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Abstract

In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across
the US at a very high resolution. We study the influence of socio-economic variables through different and
complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity
scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that
confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong
influence of the state in the level of price but also of some local characteristics including population density.
Through the combination of such methods, we unveil the superposition of a governance process with a local
socio-economical spatial process. The influence of population density on prices is furthermore consistent with
a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We
discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.

Keywords: Fuel Price; Data Crawling; Spatial Analysis; Geographically Weighted Regression; Multi-level
Modeling

1 Introduction

The distribution of the price of fuel is characterized by a large heterogeneity both in time and across geographical
areas. Variations in time are relatively well understood and for a large part explained by changes in the price of
crude oil (Borenstein et al., 1997). This is confirmed by the Energy Information Administration (EIA) which states
that a little more than half of the gasoline price is directly due to the underlying price of crude oil. It can also be
easily confirmed by looking at the co-movements of these two prices, as we do in Figure 1. Surprisingly, although
this correlation between crude oil price and gasoline is rather strong, significant differences can be observed across
US states, as shown in Figure 2. Such spatial variations are of course mostly driven by state-specific gasoline tax
rates (see e.g. Chouinard and Perloff 2004) that can be very different from one state to another. For example
Pennsylvania adds a 58 cents while Texas only adds a 20 cents for each gallon of gasoline.1 Yet, as we shall see, the
spatial distribution of gasoline price also depends in other factors. Such exploratory spatial analysis is the object
of the present paper.

There exists to our knowledge no systematic mapping in space and time of retail fuel prices for a country as large
as the US. The main reason is probably that the availability of data continue to be a significant obstacle to such
research. It is also likely that the nature of the problem itself may pose some difficulties as it lies at the crossroad
of several disciplines. While economists study price elasticity and measurement in different markets, transportation
geographers apply methods such as transportation prices in spatial models to emphasize spatial patterns, more
than they focus on precise market mechanisms. On the contrary, gas price is a very frequent subject of attention
by politics, media and consumers and its variation is very closely scrutinized by financial analysts and transport
professionals. The price of oil is also an important driver of the level of inflation and the cost of living, with a

1Figures are for January 2017 and do not include federal tax rate.
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(a) Time Series (b) Correlation

Figure 1: Relationship between crude oil price and gasoline price ($ per gallons). Left-hand side panel
reports the weekly prices of both crude oil price of the West Texas Intermediate and average gasoline price in
the US. Right-hand side panel reports the correlation and linear fit between the two. Linear model: y = -
0.431[0.010]+0.766x[0.005], with x the price of gasoline and y the price of crude oil R2 = 0.949, number of ob-
servations N = 1449; standard errors in parentheses. Sources: EIA.

(a) Time Series (b) Coefficient of variation

Figure 2: Evolution and variation of average weekly prices ($ per gallons). Left-hand side panel reports
the unweighted average weekly price of gasoline across US states (excluding HI and AK), as well as plus and minus
2 standard errors intervals and maximum and minimum weekly values. Right-hand side panel reports the evolution
of the weekly coefficient of variation (defined as the ratio of standard deviation over mean). Here again, HI and
AK are excluded. Sources: EIA.
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growing importance since, as reported in Figure 3, households’ consumption of motor oil has been increasing rapidly
in the past decades.

In this paper, we use a new database on gasoline prices at a very local level collected during two months
from January to March 2017, to explore their variability across time and space, even within-states. This is a first
exploration of what such microdata can teach us about the distribution of the retail price of gas and should not
be taken as a complete analysis of the determinant and predictive drivers of the variation of the cost of fuel.2

These variations can have many causes, from the crude oil price to local tax policy, infrastructure and geographical
features, and even strategic interactions between competitors, all having heterogeneous effects in space and time.
For example, oil spill events, such as the BP’s Deepwater Horizon accident in the Gulf of Mexico in 2010, have a large
impact on the prices at the pump, which is likely to be heterogeneous in space.3 Similarly, disruption in service of
some specific pipelines could affect some regions but not others (see e.g. McRae 2017). But local variations in prices
can also reflect heterogeneity in more indirect socioeconomic indicators such as territorial inequalities, geographical
singularities and consumer preferences.

