the largest effect sizes are observed

for the activity and BMI variables, followed by age and health satisfaction. Typically the

effect sizes for tsd are larger than for tmsd. This likely is the result of the restriction of scope

of the tmsd variable, since it only makes use of half the data of the tsd variable.

7.1.4 Alternative measures of variety

There are other possible measures of variety. Two which will be briefly discussed here are the

range and the interquartile range. These are defined as the difference between the minimum

and maximum values, and the difference between the first and third quartiles, respectively.

These are denoted trange and tiqr. All significant differences using these metrics as the

outcome variable in the multiple linear regression are given in appendix tables B.4, B.5 and

B.6. Examining these variables sheds light on the reason why tmin was found to be associated
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with income level but tsd was not. Since table B.1 shows that tmax increases with increasing

income, it follows that trange also shows this relationship – indeed, increased income is

associated with increasing thermal range. However, examining the tiqr, the opposite effect is

observed. Increasing income is associated with decreasing interquartile range. This suggests

that while the extremal values expand with income level, the central 50% of the readings

get closer together. It is for this reason that no effect is observed as a function of tsd,

the results for range and interquartile range effectively cancel each other out. A similar

result is observed as a function of sex – the range of experienced temperatures for males

is greater than females, but the interquartile range is reduced. However, there is also a

small reduction in standard deviation for males versus females, suggesting the effects do not

cancel each other out to the same extent as the income variable. No other variables show

this pattern, and the results for trange and tiqr generally agree with the findings for tsd. For

median filtered metrics, a similar result holds, but as discussed earlier, the effect size tends

to be smaller. The next section addresses the binomial regression model, as was discussed

in chapter 7, and the impact of using measures of variety in it.

7.2 Robustness tests

The following section examines the robustness of the results presented so far and considers

some potential sources of error.

7.2.0.1 Weekends

As discussed in the literature review, a study by Huebner et al. (2013) found a significant

difference of 0.16°C between weekday and weekend temperatures of households. The AX3

wristbands were distributed at random to participants. However, this study only uses 5 of

the total 7 days due to the problems at the start and end of the wear period. It is plausible

that the weekend might be systematically under or over sampled as a result. A total of 18,223

participants had monitoring periods which did not include any weekend days. Therefore, it

might be expected that monitoring periods which included weekends might be significantly

warmer to those which only included week days. This was tested in the data for all the

experienced temperature and thermal variety metrics by re-running the regression models

with an extra variable which counted the number of weekend days in the study period. The

result of these tests was that no significant differences were found.

7.2.0.2 External temperature

Since the experienced temperature depends most heavily on local average external

temperature, a further regression of the binomial regression model was produced for which

the thermal variety metrics were corrected for external temperature, to minimise the risk

of multiple co-linearity effecting the model. The inclusion of these modified metrics had no
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Figure 7.5: The relationship between age and mean activity level. Simple least-squares regression
shown in red. Points represented as density cloud.

effect on the results.

7.2.0.3 Participant exclusions

As part of the Pre–analysis plan (PAP), a number of participants were excluded out of

concern that abnormally cold hands might bias the result. The decision was made that

self-reporting of conditions would be the basis of these exclusions. However, the numbers of

participants who self-reported anaemia was much lower (n=262) than the number who were

diagnosed with such conditions (n> 3000). As a check of the impact of the decision, those

who had been diagnosed with anaemia were excluded and the analysis re-run. The results

were strikingly similar to those reported above, all estimates agreed to within confidence

intervals given, and almost all did not even change the numerical value of the estimate.

A related aspect to this is a validation of the dataset that can be performed by relating

it to the results of Doherty et al. (2017). For this study, the relationship between activity

level and other factors was considered. For comparison, the simplest one to perform is the

relationship with age. The general relationship is shown in figure 7.5. Doherty et al. (2017)

use slightly different age factoring brackets to those used here, so the data from this study

was refactored to compare it. The results of this comparison are shown in table 7.4. The

results demonstrate that, despite the different sample size (due to the different exclusion

criteria placed on the data for this study) they agree.
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Study Age Female Male

Doherty
et al.
(2017)

45-54 31.2± 8.7 31.1± 9.7
55-64 29.1± 8.0 28.8± 8.8
65-74 26.6± 7.1 25.6± 7.7
75-79 23.9± 6.5 22.9± 6.8

Present
study

45-54 33.4± 9.2 32.7± 7.5
55-64 30.6± 7.9 30.0± 8.5
65-74 28.1± 7.1 26.7± 7.7
75-79 25.1± 6.6 23.8± 6.5

Table 7.4: The mean activity level ± standard deviation for the Doherty et al. (2017) (above) study
compared to the present study (below). The very slight difference may be accounted
for by the different sample sizes (n = 103,578 for Doherty et al. and n = 78,210
present study), as well as the different exclusion criteria and slightly different processing
techniques.

7.3 Results overview

The following section reviews the results presented in the present chapter and the previous for

the multiple linear regression models of the associations between the metrics of experienced

temperature and thermal variety and the explanatory sociodemographic, housing and health

factors. This is done in two ways, starting with a discussion of the R2 value for each model,

and then followed by an analysis of the number of significant variables for each model.

7.3.1 Variance explained

One method of comparing the different regression models is to calculate the partial R2 for

each variable in each regression. This gives an estimate for the percentage of total variance

explained by each variable in the model. Table 7.5 gives the values of partial R2 for each

variable in each model, as well as R2 for the model as a whole. The values of R2 have been

corrected for the number of variables in each model.

Overall, the total explained variance is largest for the models which have tsd as the

outcome variable. Models for t10 have a greater degree of explained variance than tm10. The

addition of the extra variables of activity, BMI and health satisfaction increase the amount

of variance explained.

Table 7.5 also shows that the degree of variance explained is greatest for the external

temperature variable in every model (except tµ, which shows the greatest value for activity

level). This is likely due to the physical nature of external temperature –

sociodemographic variables are typically less predictive than physical variables in models

which predict physical quantities such as the experienced temperature. The external

temperature was also measured at the same time as the experienced temperature. Partial

R2 is also greater for the models which use the unscreened temperature compared to the

data screened for high activity levels (i.e. t10 compared to tm10). This may be because

internal temperatures, where people are typically less active, are generally warmer and
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Explanatory variable  tm10 

(PAP) 
t10 

(PAP)  tmmin  tmin  tm10  t10  tmμ  tμ  tmsd  tsd 

External temperature °C  3.93  6.54  8.93  12.76  4.12  7.44  0.15  2.04  12.42  14.17 
Age/year  0.28  0.71  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 
Age (decade)  ‐  ‐  0.70  0.80  0.14  0.20  0.03  0.05  0.42  0.36 
Sex  0.04  0.00  0.19  0.80  0.07  0.06  0.75  0.24  0.73  0.19 
Ethnicity  0.03  0.03  0.03  0.15  0.06  0.04  0.13  0.11  0.10  0.02 
Household income  0.02  0.01  0.05  0.13  0.06  0.01  0.00  0.00  0.03  0.04 
Tenure Type  0.02  0.12  0.00  0.02  0.00  0.02  0.01  0.00  0.10  0.15 
Accommodation type  0.03  0.07  0.00  0.00  0.02  0.05  0.00  0.00  0.06  0.05 
Household size  0.11  0.03  0.04  0.04  0.01  0.03  0.04  0.00  0.16  0.04 
Employment status  0.03  0.13  0.05  0.03  0.02  0.03  0.01  0.02  0.08  0.02 
Fuel Type  0.09  0.24  0.07  0.13  0.05  0.11  0.00  0.00  0.19  0.26 
BMI  ‐  ‐  0.08  0.13  0.03  0.12  0.58  0.07  1.73  2.17 
Activity decile  ‐  ‐  3.18  5.90  0.64  5.04  0.14  2.36  1.31  6.04 
Health satisfaction  ‐  ‐  0.05  1.70  0.00  0.06  0.01  0.00  0.15  0.37 
Financial situation 
satisfaction  ‐  ‐  0.00  0.00  0.00  0.00  0.00  0.00  0.03  0.04 

Heating type  ‐  ‐  0.02  0.00  0.00  0.02  0.00  0.00  0.02  0.04 
Total  4.88  8.08  14.50  21.02  5.54  13.56  2.21  4.84  18.61  24.26 

Table 7.5: Partial R2 expressed as a percentage for each variable and model. Each column gives
the explanatory variables used in each model. . The total R2 is given at the bottom
and may not be a sum of individual partial R2 values. All values are corrected for
the number of explanatory variables in the model. As a test, the first column was run
with age in continuous and discrete forms (see section 8.3. The impact was minimal,
a maximum change of 0.01 for non-age variables, and 0.23% instead of 0.28% for the
age variable.

show less variance than external ones.

The external temperature does not explain tmµ very well. The total explained variance

for tmµ is only 2.21%, with the variable sex having the largest partial R2. This finding

supports the suggestion made in the PAP that the readings of tmµ might be dominated by

the higher temperature readings from night time and the micro-climate of the bed, yielding

insufficient variance in the values of tmµ to yield significant differences.

As an indicator of the impact of factoring continuous variables, the first two columns

of table 7.5 use the age on a per year basis. In the final analysis age was refactored from a

continuous variable to one with decadal bins to allow for the possibility that the significant

differences as a function of age would be different at different decades. The impact of this

decision on overall variance explained was very minimal. The adjusted partial R2 reduced

from 0.28 to 0.23. The overall R2 reduced from 4.88 to 4.83. Refactoring variables is often

be a trade–off between maximising variance explained and creating variables of the greatest

use to the research design; in this case the decision did not make much difference.

Generally, sociodemographic variables explain less variance than physical ones (i.e.

average external temperature and activity level), with the exception of BMI. The relatively

high value of partial R2 for BMI is notable and warrants further investigation (see 10.2). It
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is perhaps unsurprising that the explained variance of sociodemographic variables is low –

the amount of time between the measurement of these variables and the physical variables

was large, in some cases as many as 7 years may have elapsed between them. The fact that

any variance is explained with these variables is therefore noteworthy, and may either

point to the relative stability of these variables over time, or be a function of the large

sample size of the study, or both.

It is important to caveat these findings with the observation that R2 should only be

interpreted alongside the other statistical measures used in this study. R2 alone does not

indicate a model’s usefulness.

7.3.2 Significant variables

A related measure of the extent to which a model has explanatory power is the total number

of significant variables that are predicted. This is shown for each metric in table 7.6

Metric p < 10−9 p < 0.001 p < 0.01 Total Additional
tmin 15 6 4 25 4
tmmin 12 10 1 23 3
t10 17 2 5 24 4
tm10 13 3 7 23 0
tµ 7 7 2 16 0
tmµ 6 6 1 13 1
tmax 5 12 5 22 1
tmmax 6 5 6 17 1
tsd 17 10 2 30 5
tmsd 20 8 3 31 4
trange 18 7 3 28 5
tmrange 16 9 2 27 3

Table 7.6: The number of statistically significant subcategory variables for each metric. The main
portion of the table out of a possible total of 56 degrees of freedom used in chapter
7 (the total number of subcategories). The numbers of significant subcategories from
the additional variables (health satisfaction, financial satisfaction, heating type is given
in the final column, out of a additional total of 23. As mentioned in the text, these
additional variable were only available for a subset of 37,730 participants.
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Chapter 8

Results 4: Conditions associated with

excess winter deaths

A stuffy room, with air constantly heated to 75°, is the most efficacious invention

ever devised for ruining health.

Amelia E. Barr – Maids, Wives and Bachelors (1898)

8.1 Introduction

Excess winter deaths (EWDs) are defined as the total deaths occurring in winter over the

non-winter average. It was shown in the literature review in chapter 2 how this definition

does not necessarily adequately capture the relationship between ambient temperature and

mortality. However, one useful result of calculating EWD is that it allows the conditions

that ultimately lead to winter deaths to be identified. The Office for National Statistics

produces yearly estimates of EWD, as well as their primary causes of death (ONS, 2018).

It is these conditions, denoted CEWD , and their prevalence, that will be the focus of this

chapter.

8.2 Research question 2

“Are there associations between experienced temperature and the health conditions related

to excess winter deaths (CEWD)?”

The simplicity of this research question allows it to be addressed using straightforward

binomial regression. Beginning with tm10 as the metric of interest of experienced

temperature, the following regression equation was constructed (see section 4.7.2.3), and

the effect estimates calculated. It tests associations between the variable CEWD and the

experienced temperature y of the ith participant in the jth regional centre.

L(CEWDij
) = β0 + yij + eij (8.1)
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As with the previous sections, the other lower metrics and the metrics of thermal variety

can also be examined using this equation. Prior to this, multilevel structure is tested for

to understand whether there is a strong effect of the region that participants live in on the

prevalence of the CEWD .

8.2.1 Multilevel structure

First, the value of LR is calculated in a similar manner as was done in chapter 6:

LR = 157.62 (df = 1) (8.2)

This is slightly stronger evidence of multilevel structure than for research question 3.4 and

again the VPC is calculated:

V PC = 0.007 (8.3)

Once again the degree of variance attributable to different regions is very small, so the simpler

single level model was adopted. The geographical variation of the participants diagnosed

with conditions relating to EWDs (CEWD = 1) is shown in figure 8.1. The visualisation is

consistent with the finding that participants for whom CEWD = 1 does not exhibit clear

variation as a function of centre location. For each centre, the number of participants for

whom CEWD = 1 and for whom CEWD = 0, and the percentage incidence of CEWD , is given

in table 8.1. It is important to note that the variable centre only acts as a proxy for the

geographical location of the participant, as figure 8.1 shows.

8.2.2 Single level binomial regression

The regression equation for this research question tests associations between the variable

CEWD in terms of log-risk and the experienced temperature tm10 of the ith participant, and

has the following form:

L(CEWDi ) = β0 + tm10i + ei (8.4)

Practically, this was implemented in R using the following code:

1 glm (ewd˜tm10 , data=data , fami ly=binomial ( l i n k=log ) , s t a r t=c ( l og ( 0 . 2 ) ) ) )

Specifying the start option equal to the log of the prevalence of CEWD in the sample is

required for model convergence. The parameter estimates are as follows:

RR(tm10) = 1.02[1.02− 1.03] p = 1.92× 10−5 (8.5)

RR(β0) = 0.07[0.06− 0.10] p < 2× 10−16 (8.6)

The residuals of this model are shown in figure 8.2.
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Figure 8.1: The geographical variation of the participants diagnosed with conditions relating to
EWDs. CEWD = 1 is given in yellow, CEWD = 0 in blue. Table 8.1 gives the total
number of participants in each centre who have CEWD = 1

Figure 8.2: The residuals for the above fit of CEWD . They are normally distributed. The standard
deviation of the residuals is 0.87 in units of log-risk.

161



Centre CEWD = 0 CEWD = 1 %(CEWD = 1)
Birmingham 3582 603 14
Barts 1894 245 11
Bristol 6835 914 12
Bury 2892 543 16
Cardiff 2097 349 14
Croydon 4533 631 12
Edinburgh 2581 347 12
Glasgow 1771 352 17
Hounslow 4727 639 12
Leeds 5475 883 14
Liverpool 3860 720 16
Manchester 1666 292 15
Middlesborough 2759 502 15
Newcastle 4091 867 17
Nottingham 4869 683 12
Oxford 2321 285 11
Reading 5040 688 12
Sheffield 4195 683 14
Stockport pilot 371 59 14
Stoke 1806 284 14
Swansea 314 51 14
Wrexham 86 18 17
Average 3080 484 14

Table 8.1: For each centre, the number of participants who do not have conditions associated with
excess winter deaths, the number who do, and the percentage of the total who do

In binomial regression models the intercept does not have an interpretation. The

value of 1.02 is interpreted as evidence that every °C increase in experienced temperature

is associated with a 2% increase in the risk of CEWD . However, as the previous chapter

demonstrated, experienced temperature is known to have associations with other

sociodemographic, housing and health variables. Therefore, the next section examines the

risk of CEWD with experienced temperature as well as the demographic and housing

variables.

8.3 Research question 3

“Do combinations of sociodemographic factors, building factors and CEWD have associations

with low experienced temperature?”

As with research question 2, the appropriate regression to perform here is binomial. The

regression equation combines the variables used in research questions 1 and 2. As before,

the j subscript is dropped since the regional centres are not modelled:

L(CEWDi ) = β0 + tm10i +

9∑
k=2

βkxki + β13x13 + β14x14 + ei (8.7)

variables with a value of k of either 10, 11, or 12 correspond to the variables which
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are only available for a smaller subset of participants and are therefore not included at this

stage.

8.3.0.1 Results

The full results of the regression model for research question 3 are given in table 8.2 and

continued in table 8.3. Overall, the number of participants who had CEWD = 1 was 10,523

(13.5%) and CEWD = 0 was 67,239 (86.5%).

Activity: 5th quintile
Activity: 4th quintile 
Activity: 3rd quintile
Activity: 2nd quintile

BMI: Obese
BMI: Overweight

Employment: Unable to work
Tenure: Rent Local Authority

Tenure: Mortgage
Income: Greater than 100,000

Income: 52,000 to 100,000
Income: 31,000 to 51,999
Income: 18,000 to 30,999

Household Size: Four or more
Household Size: Three

Household Size: Two
Sex: Male
Age: 70+

Age: 60−69
Age: 50−59

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Risk Ratio

Figure 8.3: The explanatory variables which yielded significant risk ratio estimates for the
sociodemographic and building factors in the model. A value of 1 is interpreted
as having no impact on the risk of CEWD . This figure does not include estimates for
the experienced temperature or thermal variety. These are given below.

The most notable result of research question 3, relative to those of research question 2

described above, is that the association between CEWD and the tm10 experienced temperature

is no longer significant after the inclusion of the covariates. The implications of this finding

will be discussed further in chapter 9. However, a number of clear statistically significant

results were evident from the regression, these are outlined as follows.

Age. Older participants were found to have a higher relative risk of CEWD , those

aged between 70–79 have a RR = 2.72 [2.42 – 3.05] (where square brackets denote the 95%

confidence interval) over those aged 40–50. It is notable that the confidence intervals are

particularly large for the age variable in comparison to the others. This is likely due to the

variance of CEWD within the variable itself.