Nevertheless, examples of somehow related works can be found in the literature. For example, Rietveld et al.
(2001) study the impact of cross-border differences in fuel price and the implications for gradual spatial taxation in
Netherlands. At the country level, Rietveld and van Woudenberg (2005) provide statistical models to explain fuel
price variability across European countries based on fiscal competition. Such competition has some negative effects
as it encourages consumers to cross the border in order to refill which make them drive more. Given that large
variations in oil prices across some US-state borders can be important (according to Gasbuddy, a crowd-sourced
information website aiming at “nowcasting” gasoline price in North America, some borders like the AZ-CA state
line can induce change in the price of filling a tank by up to $25)4, such rational behaviors are clearly at play in
the US as well. Relatedly, Macharis et al. (2010) model the impact of spatial fuel price variation on patterns of
inter-modality, implying that the spatial heterogeneity of fuel prices has, as we would expect, a strong impact on
user behavior. With a similar view on the geography of transportation, Gregg et al. (2009) study spatial distribution
of gas emission at the US-state level.

The geography of fuel prices also have important implications for public economists. Of course the economic
implication of an increase in oil price can be quite dramatic as documented by Kilian (2008); Hamilton (2009) and
many others, given how central oil and transport are in the production network and global value chains. Yet, one
major interest economists have found looking at the spatial dynamics of oil price, and the subsequent consumer
reaction, is to learn how to design an effective tax system (see e.g. Parry and Small 2005) that correct for the
negative externalities associated with the use of automobile (pollution, accidents, congestion, noise etc... see Parry
et al. 2007 for a review on these topics). Li et al. (2014) conduct such an analysis by examining consumers’ reaction
to a shock in the price of gas induced by a tax increase (as opposed to a supply shock) and are able to quantify the
elasticity of consumption to price. Hughes et al. (2006) show that the underlying preferences shaping such elasticity
have changed a lot in time while Bento et al. (2009) find that each cent-per-gallon increase in the price of gasoline
reduces consumption by about 0.2 percent, with large heterogeneity across household revenue. In France, Combes
and Lafourcade (2005) accurately measure transportation costs across urban areas using the price of fuel as one
major driver in order to derive regional policy recommendations.

A related question of interest by economists is to understand the dynamics of price adjustment. While frictions
in adjusting costs of goods to supply and demand shocks have been widely studied by economists, theoretically and
empirically, fuel prices offer a very nice case study given the frequency of stimuli on its cost. Thus, and closely
related to our work in their use of daily open data of fuel price for France, Gautier and Saout (2015) investigate
dynamics of transmission from crude oil prices to fuel retail prices. However, they do not introduce an explicit
spatial model of prices diffusion and do not study spatio-temporal dynamics. They estimate the pass through of
wholesale prices to retail gasoline prices to be equal to 0.67, meaning that on average, two-thirds of an increase
in crude oil price translates to an increase in price at the pump. Similar analysis have been conducted in other
countries, for example in Sweden by Asplund et al. (2000) or in Spain by Stolper (2016). Similarly Deltas (2008)
studies a long-time panel of prices in the US to show an asymmetry in response to wholesale price variations, but
restricts the analysis at the State level. A review on empirical studies of gasoline retailing done by Eckert (2013)
confirms that station-level studies are few and generally consider small countries such as Belgium or Austria, or
single US States (for example Hosken et al. 2008 in DC).

In this paper we adopt a broader approach by proceeding to exploratory spatial analysis on fuel prices for the

2To carry out such analysis, one would probably require a larger time dimension in order to exploit exogenous variations in local
socio-economic conditions to measure the subsequent impact on gasoline price. We discuss this at the end of this paper.

3To our knowledge, whether or not the effect of the Deepwater Horizon oil spill affected gasoline price unequally is still under debate
by experts. Typically, such microdata could help addressing this question. We however leave this analysis for further research.

4See their blog article on this topic
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Figure 3: Consumption of gasoline and oil per household by region. Source: Consumer Expenditure Survey,
1984-2016. In constant dollars per year

Table 1: Example of processes potentially involved in the formation of retail fuel prices, at different scales.

Local Regional National/global
Local competition, socio-
economic variables, retailer
choices, consumer choices,
accessibility, availability of
transportation alternatives

Regional taxes, geographical
situation, fuel transportation
prices, road infrastructures, oil
transportation and refinement
infrastructures, culture

National taxes, crude oil prices,
company strategies, geopolitical
factors

whole US. We show that most of the variation occurs between counties and not across time, although crude oil
price was not constant during the period considered. Among the potential processes involved in the formation of
retail fuel prices described in Table 1, a large majority of them are tightly linked to spatial structure or geography,
which we propose to investigate as the main purpose of this paper. We therefore turn to a spatial analysis of the
distribution of fuel prices. Our main findings are twofold: first we show that there are significant spatial pattern in
some large US regions, second we show that even if most of the observed variation can be explained by state level
policies, and especially the level of tax, some county specific characteristics still play a significant role in explaining
the variance of prices.