Sex. Male participants had an RR = 1.53 [1.47 – 1.58] of having a condition associated
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Continuous 
variables 

 
CEWD: 0 

Mean [sd] 

CEWD: 1 

Mean [sd] 

Risk ratio 

Experienced temperature  tm10  (°C)  28.6 [1.9]  28.7 [1.9]  1.00 [0.99 – 1.01] 

Categorical 
variables 

subcategory 
CEWD : 0 

n (%) 

CEWD : 1 

n (%) 

Risk ratio 

Age 

40‐49  5707 (93.9)  368 (6.1)   
50‐59  19364 (90.8)  1956 (9.2)  1.48 [1.33 – 1.65] *** 
60‐69  30301 (85.6)  5106 (14.4)  2.11 [1.89 – 2.35] *** 
70+  11867 (79.3)  3093 (20.7)  2.72 [2.42 – 3.05] *** 

Sex  Female  39155 (89.5)  4615 (10.5)    
  Male  28084 (82.6)  5908 (17.4)  1.53 [1.47 – 1.58] *** 
Ethnic 
background 

White  65135 (86.4)  10230 (13.6)    
Mixed  357 (89.7)  41 (10.3)  0.99 [0.74 – 1.32] 
Asian or Asian British  556 (85.0)  98 (15.0)  1.16 [0.97 – 1.38] 
Black or Black British  524 (90.0)  58 (10.0)  0.90 [0.70 – 1.14] 
Chinese  144 (91.7)  13 (8.3)  0.86 [0.51 – 1.43] 
Other ethnic group  343 (86.8)  52 (13.2)  1.12 [0.88 – 1.44] 
Do not know  17 (85.0)  3 (15.0)  1.17 [0.41 – 3.38] 
Prefer not to answer  163 (85.3)  28 (14.7)  0.95 [0.68 – 1.33] 

Household 
income 

Less than 18,000  8663 (81.8)  1929 (18.2)    
18,000 to 30,999  14972 (84.2)  2807 (15.8)  0.91 [0.87 – 0.96] ** 
31,000 to 51,999  17491 (87.4)  2525 (12.6)  0.80 [0.75 – 0.85] *** 
52,000 to 100,000  15233 (89.5)  1788 (10.5)  0.72 [0.67 – 0.77] *** 
Greater than 100,000  4421 (91.2)  429 (8.8)  0.64 [0.58 – 0.71] *** 
Prefer not to say  4722 (86.2)  753 (13.8)  0.84 [0.77 – 0.91] ** 
Do not know  1737 (85.6)  292 (14.4)  0.92 [0.82 – 1.03] 

Tenure type  Own outright  37951 (85.2)  6586 (14.8)    
  None of above  244 (88.4)  32 (11.6)  0.92 [0.66 – 1.26] 
  Prefer not to answer  184 (85.6)  31 (14.4)  1.08 [0.78 – 1.49] 
  Mortgage  25313 (88.8)  3185 (11.2)  1.08 [1.03 – 1.13] * 
  Rent Local Authority  1704 (81.3)  392 (18.7)  1.23 [1.11 – 1.36] ** 

  Rent private  1292 (86.3)  205 (13.7)  1.11 [0.98 – 1.26] 
  Shared  145 (83.3)  29 (16.7)  1.47 [1.07 – 2.02] 
  Rent free  406 (86.6)  63 (13.4)  1.04 [0.83 – 1.31] 
Accommodation 
type 

House/bungalow  61864 (86.5)  9690 (13.5)    
None of above  73 (88.0)  10 (12.0)  0.80 [0.45 – 1.41] 
Prefer not to answer  10 (76.9)  3 (23.1)  1.19 [0.40 – 3.56] 
Flat  5245 (86.6)  813 (13.4)  0.98 [0.91 – 1.05] 
Temporary  47 (87.0)  7 (13.0)  0.81 [0.41 – 1.62] 

Table 8.2: Results of the binomial regression of CEWD with the demographic, housing and health
factors described in the text. N=77,762. The total number of participants and the
percentages for either CEWD = 0 or CEWD = 1 are given, along with the risk ratio and
95% confidence interval. The relative subcategory for each variable does not have an
RR estimate. Significance levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9.
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Categorical 
variables  subcategory 

CEWD : 0 

n (%) 
CEWD : 1 

n (%) 
Risk ratio 

Employment 
status 

In paid/self‐employment  35511 (89.2)  4286 (10.8) 
None of the above  299 (85.4)  51 (14.6)  1.10 [0.85 – 1.41] 
Prefer not to answer  89 (89.9)  10 (10.1)  0.76 [0.42 – 1.36] 
Retired  22700 (82.6)  4772 (17.4)  1.06 [1.01 – 1.11] 
Looking after home 
and/or family  2942 (90.9)  293 (9.1)  0.96 [0.86 – 1.08] 

Unable to work because of 
sickness or disability  1006 (71.3)  405 (28.7)  1.83 [1.67 – 2.00] *** 

Unemployed  794 (88.1)  107 (11.9)  0.85 [0.71 – 1.01] 
Doing unpaid or voluntary 
work  3239 (86.2)  520 (13.8)  1.06 [0.97 – 1.15] 

Full or part‐time student  659 (89.3)  79 (10.7)  1.04 [0.84 – 1.27] 
Fuel type  Gas hob or gas cooker  25237 (87.2)  3720 (12.8) 

Gas fire  5405 (84.7)  974 (15.3)  1.05 [0.99 – 1.12] 
Open solid fuel (s.f) open 
fire  2039 (87.3)  296 (12.7)  1.01 [0.90 – 1.12] 

Gas hob & Gas Fire  17309 (85.7)  2879 (14.3)  1.05 [1.00 – 1.09] 
Gas hob & s.f. open fire  4003 (89.3) 478 (10.7) 0.92 [0.84 – 1.01] 
Gas fire & s.f. open fire  169 (86.7) 26 (13.3) 1.04 [0.73 – 1.48] 
Gas hob & Gas fire & s.f. 
open fire   837 (87.6) 119 (12.4) 0.98 [0.83 – 1.16] 

None of the above  12202 (85.8) 2019 (14.2) 1.01 [0.96 – 1.06] 
Prefer not to say  28 (75.7)  9 (24.3)  1.66 [0.96 – 2.88] 
Do not know  10 (76.9)  3 (23.1)  1.54 [0.64 – 3.73] 

Body mass 
index 

normal  27256 (89.2)  3306 (10.8) 
underweight  430 (90.1)  47 (9.9)  1.00 [0.76 – 1.31] 
overweight  38758 (84.8)  6964 (15.2)  1.16 [1.12 – 1.21] *** 
obese  795 (79.4)  206 (20.6)  1.52 [1.35 – 1.72] *** 

activity level 
during study 
week, by 
quintile, lowest 
to highest 
activity 

1st quintile   12429 (80.4)  3034 (19.6) 
2nd quintile  13346 (85.7)  2221 (14.3)  0.84 [0.80 – 0.88] *** 
3rd quintile  13581 (87.2)  1986 (12.8)  0.81 [0.77 – 0.85] *** 
4th quintile   13802 (88.6)  1776 (11.4)  0.76 [0.72 – 0.81] *** 
5th quintile  14081 (90.3)  1506 (9.7)  0.71 [0.67 – 0.75] *** 

Household size  Single occupant  11147 (86.7) 1707 (13.3) 
Two  2150 (27.2) 5755 (72.8) 1.13 [1.07 – 1.20] ** 
Three  10568 (87.0) 1573 (13.0) 1.20 [1.13 – 1.29] ** 
Four or more  13374 (90.0) 1488 (10.0) 1.18 [1.10 – 1.27] ** 

Table 8.3: Results of the binomial regression of CEWD with the demographic, housing and health
factors described in the text. N=77,762. The total number of participants and the
percentages for either CEWD = 0 or CEWD = 1 are given, along with the risk ratio and
95% confidence interval. The relative subcategory for each variable does not have an
RR estimate. Significance levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9.
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with excess winter deaths compared to female participants.

Household size. RR(CEWD) also increased as a function of number of inhabitants in

the home. Living in a home of 2, 3 or 4 and more, conferred an increased risk of CEWD , of

1.13 [1.07 – 1.20], 1.20 [1.13 – 1.29] and 1.18[1.10 – 1.27] respectively. This relationship was

not monotonic, since the confidence intervals of the categories 3 and 4 or more overlap.

Household income. In contrast to the findings reported in the previous chapter,

there was a clear income effect for CEWD risk. Risk reduced monotonically as a function

of income. Those living in homes which earned more than £100,00 had RR = 0.64 [0.58 -

0.71] relative to those earning less than £18,000 a year.

Tenure type. Relative to owning a home outright, participants with a mortgage had

increased risk of CEWD , RR = 1.08 [1.03 – 1.13], as did those who rent from the local

authority RR = 1.23 [1.11 – 1.33].

Employment type. The only significant difference in risk of CEWD , relative to those

in paid work or self-employed, was that those who were unable to work because of sickness

or disability had a much increased risk of CEWD RR = 1.83 [1.67 – 2.00].

BMI. Body mass index was found to have a significant association of CEWD . Obese

participants had RR = 1.52 [1.35 – 1.72] above participants of normal weight.

Activity level. Participants who recorded the highest quintile of activity had in

decreased risk of CEWD , RR = 0.71[0.67 - 0.75]

The inclusion of the variables heating type, financial situation satisfaction and health

satisfaction resulted in problems with the model converging. This is likely due to a

combination of the increased number of variables and the decreased number of participants

that were available for these variables. A discussion of these variables is reserved for

subsection 8.4.2.

8.3.1 Statistical checks

Like the multiple linear regression model used in the previous chapter, binomial regression

also has a number of statistical requirements in order to constitute a valid regression. The

first check is on the residuals of the model - these are shown in 8.4. They are sufficiently

normal to constitute a valid model.
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Figure 8.4: The residuals for the above fit of CEWD which includes tm10. They are normally
distributed, with a slight negative skew which is insufficient to cause problems. The
standard deviation of the residuals is 0.85 log-risk.

Next, the issue of multicollinearity was tested. All values of the VIF were below 2, so it

can be concluded that there is minimal chance of multicollinearity affecting the model.There

is a similar requirement on linearity as in the previous models. External temperature is not

included in this regression since there is no conceivable mechanism by which the external

temperature could be associated with CEWD because the participants received the AX3 at

a random time. Therefore, the only continuous variable that needs to be considered is tm10.

This is shown in figure 8.5. The programming language R which was used to construct the

plot was unable to process the entire sample of 77,762 participants so a random sub-sample

of 20,000 participants was used to construct the test. This was carried out several times to

ensure that the nature of the plot was not a result of the particular random sample selected.
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Figure 8.5: The relationship between the predicted logit value (see section 4.7.2.3) of the model
and the value of tm10. The relationship is linear, with slight deviations from linearity at
the extreme values, as shown by the LOESS fit. The large amount of spread accounts
for the weakness of the relationship between tm10 and CEWD . As in previous figures,
the density of points is shown to represent the 20,000 participants used to create the
figure.

Finally, for binomial regression, it is advisable to ensure that no one value or set of

values overtly impacts the regression estimates (Kassambara, 2018). For this, the model

is plotted in terms of the Cook’s distance (Aguinis et al., 2013), as is shown in 8.6. A

number of outliers are visible in this plot, however, to calculate the impact of these outliers

the standardised residuals are calculated. For this, should any have a value greater than 3

then they must be investigated further (this rule of thumb derives from the observation that

99.9% of all standardised residuals should be within ±3.29 of the mean).
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Figure 8.6: Cook’s distance for each participant in the model.

Computation of the standardised residuals reveals none with a value greater than 3.

It is therefore possible to conclude that the model is not adversely impacted by outlying

values.

8.3.2 Robustness

As chapter 6 showed, tm10, which is the first decile of experienced temperature for the times

at which the participant was likely sedentary, varies with sociodemographic and housing

factors, but most variance is explained by the external temperature variable. Since there

is no means by which the external temperature at the time of the AX3 measurement could

impact CEWD it was not included in the model. However, tm10 is known to vary with external

temperature, which could impact the results indirectly. Therefore, a standardised tm10 was

computed, for which the external temperature was removed. This was done by using the

predicted value of tm10 from the regression given in figure 6.3 and subtracting this value from

the tm10 values. This value of tm10 was then used in the binomial regression above, but there

was no difference in the regression estimates. This is likely explained by the fact that the

overall variance of tm10 explained by external temperature is less than 4%, R2 = 0.039.
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8.4 Other metrics of experienced temperature and

thermal variety

Metric RR without p value RR with covariates p-value
t10 1.04 [1.03− 1.05] ≈ 0 1.01 [1.00− 1.02] 0.04
tm10 1.02 [1.02− 1.03] ≈ 0 1.01 [0.99− 1.01] 0.0448
tmin 1.04 [1.03− 1.04] ≈ 0 1.01 [1.01− 1.02] 0.0001
tmmin 1.04 [1.03− 1.04] ≈ 0 1.01 [1.00− 1.01] 0.014
tµ 1.02 [1.01− 1.03] ≈ 0 1.00 [0.99− 1.01] 0.632
tmµ 0.99 [0.98− 1.00] 0.021 1.00 [0.99− 1.01] 0.72

tsd 0.82 [0.79− 0.84] ≈ 0 0.95 [0.94− 0.98] 0.001
tmsd 0.82 [0.79− 0.84] ≈ 0 0.97 [0.94− 1.00] 0.04
trange 0.96 [0.96− 0.97] ≈ 0 0.99 [0.99− 1.00] 0.001
tmrange 0.96 [0.95− 0.96] ≈ 0 0.99 [0.99− 1.00] 0.02
tiqr 0.92 [0.91− 0.93] ≈ 0 0.98 [0.97− 1.00] 0.02
tmiqr 0.92 [0.91− 0.94] ≈ 0 0.98 [0.98− 1.01] 0.3

Table 8.4: n=77,762 for both model types. A value of p ≈ 0 denotes a value less that 10−16

The above results only considered the use of tm10 and its association with CEWD . The present

section considers the other measures of experienced temperature and thermal variety used

in previous chapters. The estimates of the risk ratio (RR) associated with each variable

are given in 8.4. This includes both the RR for the model using only the experienced

temperature (or thermal variety) metric as well as the model which includes covariates.

This is equivalent to differences between the models for research question 2 and research

question 3. With reference to research question 2, it is instructive to include the risk of

CEWD without any covariates. It is helpful to know the uncorrected risk associated with a

particular factor, and to compare this with the estimates including likely confounders. It

shows that without confounders the risk of CEWD reduces with increased thermal variety.

This is the case under for the metric derived from the range as well as the standard deviation.

This result also holds for the interquartile range, which is discussed more below in section

7.1.4 on alternative metrics. The addition of the confounding variables shifts all estimates

for the risk associated with the various metrics used in this chapter towards one. tsd and

trange are the only metrics which remain significant. It may be possible to conclude from

this that whatever risk reduction that is associated with thermal variety is not conferred

at times at which the participant is sedentary. It does not follow that the participant is

necessarily outdoors during these times.

The risk ratio (RR) estimates for the sociodemographic variables for the other models

which use different metrics are so similar that they are not reported explicitly. However,

since the RR estimates for the models using tsd are the greatest in magnitude they are

reproduce in the appendix (tables B.9 and B.10). The thermal variety metrics tsd and tmsd

are the focus of the results presented in this section for the same reason. The estimates for
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tm10 result in RR greater than one. For tsd and tmsd are less than one. This is interpreted

as suggesting that for each degree the thermal variety increases, the risk of CEWD reduces.

Since this is the opposite direction of the model tm10 the statistical check will also be reported

for the variety metrics. However, in general, the robustness checks which held for tm10 also

hold for the other metrics.

Focusing on the model using tsd, the primary result is that increased thermal variety

is associated with a decreased risk of CEWD . For a model using tsd alone, the estimates

are RR = 0.82 [0.79 − 0.84]. This is interpreted as a 18% reduction in risk of CEWD for

every degree that the tsd thermal variety increases. Following the inclusion of covariates,

this estimate reduces to RR = 0.95 [0.94 − 0.98]. Of course, as with all the associations

highlighted in these results chapters, the causal nature of this relationship cannot be inferred

from this analysis alone. This issue will be further addressed in the discussion in chapter 9.

As mentioned above, this model also found that the risk of CEWD reveals very similar

numerical estimates for the potentially confounding variables, which suggests that the impact

on the model of including tsd instead of t10 are minimal; the risk ratio estimates of each

demographic, building or health factor differ between the two models by no more than 0.02.

This is likely because the experienced temperature contributes little overall to the risk of

CEWD , even though a significant relationship is observed in the case of tsd. Likewise, the use

of the other metrics also did not modify the estimates for the RR for the sociodemographic

and building covariates.

8.4.1 Statistical checks

As with the statistical check reported above for the tmsd mode, the plot of the logit as a

function of both tsd and tmsd is given in figures 8.7a and 8.7b. Tests to see if the model was

adversely impacted by one particular value revealed that this was not the case. Again, the

VIF was calculated and no value was above 3, suggesting multicollinearity is not an issue.

It is therefore possible to conclude that binomial regression used for these variables is valid.

Similar tests on the other variables were also conducted and showed the models using the

other metrics were not impacted negatively by either non-linearity or extreme values.

8.4.2 Additional variables

It was alluded to above that including the extra variables health satisfaction, heating type

and financial situation satisfaction prevented the model from converging. This was likely

because the number of variables was larger, and the number of participants smaller than

the previous model. This problem was addressed by removing the variables ethnicity,

fuel type and accommodation, for which there were no significant relationship with risk of

CEWD . Following this, each of the additional variables were added to the new model in

turn. The only model which converged and showed significant results was one including
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(a) The relationship between the predicted logit
value of the model and the value of tmsd.

(b) The relationship between the predicted logit
value of the model and the value of tsd.

Figure 8.7: Both relationships are linear, with slight deviations from linearity at the extreme
values in figure 8.7a for tmsd, as shown by the LOESS fits (see section 4.7.2.3). The
relationship for tsd is steeper than for tmsd. This accounts for the greater magnitude
risk ratio estimate for tsd. LOESS regression is in black. Simple least squares, which
is used by the model, in red. As in previous figures, the density of points is shown at
regions where there is high density of point.

health satisfaction. These results are given in table 8.5. Compared to the full model, the

most notable change is that the estimate for tsd became non-significant. This is likely due

in part to the introduction of the health satisfaction variable – although it should be noted

that the relationship between these variables is minimal; a regression of health satisfaction

alone on tsd accounts for only 0.08% of the variance of tsd. This means that the issue of

co-linearity is unlikely to be the reason for the change. A second factor is the reduced

sample size of 38,003. The most likely explanation is that the specific way that health

satisfaction interacts with other regression variables is the reason. The other changes are

now examined in detail.

First, tenure type also becomes non-significant. Again, this is not to say that the

relationship revealed by the previous model is erroneous, merely that inclusion of health

satisfaction modifies the results. The risk of CEWD associated with age become greater

in magnitude in the model with extra variables. For example, those aged over 70 years

have a CEWD risk of 3.36 [2.85 − 3.95] (up from 2.72 [2.42 − 3.05]). However, the fact that

the confidence intervals of the new estimates overlap with the previous model’s estimates

suggests that the addition of health satisfaction only has a moderate impact on the model.
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The risk ratio associated with the variable sex does not change, outside the limits of the

confidence intervals. The risk ratio of CEWD associated with those who are unable to

work goes down from 1.82 [1.66− 1.99] to 1.28 [1.11− 1.46]. The risk associated with living

in a household which earns more than £100,000 per year changes from 0.64 [0.57 − 0.71]

to 0.70 [0.61 − 0.82]. As part of this, the risk associated with earning between £18,000

and £30,999 becomes non-significant. Likewise, there is a loss of significance for obese

participants. The risk associated with being overweight remains at 1.11 [1.05 − 1.17] (cf.

1.15 [1.11− 1.20] in the previous model). For the activity variable, the risk associated with

being in the highest quintile changes from 0.72 [0.68− 0.77] to 0.82 [0.75− 0.90]. Similarly,

other activity quintiles also show reduced magnitude of risk in the new model. The estimate

of the risks as function of number in the household does not change. Finally, there is a

very strong effect with health satisfaction; those who are extremely unhappy have a risk of

3.30 [2.63−4.14] compared to those who are extremely happy. Overall, these finding underlies

the importance of building regression models which have specific research questions in mind.

It is not surprising that those who have diagnosed illnesses would be less satisfied with their

health – in this sense there is a degree of circularity if health satisfaction is included. For

this reason the remainder of the discussion will not include the health satisfaction variable

in the model of CEWD risk. However, it is useful to note that health satisfaction, which is a

subjective measure of health, is strongly associated with a measure (CEWD) determined by

physician diagnosis, which is less subjective.

8.5 Summary

This chapter has addressed the second and third of the three main research questions given

in chapter 4. For the second research question “are there associations between experienced

temperature and the health conditions related to excess winter deaths (CEWD)?”, it was

hypothesised that “those who have health conditions associated with excess winter deaths

will be more likely to have higher experienced temperature”. The results presented in

table 8.4 show that all metrics had a significant relationship with CEWD and that higher

temperatures were associated with an increased risk of CEWD . This finding is consistent with

the evidence that was reviewed in the literature that those with long term disabilities were

found to live in warmer homes than those who did not have long term disabilities (Huebner

et al., 2018). These results also held for metrics which measured thermal variety. For these

metrics, higher thermal variety was associated with a decreased risk of CEWD . Although the

casual relationships cannot be addressed in a simple regression such as this, this finding is

consistent with picture that those who have conditions associated with excess winter deaths

have less diverse environments than those who do not have conditions associated with excess

winter deaths. These findings are considered further in the following discussion chapter.
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Explanatory variable 
(relative subcategory)  Subcategory  Risk ratio (Cewd) 
Thermal variety tsd (°C)  ‐  0.97 [0.94 – 1.01] 
Age (40 ‐ 49)  50‐59  1.61 [1.38 – 1.88]*** 

60‐69  2.59 [2.22 – 3.01]*** 
70‐79  3.36 [2.85 – 3.95]*** 

Sex (Female)  Male  1.50 [1.42 – 1.58]*** 
Income (less than 
18,000) 

18,000 to 30,999  0.96 [0.89 – 1.03] 
31,000 to 51,999  0.86 [0.79 – 0.94]** 
52,000 to 100,000  0.73 [0.66 – 0.80]*** 
Greater than 100,000  0.70 [0.61 – 0.82]** 
Prefer not to say  0.83 [0.74 – 0.93]* 
Do not know  0.89 [0.76 – 1.04] 

Tenure (Own outright)  None of above  0.82 [0.52 – 1.30] 
Prefer not to say  1.42 [1.00 – 2.02] 
Mortgage  1.08 [1.02 – 1.15] 
Rent Local Authority  1.13 [0.99 – 1.30] 
Rent private  1.05 [0.88 – 1.24] 
Shared  1.41 [0.95 – 2.09] 
Rent free  1.08 [0.78 – 1.51] 

Household size (single 
occupant) 

Two  1.19 [1.11 – 1.28]** 
Three  1.23 [1.12 – 1.35]** 
Four or more  1.24 [1.12 – 1.37]** 

Employment status (In 
paid employment or 
self‐employed) 

None of the above  1.04 [0.72 – 1.50] 
Prefer not to answer  0.43 [0.14 – 1.31] 
Retired  0.99 [0.92 – 1.06] 
Looking after home and/or family  0.89 [0.75 – 1.05] 
Unable to work because of sickness or disability  1.28 [1.11 – 1.46]** 
Unemployed  0.60 [0.46 – 0.80]** 
Doing unpaid or voluntary work  0.92 [0.81 – 1.04] 
Full or part‐time student  1.13 [0.84 – 1.52] 

Body Mass Index 
(normal) 

Underweight  1.02 [0.70 – 1.47] 
Overweight  1.11 [1.05 – 1.17]** 
Obese  1.09 [0.91 – 1.31] 

Health Satisfaction 
(Extremely Happy) 

Very happy  1.11 [0.96 – 1.29] 
Moderately happy  1.64 [1.42 – 1.89]*** 
Moderately unhappy  2.48 [2.13 – 2.89]*** 
Very unhappy  3.52 [2.96 – 4.19]*** 
Extremely unhappy  3.30 [2.63 – 4.14]*** 
Prefer not to answer  2.05 [0.58 – 7.26] 
Do not know  1.85 [1.13 – 3.02] 

Activity quintile (1st)  2nd     0.90 [0.84 – 0.97]* 
3rd    0.90 [0.83 – 0.96]* 
4th    0.87 [0.80 – 0.94]** 
5th    0.82 [0.75 – 0.90]** 

Table 8.5: The estimates for a reduced model which successfully converges. It includes the variable
of health satisfaction. It is not taken further since the inclusion of health satisfaction
is somewhat circular. Significance levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9.
N=38,003.
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For research question three, “Do combinations of sociodemographic factors, building

factors and CEWD have associations with low experienced temperature?” the hypothesis was

that “those who have health conditions associated with excess winter deaths will not be more

likely to have higher experienced temperature if they are also in low income households.” The

approach taken to answer this question was to include covariates in the binomial regression

model for CEWD . The research question has been answered in the affirmative by the models

constructed here – the metrics t10, tmin and tmmin retained significant relationships with

CEWD once covariates were introduced into the model. These covariates, such as age, sex and

income, contributed far more to overall model than the metrics of experienced temperature.

The metrics of thermal variety tsd, t
m
sd and trange also retained significant relationships once

covariates were introduced. The clearest effect was for the tsd metric.

Focusing specifically on the income effect, relative to the poorest households, the risk

of CEWD steadily reduces with increasing income. This is not the same as suggesting that

higher income guards against the effects of cold related CEWD – such an observation is

outside the scope of the research design – but it is consistent with the conceptual model

that higher income households may have more means at their disposal to avoid CEWD .

Again, the findings are discussed further in following chapter.
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Chapter 9

Discussion

Our apartment with central heating has turned out to be too warm - although it may

be because of the warm weather we are having here

V. I. Lenin - A letter to his mother (November 4, 1909)

This chapter critically discusses the results presented in chapters 6, 7 and 8. In light of

these results it then reviews the thesis as a whole and considers the potential implications

of the findings.

9.1 Results

The first research question of this thesis, set out in chapter 3, was “Does experienced

temperature vary with sociodemographic and building variables [e.g. sex, age, ethnicity,

income, building type, tenure]?”. The general answer to this question is that variation is

observed, but the specifics of the observations provide the most interesting aspects of the

results.

Returning to the hypotheses and dividing them up will help structure the following

discussion. It was hypothesised that no significant differences in experienced temperature

would be measured as a function of sex, ethnicity and income. This was done on the basis of

the absence of evidence, or contradictory evidence, in the literature regarding the variation

of wrist temperatures and dwelling temperatures as a function of these variables. In terms

of the lower metrics, a moderate and consistent effect was observed which showed that males

experience colder temperatures than females. This may be explicable from a thermal comfort

prospective which suggests that men prefer cooler environments for metabolic reasons, as

was explored in chapter 6.

The results for ethnicity were somewhat inconclusive. An absence of theoretical or

literature based reasons for these observed differences, such as those of a Chinese ethnic

background have a significantly lower tm10 than White participants, prompted speculation

regarding culturally specific heating practices, but drawing relationships between ethnic
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background and cultural practice is almost always problematic and usually incorrect.

The results for income were inconsistent. The finding that tmin and tmmin decrease with

increasing income was not observed in the first decile metrics. There was some evidence from

the measures of thermal variety, specifically the difference between the standard deviation,

range and interquartile range, which suggested that higher income participants might have

an experienced temperature distribution which is narrower around the mean and wider at

the extremes. This could indicate that the capacity to control the circumstances of thermal

experience increases with income. This would require more investigation.

Hypothesis 1, that experienced temperature would increase as a function of increasing

age and decreasing health satisfaction, was born out by the findings. This was particular

backed up by the results using the thermal variety metric. The final portion of the

hypotheses, that those living in Local Authority housing would have warmer lower metric

experienced temperatures was shown in all metrics. This accords with the literature which

finds that Local Authority housing is constructed to a higher standard than privately

owned stock (Hamilton et al., 2017). This result may also go some way to explaining the

inconsistent findings as a function of income – there is degree of heterogeneity in the

housing quality of lower income households in the UK as not all low income families live in

social housing. At the same time, a proportion medium and high income families live in

housing that was once socially owned (Palmer and Cooper, 2013).

In order to examine the other findings more closely, the following section splits the

discussion into two parts. The first addresses the lower metrics (tmin and t10) and the

second considers thermal variety (tsd). The previous three chapters have shown that the

picture of the data produced by the regression models depends to an extent on the choice

of metric. The lower metrics tend to produce consistent results, and the thermal variety

produce a slightly different set of results. In this sense, each acts as a lens which emphasises

or occludes different parts of this picture. The question of what extra insight is gained

by restricting the analysis to sedentary time periods is addressed in the final part of this

section. Forming an overall picture of the relationship between experienced temperature

and the sociodemographic, building and health is the primary goal of the first portion of

this chapter.

9.1.1 Lower metrics

Both tmin and t10 give a similar picture of the underlying data for the majority of the

variables considered in this study. In the Pre–analysis plan (PAP) it was expected that the

tmin would be too prone to the effect of outliers to produce coherent results. While this likely

the case at the individual level, averaging the effect across multiple participants reduces this

risk. One of the strengths of multiple linear regression is the ability to create aggregate
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estimates of effects. However, it must be born in mind that the minimum experienced

temperature still only corresponds to a single minute’s worth of exposure.

The primary variable which explains the observed variance in both these metrics is the

average external temperature. From a perspective of basic thermodynamics this is perhaps

unsurprising, but an alternative emphasis is useful. In a fundamental sense it suggests that

the temperatures people experience vary with season. This accords with the picture we

have of the that the built environment, but it further suggests that clothing choices, social

practices, and the host of other processes that construct everyday life in the UK do not

prevent the wrist-worn AX3 sensor from detecting the seasonal variation in temperature. At

the outset of this study it was not at all clear that the sensor would be sufficiently sensitive

to do this. A further point is worth emphasising. The finding that winter experienced

temperatures are colder than summer also points to a real basis for the phenomenological

experience of winter – it is not simply the case that winter feels colder, it is also measurably

so at the level of the individual. This latter point is crucial. Despite the apparent banality

of this finding, no other study to date has measured the winter drop in temperature in a

population at the level of individual experienced temperatures.

Of course, the most important aspect of the findings here is the differential effects of this

cold exposure across different types of people. In this regard, the lower temperature metrics

present a generally coherent picture. Exceptions to this coherence will be noted below. The

clearest effect is related to the activity level of the participant. More active people have

lower experienced temperatures. Since the multiple regression model balances the effect

estimates across all the explanatory variables, it is possible to distinguish effects that are

happening at the same time as this activity effect. Separately, therefore, it distinguishes that

as people age, they tend to experience less cold temperatures. At the same time, an effect

as a function of participant health is also clear – those who are extremely unhappy with

their health tend to have warmer experienced temperatures than those who are extremely

happy. This effect is less strong than either the activity or ageing effects. A clear effect is

seen for those who are unable to work due to sickness of disability compared to those in

employment. They tend to have warmer experienced temperatures, according to the lower

metrics. This may point to desire for warmer temperatures to alleviate the impacts of the

health conditions, or the limitations on mobility caused by the health conditions themselves

reducing the chance of cold exposure.

The study shows that males have moderately colder experienced temperatures, as

measured by the lower temperature metrics. These effects are smaller than those

associated with difference between winter and summer, or being in the youngest group

versus the oldest, for example. The relative difference for sex is around the same as the

difference for a decade of ageing. However, males also have a lower mean experienced
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temperature, especially during sedentary periods.

A clear effect is observable in comparing households that have a solid-fuel open fire for

heating in winter, versus those who do not. As the chapter 8 laid out, this may be due to

the typical location of homes with open fires, as well as the building fabric and the heat

distribution within the home, but assessing this is not possible with the available variables.

There are no significant differences in this variable for the mean experienced temperature.

A consistent effect is observed for those who are overweight relative to those whose BMI

is normal, they have warmer experienced temperatures according to the lower temperature

metrics. The magnitude of this effect is slightly smaller than the one observed for sex

difference. However, the opposite effect is seen for the mean experienced temperature.

Inconsistent results are found for those who are obese when only sedentary time periods

are considered, but using all time periods shows that obese participants are even warmer

than overweight participants are found to be. Again, these findings should be interpreted

alongside the mean experienced temperature, which are significantly lower than normal

BMI participants. Taken together, these results point to a narrowing of the thermal variety

experienced as a function of BMI, which will be discussed below. A study due to Mavrogianni

et al. (2013) suggested that the link between reduced cold exposure and increased obesity

incidence is plausible. However, the uncertainty in measures of domestic temperature makes

determining whether this relationship has changed over time difficult.

Focusing on the activity, age and health factors allows the following summary. Colder

experienced temperatures are associated with those who are more active, feel more healthy

and are younger. This result also holds, with exception of health satisfaction, for times

at which the participant is sedentary. For health satisfaction during sedentary times, the

results are not statistically significant, but the effect size estimates do not contradict this

picture. In the next section, the clearest findings from the portion of the study which used

thermal variety are reviewed.

9.1.2 Thermal variety

The previous chapter defined the thermal variety as the standard deviation of experienced

temperature. It showed that the variance explained by the explanatory variables was highest

with tsd as the outcome variable. It is preferable compared to the experienced temperature

range since the upper experienced temperatures likely correspond to short term exposure to

warm water during bathing. The interquartile range only characterises the central portion

of the variation.

The findings using the thermal variety metric complement the above findings regarding

lower temperature exposure. There is a clear reduction in thermal variety as a function of

age; older participants have lower thermal variety than younger participants.
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There was no effect observed as a function of income, but this was likely because an

increasing thermal range as income increased was offset by a reduced interquartile range.

This may suggest that richer participants spend the majority of their time in a reduced

range of thermal environments, but take occasional excisions into more thermally diverse

environments. This could also be linked to increased showering or bathing rates amongst

the participants who live in higher income households.

Small effects were observed for male participants, whose thermal variety was found to

be slightly less than females. They were found to have an increased range and a reduced

interquartile range, in a similar manner as the income effect, although this relationship did

not hold for when the participants were likely sedentary.

In agreement with the findings on the lower temperature metrics, the presence of an

open solid-fuel fire led to increased thermal variety. Again, this may be due to the home

location, as well as building fabric and home heat distribution factors.

Higher thermal variety was observed for the more active participants, even for times

when they were likely sedentary. This accorded with the finding for health satisfaction of

the participant. Thermal variety reduced as participants became less satisfied with their

health.

9.1.3 Are both metrics necessary?

The lower metrics of experienced temperature (t10, tm10, tmin and tmmin) demonstrated clear

relationships with several of the sociodemographic, building and health factors used in the

stud. Despite differences between the metrics, they generally showed that participants who

were younger, healthier, more active and who had greater health satisfaction tended to

have increased exposure to cold. The results for the metrics of thermal variety were

broadly consistent with this. A natural question that therefore arises at this stage is

whether both kinds of metric, i.e. both lower temperature and thermal variety, are

required for an understanding the relationships between the temperatures people

experience and their sociodemographic status and health factors. They produce

complementary but slightly different pictures of the data. The results using thermal

variety tend to be more consistent, and a greater number of the explanatory variables are

found to be statistically significant. The reason for this is two–fold. The standard

deviation takes into account every value in the time-series when it computed. This

contrasts the minimum and first decile metrics which only incorporate a portion of the

time-series into their calculation. In this sense there is more data which goes into the

standard deviation. Perhaps, more importantly, the standard deviation is, to an extent,

independent of systematic sensor error. Two sensors can differ in their recording of the

temperature by as much as 2°C. This offset would be present in the mean, minimum, or
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first decile measurements. For the standard deviation this would not be the case, since it

characterised by the root mean squared deviation from the mean. Assuming the width of a

degree is measured consistently across devices (which given the precision of 0.3°C is likely)

then the standard deviation would be less prone to error than the other metrics. A similar

argument holds for the range of experienced temperatures. The values of the unaffected

metrics would them be less washed out, compared to those metrics which are impacted by

sensor error. Of course, at the limit of a high number of readings, the errors are assumed

to be uniformly distributed, and so would cancel out even for the minimum and lower

temperature metrics, and so this explanation probably only contributes in part to the

observed difference. However, it is also the case that the standard deviation uses readings

from the higher experienced temperatures of the participant. Therefore, the thermal

variety may be influenced by the impact of increased showering to a greater extent than

the lower metrics are. The lower metrics are more likely to capture cold exposure at the

expense of explained variance. The thermal variety on the other hand has more

explanatory power, but it less certain that this explanation has to do with cold exposure

per se, as it could be the result of both cold and warm exposure.

9.2 Conditions associated with excess winter deaths

Research question 2 and 3 sought to understand the impact of experienced temperature on

the risk of having a disease associated with excess winter deaths (CEWD). It was hoped

that estimating the risk factors associated with CEWD would shed light on who might

be most vulnerable to the impacts of cold. Even though cold is not thought to cause

CEWD directly it exacerbates the symptoms of health conditions and eventually contributes

to mortality associated with these them (Hajat, 2017). All metrics were associated with

CEWD on their own – specifically, higher t10 and tmin and smaller tsd were associated with

increased risk of CEWD . These effects were diminished in all instances with the inclusion of

other confounding variables. Only tsd remained a statistically significant risk factor in the

full model. These results did not contradict the findings of the multiple regression model.

They added further evidence that those with underlying health conditions, like with the

subcategory of participants who are unable to work due to disability or sickness, tend to

be associated with narrow thermal variety and increased lower experienced temperature

metrics. The study design of this thesis is only able to examine associations. No causal

claims can be made from the data alone. However, it is still possible to generate potential

causal structures that are consistent with these findings, with a view to generating future

programs of research. This will be done below, following an examination of the limitations

of the research design.
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9.3 Assumptions and limitations

All the regression methods used in this study are linear. The analysis of the statistical

validity of the models was given at the end of each of the results chapters, and it was shown

that the assumption of linearity held for the data considered. However, most approaches to

the relationship between cold exposure and mortality in contemporary epidemiology consider

non-linear and lagged exposure effects. The structure of the variables and their collection

times means this was not possible or meaningful for this study. However, it would be

beneficial to allow for non-linear effects in future designs using experienced temperature.

This is discussed further in section 10.2, but it is important to note that the ordering of

data collection for this study, where baseline characteristics were collected well in advance

of the experienced temperature and activity data, mean contemporary approaches to cold

exposure were not possible in this study. Given this limitation, the restriction of the analysis

to linear effects is reasonable.

The experienced temperature and thermal variety were summarised into a single

variable which accounted for the 5-day study period. The same approach was taken with

external temperature. However, as was seen in chapter 8, the time-series temperature data

exhibit diurnal variation. Therefore, in averaging across multiple days the diurnal

characterises of the time-series are lost. A more complex study design could have used

hourly external temperature data, alongside hourly measures of experienced temperature,

to understand how they change through the day and week. Again, these are further

considered in section 10.2. Unfortunately, since the initial downsampling and processing of

the data was a highly time intensive task, more nuanced analysis was not possible in the

time frame of the PhD.

A similar consideration applies to the treatment of geographical structure in the data.

While this was tested using a multilevel approach and ultimately rejected due to insufficient

variance, alternative approaches are possible. Most notably, the findings regarding open

solid-fuel fires would have been interesting to test against a measure which estimated the

urban or rural characteristics of the household. While it would not have been possible to

be more precise than the kilometre rounding of the home location allowed, an approximate

categorisation would have been beneficial.

Finally, the primary limitation of the study is the lack of information regarding where

the participant was during the study period. The proxy of the activity filtered time-series,

i.e. tm10 and other metrics, was partially successful but the study program would have

benefited from validation in this respect. Whether the participant is indoors, whether at

home or elsewhere, is crucial to making policy recommendations and understanding the

relation with energy demand more specifically. The present study would have been greatly

183



aided by a variable that assessed whether the participant was indoors or outside. This has

been successfully implemented in small scale studies of activity (Kerr et al., 2012) using

GPS systems, but this would be unfeasible for a large-scale study such as the present one

and could also present privacy issues.

9.4 The overall picture

Across all metrics, including the information provided by the binomial regression, and

keeping in mind the limitations and assumptions of the research design, a possible

summary model of the findings regarding temperature and health is given in figure 9.1. It

incorporates the general consensus from the wider literature, and the findings of this study,

to show that as health moves from good to poor the thermal variety of experienced

temperature decreases. This is consistent with the finding that the lowest temperatures

experienced are less cold as health becomes poor. These findings also hold for what

happens as people age or become less active. On top of this narrowing band of experienced

temperatures, two regions of harm are imposed. These show that as one moves towards

poorer health, the region of potentially harmful temperatures encroaches onto the

experienced temperature of the participant. Under this summary model, it is this effect

that contributes to the seasonal variation of mortality that is observed in the

epidemiological literature.

9.5 Implications

Without appealing to casual mechanisms, it is difficult to generate the possible implications

of the findings. Therefore, this section takes a speculative approach as to what the possible

underlying causal mechanisms might be which produce the observed research findings. In

order to restrict the scope of this discussion to a manageable extent, four primary findings

from section 9.1 are focused on.

9.5.1 Age

Cold exposure and thermal variety are shown to decrease with age. Clearly, this association

is driven by ageing, which occurs endogenously to the thermal environment of the study

participants, as opposed to narrowing thermal variety causing the ageing process. As people

age, it is reasonable to assume that the variety of thermal environments they experience

on a daily basis reduces. The fact that the data controls for participant activity levels

is important. The reduction of thermal variety with age, and the reduced incidence of

cold exposure, shows that when activity does occur in older people it is more likely to be

environments which are thermally similar to those in which they are sedentary. There is

some evidence to suggest that physical activity outdoors confers an added benefit to health

over activity indoors (Pasanen et al., 2014). It is plausible that an element of the benefit
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Figure 9.1: A summary of the findings, with information from the literature incorporated. The
central dotted lines show that as health moves from good to poor, experienced
temperatures narrow. The literature suggests that people in poor health are more
vulnerable to cold (and hot) temperatures than people in good health. This is
illustrated by the purple regions of harm, which encroach on the range of experienced
temperatures as health becomes worse.

of outdoor activity is related to thermal variety, although this hypothesis would require a

specific study design.

9.5.2 Activity level

The association between activity level and experienced temperature was very clear across

all metrics. Those in the highest quintile of activity had lower experienced temperature and

greater thermal variety. This was evident for times at which the participant was sedentary

and when active. The most reasonable hypothesis regarding the direction of causality for

these variables would be that those who are more active have access to a greater variety of

thermal environments, and that they tend to be outside for longer during colder conditions.

It is also plausible that the causal direction should go in the other direction i.e. a situation

in which someone in a warmer environment would reduce the level of activity. Indeed, the

converse has been shown in the literature: Gauthier (2016) found that increased activity

is one of the typical responses to being in an increasingly cold environment. However, this

has not been found to translate into a positive relationship between BMI and domestic
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temperatures in the literature, as was discussed in chapter 2.