The rest of the paper is organized as follows: in next section, we describe a generic procedure and the tool
used for a systematic data collection. We also present our dataset. In section 3 we conduct spatial statistics
analysis in order to study the variation of fuel price across time and space and test the potential correlation with
some covariates. We then develop in section 4 an econometric analysis to study more precisely the role of these
covariates, and develop a minimal theoretical model linking population density with prices which appears to be
consistent with our econometric results. Finally, in section 5 we discuss our results and conclude.

2 Dataset

Our dataset contains daily information on fuel price at the gas station level for the whole US mainland territory.
These information have been constructed from self-reported fuel price and span almost the entire universe of gas
station in the US. We start by describing data collection and then give some statistics about this new dataset.

2.1 Collecting large scale heterogeneous data

The availability of new type of data has induced consequent changes in various disciplines from social science
(e.g. online social network analysis, see Tan et al., 2013) to geography (e.g. new insights into urban mobility or
perspectives on “smarter” cities, see Batty, 2013) including economics where the availability of exhaustive individual
or firm level data is seen as a revolution of the field. Most studies involving these new data are at the interface
of implied disciplines, which is both an advantage but also a source of difficulties. For example misunderstandings
between physics and urban sciences described in Dupuy and Benguigui (2015) are in particular caused by different
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attitudes towards unconventional data or divergent interpretations and ontologies. Transportation systems are
naturally at the core of such problematic involving new “big data” production, collection and processing (Kitchin,
2014).

Collection and use of new data has therefore become a crucial stack in social-science. The construction of such
datasets is however far from straightforward because of the incomplete and noisy nature of the underlying data.
Specific technical tools have to be implemented but have often been designed to overcome one specific problem and
are difficult to generalize.

We develop here such a tool that fills the following constraints that are typical of large scale data collection,
namely a reasonable level of flexibility and generality, an optimized performance through parallel collection jobs,
and the anonymity of collection jobs to avoid any possible bias in the behavior of the data source. The architecture,
at a high level, has the following structure: (i) an independent pool of tasks runs continuously socket proxies to
pipe requests through tor; (ii) a manager monitors current collection tasks, split collection between subtasks and
launches new ones when necessary; (iii) subtasks can be any callable application taken as argument destination
urls, they proceed to the crawling, parsing and storage of collected data. The application is open and its modules
are reusable: source code is available on the repository of the project.5 We constructed our dataset by using the
tool continuously in time during two months to collect crowdsourced data available from various online sources.

2.2 Dataset

Our dataset comprises around 41 · 106 unique observations of retail fuel prices at the station level, spanning the
period starting the 10th of January 2017 and ending the 19th of March 2017 and corresponds to 118,573 unique
retail stations. For each of these stations, we associate a precise geographical location (at the city level). On average
we have 377 price information by station. Prices correspond to various possible fuel types but we focus the study to
this “regular” fuel which corresponds to a third of the observation points and 4,629 points per county on average.6

A few outliers resulting of coding errors were also filtered from the dataset.
Our final dataset thus contains 14,192,352 observations from 117,155 gas stations, followed during 68 days. As

the data was collected continuously, more than one information per day can be collected for some stations in which
case we further collapse these data by day, and take the average of the observed price per gallon, to obtain a panel
of 5,204,398 gas station - day observations.7 Table 2 gives some basic descriptive statistics of on price data showing
that the distribution of oil price is highly concentrated with a small skewness (the ratio of the 99th to the 1st

percentile is 1.6).
Regarding the spatial distribution of stations themselves, at the level of zipcodes the number of stations is

naturally correlated with population with a Pearson correlation of 0.72. However, when considering zip areas with
a population larger than the median (resp. the third quartile), including 90% (resp. 65%) of the total population,
this correlation drops to 0.52 (resp. 0.29). This means that in urban areas, which broadly correspond to the
most populated zip codes, the local density of gas stations is loosely correlated with population8. This legitimates
in a first approximation the assumption of exogenous location of stations we will do in our theoretical model
below (section 4.2): the low correlation is considered as being zero and locations considered as random regarding
population density.