9.5.3 Health

The effect of health satisfaction was clear for the unfiltered metrics. Diminishing health

satisfaction was associated with decreased thermal variety and increased experienced

temperature. Thermal variety during sedentary periods also decreased for those who were

less happy with their health, and to a lesser extent for the minimum experienced

temperature, but the same effect was not seen for the first decile. Those who were unable

to work due to sickness or disability showed warmer lower metric temperatures (except for

the first decile while sedentary) compared to those who were employed. There was also

evidence from the binomial regression that increased risk of having a condition associated

with excess winter deaths was associated with diminished thermal variety (but this was

not observed for the lower temperature metrics). Again, the most obvious explanation for

these findings is that those who are in poor health have less access to thermal varied

environments, and avoid or attempted to avoid cold exposure. Any causal mechanisms

along the opposite direction, for which low temperature exposure caused health

improvement, would likely be of the kind investigated by van Lichtenbelt et al. (2017), in

which mild exposure to cold was shown to stimulate metabolic activity. It is certainly

plausible that both of these causal directions influence the observed relationships in this

study.

9.5.4 Buildings and heating configurations

Finally, the building and heating configurations are considered. Clear results as a function

of building type were disappointingly absent from the findings. There was a small effect

that showed that those who lived alone experienced lower temperatures and had greater

thermal variety than those who live in multiple occupant dwellings. One possible reason for

this might be that those who live in homes of multiple occupants have heating patterns that

have to cater for more than one person, so cold exposure is less likely. However, this finding

requires more detailed investigation to be understood.

The clearest effect came from those who made use of an open solid-fuel fire for heating

in winter. For these participants thermal variety was greater, and they had lower minimum

and first decile experienced temperatures. The results held for both times at which the

participant was sedentary and in general. For this variable it is clear that the housing

configuration must influence the experienced temperature, and not the other way around.

Some plausible reasons for this have been outlined above, including an absence of the

urban heat island effect in more rural communities where open fires are common, poorer

building fabric and different home heating configurations for which there is less heating in

rooms which are not in regular use. These hypothetical causal pathways require further
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investigation. Indeed, a validation case study across a variety of homes and

sociodemographic types would make an excellent follow-up study. This is further

considered in section 10.2. The remainder of this discussion chapter is devoted to

considering the wider implications of the model presented above in figure 9.1.

9.5.5 Energy and buildings

The conceptual summary of the thesis findings given in figure 9.1 is useful for considering the

potential implications of this study for energy demand reduction in the built environment

more generally. The introduction in chapter 1 set out the built environment demand context.

Returning briefly to this it is important to recall that in the temperate climates of the

Northern Hemisphere, domestic energy demand is dominated by space heating. In the USA,

for example there are four times as many heating degree days as cooling degree days EIA

(2012). In the EU, domestic space heating accounts for 78% of domestic energy use, at least

60% of which comes directly from fossil fuel sources.

This study has shown how differences in experienced temperature, and thermal variety,

are associated with a number of demographic and housing factors. In terms of figure 9.1,

reducing harmful exposure necessitates modifying internal temperatures in under–heated

dwellings. Furthermore, low thermal variety, especially in winter, may also point to the

problem of chronically low experienced temperature. It is vital that attention is focused

on at-risk populations who lack the means to avoid harmful cold exposure. Secondary

health impacts associated with temperature such mould growth and damp, which are more

prevalent in under–heated homes, are also a priority.

In the EU, space cooling is uncommon in homes. Since the majority of domestic

energy is expended in home heating this remains the primary target for domestic energy

demand reduction. There is the potential to reduce the heating demand temperature of

homes with healthy occupants, effectively increasing their thermal variety from below,

without increasing the risk to vulnerable individuals. If such individuals could be

encouraged to reduce their heating demand temperatures at home, perhaps accompanied

by comfort provision using low carbon practices, a significant amount of energy might be

saved. From a policy standpoint, such a position is currently controversial given

government and health body recommendations typically avoid differentiating between

thermal environments for healthy and unhealthy individuals (cf. Jevons et al. (2016)).

However, when coupled with the emerging evidence from the thermal comfort literature on

the comfort potential of indoor environments which avoid thermal monotony, such a

proposal has broader appeal. Indeed, a simple analysis given in the appendix D shows that

if the healthiest 25% of the population of Europe could be motivated to reduce their

internal domestic temperatures by 1°C, approximately 10 MtCO2e (around 0.2% of total
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EU emissions) could be saved. Heating reduction campaigns could be targeted at healthy,

well-off and environmentally conscious portions of the population as a means raising

awareness of the climate impacts of CO2 intensive heating.
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Chapter 10

Conclusions

But do you find the change in the seasons affects you without reason?

You’ve greetings but nothing more to say

And you swear you’d feel much better if only summer’d last forever

But the sky is clear and you’re nowhere near and the rain is here again

Catatonia – Don’t Need the Sunshine (1998)

This concluding chapter outlines the main outcomes and key findings of the study.

Potential avenues for future work are given. The study design as a whole is reflected upon,

and the potential wider impact of the work laid out.

10.1 Main conclusions

• The wrist worn AX3 monitor characterises the immediate thermal environment of the

wearer. The value it records is governed by a mixture of ambient temperature and

heat from the wrist, as well as multiple other factors such as clothing level, local wind

speed and incident radiation. In all but a few cases, the reading taken by the AX3 is

likely correlated to the thermal sensation of the wearer.

• The AX3 is sufficiently accurate to distinguish differences in experienced

temperature between sociodemographic groups and housing and health factors, as

well as the average external temperature at the time of wearing.

• The best way to characterise the time-series of temperatures measured by the AX3 in

relation to cold exposure is through the lower temperature metrics (t10, tmin). The use

of metrics screened for high activity (tm10, tmmin) provides insight as to whether the cold

exposure occurs during sedentary periods. These periods likely correspond to times

when the participant was indoors.

• The thermal variety (tsd) is also useful as a metric of cold exposure, but it is potentially

impacted by the frequency of exposure to warmth.
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• The clearest effects are as follows:

– Cold exposure is measured to decrease with age. Thermal variety also decreases

with age.

– Cold exposure increases with activity level. Thermal variety also increases with

activity level.

– Cold exposure decreases with health satisfaction and whether the participant has

conditions associated with excess winter deaths. Thermal variety also decreases

with the factors.

– Cold exposure and thermal variety increase if the household makes use of an

open solid fuel fire for heating in winter time. Further investigation is required to

understand which factors primarily determine this finding. Possibilities include

housing location, fabric and the distribution of heat in bedrooms and other rooms

of the home.

– Cold exposure is greater for those who live alone compared to those who live

multiple occupant dwellings.

• Smaller effects are observed for sex differences and they are complex. Men tend to

have lower experienced temperatures, but also slightly lower thermal variety.

• Effects related to Body Mass Index and ethnicity are also complex and require further

investigation.

• A follow up project of times-series validation is required to associate the specific

readings at a given time in a given environment with the activities of daily life of the

individual. Many of the experienced temperature times-series vary diurnally with a

night time peak, the specific mechanics and the relative importance of wrist

temperature and ambient temperature should be understood. Better understanding

of the specific effect of clothing level is also important.

10.2 Further work

Several avenues of further work using the processed data became apparent during the

research process. One of the primary aims of this thesis was to create a database of

experienced temperatures recorded using the AX3. Indeed, the complete database of

downsampled and processed data will be returned to the UK Biobank so that other

researchers can apply for access to make use of it. The following section highlights a few

ideas for further work that could be carried out.
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10.2.1 Repeat measure

As it stands the data is based on a single sample of a week for each participant between

2013 and 2015. UK Biobank will soon be releasing data collected in 2018 where participants

were asked to wear the device at four instances throughout the year. This would provide

insight into the variation of experienced temperature throughout the year within a particular

participant. This would provide a step towards being able to make causal statements, when

coupled with repeat measures of health satisfaction, for example.

10.2.2 Activity analysis

The team at the University of Newcastle, along with researchers related to the study due

to Doherty et al. (2017), have developed an improved processing script which is able to

differentiate activity patterns and relate them to activities such as sleeping and exercise.

This would provide a more reliable alternative to the method of filtering by median activity

level used in this study. Understanding how the experienced temperature relates to specific

activities would be extremely valuable.

10.2.3 Rhythmicity

It was evident that certain experienced temperature time-series exhibited greater regularity

in their diurnal variation that others. Developing a characterisation of the rhythmicity of

the experienced temperature might provide additional insight on top of the metrics of cold

exposure and thermal variety, as measured through the simple standard deviation. Certain

subjects appear to have repeated thermal routines, much like limit cycles in chaos theory,

others have time-series which seem to be affected by noise. What this means for participant

health is also of great interest.

10.2.4 Night-shift workers

One excluded portion of the dataset were those who work night-shifts. These participants

were excluded because there is evidence that suggests the circadian rhythms are disrupted

by night-shift work, which is detectable in the wrist temperature variation. However, during

discussions with colleagues, the suggestion was made that this group could be of particular

interest from a thermophysiological perspective. A potential follow up study could focus on

this group in particular, and attempt to determine whether the experienced temperature

disruption plays a part in development of conditions associated with disrupted circadian

rhythms.

10.2.5 Showering

In the pilot study using looking at 10-day’s worth of data recorded on the AX3 it was evident

that showering events could be detected. Data on the frequency of showering could provide

insights for two very distinct fields of study. First, hot water heating schedules might be
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derivable from such data, which could aid in demand side management. Second, there is a

link between positive mental health and the maintenance of personal hygiene (Sum et al.,

2019). Understanding the frequency of showering in the population, and its relation to

depressive episodes and other mental health conditions might prove insightful.

10.2.6 Thermal variety and BMI

The study revealed clear relationships between increased body mass index and reduced

thermal variety. Understanding this relationship in greater detail may aid the development

of novel treatments for metabolic syndrome and other conditions related to obesity.

10.3 Critical reflection on the research design

Broadly speaking the research program was successful. The data processing and

downsampling portion was challenging as it involved the deployment of complex

programming techniques. In particular, the set-up of the cluster computing environments

was time intensive. However, once the system was set-up it was possible to proceed with

the processing using the modified Newcastle University script relatively quickly.

The inclusion of a Pre–analysis plan (PAP) was deemed necessary to guard against the

risks of p-hacking. The use of a PAP limits the scope of the tests that can be carried out

in the first instance. The limitations it set meant the research proceeded more slowly than

otherwise might have happened, but in the end this was valuable as it allowed for further

reflection on research questions. It meant that the research proceeded in a more structured

way, and overall was a positive addition to the research program. However, it was also

necessary that a portion of the study was carried out without strict pre-specification. It is

an interesting counter-factual to consider whether the research outcomes might have been

different had a PAP not been written. It is hoped that they would have been similar, but the

nature of Big Data computing projects is that once the data are available an array of tests

can be carried out very quickly. The inclusion of the PAP was therefore most valuable in its

effect of reducing the pace of research. This allowed more critical reflection than otherwise

might have occurred.

An alternative research design could have focused on using the AX3 in a more

controlled case-study environment. This would have provided interesting insight into the

relationship between activities of daily life and experienced temperature, as suggested

above. However, the research design carried out for this thesis was essential to answering

the research questions at the population level.

The consideration of thermal comfort as a research parameter was largely absent from

the study. This topic could form the basis of a major follow-up study. The present study

would also have benefited from a closer examination of the time variation of experienced
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temperature. In particular, this could have allowed for sleep periods to be screened. Again,

for reasons of scope this was not possible, but would form the basis for future work.

10.4 Thesis outcomes and Impact

The following section gives the principle outcomes of the thesis. Alongside the paper given

below, it is expected that two further research papers will be accepted for publication in

the coming months. It is hoped that these papers will develop the understanding of themes

addressed by this thesis in the literature as a whole. Alongside these papers, the dataset of

experienced temperature and activity time-series for 102,342 participants will be available

to all UK Biobank researchers.

10.4.1 Research papers

• “Observational evidence of the seasonal and demographic variation in experienced

temperature from 77,743 UK Biobank participants” H. R. Kennard, G.M. Huebner ,

D. Shipworth. J Public Health (Oxf). 2019 Apr 25. fdz025.

10.4.2 Principle conference papers, presentations and posters

• “Thermal Variety and Health”. ICEE 2019: International Conference on

Environmental Ergonomics 7th – 12th July, 2019. Amsterdam, Netherlands.

• “Regression Dilution, Bayesian Analysis and Adaptive Thermal Comfort”. Tenth

International Windsor Conference : Rethinking Comfort. Windsor, 13th-15th April

2018. Windsor, UK. (peer-reviewed conference paper)

• “Experienced temperature and health” 2nd BSA Environment & Health. Conference

Poster. 27th October 2017. University of Cardiff, UK.

• “Experienced temperature and fuel poverty”. Fuel Poverty Research Network 4th

Meeting. Lightning Presentation. 6th & 7th November 2017. Newcastle upon Tyne,

UK.

• “A toolkit for improving the quality and reproducibility of energy research”. M.

Nicolson, M. Fell, G. Huebner, D. Shipworth, S. Elam, C. Hanmer, H. Kennard.

ERSS2017 1st International Conference on Energy Research & Social Science,

2nd–5th April 2017, Sitges, Spain.

• “Are we heading towards a replicability crisis in energy efficiency research? A toolkit

for improving the quality, transparency and replicability of energy efficiency impact

evaluations” G. Huebner, M. Nicolson, M. Fell, D. Shipworth, S. Elam, C. Hanmer,

H. Kennard, C. Johnson. In: Proceedings of the European Council for an Energy
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Efficient Economy ECEEE 2017 Summer Study on energy efficiency: consumption,

efficiency and limits. UKERC: London, UK.

10.4.3 Impacts

Within academia, the impact of this thesis is three-fold. First, from a methods perspective,

it has demonstrated that it is possible to measure and analyse the experienced temperature

of individuals at a population level. The number of participants involved in this study far

exceeds any previous studies of experienced temperature or domestic temperatures in the

UK. It is hoped that this thesis has demonstrated the viability of the use of wrist worn

temperature sensors in the real world. The method presented here could be of value to

health practitioners and researchers who work in related fields such as fuel poverty. Second,

the structure of the UK Biobank means that the data outputted by the Big Data processing

portion of this thesis will be available to other researchers. This opens up potential avenues

for future work using the concept of experienced temperature, some of which were outlined in

the previous section. Finally, it contributes to the literature regarding the sociodemographic

variation of temperatures in the UK.

Outside academia this study has the potential to contribute practical understanding

which could aid the development of commercial heating or thermal comfort control systems.

It is conceivable that a wrist worn device could be developed that would automatically

regulate heating in order to maximise the efficiency of such systems. As the economy is

decarbonised, improvements in the energy efficiency of home heating devices is essential.

This is especially true if the UK adopts heating systems based on electric heat pumps, but

also applies if bio-gas or hydrogen based systems are preferred.

Beyond this, there is an opportunity to critically engage with policy makers regarding

the immediate health impacts of adequate domestic heating for vulnerable populations,

and in the longer term, the wider scale impacts of carbon based heating systems for the

population as a whole.
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Appendix A

Processing

A.1 CWA processing work-flow

Legion set up notes (written by Stuart Grieve of the UCL Research IT Services). The

modified Newcastle University CWA processing script is available from https://github.

com/UCL/AX3-temp-output. This assumes ssh keys are set up correctly and you can scp

data to and from research data and Legion.

1. Check out the Newcastle script repository into your Legion home directory:

g i t c l one https : // github . com/UCL/AX3−temp−output . g i t

cd AX3−temp−output

2. Compile the Java code:

module load java /1 . 8 . 0 45

javac java /∗ . java

3. Configure a virtual environment. Ensure that the scp command in the script CWA.sh

found in the legion folder will connect without password prompts. Note that this is

not the job script. An example to do this would be to run these commands while

logged on to Legion:

echo t e s t i n g >> t e s t f i l e . txt

scp t e s t f i l e . txt $USER@ssh . rd . uc l . ac . uk : ˜

4. Build a list of CWA files to process, with the full path to each file as well as the

filename, and one file per line. This file must be stored in the legion folder. The first

few lines of this file might look like this:

/mnt/ gp f s / l i v e / r i td−ag−pro j e c t−rd00g7−dtsh i69 /2037069 90001 0 0 .CWA

/mnt/ gp f s / l i v e / r i td−ag−pro j e c t−rd00g7−dtsh i69 /1346128 90001 0 0 .CWA

/mnt/ gp f s / l i v e / r i td−ag−pro j e c t−rd00g7−dtsh i69 /1687108 90001 0 0 .CWA

/mnt/ gp f s / l i v e / r i td−ag−pro j e c t−rd00g7−dtsh i69 /1346135 90001 0 0 .CWA

/mnt/ gp f s / l i v e / r i td−ag−pro j e c t−rd00g7−dtsh i69 /1687201 90001 0 0 .CWA
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5. Run the template script to create the job script. The template script,

build job script.py takes 3 arguments, your username and the path and filename of

the list of files created in step 5. In this example I am using the username testuser

and a file list called filelist apr14oct14.txt, which is found in the legion folder. This

script needs to be run inside the virtual environment created in step 3.

module load python2/recommended

source ˜/venv/bin / a c t i v a t e

python b u i l d j o b s c r i p t . py t e s t u s e r ˜/AX3−temp−output/ l e g i o n /

f i l e l i s t a p r 1 4 o c t 1 4 . txt

6. Change any other parameters in the job script that need changed, e.g. the size of the

job array, the wallclock time, or the memory allocation.

7. Submit the job as normal:

qsub l e g i o n /CWA. job

8. Its progress can be monitored using watch:

watch −n1 −−d i f f e r e n c e s q s ta t

9. When a job successfully completes, the results will be stored in /mnt/gpfs/live/

ritd-ag-project-rd00g7-dtshi69/results/ inside a folder called the name of the

input CWA file. The CWA file that has been successfully processed is also moved into

the folder /mnt/gpfs/live/ritd-ag-project-rd00g7-dtshi69/done/. If a job fails

for any reason its log files can be seen using cat on legion:

cat ˜/ Scratch /output/CWA. e<job id>.<task id>

cat ˜/ Scratch /output/CWA. o<job id>.<task id>

where <job id> is the job id created when the job was qsubbed, and <task id> is the

array job number corresponding to the individual file being processed.
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Appendix B

Predictors  Subcategory  t10 tm10  tf10 

Intercept  23.62 [23.45 – 23.80]  26.51 [26.35 – 26.67]  26.67 [26.51 – 26.83] 
External temperature C  0.12 [0.11 – 0.12]  0.08 [0.08 – 0.08]  0.09 [0.08 – 0.09] 
Age (40‐49)  50‐59  0.03 [0.03 – 0.03]  0.02 [0.02 – 0.02]  0.01 [0.01 – 0.02] 
Sex (Female)  Male  ‐0.02 [‐0.05 – 0.00]  ‐0.08 [‐0.11 – ‐0.05]  ‐0.11 [‐0.14 – ‐0.08] 
Ethnic 
background 
(White) 

Mixed  ‐0.11 [‐0.30 – 0.09]  ‐0.11 [‐0.29 – 0.07]  ‐0.08 [‐0.26 – 0.10] 
Asian  0.30 [0.15 – 0.45]  0.15 [0.01 – 0.30]  0.15 [0.01 – 0.29] 
Black  0.10 [‐0.07 – 0.26]  0.12 [‐0.03 – 0.27]  0.20 [0.05 – 0.36] 
Chinese  ‐0.51 [‐0.82 – ‐0.19]  ‐0.66 [‐0.95 – ‐0.37]  ‐0.56 [‐0.85 – ‐0.27] 
Other ethnic group  ‐0.05 [‐0.25 – 0.14]  ‐0.13 [‐0.32 – 0.05]  ‐0.10 [‐0.28 – 0.08] 
Do not know  ‐0.04 [‐0.91 – 0.83]  ‐0.21 [‐1.02 – 0.59]  ‐0.25 [‐1.05 – 0.56] 
Prefer not to answer  0.10 [‐0.19 – 0.38]  ‐0.01 [‐0.27 – 0.25]  ‐0.04 [‐0.30 – 0.22] 

Household 
Income (less 
than 18,000) 

18,000 to 30,999  0.04 [‐0.01 – 0.09]  0.04 [‐0.00 – 0.09]  0.06 [0.01 – 0.11] 
31,000 to 51,999  ‐0.01 [‐0.07 – 0.04]  0.00 [‐0.05 – 0.05]  0.02 [‐0.03 – 0.06] 
52,000 to 100,000  0.00 [‐0.06 – 0.05]  0.00 [‐0.05 – 0.05]  0.01 [‐0.04 – 0.06] 
Greater than 100,000  0.01 [‐0.06 – 0.09]  0.00 [‐0.07 – 0.06]  0.01 [‐0.06 – 0.07] 
Prefer not to say  0.02 [‐0.05 – 0.08]  0.06 [0.00 – 0.13]  0.07 [0.01 – 0.13] 
Do not know  0.14 [0.04 – 0.23]  0.13 [0.04 – 0.22]  0.16 [0.07 – 0.25] 