Finally, in the spatial analysis, we will also use socioeconomic data at the county level, available from the various
administrative sources. We will use the latest available, which can imply relying to the 2010 Census. In the first
preliminary analysis, we use basic socio-economic variables (income, population, average wage, jobs per capita,
jobs), while more elaborate covariates are added thereafter in the econometric analysis (unemployment, poverty,
political preferences etc...). All variables are aggregated at the county level. Note that the goal of this exercise is
not to give a structural estimation of the determinant of gas price. These variables are proxies that aim at capturing
correlations. The actual mechanism through which they affect the dynamic of oil price is not modelled here. We
however provide an example of how a theoretical model can highlight such mechanism in section 4.2. Details and
source for these county level variables are given in Table 3.

5at https://github.com/JusteRaimbault/EnergyPrice
6We let potential analyzes of the different dynamics across fuel type for further research.
7The panel is not balanced as prices are not reported every day in some stations. The average gas station has information on price

for 44 days (over 68).
8Note that this result implies that scaling relationships identified at the city level, for example by Bettencourt et al. (2007), are not

robust to a change in spatial resolution. Further investigations of these properties remain however out of the scope of this paper.
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Table 2: Descriptive statistics on Fuel Price ($ per gallon)

Mean Std. Dev. p10 p25 p50 p75 p90

2.28 0.27 2.02 2.09 2.21 2.39 2.65

3 Exploratory analysis

3.1 Spatio-temporal Patterns of Prices

Before moving to a more systematic study of the variation of fuel price, we propose a first exploratory introduction
to give insight about its structure across time and space. This exercise is a crucial stage to guide further analyses,
but also to understand their implications in a geographical context. To explore the data, we built a simple web
application which allow to map gas price in space and time. This application is available online and allow the
user to browse for our data easily. We also show one example of mapping the data at the county level in Figure
4(a) where we have aggregated the data over the whole period at the county level using an unweighted mean
over all observations. This map display quite clear regional patterns with the South-central and Southeast regions
having the lowest prices and the Pacific cost and Northeast the highest prices. Some geographical structures and
discrepancies in underlying processes of price formation can already be suggested when comparing the price map
with the same map when taxes have been removed (Figure 4(b)). The West coast still exhibits the higher prices,
although it has high level of taxes, whereas in some States such as Pennsylvania, State of New York, or Florida high
prices are essentially due to taxes. On the contrary, taxes have close to no effect in South Carolina. This suggest
an interplay between geographical and political processes, which will be explored in more details below.

Of course, plotting aggregated data over the whole period does not bring much information about the time
variation of the data. In fact, most of the variation of fuel price occurs across space, at least during the relative
short period of observation we are considering. A variance decomposition of fuel price shows that only 11% of the
total variance is explained by within gas station variations. Similarly, the Spearman’s rank correlation coefficient
between the gas station price of regular fuel in the first day of dataset and in the last day is 0.867, and the null
hypothesis that these two information are independent is strongly rejected.

Since most of the variation in oil price is between gas station, we now focus mainly on spatial correlations. We
will conduct the analysis at the county level for various reasons. First it appears that a variance decomposition
of fuel price between and within county shows that more than 85% of the variance is between-county, second
because the localization of gas station is not reliable enough to allow for a smaller granularity and third because we
have many socioeconomic information at this level. We therefore study the spatial autocorrelation of prices at the
county level. Spatial autocorrelation can be seen as an indicator of spatial heterogeneity which we measure using
the Moran index as in Tsai (2005), with spatial weights of the form exp (−dij/d0) where dij is the distance between
spatial entities i and j, and d0 a decay parameter that captures the spatial range of interactions accounted for in
the computation. We show in Fig. 3.1 its variations for each day and also as a function of the decay parameter.
Intuitively, this parameter capture how the spatial correlation of price change with the distance between stations.

The fluctuations in time of the daily Moran index for low and medium spatial range, confirms geographical
specificities in the sense of locally changing correlation regimes. These are logically smoothed for long ranges, as
price correlations drop down with distance. The behavior of spatial autocorrelation with spatial range is particularly
interesting: we observe a first change of regime at around 10km (from constant to piece-wise linear regime), and
a second important one at around 1000km, both consistent across weekly time windows (see Figure 5(b)). We
conjecture that these correspond to typical spatial scales of the involved processes: the low regime correspond to
county level characteristics and the middle one the state level processes. This behavior confirms that prices are non-
stationary in space, and that therefore appropriate statistical techniques must be used to study potential drivers at
different levels. The two next subsections follow this idea and investigate potential independent variable to explain
local fuel prices, using two different techniques corresponding to two complementary paradigms: geographically
weighted regression that puts the emphasis on neighborhood effects, and multi-level regression taking into account
administrative boundaries.

3.2 Geographically Weighted Regression

The issue of spatial non-stationarity of geographical processes has always been a source of biased aggregated analyses
or misinterpretations when applying general conclusions to local cases. To take it into account in statistical models,
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Figure 4: (Top) Map of mean price for counties, regular fuel, averaged over the whole period. (Bottom) Same map
with prices net of taxes.
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(a) Time Series (b) Decay

Figure 5: Behavior of Moran spatial-autocorrelation index. (Left) Evolution in time of Moran index com-
puted on daily time windows, for different decay parameter values. (Right) Moran index as a function of decay
parameter, computed on weekly time windows.

numerous techniques have been developed, among which the simple but very elegant Geographically Weighted
Regression (GWR), that estimates non-stationary regressions by weighting observations in space closely following
kernel estimation methods. This was introduced in a seminal paper by Brunsdon et al. (1996) and subsequently used
and matured by many other studies. The significant advantage of this technique is that an optimal spatial range
(optimal in the sense of model performance) can be inferred to derive a model that yields the effect of variables
across space, revealing local effects that can occur at different spatial scales or across boundaries.

We proceed to multi-modeling to find the best model and associated kernel and spatial range. More specifically,
we do the following: (i) we generate all possible linear models from five basic potential variables (which are income,
population, average wage, jobs per capita, jobs); (ii) for each model and each candidate kernel shape (exponential,
gaussian, bisquare, step), we determine the optimal bandwidth in the sense of both cross-validation and corrected
Akaike Information Criterion (AIC) which quantifies information included in the model; (iii) we fit the models with
this bandwidth. We choose the model with the best overall AIC, namely price = β · (income,wage, percapjobs)
for a bandwidth of 22 neighbors and a gaussian kernel,9 with an AIC of 2, 900. The median AIC difference with
all other models tested is 122. The global R-squared is 0.27, which is relatively good compared to the maximum
R-squared of 0.29.10

The coefficients and local R-squared for the best model are shown in Fig. 6. The spatial distribution of residuals
(not shown here) seems globally randomly distributed, which confirms in a way the consistency of the approach.
Indeed, had a distinguishable geographical structure been found in the residuals, it would have meant that the
geographical model or the variable considered had failed to translate spatial structure.

Let now turn to an interpretation of the spatial structures we obtain. First of all, the spatial distribution of
the model performance reveals that regions where these simple socioeconomic factors do a good job in explaining
prices are mostly located on the West Coast, the South Border, the North-East region from the Lakes to the East
Coast, and a stripe from Chicago to the south of Texas. The corresponding coefficients have different behaviors
across the areas, suggesting different regimes.11 For example, the influence of income in each region seems to be
inverted when the distance to the coast increases (from the North to South-East in the west, and from the south to
the north in Texas), which could be a fingerprint of different economic specializations. On the contrary, the regime
shifts for wage show a clear cut between west (except in the region of Seattle) and middle/east, that cannot be only
attributed to state specific policies as Texas is clearly split in two. Accordingly, the influence of the employment
rate shows an opposition between east and west, that could be attributed to cultural differences. These results are
difficult to interpret directly, and must be understood as a confirmation that geographical particularities matters,
as regions differ in regimes for each of the simple socioeconomic-variables. Further precise knowledge could be
obtained through targeted geographical studies including qualitative field studies and quantitative analyses, that
are beyond the scope of this exploratory paper and left for further research.

Finally, we extract the spatial scale of the studied processes, that is, we compute the distribution of the distance
to nearest neighbors with the optimal bandwidth. The result yields roughly a log-normal distribution, with a median
of 77km and an interquartile of 30km. We interpret this scale as the spatial stationarity scale of price processes in

9Note that the kernel shape does not have much influence as soon as gradually decaying functions are used
10Which was obtained for the model with all variables, which clearly overfits with an AIC of 3010; furthermore, effective dimension

is less than 5 as 90% of variance is explained by the three first principal components for the normalized variables.
11We comment their behavior in areas where the model has a minimal performance, that we fix arbitrarily as a local R-squared of 0.5
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Figure 6: Results of GWR analyses. For the best model in the sense of AICc, we map the spatial distribution
of fitted coefficient, in order from left to right and top to bottom, βincome, βpercapjobs, βwage, and finally the local
r-squared values.

relation with economic agents, which can also be understood as a range of coherent market competition between
gas stations.