Tenure type 
(Own outright) 

None of above  0.16 [‐0.07 – 0.40]  0.03 [‐0.19 – 0.25]  0.04 [‐0.18 – 0.26] 
Prefer not to answer  ‐0.12 [‐0.39 – 0.15]  ‐0.19 [‐0.44 – 0.06]  ‐0.17 [‐0.42 – 0.08] 
Mortgage  0.12 [0.09 – 0.16]  0.04 [0.00 – 0.07]  0.04 [0.01 – 0.07] 
Rent Local Authority  0.36 [0.26 – 0.45]  0.15 [0.06 – 0.24]  0.16 [0.07 – 0.24] 
Rent private  0.05 [‐0.06 – 0.15]  ‐0.08 [‐0.17 – 0.02]  ‐0.06 [‐0.15 – 0.04] 
Shared  0.14 [‐0.15 – 0.44]  0.01 [‐0.26 – 0.29]  0.01 [‐0.27 – 0.28] 
Rent free  0.27 [0.09 – 0.45]  0.05 [‐0.12 – 0.22]  0.05 [‐0.12 – 0.22] 

Accommodation 
Type (House or 
Bungalow) 

None of above  ‐0.20 [‐0.63 – 0.22]  ‐0.14 [‐0.53 – 0.25]  ‐0.13 [‐0.52 – 0.27] 
Prefer not to answer  ‐0.09 [‐1.20 – 1.02]  ‐0.22 [‐1.24 – 0.81]  ‐0.35 [‐1.38 – 0.68] 
Flat  0.22 [0.16 – 0.28]  0.14 [0.09 – 0.19]  0.13 [0.07 – 0.18] 
Temporary  ‐0.04 [‐0.56 – 0.49]  0.08 [‐0.41 – 0.57]  0.00 [‐0.49 – 0.49] 

Household Size 
(one) 

Two  0.11 [0.07 – 0.15]  0.19 [0.15 – 0.23]  0.18 [0.14 – 0.22] 
Three  0.08 [0.03 – 0.14]  0.14 [0.09 – 0.18]  0.15 [0.10 – 0.20] 
4+  0.04 [‐0.01 – 0.10]  0.10 [0.05 – 0.15]  0.12 [0.07 – 0.17] 

Employment 
Type 
(Employed) 

None of above  ‐0.19 [‐0.40 – 0.02]  ‐0.20 [‐0.39 – ‐0.00]  ‐0.23 [‐0.43 – ‐0.04] 
Prefer not to answer  0.13 [‐0.27 – 0.52]  0.17 [‐0.19 – 0.54]  0.19 [‐0.17 – 0.55] 
Retired  ‐0.03 [‐0.07 – 0.01]  0.02 [‐0.01 – 0.06]  ‐0.01 [‐0.04 – 0.03] 
Looking after home...  ‐0.10 [‐0.17 – ‐0.02]  ‐0.06 [‐0.13 – 0.01]  ‐0.04 [‐0.11 – 0.02] 
Unable to work…  0.50 [0.39 – 0.60]  0.17 [0.07 – 0.27]  0.09 [‐0.01 – 0.19] 
Unemployed  0.04 [‐0.09 – 0.17]  ‐0.07 [‐0.19 – 0.05]  ‐0.10 [‐0.22 – 0.02] 
Doing unpaid or voluntary  ‐0.08 [‐0.15 – ‐0.01]  ‐0.04 [‐0.11 – 0.02]  ‐0.04 [‐0.11 – 0.02] 
Full or part‐times student  ‐0.09 [‐0.23 – 0.05]  ‐0.11 [‐0.24 – 0.03]  ‐0.11 [‐0.24 – 0.02] 

Fuel type (Gas 
hob or gas 
cooker) 

Gas fire  ‐0.02 [‐0.07 – 0.03]  0.00 [‐0.05 – 0.05]  0.00 [‐0.05 – 0.05] 
An open solid fuel fire  ‐0.37 [‐0.46 – ‐0.29]  ‐0.18 [‐0.26 – ‐0.10]  ‐0.14 [‐0.22 – ‐0.06] 
Gas Hob & Gas Fire  ‐0.02 [‐0.05 – 0.02]  0.00 [‐0.03 – 0.03]  0.00 [‐0.04 – 0.03] 
Gas Hob & Open s.f. fire  ‐0.25 [‐0.31 – ‐0.18]  ‐0.10 [‐0.16 – ‐0.05]  ‐0.08 [‐0.14 – ‐0.02] 
Gas Fire & Open s.f. fire  ‐0.57 [‐0.85 – ‐0.29]  ‐0.43 [‐0.69 – ‐0.17]  ‐0.39 [‐0.65 – ‐0.13] 
Hob & Gas Fire & O.s.f. fire  ‐0.28 [‐0.41 – ‐0.15]  ‐0.23 [‐0.35 – ‐0.11]  ‐0.22 [‐0.34 – ‐0.10] 
None of the above  0.07 [0.03 – 0.11]  0.06 [0.03 – 0.10]  0.06 [0.02 – 0.10] 
Prefer not to answer  0.47 [‐0.18 – 1.12]  0.38 [‐0.23 – 0.98]  0.40 [‐0.20 – 1.00] 
Do not know  ‐0.39 [‐1.47 – 0.69]  ‐0.67 [‐1.67 – 0.33]  ‐0.70 [‐1.70 – 0.30] 

Figure B.1: The complete output for the PAP variables for the metrics first decile of the
experienced temperature, t10, tm10 and tf10, which correspond to different activity
exclusion criteria. Significance levels: light green p < 0.01, mid green p < 0.001,
dark green p < 1 × 10−9.
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Predictors  Subcategory  tmin  tmmin  t10  tm10  tμ  tmμ  tmax  tmmax 

Intercept  18.95  21.15  26.00  27.65  30.31  32.02  36.94  36.74 
External temperature °C  0.25  0.19  0.12  0.08  0.05  0.01  0.06  0.03 

Age (40‐49)  50‐59  0.37  0.32  0.06  0.06  0.01  ‐0.01  ‐0.11  ‐0.09 
60‐69  0.77  0.71  0.16  0.18   0.06  0.04  ‐0.19  ‐0.12 
70‐79  1.17  1.05  0.33  0.28  0.13  0.11  ‐0.18  ‐0.09 

Sex (Female)  Male  ‐0.61  ‐0.28  ‐0.10  ‐0.10  ‐0.17  ‐0.31  ‐0.21  ‐0.24 
Ethnic 

background 
(White) 

Mixed  ‐0.03  ‐0.04  ‐0.08  ‐0.11  0.01  0.05  0.00  ‐0.02 
Asian  0.89  0.43  0.23  0.12  0.27  0.28  0.20  ‐0.03 
Black  0.35  0.06  0.09  0.11  0.28  0.34  0.03  ‐0.02 
Chinese  ‐0.24  ‐0.33  ‐0.36  ‐0.62   ‐0.24  ‐0.24  ‐0.37  ‐0.38 
Other ethnic group  0.33  ‐0.02  0.00  ‐0.11  0.04  0.05  0.02  ‐0.07 
Do not know  ‐0.81  ‐0.51  0.02  ‐0.20  ‐0.10  ‐0.09  ‐0.13  ‐0.25 
Prefer not to answer  0.03  ‐0.15  0.06  ‐0.02  0.00  ‐0.06  0.01  ‐0.02 

Household 
Income (less 
than 18,000) 

18,000 to 30,999  0.00  0.04  0.06  0.05  0.03  0.01  0.08  0.06 
31,000 to 51,999  ‐0.12  ‐0.07  0.03  0.01  0.00  ‐0.01  0.08  0.06 
52,000 to 100,000  ‐0.26  ‐0.14  0.03  0.01  0.01  ‐0.02  0.11  0.07 
Greater than 100,000  ‐0.46  ‐0.21  0.06  0.00  0.02  ‐0.04  0.19  0.12 
Prefer not to say  ‐0.02  ‐0.02  0.05  0.08  0.04  0.04  0.08  0.08 
Do not know  0.28  0.24  0.19  0.15  0.11  0.06  ‐0.01  0.00 

Tenure type 
(Own outright) 

None of above  0.24  0.15  0.09  0.00  0.02  ‐0.04  ‐0.01  ‐0.04 
Prefer not to answer  ‐0.16  ‐0.25  ‐0.14  ‐0.19  ‐0.16  ‐0.16  ‐0.31  ‐0.23 
Mortgage  0.07  0.03  0.06   0.01  ‐0.02  ‐0.06  ‐0.07  ‐0.05 
Rent Local Authority  0.43  0.27  0.23  0.12   0.03  ‐0.09  ‐0.16  ‐0.16 
Rent private  0.01  ‐0.08  ‐0.03  ‐0.10  ‐0.08  ‐0.14  ‐0.12  ‐0.08 
Shared  0.05  0.06  ‐0.01  ‐0.03  ‐0.09  ‐0.10  ‐0.23  ‐0.29 
Rent free  0.31  0.12  0.16  0.01  0.03  ‐0.04  ‐0.10  ‐0.07 

Accommodation 
Type (House or 

Bungalow) 

None of above  ‐0.14  0.03  ‐0.19  ‐0.14  ‐0.21  ‐0.25  ‐0.48  ‐0.31 
Prefer not to answer  0.21  0.33  ‐0.52  ‐0.36  ‐0.58  ‐0.74  ‐0.45  ‐0.58 
Flat  0.10  0.10  0.19  0.13  0.09  0.03  0.01  0.02 
Temporary  ‐0.22  ‐0.14  ‐0.07  0.07  ‐0.08  ‐0.08  0.01  ‐0.20 

Household Size 
(one) 

Two  0.14  0.18  0.11  0.19  0.07  0.08  ‐0.03  ‐0.04 
Three  0.11  0.14  0.09  0.14   0.02  0.03  ‐0.06  ‐0.06 
4+  ‐0.05  0.07  0.07  0.10   0.01  0.03  ‐0.07  ‐0.06 

Employment 
Type 

(Employed) 

None of above  ‐0.12  ‐0.17  ‐0.2  ‐0.2  ‐0.17  ‐0.14  ‐0.17  ‐0.12 
Prefer not to answer  0.30  0.55  0.17  0.19  0.24  0.29  0.18  0.09 
Retired  ‐0.04  0.06  ‐0.05  0.03  ‐0.02  0.00  ‐0.05  ‐0.03 
Looking after home and/or family  0.09  ‐0.01  ‐0.04  ‐0.04  ‐0.04  ‐0.01  ‐0.03  0.03 
Unable to work due to sickness/disability  0.60  0.42  0.21  0.1  0.06  ‐0.01  ‐0.01  ‐0.02 
Unemployed  0.13  0.13  ‐0.02  ‐0.09  ‐0.07  ‐0.11  ‐0.09  ‐0.04 
Doing unpaid or voluntary  ‐0.07  ‐0.11  ‐0.07  ‐0.03  ‐0.02  0.02  ‐0.05  ‐0.01 
Full or part‐time student  ‐0.27  ‐0.26  ‐0.11  ‐0.11  ‐0.06  ‐0.05  ‐0.05  0.01 

Table B.1: The regression results for multiple experienced temperature metrics. Significance
levels: light blue p < 0.01, mid blue p < 0.001, dark blue p < 1 × 10−9. N=77,762.

Predictors  Subcategory  tmin  tmmin  t10  tm10  tμ  tmμ  tmax  tmmax 

Fuel type 
(Gas hob or 
Gas cooker) 

Gas fire  0.08  0.03  ‐0.02  0.00  0.01  0.01  0.10  0.04 
An open solid fuel fire  ‐0.31  ‐0.40  ‐0.27  ‐0.15  ‐0.09  ‐0.01  0.20  0.18 
Gas Hob & Gas Fire  0.00  0.00  ‐0.02  0.00  0.00  0.00  0.10  0.06 
Gas Hob & Open solid fuel fire  ‐0.23  ‐0.20  ‐0.18  ‐0.08  ‐0.04  0.01  0.19  0.19 
Gas Fire & Open solid fuel fire  ‐0.33  ‐0.53  ‐0.45  ‐0.39   ‐0.16  ‐0.02  0.28  0.28 
Hob & Gas Fire & Open solid fuel fire  ‐0.27  ‐0.36  ‐0.23  ‐0.22   ‐0.11  ‐0.05  0.18  0.18 
None of the above  0.02  0.03  0.06  0.06   0.04  0.02  0.03  0.01 
Prefer not to answer  0.53  0.65  0.50  0.40  0.18  0.04  0.27  0.14 
Do not know  0.55  0.10  ‐0.47  ‐0.72  ‐0.70  ‐0.46  ‐1.23  ‐0.84 

BMI 
(normal) 

Underweight  0.07  0.00  ‐0.11  ‐0.17  ‐0.01  0.05  0.15  0.13 
Overweight  0.27  0.18  0.15  0.05  ‐0.07  ‐0.15  ‐0.10  ‐0.14 
Obese  0.49  0.21  0.19  ‐0.17  ‐0.30  ‐0.41  ‐0.47  ‐0.49 

Activity level 
(0‐20) 

20‐40  ‐0.76  ‐0.50  ‐0.40  ‐0.07  ‐0.21  0.00  0.08  0.04 
40‐60  ‐1.17  ‐0.84  ‐0.69  ‐0.16  ‐0.36  ‐0.02  0.11  0.07 
60‐80  ‐1.64  ‐1.10  ‐0.97  ‐0.26  ‐0.53  ‐0.06  0.14  0.11 
80‐100  ‐2.46  ‐1.60  ‐1.44  ‐0.45  ‐0.78  ‐0.10  0.20  0.17 
Observations  77762  77762  77762  77762  77762  77762  77762  77762 

  R2  0.21  0.15  0.14  0.06  0.05  0.02  0.02  0.02 

Table B.2: Continuation of figure B.1. Significance levels: light blue p < 0.01, mid blue p < 0.001,
dark blue p < 1 × 10−9. N=77,762.
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Predictors  Subcategory  tmin  tmmin  t10  tm10  tμ  tmμ  tmax  tmmax 

Health 
satisfaction 

Very happy  0.17  0.08  0.06  0.01  0.01  ‐0.01  ‐0.08  ‐0.05 
Moderately happy  0.37  0.20  0.14  0.03  0.01  ‐0.05  ‐0.11  ‐0.08 
Moderately unhappy  0.49  0.26  0.20  0.05  ‐0.01  ‐0.11  ‐0.22  ‐0.17 
Very unhappy  0.59  0.29  0.27  0.07  0.03  ‐0.11  ‐0.07  ‐0.03 
Extremely unhappy  0.73  0.38  0.36  0.14  0.14  0.03  0.03  0.00 
Prefer not to answer  ‐1.08  ‐0.50  ‐0.39  ‐0.21  ‐0.27  ‐0.17  ‐0.53  ‐0.49 
Do not know  0.10  0.18  0.20  0.14  0.11  0.09  0.00  ‐0.01 

Financial 
Situation 
satisfaction 
(Extremely 
happy) 

Very happy  0.01  0.01  0.02  0.01  0.03  0.04  0.04  0.02 
Moderately happy  0.02  ‐0.02  0.01  0.00  0.02  0.02  0.03  0.03 
Moderately unhappy  0.05  ‐0.02  0.05  0.01  0.02  ‐0.01  0.00  0.01 
Very unhappy  0.23  0.09  0.20  0.13  0.10  0.04  0.00  0.00 
Extremely unhappy  0.18  0.18  0.10  0.03  0.02  ‐0.05  0.07  ‐0.01 
Prefer not to answer  ‐0.25  ‐0.15  0.03  ‐0.26  ‐0.10  ‐0.22  ‐0.32  ‐0.20 
Do not know  ‐0.20  0.11  0.20  0.08  0.01  ‐0.12  ‐0.36  ‐0.27 

Heating 
type (Gas 
central 
heating) 

Electric storage heaters  0.06  0.03  0.06  0.10  0.08  0.08  ‐0.17  ‐0.11 
Oil (kerosene) central heating  ‐0.20  ‐0.22  ‐0.14  ‐0.06  ‐0.01  0.04  0.07  0.08 
Portable gas or paraffin heaters  0.18  0.35  ‐0.05  0.12  0.03  0.25  ‐0.17  0.06 
Solid fuel central heating  ‐0.60  ‐0.65  ‐0.43  ‐0.14  ‐0.23  ‐0.19  ‐0.08  ‐0.16 
Open fire without central heating  ‐0.22  ‐0.15  ‐0.18  ‐0.23  ‐0.19  ‐0.23  ‐0.26  ‐0.27 
Three heating types  1.09  1.36  0.49  0.15  0.31  0.28  ‐0.67  ‐0.37 
None of the above  ‐0.12  ‐0.17  ‐0.07  ‐0.07  ‐0.04  ‐0.06  ‐0.01  0.01 
Prefer not to answer  0.55  0.50  0.78  0.70  0.50  0.44  0.76  0.08 
Do not know  ‐0.67  0.13  ‐0.37  ‐0.55  ‐0.57  ‐0.68  ‐0.16  ‐0.45 
Observations  37730  37730  37730  37730  37730  37730  37730  37730 
Adjusted R2  0.21  0.14  0.14  0.06  0.05  0.02  0.02  0.02 

Table B.3: The regression results for the additional variables across different experienced
temperature metrics. Significance levels: light blue p < 0.01, mid blue p < 0.001,
dark blue p < 1 × 10−9. N=37,730.
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Predictors  Subcategory  tsd  tmsd  trange  tmrange  tiqr  tmiqr 

Intercept  3.46  3.10  18.00  15.59  5.45  4.88 
External temperature °C  ‐0.05  ‐0.04  ‐0.19  ‐0.16  ‐0.10  ‐0.08 
Age (40‐49)  50‐59  ‐0.06  ‐0.06  ‐0.49  ‐0.42  ‐0.06  ‐0.08 

60‐69  ‐0.10  ‐0.12  ‐0.95  ‐0.83  ‐0.08  ‐0.15 
70‐79  ‐0.16  ‐0.15  ‐1.34  ‐1.15  ‐0.14  ‐0.15 

Sex (Female)  Male  ‐0.05  ‐0.09  0.40  0.04  ‐0.30  ‐0.23 
Ethnic 
background 
(White) 

Mixed  0.07  0.07  0.03  0.02  0.18  0.17 
Asian  ‐0.01  0.03  ‐0.69  ‐0.47  0.20  0.06 
Black  0.09  0.09  ‐0.32  ‐0.08  0.28  0.13 
Chinese  0.11  0.20  ‐0.12  ‐0.05  0.26  0.30 
Other ethnic group  0.03  0.09  ‐0.31  ‐0.06  0.15  0.17 
Do not know  0.08  0.11  0.67  0.26  0.05  0.37 
Prefer not to answer  ‐0.05  ‐0.01  ‐0.02  0.12  ‐0.17  ‐0.03 

Household 
Income (less 
than 18,000) 

18,000 to 30,999  ‐0.02  ‐0.02  0.08  0.02  ‐0.07  ‐0.05 
31,000 to 51,999  ‐0.01  ‐0.01  0.20  0.13  ‐0.07  ‐0.03 
52,000 to 100,000  ‐0.01  ‐0.01  0.37  0.21  ‐0.11  ‐0.04 
Greater than 100,000  ‐0.02  ‐0.01  0.66  0.33  ‐0.19  ‐0.09 
Prefer not to say  ‐0.01  ‐0.02  0.10  0.09  ‐0.04  ‐0.07 
Do not know  ‐0.07  ‐0.06  ‐0.29  ‐0.24  ‐0.14  ‐0.11 

Tenure type 
(Own outright) 

None of above  ‐0.07  ‐0.02  ‐0.25  ‐0.19  ‐0.15  ‐0.06 
Prefer not to answer  ‐0.01  0.01  ‐0.15  0.02  0.03  0.05 
Mortgage  ‐0.05  ‐0.03  ‐0.14  ‐0.09  ‐0.14  ‐0.06 
Rent Local Authority  ‐0.16  ‐0.11  ‐0.60  ‐0.43  ‐0.33  ‐0.23 
Rent private  ‐0.04  0.00  ‐0.13  0.00  ‐0.09  0.00 
Shared  ‐0.07  ‐0.06  ‐0.28  ‐0.35  ‐0.17  ‐0.17 
Rent free  ‐0.09  ‐0.02  ‐0.41  ‐0.19  ‐0.16  ‐0.05 

Accommodation 
Type (House or 
Bungalow) 

None of above  ‐0.05  ‐0.05  ‐0.34  ‐0.34  ‐0.17  ‐0.1 
Prefer not to answer  ‐0.17  ‐0.22  ‐0.66  ‐0.91  ‐0.43  ‐0.51 
Flat  ‐0.07  ‐0.05  ‐0.08  ‐0.07  ‐0.18  ‐0.10 
Temporary  0.02  ‐0.03  0.23  ‐0.06  0.00  ‐0.10 

Household Size 
(one) 

Two  ‐0.04  ‐0.07  ‐0.17  ‐0.22  ‐0.07  ‐0.11 
Three  ‐0.05  ‐0.06  ‐0.18  ‐0.19  ‐0.09  ‐0.10 
4+  ‐0.03  ‐0.04  ‐0.03  ‐0.13  ‐0.06  ‐0.07 

Employment 
Type 
(Employed) 

None of above  0.03  0.02  ‐0.05  0.05  0.11  0.03 
Prefer not to answer  0.03  ‐0.01  ‐0.13  ‐0.46  0.20  0.01 
Retired  0.01  ‐0.02  0.00  ‐0.09  0.02  ‐0.04 
Looking after home and/or family  0.02  0.02  ‐0.11  0.04  0.08  0.05 
Unable to work due to sickness/disability  ‐0.10  ‐0.05  ‐0.61  ‐0.44  ‐0.17  ‐0.07 
Unemployed  ‐0.02  0.00  ‐0.23  ‐0.17  ‐0.03  0.02 
Doing unpaid or voluntary  0.04  0.03  0.01  0.10  0.08  0.07 
Full or part‐time student  0.04  0.04  0.23  0.27  0.08  0.03 

Table B.4: The regression results for multiple thermal variety metrics. Significance levels: light
red p < 0.01, mid red p < 0.001, dark red p < 1 × 10−9. N=77,762.
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Predictors  Subcategory  tsd  tmsd  trange  tmrange  tiqr  tmiqr 

Fuel type 
(Gas hob or 
Gas cooker) 

Gas fire  0.01  0.01  0.02  0.01  0.05  0.00 
An open solid fuel fire  0.12  0.07  0.51  0.58  0.24  0.08 
Gas Hob & Gas Fire  0.01  0.01  0.09  0.07  0.02  0.00 
Gas Hob & Open solid fuel fire  0.09  0.06  0.41  0.39  0.18  0.09 
Gas Fire & Open solid fuel fire  0.21  0.19  0.62  0.81  0.40  0.32 
Hob & Gas Fire & Open solid fuel fire  0.08  0.09  0.45  0.54  0.14  0.15 
None of the above  ‐0.01  ‐0.01  0.01  ‐0.02  ‐0.01  ‐0.02 
Prefer not to answer  ‐0.21  ‐0.2  ‐0.26  ‐0.51  ‐0.38  ‐0.47 
Do not know  ‐0.18  ‐0.15  ‐1.78  ‐0.94  ‐0.13  ‐0.32 

BMI 
(normal) 

Underweight  0.11  0.11  0.07  0.13  0.39  0.22 
Overweight  ‐0.18  ‐0.14  ‐0.38  ‐0.32  ‐0.50  ‐0.30 
Obese  ‐0.37  ‐0.24  ‐0.96  ‐0.70  ‐0.94  ‐0.53 

Activity level 
percentile 
(0‐20) 

20‐40  0.14  0.04  0.84  0.54  0.19  0.05 
40‐60  0.24  0.08  1.28  0.91  0.32  0.09 
60‐80  0.33  0.11  1.78  1.20  0.45  0.14 
80‐100  0.50  0.19  2.66  1.77  0.69  0.25 
Observations  77762  77762  77762  77762  77762  77762 
R2 / adjusted R2  0.24  0.18  0.17  0.13  0.20  0.15 

Table B.5: Continuation of table B.4. Significance levels: light red p < 0.01, mid red p < 0.001,
dark red p < 1 × 10−9. N=77,762.

Predictors  Subcategory  tsd  tmsd  trange  tmrange  tiqr  tmiqr 

Health 
satisfaction 

Very happy  ‐0.04  ‐0.02  ‐0.25  ‐0.13  ‐0.05  ‐0.03 
Moderately happy  ‐0.10  ‐0.05  ‐0.48  ‐0.28  ‐0.14  ‐0.09 
Moderately unhappy  ‐0.15  ‐0.09  ‐0.71  ‐0.43  ‐0.26  ‐0.16 
Very unhappy  ‐0.16  ‐0.08  ‐0.66  ‐0.33  ‐0.32  ‐0.10 
Extremely unhappy  ‐0.15  ‐0.07  ‐0.70  ‐0.38  ‐0.20  ‐0.13 
Prefer not to answer  0.05  ‐0.05  0.55  0.01  0.36  ‐0.22 
Do not know  ‐0.04  ‐0.03  ‐0.09  ‐0.19  ‐0.06  ‐0.05 

Financial 
Situation 
satisfaction 
(Extremely 
happy) 

Very happy  0.01  0.02  0.03  0.00  0.04  0.05 
Moderately happy  0.01  0.02  0.00  0.06  0.00  0.05 
Moderately unhappy  ‐0.02  0.01  ‐0.04  0.03  ‐0.07  0.03 
Very unhappy  ‐0.07  ‐0.03  ‐0.23  ‐0.09  ‐0.17  ‐0.05 
Extremely unhappy  ‐0.06  ‐0.03  ‐0.11  ‐0.19  ‐0.18  ‐0.03 
Prefer not to answer  ‐0.09  ‐0.02  ‐0.07  ‐0.04  ‐0.16  ‐0.17 
Do not know  ‐0.12  ‐0.09  ‐0.16  ‐0.38  ‐0.32  ‐0.18 

Heating 
type (Gas 
central 
heating) 

Electric storage heaters  ‐0.01  ‐0.02  ‐0.23  ‐0.14  0.01  ‐0.06 
Oil (kerosene) central heating  0.09  0.07  0.27  0.30  0.17  0.09 
Portable gas or paraffin heaters  0.17  0.04  ‐0.34  ‐0.29  0.27  0.04 
Solid fuel central heating  0.09  ‐0.01  0.52  0.49  0.09  ‐0.07 
open fire without central heating  ‐0.02  ‐0.01  ‐0.04  ‐0.12  ‐0.03  0.02 
Three heating types  ‐0.17  ‐0.05  ‐1.77  ‐1.74  ‐0.25  ‐0.14 
None of the above  ‐0.01  0.00  0.11  0.18  ‐0.05  ‐0.07 
Prefer not to answer  ‐0.19  ‐0.22  0.20  ‐0.41  ‐0.25  ‐0.29 
Do not know  ‐0.17  ‐0.19  0.51  ‐0.58  ‐0.13  ‐0.24 
Observations  37730  37730  37730  37730  37730  37730 
Adjusted R2  0.24  0.19  0.17   0.13  0.20  0.15 

Table B.6: The regression results for the additional variables across different thermal variety
metrics. Significance levels: light red p < 0.01, mid red p < 0.001, dark red
p < 1 × 10−9. N=37,730.
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Variable: Subcategory  d(tmin)  d(tmmin)  d(t10)  d(tm10) 
External temperature °C  0.08 [0.07 – 0.08]  0.06 [0.06 – 0.07]  0.06 [0.06 – 0.06]  0.04 [0.04 – 0.05] 
Age: 50‐59  0.11 [0.09 – 0.14]  0.11 [0.08 – 0.14]  0.03 [0.00 – 0.06]  0.03 [0.00 – 0.06] 
Age: 60‐69  0.23 [0.20 – 0.26]  0.24 [0.21 – 0.27]  0.08 [0.05 – 0.11]  0.10 [0.07 – 0.13] 
Age: 70‐79  0.35 [0.32 – 0.38]  0.36 [0.33 – 0.39]  0.16 [0.13 – 0.19]  0.15 [0.11 – 0.18] 
Sex: Male  ‐0.18 [‐0.20 – ‐0.17]  ‐0.09 [‐0.11 – ‐0.08]  ‐0.05 [‐0.06 – ‐0.04]  ‐0.05 [‐0.07 – ‐0.04] 
Ethnicity: Asian  0.27 [0.20 – 0.33]  0.15 [0.08 – 0.22]  0.11 [0.04 – 0.18]  0.07[‐0.01 – 0.14] 
Ethnicity: Black  0.10 [0.03 – 0.18]  0.02 [‐0.05 – 0.10]  0.04 [‐0.03 – 0.12]  0.06[‐0.02 – 0.14] 
Ethnicity: Chinese  ‐0.07[‐0.21 – 0.07]  ‐0.11 [‐0.26 – 0.03]  ‐0.17[‐0.32 – ‐0.03]  ‐0.33 [‐0.48 – ‐0.17] 
Income: 31,000 to 51,999  ‐0.04 [‐0.06 – ‐0.01]  ‐0.02 [‐0.05 – 0.00]  0.01[‐0.01 – 0.04]  0.00[‐0.02 – 0.03] 
Income: 52,000 to 100,000  ‐0.08 [‐0.10 – ‐0.05]  ‐0.05 [‐0.07 – ‐0.02]  0.02[‐0.01 – 0.04]  0.01[‐0.02 – 0.03] 
Income: Greater than 100,000  ‐0.14 [‐0.17 – ‐0.10]  ‐0.07 [‐0.11 – ‐0.04]  0.03[‐0.01 – 0.06]  0.00[‐0.03 – 0.04] 
Income: Do not know  0.08 [0.04 – 0.13]  0.08 [0.04 – 0.13]  0.09 [0.05 – 0.14]  0.08 [0.03 – 0.12] 
Tenure: Rent Local Authority  0.13 [0.09 – 0.17]  0.09 [0.05 – 0.14]  0.11 [0.07 – 0.15]  0.06 [0.02 – 0.11] 
Accommodation: Flat  0.03[0.00 – 0.05]  0.03 [0.01 – 0.06]  0.09 [0.06 – 0.12]  0.07 [0.04 – 0.10] 
Household size: two  0.04 [0.02 – 0.06]  0.06 [0.04 – 0.08]  0.05 [0.03 – 0.07]  0.10 [0.08 – 0.12] 
Household size: three  0.03 [0.01 – 0.06]  0.05 [0.02 – 0.07]  0.04 [0.02 – 0.07]  0.07 [0.05 – 0.10] 
Household size: 4+  ‐0.01 [‐0.04 – 0.01]  0.02 [‐0.00 – 0.05]  0.03 [0.01 – 0.06]  0.06 [0.03 – 0.08] 
Employment: Unable to work 
because of sickness/ disability  0.18 [0.13 – 0.23]  0.14 [0.09 – 0.19]  0.10 [0.05 – 0.15]  0.05 [0.00 – 0.10] 

Fuel type: An open solid fuel fire  ‐0.09 [‐0.13 – ‐0.05]  ‐0.14 [‐0.18 – ‐0.10]  ‐0.13[‐0.17 – ‐0.09]  ‐0.08 [‐0.12 – ‐0.04] 
Fuel type: Hob & Open fire  ‐0.07 [‐0.10 – ‐0.04]  ‐0.07 [‐0.10 – ‐0.04]  ‐0.09 [‐0.12 – ‐0.06]  ‐0.04 [‐0.07 – ‐0.01] 
Fuel type: Gas Fire & Open fire  ‐0.10 [‐0.22 – 0.03]  ‐0.18 [‐0.31 – ‐0.05]  ‐0.22 [‐0.35 – ‐0.08]  ‐0.21 [‐0.35 – ‐0.07] 
Fuel type: Hob & Gas Fire & Open 
fire  ‐0.08 [‐0.14 – ‐0.02]  ‐0.12 [‐0.18 – ‐0.06]  ‐0.11 [‐0.17 – ‐0.05]  ‐0.11 [‐0.18 – ‐0.05] 

Fuel type: None of the above  0.01 [‐0.01 – 0.02]  0.01 [‐0.01 – 0.03]  0.03 [0.01 – 0.05]  0.03 [0.01 – 0.05] 
BMI: overweight  0.08 [0.07 – 0.09]  0.06 [0.05 – 0.08]  0.07 [0.06 – 0.09]  0.03 [0.01 – 0.04] 
BMI: obese  0.15 [0.09 – 0.20]  0.07 [0.01 – 0.13]  0.09 [0.03 – 0.15]  ‐0.09 [‐0.15 – ‐0.03] 
Activity: 20‐40  ‐0.23 [‐0.25 – ‐0.21]  ‐0.17 [‐0.19 – ‐0.15]  ‐0.19 [‐0.21 – ‐0.17]  ‐0.04 [‐0.06 – ‐0.01] 
Activity: 40‐60  ‐0.35 [‐0.37 – ‐0.33]  ‐0.29 [‐0.31 – ‐0.26]  ‐0.33 [‐0.35 – ‐0.31]  ‐0.08 [‐0.11 – ‐0.06] 
Activity: 60‐80  ‐0.49 [‐0.51 – ‐0.47]  ‐0.37 [‐0.39 – ‐0.35]  ‐0.47 [‐0.49 – ‐0.45]  ‐0.14 [‐0.16 – ‐0.12] 
Activity: 80‐100  ‐0.73 [‐0.75 – ‐0.71]  ‐0.54 [‐0.57 – ‐0.52]  ‐0.69 [‐0.72 – ‐0.67]  ‐0.24 [‐0.26 – ‐0.22] 
Health: Moderately happy  0.11 [0.07 – 0.15]  0.07 [0.02 – 0.11]  0.07 [0.02 – 0.11  0.02 [‐0.03 – 0.06] 
Health: Moderately unhappy  0.15 [0.09 – 0.20]  0.09 [0.04 – 0.14]  0.09 [0.04 – 0.15]  0.03 [‐0.03 – 0.08] 
Health: Very unhappy  0.18 [0.10 – 0.26]  0.10 [0.02 – 0.18]  0.13 [0.05 – 0.22]  0.04 [‐0.05 – 0.13] 
Health: Extremely unhappy  0.22 [0.10 – 0.34]  0.13 [0.00 – 0.26]  0.17 [0.05 – 0.30]  0.08 [‐0.06 – 0.21] 
Heating: Solid fuel central heating  ‐0.18 [‐0.34 – ‐0.02]  ‐0.22[‐0.38 – ‐0.06]  ‐0.21 [‐0.37 – ‐0.04]  ‐0.07[‐0.24 – 0.10] 

Table B.7: Effect size estimates for tmin, tmmin, t10 and tm10, for significant subcategories only.
Significance levels denoted by colour: light yellow p < 0.01, mid yellow p < 0.001,
deep yellow p < 1 × 10−9. N=77,762 for variables above the dark line, and N=37,730
below the dark line.
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Predictor  tsd d(tsd)  tmsd d(tmsd) 

Intercept  3.54 [3.49 – 3.59]  3.14 [3.10 – 3.18] 
External temperature  ‐0.05 [‐0.06 – ‐0.05]  ‐0.08  ‐0.04 [‐0.04 – ‐0.04]  ‐0.08 
Age: 50‐59  ‐0.07 [‐0.10 – ‐0.05]  ‐0.11  ‐0.08 [‐0.10 – ‐0.06]  ‐0.13 
Age: 60‐69  ‐0.13 [‐0.15 – ‐0.10]  ‐0.19  ‐0.13 [‐0.15 – ‐0.11]  ‐0.23 
Age: 70‐79  ‐0.18 [‐0.21 – ‐0.15]  ‐0.26  ‐0.16 [‐0.19 – ‐0.13]  ‐0.28 
Sex: Male  ‐0.06 [‐0.07 – ‐0.04]  ‐0.08  ‐0.09 [‐0.10 – ‐0.08]  ‐0.16 
Ethnicity: Chinese  0.16 [0.05 – 0.28]  0.24  0.25 [0.15 – 0.35]  0.44 
Ethnicity: Other ethnic group  0.04 [‐0.04 – 0.12]  0.06  0.09 [0.02 – 0.16]  0.16  
Tenure: Mortgage  ‐0.05 [‐0.07 – ‐0.04]  ‐0.08  ‐0.03 [‐0.04 – ‐0.01]  ‐0.05 
Tenure: Rent Local Authority  ‐0.11 [‐0.15 – ‐0.07]  ‐0.16  ‐0.09 [‐0.12 – ‐0.05]  ‐0.16 
Household size: two  ‐0.03 [‐0.05 – ‐0.02]  ‐0.05  ‐0.06 [‐0.08 – ‐0.05]  ‐0.11 
Household size: three  ‐0.04 [‐0.07 – ‐0.02]  ‐0.06  ‐0.06 [‐0.08 – ‐0.04]  ‐0.10 
Fuel: An Open solid fuel fire  0.08 [0.04 – 0.12]  0.12  0.05 [0.02 – 0.09]  0.09 
Fuel: Gas Hob & Osf fire  0.10 [0.08 – 0.13]  0.15  0.06 [0.04 – 0.09]  0.11 
Fuel: Gas Fire & Osf fire  0.11 [‐0.02 – 0.24]  0.16  0.15 [0.04 – 0.27]  0.27 
Fuel: Gas Hob &Gas Fire & Osf fire  0.11 [0.06 – 0.17]  0.17  0.11 [0.06 – 0.16]  0.19 
BMI: underweight  0.12 [0.04 – 0.19]  0.17   0.11 [0.05 – 0.18]  0.20  
BMI: overweight  ‐0.18 [‐0.19 – ‐0.17]  ‐0.26  ‐0.14 [‐0.15 – ‐0.13]  ‐0.24  
BMI: obese  ‐0.36 [‐0.41 – ‐0.30]  ‐0.52  ‐0.26 [‐0.30 – ‐0.21]  ‐0.45 
Activity: 20‐40  0.13 [0.11 – 0.15]  0.20  0.04 [0.02 – 0.06]  0.07 
Activity: 40‐60  0.23 [0.22 – 0.25]  0.34  0.09 [0.07 – 0.11]  0.16 
Activity: 60‐80  0.32 [0.30 – 0.34]  0.46  0.11 [0.10 – 0.13]  0.20 
Activity: 80‐100  0.48 [0.46 – 0.50]  0.70  0.19 [0.17 – 0.20]  0.33 
Health: Moderately happy  ‐0.10 [‐0.12 – ‐0.07]  ‐0.14  ‐0.05 [‐0.07 – ‐0.03]  ‐0.09 
Health: Moderately unhappy  ‐0.15 [‐0.19 – ‐0.12]  ‐0.22  ‐0.09 [‐0.12 – ‐0.06]  ‐0.16 
Health: Very unhappy  ‐0.16 [‐0.21 – ‐0.11]  ‐0.23   ‐0.08 [‐0.13 – ‐0.03]  ‐0.14 
Health: Extremely unhappy  ‐0.15 [‐0.23 – ‐0.07]  ‐0.22   ‐0.07 [‐0.14 – ‐0.00]  ‐0.13 
Heating: Oil central heating  0.09 [0.05 – 0.13]  0.13  0.07 [0.03 – 0.10]  0.11 
Observations  37730  37730 
R2 / adjusted R2  0.24  0.19 

Table B.8: The effect size for the statistically significant differences for multiple linear regression
models of thermal variety. Those marked in red have p > 0.01 and therefore are not
considered significant. The effect size is calculated by dividing the estimate by the
sample standard deviation, as discussed in chapter 6.5. sd(tsd = 0.69), sd(tmsd = 0.57).
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Continuous 
variables 

Risk ratio  (tsd) Risk ratio  (tm
sd) Signif. 

 tsd 0.95 [0.93 – 0.98] NA ** 

 tm
sd NA 0.97 [0.94 – 1.00] 

Categorical 
variables subcategory Risk ratio Risk ratio 

Age 

40-49 
50-59 1.48 [1.32 – 1.64] 1.48 [1.33 – 1.64] *** 
60-69 2.10 [1.88 – 2.34] 2.10 [1.89 – 2.34] *** 
70+ 2.70 [2.41 – 3.03] 2.71 [2.41 – 3.04] *** 

Sex Female 
Male 1.52 [1.47 – 1.58] 1.52 [1.47 – 1.58] *** 

Ethnic 
background 

White 
Mixed 0.99 [0.74 – 1.32] 0.99 [0.74 – 1.32] 
Asian or Asian British 1.16 [0.97 – 1.38] 1.16 [0.97 – 1.39] 
Black or Black British 0.90 [0.71 – 1.15] 0.90 [0.71 – 1.14] 
Chinese 0.86 [0.51 – 1.44] 0.86 [0.51 – 1.44] 
Other ethnic group 1.12 [0.88 – 1.44] 1.12 [0.88 – 1.44] 
Do not know 1.17 [0.41 – 3.39] 1.17 [0.41 – 3.39] 
Prefer not to answer 0.95 [0.68 – 1.33] 0.95 [0.68 – 1.33] 

Household 
income 

Less than 18,000 
18,000 to 30,999 0.91 [0.86 – 0.96] 0.91 [0.86 – 0.96] ** 
31,000 to 51,999 0.80 [0.75 – 0.85] 0.80 [0.75 – 0.85] *** 
52,000 to 100,000 0.72 [0.67 – 0.77] 0.72 [0.67 – 0.77] *** 
Greater than 100,000 0.64 [0.57 – 0.71] 0.64 [0.58 – 0.71] *** 
Prefer not to say 0.84 [0.77 – 0.91] 0.84 [0.77 – 0.91] ** 
Do not know 0.92 [0.82 – 1.03] 0.92 [0.82 – 1.03]  

Tenure type Own outright 
None of above 0.91 [0.66 – 1.26] 0.92 [0.66 – 1.26] 
Prefer not to answer 1.08 [0.78 – 1.49] 1.08 [0.78 – 1.49] 
Mortgage 1.07 [1.03 – 1.12] 1.08 [1.03 – 1.13] * 
Rent Local Authority 1.22 [1.10 – 1.35] 1.22 [1.11 – 1.35] ** 
Rent private 1.11 [0.98 – 1.26] 1.11 [0.98 – 1.26] 
Shared 1.47 [1.07 – 2.01] 1.47 [1.07 – 2.02] 
Rent free 1.04 [0.83 – 1.30] 1.04 [0.83 – 1.31] 

Accommodati
on type 

House/bungalow 
None of above 0.80 [0.45 – 1.41] 0.80 [0.45 – 1.41] 
Prefer not to answer 1.18 [0.40 – 3.52] 1.19 [0.40 – 3.54] 
Flat 0.97 [0.91 – 1.05] 0.98 [0.91 – 1.05] 
Temporary 0.81 [0.41 – 1.62] 0.81 [0.41 – 1.62] 

Table B.9: Results of the binomial regression of CEWD with the sociodemographic, housing and
health factors described in the text. The total number of participants and the
percentages for either CEWD = 0 or CEWD = 1 are given, along with the risk ratio and
95% confidence interval. The relative subcategory for each variable does not have an
RR estimate. Two models are shown, one including tsd and other tmsd. Significance
levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9. N=77,762. The p value for tmsd was
0.09.
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Categorical 
variables 

subcategory Risk ratio  (tsd) Risk ratio  (tm
sd) Signif. 

Employment 
status 

In paid/self-employment 
None of the above 1.1 [0.85 – 1.41] 1.1 [0.85 – 1.41] 
Prefer not to answer 0.76 [0.42 – 1.36] 0.76 [0.42 – 1.36] 
Retired 1.06 [1.01 – 1.11] 1.06 [1.01 – 1.11] 
Looking after home and/or family 0.96 [0.86 – 1.08] 0.96 [0.86 – 1.08] 
Unable to work 1.82 [1.66 – 1.99] 1.83 [1.67 – 2.00] *** 

Unemployed 0.85 [0.71 – 1.01] 0.85 [0.71 – 1.01] 
Doing unpaid or voluntary work 1.06 [0.97 – 1.15] 1.06 [0.97 – 1.15] 
Full or part-time student 1.04 [0.84 – 1.28] 1.04 [0.84 – 1.27] 

Fuel type Gas hob or gas cooker 
Gas fire 1.05 [0.99 – 1.12] 1.05 [0.99 – 1.12] 
Open solid fuel (s.f) open fire 1.01 [0.91 – 1.13] 1.01 [0.90 – 1.12] 
Gas hob & Gas Fire 1.05 [1.00 – 1.09] 1.05 [1.00 – 1.09] 
Gas hob & s.f. open fire 0.92 [0.85 – 1.01] 0.92 [0.84 – 1.01] 
Gas fire & s.f. open fire 1.05 [0.74 – 1.50] 1.04 [0.73 – 1.49] 
Gas hob & Gas fire & s.f. open fire  0.98 [0.83 – 1.16] 0.98 [0.83 – 1.16] 
None of the above 1.01 [0.96 – 1.06] 1.01 [0.96 – 1.06] 
Prefer not to say 1.64 [0.95 – 2.85] 1.65 [0.95 – 2.87] 
Do not know 1.52 [0.63 – 3.67] 1.53 [0.63 – 3.69] 

Body mass index normal 
underweight 1.00 [0.76 – 1.31] 1.00 [0.76 – 1.31] 
overweight 1.15 [1.11 – 1.20] 1.16 [1.12 – 1.21] *** 
obese 1.49 [1.32 – 1.68] 1.51 [1.33 – 1.71] *** 

Activity level 
during study 
week, by 
quintile, lowest 
to highest 
activity 

1st quintile  
2nd quintile 0.84 [0.80 – 0.89] 0.84 [0.80 – 0.88] *** 
3rd quintile 0.81 [0.77 – 0.86] 0.81 [0.77 – 0.85] *** 
4th quintile  0.77 [0.73 – 0.82] 0.76 [0.72 – 0.81] *** 
5th quintile 0.72 [0.68 – 0.77] 0.71 [0.67 – 0.76] *** 

Household size Single occupant 
Two 1.13 [1.07 – 1.19] 1.13 [1.07 – 1.19] ** 
Three 1.20 [1.12 – 1.29] 1.20 [1.12 – 1.29] ** 
Four or more 1.18 [1.09 – 1.27] 1.18 [1.09 – 1.27] ** 

Table B.10: A continuation of the results of the binomial regression shown in B.9 of CEWD with
the sociodemographic, housing and health factors described in the text. The total
number of participants and the percentages for either CEWD = 0 or CEWD = 1 are
given, along with the risk ratio and 95% confidence interval. The relative subcategory
for each variable does not have an RR estimate. Two models are shown, one including
tsd and other tmsd. Significance levels: * p < 0.01, ** p < 0.001, *** p < 1 × 10−9.
N=77,762.
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Appendix C

Python scripts

C.1 Downsampling

The following script downsamples the 5-second temperature and activity data for each

participant to a 1-minute period.

1 ”””

2 Created on Wed Mar 21 11 : 13 : 21 2018

3

4 @author : Harry Kennard

5 ”””

6 import pandas as pd

7 import os

8 import numpy as np

9 d i r e c t o r y i n s t r = r ”R:\BioBank\ r e s u l t s ap r 1 4o c t 1 4 ”

10 d i r e c t o r y = os . f s encode ( d i r e c t o r y i n s t r )

11 s u f f i x = os . f s encode ( ”Epoch . csv ” )

12 suffixNonWear = os . f s encode ( ”NonWearBouts . csv ” )

13 pr in t ( ”Running . . ” )

14 f o r f i l e in os . l i s t d i r ( d i r e c t o r y ) :

15 f i l ename = os . path . j o i n ( d i r e c to ry , f i l e , f i l e+s u f f i x )

16 f i l ename = f i l ename . decode ( ” utf−8” )

17 filenameNonWear = os . path . j o i n ( d i r e c to ry , f i l e , f i l e+suffixNonWear )

18 filenameNonWear = filenameNonWear . decode ( ” utf−8” )

19 t ry :

20 data = pd . r ead c sv ( f i l ename , eng ine=’ python ’ , i nd ex c o l =0)

21 dataNonWear = pd . r ead c sv ( filenameNonWear , eng ine=’ python ’ )

22 dataNonWear = dataNonWear . drop ( [ ’ xStdMax ’ , ’ yStdMax ’ , ’ zStdMax ’ ] , ax i s

=1)

23 data . index = pd . to date t ime ( data . index )

24 data2=data . resample ( ’ 1Min ’ ) .mean ( )

25 data2=data2 . drop ( [ ’ samples ’ , ’ dataErrors ’ , ’ c l i p sB e f o r eCa l i b r ’ , ’

c l i p sA f t e rCa l i b r ’ , ’ rawSamples ’ ] , a x i s=1)

26 data2 [ ’ wear ’ ]=np . ones ( l en ( data2 . index ) )

27 data2 [ ’ temp ’ ]=data2 [ ’ temp ’ ] . round (2 )
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28 l en ( data2 . index )

29 f o r index , row in dataNonWear . i t e r r ows ( ) :

30 s t a r t = row [ ’ s t a r t ’ ]

31 end = row [ ’ end ’ ]

32 data2 [ ’ wear ’ ] . l o c [ s t a r t : end ] = 0

33 data2 . t o c sv ( f i l e . decode ( ” utf−8” ) + ” . csv ” , sep=’ , ’ )

34 except :

35 pr in t ( f i l ename + ” f a i l e d ” )

36 pr in t ( ”done” )

C.2 Metric processing

The following script produces the summary metrics which are used in this study.

1 ”””

2 Created on Mon Jan 21 18 : 38 : 05 2019

3 @author : Kennard

4 ”””

5 import pandas as pd

6 import os

7 import numpy as np

8 import csv

9 from sc ipy import s t a t s as s t

10 d i r l i s t = [ ]

11 d i r l i s t . append ( r ”C:\BioBank\downsampled” )

12

13 output d i r = r ”C:\BioBank\multix ”

14

15 de f p a t i e n t i d ( cwa f i l ename ) :

16 t ry :

17 name = os . path . basename ( cwa f i l ename )

18 r e turn i n t (name . s p l i t ( ’ ’ ) [ 0 ] )

19 except :

20 pr in t ( ”Not a va l i d id ” )

21 de f f i n d c s v f i l e n ame s ( pa th to d i r , s u f f i x=” . csv ” ) :

22 f i l enames = os . l i s t d i r ( p a th t o d i r )

23 r e turn [ f i l ename f o r f i l ename in f i l enames i f f i l ename . endswith ( s u f f i x ) ]

24 de f l i s t o f i d s ( i npu t d i r ) :

25 d i r e c t o r y = os . f s encode ( i npu t d i r )

26 s u f f i x = os . f s encode ( ” . csv ” )

27 f i l e s = f i n d c s v f i l e n ame s ( d i r e c to ry , s u f f i x )

28 f i l e l i s t = [ ]

29 f o r f i l e in f i l e s :

30 f i l ename = os . path . j o i n ( d i r e c to ry , f i l e )

31 f i l ename = f i l ename . decode ( ” utf−8” )

32 pat id = pa t i e n t i d ( f i l ename )

33 f i l e l i s t . append ( s t r ( pa t i d ) )
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34 r e turn f i l e l i s t

35 f o r i npu t d i r in d i r l i s t :

36 d i r e c t o r y = os . f s encode ( i npu t d i r )

37 output med = os . path . j o i n ( os . f s encode ( output d i r ) , os . f s encode ( os . path .

s p l i t ( i npu t d i r ) [1 ]+ ”g . csv ” ) )

38 output x = os . path . j o i n ( os . f s encode ( output d i r ) , os . f s encode ( os . path . s p l i t (

i npu t d i r ) [1 ]+ ” f . csv ” ) )

39 output = os . path . j o i n ( os . f s encode ( output d i r ) , os . f s encode ( os . path . s p l i t (

i npu t d i r ) [1 ]+ ”p . csv ” ) )

40 pr in t ( ” p ro c e s s i ng ” , d i r e c t o r y )

41 with open ( output med , ’w ’ , newl ine=’ ’ ) as f :

42 wr med= csv . wr i t e r ( f )

43 wr med . writerow ( ( ” e id ” , ” count” , ”mean” , ” std ” , ”min” , ”x10” , ”x25” , ”x50” , ”x75

” , ”x90” , ”max” ) )

44 with open ( output x , ’w ’ , newl ine=’ ’ ) as g :

45 wr x= csv . wr i t e r ( g )

46 wr x . writerow ( ( ” e id ” , ” count” , ”mean” , ” std ” , ”min” , ”x10” , ”x25” , ”x50” ,

”x75” , ”x90” , ”max” ) )

47 with open ( output , ’w ’ , newl ine=’ ’ ) as h :

48 wr= csv . wr i t e r (h)

49 f i l e l i s t = f i n d c s v f i l e n ame s ( i npu t d i r )

50 wr . writerow ( ( ” e id ” , ” count” , ”mean” , ” std ” , ”min” , ”x10” , ”x25” , ”x50

” , ”x75” , ”x90” , ”max” ) )

51 f o r f i l e in f i l e l i s t :

52 f i l e = os . f s encode ( f i l e )

53 f i l ename = os . path . j o i n ( d i r e c to ry , f i l e )

54 f i l ename = f i l ename . decode ( ” utf−8” )

55 pat id = pa t i e n t i d ( f i l ename )

56 t ry :

57 data = pd . r ead c sv ( f i l ename , eng ine=’ python ’ ,

i nd ex c o l =0)

58 data . index = pd . to date t ime ( data . index )

59 grouped = data . groupby ( ’ wear ’ )

60 g1 = grouped . get group ( 1 . 0 )

61 s i z e = g1 [ ’ temp ’ ] . d e s c r i b e ( ) [ 0 ]

62 i f s i z e >9072:

63 drp = g1 [1440:−1440] #remove f i r s t and l a s t days

64 drp med = drp [ drp [ ’ enmoTrunc ’ ] > 0 . 0 1 ]

65 drp x = drp [ drp [ ’ enmoTrunc ’ ] < 0 . 0 1 ]

66 dat med=np . round ( drp med [ ’ temp ’ ] . d e s c r i b e (

p e r c e n t i l e s = [ 0 . 1 , 0 . 2 5 , 0 . 5 , 0 . 7 5 , 0 . 9 ] ) , dec imals = 3)

67 dat x=np . round ( drp x [ ’ temp ’ ] . d e s c r i b e ( p e r c e n t i l e s

= [ 0 . 1 , 0 . 2 5 , 0 . 5 , 0 . 7 5 , 0 . 9 ] ) , dec imals = 3)

68 dat=np . round ( drp [ ’ temp ’ ] . d e s c r i b e ( p e r c e n t i l e s =

[ 0 . 1 , 0 . 2 5 , 0 . 5 , 0 . 7 5 , 0 . 9 ] ) , dec imals = 3)
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69 wr . writerow ( [ pat id , dat [ 0 ] , dat [ 1 ] , dat [ 2 ] , dat [ 3 ] ,

dat [ 4 ] , dat [ 5 ] , dat [ 6 ] , dat [ 7 ] , dat [ 8 ] , dat [ 9 ] ] )

70 wr x . writerow ( [ pat id , dat x [ 0 ] , dat x [ 1 ] , dat x [ 2 ] ,

dat x [ 3 ] , dat x [ 4 ] , dat x [ 5 ] , dat x [ 6 ] , dat x [ 7 ] , dat x [ 8 ] , dat x [ 9 ] ] )

71 wr med . writerow ( [ pat id , dat med [ 0 ] , dat med [ 1 ] ,

dat med [ 2 ] , dat med [ 3 ] , dat med [ 4 ] , dat med [ 5 ] , dat med [ 6 ] , dat med [ 7 ] , dat med

[ 8 ] , dat med [ 9 ] ] ) #wr i t e to f i l e

72 e l s e :

73 pr in t ( [ pat id , s i z e ] )

74 except (OSError , IOError , KeyError , ValueError , IndexError )

as e :

75 i f e == 1 . 0 :

76 pr in t ( ” e r r o r =” , e , f i l ename )
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Appendix D

Heating savings calculation

The order of magnitude energy savings for a 1°C reduction in heating demand temperature

are 10% (Research, 2012). This estimate likely holds for the EU in general because the UK

represents the average heating degree days for EU28 countries (UK: 3179.4, EU28: 3217.6

in 2013) (Eurostat, 2019a) .

Restricting the analysis to natural gas provides a lower limit for the total domestic

space heating emissions, since carbon intensities for natural gas combustion for heat are

more readily available than other fuel types. EU final energy demand was 1,122 Mtoe in

2017 (Eurostat, 2019b). Total EU28 space heating demand from natural gas was 27.6% of

residential energy demand in 2017, and residential demand itself was 27.2% of final energy

demand (Eurostat, 2019c). Therefore, natural gas domestic heating demand was 84.2 Mtoe

(9.80× 1011 kWh) in 2017.

High efficiency boilers result in carbon emissions of between 210-230 gCO2/kWh (CCC,

2013). This number will overestimate average European boiler efficiency, and therefore

underestimate heating CO2 emissions, and provide a lower limit for emissions overall. Using

a value of 230 gCO2/kWh results in total EU28 domestic heating emissions of at least 225

MtCO2e from natural gas alone (compare 4466 MtCO2e emissions for EU28 as a whole

(EEA, 2019). Applying the estimate that 10% of these emissions would be curtailed by a

1°C reduction in domestic demand temperature yields 22.5 MtCO2e/annum.

An upper limit is more challenging to derive, but total space heating proportion of final

energy use provides an estimate. In 2017 this was 64.1%, which is 195.6 Mtoe (2.28 × 1012

kWh) (Eurostat, 2019c). Assuming an average carbon intensity of 300 gCO2/kWh gives

a balance between higher intensity oil and petroleum heating sources (which were 9% of

residential end use in 2017) and lower intensity renewable heat sources (which were 15% of

residential end use in 2017) yields an upper limit of 683 MtCO2e, or 68.3 MtCO2e/annum

saving on a 1°C reduction of demand temperature. The average of the two limit estimates

is approximately 45 MtCO2e/annum.
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Estimating the maximum proportion of the European population who might be able

to tolerate a 1°C reduction in domestic temperatures is also challenging. 13.5% of the UK

Biobank sample used in this study have conditions associated with excess winter deaths.

While the UK Biobank sample is likely to be healthier than the general population (Fry

et al., 2017), selecting the 25% of households which have fit and healthy inhabitants for a

heating reduction campaign would be unlikely to greatly increased risk of harm. Therefore,

approximately 10 MtCO2e/annum emissions might be avoidable. Of course, this estimate

does not take into account comfort considerations, willingness to participate and potential

unforeseen consequences.
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Appendix E

Pre–Analysis Plan

E.1 Introduction

This study is motivated by questions around the impacts of cold domestic conditions on

health. In the UK, the primary evidence for a link between cold and poor health is the

peak in mortality which occurs in winter, as recorded in excess winter mortality statistics.

To date, there have been a limited number of large scale studies into the population level

links between cold exposure and health. The study makes use of UK Biobank data, and in

particular temperature data taken from an wristband activity monitor worn by over 100,000

Biobank participants for a week. Pilot studies showed that the temperature recorded by

the wristband is a determined by a mixture of ambient environmental temperature and

heat from the wrist a quantity which has been called ‘experienced temperature’ a concept

adapted from Kuras et al. (2015). Following a large data processing exercise to down-sample

the 100k data files to produce the experienced temperature time series, associations between

demographics/health condition data and the experienced temperature will be tested. This

document is intended to summarise the statistical processing which will be undertaken.

Justification of other methodical choices will be outlined in other supporting documents

and future publications.

E.1.1 Research Questions

1. Does experience temperature vary with demographic/household variables [e.g. sex,

age, ethnicity, income]?

Sub-question: Are there regional effects which are not explained by external

temperature?

2. Are there associations between experienced temperature and the health conditions

associated with excess winter deaths [ICD 10 I00-I99, J00J99 F01, F03, G30]?

3. Do combinations of demographics (i.e. low income) and health conditions associated

with excess winter deaths [ICD 10 I00-I99, J00J99 F01, F03, G30] have associations
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with low experienced temperature?

Sub-question: Are there regional effects which are not explained by external

temperature?

E.1.2 Hypotheses

1. No significant differences in experienced will be measured as a function of

demographics.

2. A weak association between low experienced temperature and health conditions

associated with excess winter deaths is expected.

3. A stronger association between low experienced temperature and health conditions

associated with excess winter deaths and low household income.

E.2 Data

The data used in this study are supplied by the UK Biobank, which is large ongoing

longitudinal heath study based in the UK. As part of this study potential participants

were invited to wear a wrist activity monitor. The monitor also records temperature, at a

period of around 2 seconds. Participants were instructed to wear the wristband

continuously for a week. Around 33% of invited participants produced data included in

this study. The reasons for non-inclusion are detailed in figure E.2 below, and listed in

greater detail in section E.3.2.

E.2.1 Excluded participants

• Participants with conditions related to cold hands such as anaemia, anorexia

nervosa, Buerger’s disease, carpal tunnel syndrome, diabetes, lupus, Raynaud’s

disease, scleroderma.

• Participants who carry out night shift work whose circadian rhythms are likely to be

disrupted.

• Participants with conditions related to severe disruption of circadian rhythms, i.e.

Alzheimer’s disease and dementia.

E.2.2 Statistical significance

The alpha significance level for this study will be taken as 0.05. Power estimations in

multilevel models are not straightforward, especially prior to the analysis stage. However,

general comments regarding Cohen’s d effect sizes may be made (Cohen, 1988). Given the

standard deviation of the experienced temperature is 2.1°C (see figure 2), any between group

differences of a similar order would represent a large effect size, according to Cohen’s scale.
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At the other end of the effect size scale, the temperature sensitivity of the wrist monitor

is around 0.3°C group differences of this magnitude would correspond to an effect size of

around 0.1, which is small on Cohen’s scale.

It is expected that the total share of the variance that the variables in the model are able

to explain will be low. This is due to a combination of incomplete variable specification,

significant error in the variables that have been recorded, and many unknown-unknowns

which contribute to the variability of social-scientific systems in general.

E.3 Empirical Analysis

The following section details the specific plan for the statistical analysis of the data, and the

variables which will be included.

E.3.1 Experienced temperature

The experienced temperature is derived in the following manner (see figure 1 for the data

processing outline). First, the temperature time series, at 5 second period, is divided into

worn and unworn periods using the algorithm defined by Doherty et al. (2017). The data

is then down-sampled to a period of a minute. Since this algorithm for wear/non-wear

detection relies on activity detection, it is not completely reliable. The data is therefore

first screened for a total ‘wear time’ of over 9072 minutes, or 90% of the total week. The

first and last days are then removed, as they typically include transient periods when the

monitor is moved around but not necessarily worn for example during unpacking from the

postage envelope. Next, data with activity above the median is removed: these correspond

to periods of activity such as exercise or travelling when a participant is unlikely to be in

a sedentary domestic/work setting (it is not possible to accurately infer met levels from

activity alone (Hees et al., 2011)). Finally, temperature data are ordered and the value

corresponding to the lowest decile taken as the experienced temperature.

E.3.2 Variables

The UK Biobank has a very large number of participant variables available. The application

for this study requested around 80. Of these, the 16 below were selected to best answer the

research questions posed above. Limiting the number of variables reduces the probability

of type I errors. Several variables are used in conjunction with each other (such as home

location co-ordinates), as well as information not available in the UK Biobank (such as

NASA external temperature data) to yield a total of 11 variables which enter the model.

E.3.2.1 Variables RQ1

1. 54. → Assessment centre (over 21 regions, given the index j )

2. 90100. → y1. Experienced temperature (continuous)
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Figure E.1: The process by which variables were removed from the study

3. 20074, 20075 (home location) + NASA data → x1. Gridded external temperature

(continuous)

4. 34./52. → x2. Age (continuous)

5. 31.→ x3. Sex (binary)

6. 6139+6140 → x4 : Heating type (categorical)

7. 670+680 → x5 Type of Housing + tenure (categorical)

8. 738—709. → x6. Household income normalised by number in household (category)
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9. 20119. → x7 Current Employment status (categorical)

10. 4581. → x8 Financial situation satisfaction (categorical)

11. 21000. → x9. Ethnic background (categorical)

Co-variates (indicated by below): Age (x2) and Employment Status (x7), Household income

(x6) and Financial situation satisfaction (x8)

E.3.2.2 Variables RQ2

1. 20002 + 4006. → z Excess winter death related illness (compound of ICD 10 J00J99

F01, F03, G30 and self-reporting)

2. 90100. → x. Experienced temperature (continuous)

E.3.3 Variables RQ3

1. 54. → Assessment centre (over 21 regions, given the index j )

2. 20002+ 4006. → z1 Excess winter death related illness (combination of ICD 10 J00J99

F01, F03, G30 and self-reporting)

3. 90100. → x1 :Experienced temperature

4. 20074, 20075 (home location) + NASA data → x2. Gridded External temperature

(continuous)

5. 34./52. → x3. Age (continuous)

6. 31. → x4. Sex (binary)

7. 6139+6140 → x5 : Heating type (categorical)

8. 670+680 → x6 Type of Housing + tenure (categorical)

9. 738—709. → x7. Household income normalised by number in household (category)

10. 20119. → x8 Current Employment status (categorical)

11. 4581. → x9 Financial situation satisfaction (categorical)

12. 21000. → x10. Ethnic background (categorical)

Co-variates (indicated by × below): Age (x3) and Employment Status (x8), Household

income (x7) and Financial situation satisfaction (x9)
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Figure E.2: A histogram of the processed experienced temperature. The data are approximately
normally distributed.

E.3.4 Checks

For missing values, it is assumed the data are missing at random. Since the temperature and

age variables occur on different numerical scales, the variables will be centred (by subtracting

the mean) and standardised (by dividing by the standard deviation). For several variables,

multiple instances are available, ranging between the initial assessment visit (2006-2010)

and repeat visits between(2012-13). For all such variables the most recent available instance

is used.

E.3.5 Multi-level model

Multilevel structure test (RQ1) Given the participants come from different geographical

locations in the UK, which are naturally nested together in groups, a multilevel structure

would seem appropriate. In order to understand if a multilevel structure is appropriate from

a statistical standpoint, a test is needed to know if a null model differs significantly from a

model with structure. The null single-level model is given by

yij = β0 + eij (E.1)
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where y is the experienced temperature of the ith participant in the jth group, is the grand

mean and the normally distributed residuals. The group-level model is given by

yij = β0 + u0j + eij (E.2)

where uj is the group random effect. A significant difference in these models indicates a

multilevel structure is warranted. Such a difference is indicated by calculating the likelihood

ratio test statistic (the 5% point of a chi-squared distribution on 1 d.f. is 3.84, a value

greater than this suggests a significant difference between the models.) In the case that a

multilevel model is appropriate, it will be given the following structure:

Figure E.3: A histogram of the processed experienced temperature. The data are approximately
normally distributed.

This structure translates into the following regression equations for the ith participant,

jth region and kth variable. The regression will be built one by one, in the order given by

the variable list above, adding a single variable at time to the model - the final form with all

variables is as follows (N.B. the terms in each equation refer to the variables listed above):

RQ 1 equation

yij = β0 + u0j +

9∑
k=2

(βk + ukj)xkij × x1ij + eij (E.3)

RQ 2 equation

z = β0 + x+ eij (E.4)

RQ 3 equation

zij = β0 + u0j + (β1 + u1j)x1ij +

10∑
k=3

(βk + ukj)xkij × x2ij + eij (E.5)
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Practically, there will likely be a limit on the number of random slopes (ukj) that can

fitted with the data set, due to limited power. Since external temperature is likely to be

the primary variable explaining experienced temperature, it takes precedent over the other

variables in the model, and is inputted as a control for all variables. In the case of low

power, the term ukj inside the summation will be dropped.

E.3.6 Error Adjustments and other considerations

One of the advantages of multilevel modelling is that it correctly accounts for clustering in

the data and provides robust error estimates. The assumptions that go into the method

are addressed in Finch et al. (2014). The standard deviation of the primary variable, the

experienced temperature, is 2.1°C the extent to this variation is explained by the model

will be the subject of a great of scrutiny in the interpretation stage of this project. Careful

consideration will be given to the exact nature of the measurand for each variable, and

the extent to which uncertainty may mask explanatory variation. A summary of the total

numbers of participants within each category of the variables is given in the appendix.

E.4 Software

The initial processing of the CWA files supplied by the UK Biobank was conducted using a

modified version of the Python/Java code available through the OpenSource project. The

majority of the subsequent data processing has been conducted using Python, the scripts

will be made available after publication. For the statistical testing will be carried out using

R, and specifically the lmer package as laid out by Finch et al. (2014) and Bristol University’s

Centre for Multilevel modelling course (Szmaragd and Leckie, 2011).

E.5 Deliverables

5 second activity/lux and temperature data-set, returned to UK BioBank. 3 research papers,

potentially centred around three topics

• RQ1 and the definition of experienced temperature.

• the (potential) correlations between experienced temperature and health.

• the wider implications of the work to the fields of environmental health, energy and

fuel poverty.

E.6 Budget

£2650 of research data programming support work has been paid for by the CEE budget.

This research was made possible by support from the EPSRC Centre for Doctoral

Training in Energy Demand (LoLo), grant numbers EP/L01517X/1 and EP/H009612/1

220



Appendix F

Colophon

This document was created using LATEX and BibTEX, composed with Overleaf.com. The

following section gives key software tools and computing environments used throughout the

study:

• Anaconda (for Python)

• Spyder (for Python)

• Github

• Atom

• Inkscape

• Epii-reviewer 4

• Rstudio with R version 3.5.1

R packages used:

• gridExtra 2.3

• sp 1.3-1

• mapproj 1.2.6

• maps 3.3.0

• forcats 0.4.0

• lubridate 1.7.4

• epiR 0.9-99

• survival 2.42-3

• viridis 0.5.1

• viridisLite 0.3.0

• yhat 2.0-0

• plyr 1.8.4

• sjlabelled 1.0.16

• sjmisc 2.7.7

• sjPlot 2.6.2

• car 3.0-2

• carData 3.0-2

• apaTables 2.0.5

• ggplot2 3.1.0

• nlme 3.1-137

• tools 3.5.1

• TMB 1.7.15

• backports 1.1.3

• rgdal 1.3-9

• R6 2.4.0

• lazyeval 0.2.1

• colorspace 1.4-0

• withr 2.1.2

• tidyselect 0.2.5

• mnormt 1.5-5

• emmeans 1.3.2

• curl 3.3

• compiler 3.5.1
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• BiasedUrn 1.07

• sandwich 2.5-0

• labeling 0.3

• scales 1.0.0

• mvtnorm 1.0-8

• psych 1.8.12

• ggridges 0.5.1

• digest 0.6.18

• stringr 1.4.0

• foreign 0.8-70

• minqa 1.2.4

• rio 0.5.16

• stringdist 0.9.5.1

• pkgconfig 2.0.2

• lme4 1.1-20

• plotrix 3.7-4

• pwr 1.2-2

• rlang 0.3.1

• readxl 1.3.0

• rstudioapi 0.9.0

• generics 0.0.2

• zoo 1.8-4

• dplyr 0.8.0.1

• zip 2.0.0

• magrittr 1.5

• modeltools 0.2-22

• bayesplot 1.6.0

• Matrix 1.2-14

• Rcpp 1.0.0

• munsell 0.5.0

• abind 1.4-5

• prediction 0.3.6.2

• stringi 1.3.1

• multcomp 1.4-8

• yaml 2.2.0

• snakecase 0.9.2

• MASS 7.3-51.1

• grid 3.5.1

• parallel 3.5.1

• crayon 1.3.4

• lattice 0.20-35

• ggeffects 0.8.0

• haven 2.1.0

• splines 3.5.1

• sjstats 0.17.3

• hms 0.4.2

• knitr 1.21

• pillar 1.3.1

• boot 1.3-20

• estimability 1.3

• yacca 1.1.1

• codetools 0.2-15

• stats4 3.5.1

• glue 1.3.0

• data.table 1.12.0

• modelr 0.1.4

• nloptr 1.2.1

• miscTools 0.6-22

• cellranger 1.1.0

• gtable 0.2.0

• purrr 0.3.0

• tidyr 0.8.2

• assertthat 0.2.0

• xfun 0.5

• openxlsx 4.1.0

• coin 1.2-2

• xtable 1.8-3

• broom 0.5.1

• coda 0.19-2

• tibble 2.0.1

• glmmTMB 0.2.3

• TH.data 1.0-10

222



Bibliography

Parul Agarwal, M Afshar Alam, and Ranjit Biswas. Issues, challenges and tools of clustering

algorithms. IJCSI International Journal of Computer Science Issues, 8(3):6, 2011.

Herman Aguinis, Ryan K. Gottfredson, and Harry Joo. Best-Practice Recommendations

for Defining, Identifying, and Handling Outliers. Organizational Research Methods, 16(2):

270–301, April 2013. ISSN 1094-4281. doi: 10.1177/1094428112470848.

A. Ambrose and R. Marchand. The contemporary landscape of fuel poverty research. Indoor

and Built Environment, 26(7):875–878, 2017. doi: 10.1177/1420326X17724914.

R. Areas, L. Duarte, and L. Menna-Barreto. Comparative analysis of rhythmic parameters

of the body temperature in humans measured with thermistors and digital thermometers.

Biological Rhythm Research, 37(5):419–424, 2006.

Axivity. AX3 datasheet, 2015. URL https://axivity.com/files/resources/AX3_Data_

Sheet.pdf. Accessed = 2017-05-23.

Thom Baguley. Standardized or simple effect size: What should be reported? British

Journal of Psychology, 100(3):603–617, August 2009. ISSN 00071269. doi: 10.1348/

000712608X377117.

Mihaela Ioana Baritz, Diana Laura Cotoros, and Cristina Singer. Thermographic analysis of

hand structure when subjected to controlled effort. In 2013 E-Health and Bioengineering

Conference (EHB), pages 1–4, Iasi, 2013. IEEE. ISBN 978-1-4799-2373-1 978-1-4799-

2372-4.

Amelia E. Barr. Maids, Wives, and Bachelors. Dodd Mead & co., New York, 1898.

BEIS. Energy consumption in the UK 2018, 2018a. URL https://www.gov.uk/

government/statistics/energy-consumption-in-the-uk. Accessed = 2018-07-26.

BEIS. Energy trends march 2018, 2018b. URL https://www.gov.uk/government/

uploads/system/uploads/attachment_data/file/712458/Energy_Trends_March_

2018.pdf. Accessed = 2019-07-24.

223

https://axivity.com/files/resources/AX3_Data_Sheet.pdf
https://axivity.com/files/resources/AX3_Data_Sheet.pdf
https://www.gov.uk/government/statistics/energy-consumption-in-the-uk
https://www.gov.uk/government/statistics/energy-consumption-in-the-uk
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/712458/Energy_Trends_March_2018.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/712458/Energy_Trends_March_2018.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/712458/Energy_Trends_March_2018.pdf


BEIS. 2017 UK greenhouse gas emissions, provisional figures, 2018c. URL https://assets.

publishing.service.gov.uk/government/uploads/system/uploads/attachment_

data/file/695930/2017_Provisional_Emissions_statistics_2.pdf. Accessed =

2019-07-24.

BEIS. Energy trends, March 2019. URL https://assets.publishing.service.gov.

uk/government/uploads/system/uploads/attachment_data/file/791293/Energy_

Trends_March_2019.pdf. Accessed = 2019-07-24.

Lars Berglund. Regression dilution bias: Tools for correction methods and sample size

calculation. Upsala Journal of Medical Sciences, 117(3):279–283, August 2012. ISSN

0300-9734. doi: 10.3109/03009734.2012.668143.

Krishnan Bhaskaran, Shakoor Hajat, Andy Haines, Emily Herrett, Paul Wilkinson, and

Liam Smeeth. Short term effects of temperature on risk of myocardial infarction in

England and Wales: time series regression analysis of the Myocardial Ischaemia National

Audit Project (MINAP) registry. BMJ, 341:c3823, August 2010. ISSN 0959-8138, 1468-

5833. doi: 10.1136/bmj.c3823.

Ruth Bonita, Robert Beaglehole, and Tord Kjellström. Basic epidemiology. World Health

Organization, Geneva, 2. ed edition, 2006. ISBN 978-92-4-154707-9. OCLC: 255900006.

Arthur Bowley. Elementary Manual of Statistics. P.S. King & Son, London, 1920.

M. Bracci, V. Ciarapica, A. Copertaro, M. Barbaresi, N. Manzella, M. Tomasetti, S. Gaetani,

F. Monaco, M. Amati, M. Valentino, V. Rapisarda, and L. Santarelli. Peripheral skin

temperature and circadian biological clock in shift nurses after a day off. International

Journal of Molecular Sciences, 17(5), 2016.
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classification through the evaluation of circadian rhythms of wrist temperature. In

224

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/695930/2017_Provisional_Emissions_statistics_2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/695930/2017_Provisional_Emissions_statistics_2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/695930/2017_Provisional_Emissions_statistics_2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/791293/Energy_Trends_March_2019.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/791293/Energy_Trends_March_2019.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/791293/Energy_Trends_March_2019.pdf


CAEPIA 2016: Advances in Artificial Intelligence pp 99-109, volume 9868 LNAI, pages

99–109, 2016.

Stephanie Carreiro, David Smelson, Megan Ranney, Keith J. Horvath, R. W. Picard,

Edwin D. Boudreaux, Rashelle Hayes, and Edward W. Boyer. Real-Time Mobile Detection

of Drug Use with Wearable Biosensors: A Pilot Study. Journal of Medical Toxicology, 11

(1):73–79, 2015.

Stephanie Carreiro, Kelley Wittbold, Premananda Indic, Hua Fang, Jianying Zhang, and

Edward W. Boyer. Wearable Biosensors to Detect Physiologic Change During Opioid Use.

Journal of Medical Toxicology, 12(3):255–262, 2016.

P. Carrer, M. Maroni, D. Alcini, and D. Cavallo. Allergens in indoor air: Environmental

assessment and health effects. Science of the Total Environment, 270(13):3342, 2001. doi:

10.1016/S0048-9697(00)00791-9.

Jimmy Carter. Energy and the national goals - a crisis of confidence, 07 1979. URL https:

//www.americanrhetoric.com/speeches/jimmycartercrisisofconfidence.html.

CCC. Reducing the uks carbon footprint. Technical report, Committee on Climate Change,

London, 2013. URL https://www.theccc.org.uk/wp-content/uploads/2013/04/

Reducing-carbon-footprint-report.pdf.

Jonathan D. Chambers and Tadj Oreszczyn. Deconstruct: A scalable method of as-built

heat power loss coefficient inference for UK dwellings using smart meter data. Energy and

Buildings, 183:443–453, January 2019. ISSN 0378-7788. doi: 10.1016/j.enbuild.2018.11.

016.

Jian Cheng, Zhiwei Xu, Rui Zhu, Xu Wang, Liu Jin, Jian Song, and Hong Su. Impact of

diurnal temperature range on human health: a systematic review. International Journal

of Biometeorology, 58(9):2011–2024, November 2014. ISSN 1432-1254. doi: 10.1007/

s00484-014-0797-5.

R. P. Chilcott and R. Farrar. Biophysical measurements of human forearm skin in vivo:

Effects of site, gender, chirality and time. Skin Research and Technology, 6(2):64–69,

2000.

J. H. Choi and V. Loftness. Investigation of human body skin temperatures as a bio-signal

to indicate overall thermal sensations. Building and Environment, 58:258–269, 2012.

J. H. Choi and D. Yeom. Study of data-driven thermal sensation prediction model

as a function of local body skin temperatures in a built environment. Building and

Environment, 121:130–147, 2017.

225

https://www.americanrhetoric.com/speeches/jimmycartercrisisofconfidence.html
https://www.americanrhetoric.com/speeches/jimmycartercrisisofconfidence.html
https://www.theccc.org.uk/wp-content/uploads/2013/04/Reducing-carbon-footprint-report.pdf
https://www.theccc.org.uk/wp-content/uploads/2013/04/Reducing-carbon-footprint-report.pdf


Jacob Cohen. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates,

Hillsdale, N.J, 2nd ed edition, 1988. ISBN 978-0-8058-0283-2.

K. J. Collins, J. C. Easton, Hazel Belfield-Smith, A. N. Exton-Smith, and R. A. Pluck.

Effects of age on body temperature and blood pressure in cold environments. Clinical

Science, 69(4):465–470, October 1985. ISSN 0143-5221, 1470-8736. doi: 10.1042/

cs0690465. URL http://www.clinsci.org/content/69/4/465.

M. D. Corbalán-Tutau, J. A. Madrid, J.M. Ordovás, C. E. Smith, F. Nicolas, and

M. Garaulet. Differences in daily rhythms of wrist temperature between obese and

normal-weight women: associations with metabolic syndrome features. Chronobiology

international, 28(5):425–33, May 2011.
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Juan Antonio Madrid. A New Integrated Variable Based on Thermometry, Actimetry

and Body Position (TAP) to Evaluate Circadian System Status in Humans. PLoS

Computational Biology, 6(11), November 2010.

J. Palmer and I. Cooper. United kingdom housing energy fact file, 2013. URL https:

//assets.publishing.service.gov.uk/government/uploads/system/uploads/

attachment_data/file/345141/uk_housing_fact_file_2013.pdf. Accessed = 2019-

07-24.

237

https://tinyurl.com/y68t6ugz
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2016to2017provisionaland2015to2016final
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2016to2017provisionaland2015to2016final
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2016to2017provisionaland2015to2016final
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2016to2017provisionaland2015to2016final
https://bit.ly/2QpdK9S
https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography
https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/345141/uk_housing_fact_file_2013.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/345141/uk_housing_fact_file_2013.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/345141/uk_housing_fact_file_2013.pdf
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