4 Econometric analysis

In this section, we turn to a different analysis. Namely, we use multi-level linear regressions to analyse the extent
to which some specific covariates explain the variation in the price of oil within-state.

4.1 Multi-level Regression

Since our initial database allows us to look at the level of variable xi,s,c,t, the fuel price in day t, in gas station i,
in state s and in county c, we start by running high dimensional fixed effect regressions following the model:

xi,s,c,t = βs + εi,s,c,t (1)

xi,s,c,t = βc + εi,s,c,t (2)

xi,s,c,t = βi + εi,s,c,t (3)

where εi,s,c,t contains an idiosyncratic error and a day fixed effect. This first analysis confirm that most of the
variance can be explained by a state fixed effect and that integrating more accurate levels has only small effect on
the fit of our model as measured by the R-squared.

We now turn to a different reduced-form analysis, which aims at capturing the explanatory variables that account
for spatial price variation of fuel. We consider the following linear model:

log(xi) = β0 +Xiβ1 + βs(i) + εi, (4)

where xi denotes average measured fuel price in county i aggregated across all days, Xi is a set of county specific
variables. We chose these variables so as to cover different socio-economic local specificities of a county. The list
of variable is given in Table 3 and their descriptive statistics in Table 4. In particular, we want to capture the

9



potential use of cars by including density of the county and the proportion of resident using a car to commute.
We also want to capture specific preferences by including the share of voters that chose a republican candidate
during previous general elections. We complete these covariates by including a set of economic characteristics,
controlling for the unemployment rate, the share of population with a bachelor degree, the poverty rate and the
share of manufacturing sector. To complete the description of equation 4, we note s(i) the state to which the
county belongs so that βs(i) capture all state specific variation. Note that this fixed effect term removes taxes and
that other coefficients are equivalent to an estimation on the orthogonal complement of the linear combination of
states fixed effects, in particular they are estimated on before-taxes prices. Finally εi is an error term satisfying
Cov(εi, εj) = 0 if s(i) 6= s(j). This clustering of standard error at the state level is motivated by findings of the
previous section, showing that spatial autocorrelation of fuel price at the state level is still potentially strong. This
specification aims at capturing the effect of various socio-economic variables at the county level after a state fixed
effect has been removed.

We present our results in Table 5 where we progressively add more local covariates. Column (1) shows that
regressing the log of price on a state fixed-effect and the log of the density already accounts for more than 76% of
the variance in price. This is mostly due to tax on fuel which are set at the state level in the US. In fact, when we
regress the log of oil price on the level of state tax, we find a R-squared of 0.33%. The fact that density is negatively
associated with price can be explained by a simple competition model as presented in next subsection. One other
explanation would be that gas station located in remote area must charge a higher price in order to cover their
overhead costs.

The remaining explanatory variables have the expected signs: an more intensive use of cars is associated with
lower prices just like more competition in the gas market (as captured by the number of gas stations per capita in
the county) also pushes prices downward. The magnitudes of coefficients suggest that increasing the number of gas
station per capita by 1% decreases the price by around 0.6%. That more competition is associated with a lower
price is a basic result of the Industrial Organization literature and will be formally motivated in next subsection.

Political preferences also matter, since gas price decreases with the extent to which a county has voted for a
Republican candidate. This last finding suggests a circular link: counties that use car the most tend to vote to
politician that promote pro car policies. This is discussed in Hammar et al. (2004) and is seen as one major obstacle
to the setting of an adequate gasoline tax (see also Parry and Small, 2005). Zitzewitz (2013) shows that the price of
fuel is used as a political tool, especially in swing states, by analyzing fluctuations just before important elections.
It is interesting to note that the correlation between political preferences and gas price hold after controlling for all
other factors, including the fact that republican counties are less dense and more car intensive on average.

Finally, fuel price tends to be lower in poorer and less educated areas which we measure by an estimate of the
poverty rate and the importance of the manufacturing sector, both of which being negatively correlated with price.
The magnitude on the coefficient on poverty rate, combined with descriptive statistics in Table 4 suggests that
moving from the first to the third quartile in terms of poverty is associated with a decline in oil price of around
0.5%.

Adding these explanatory variables slightly increase the R-squared, suggesting that even after having removed
a state fixed-effect, the price of fuel can be explained by local socio-economic features.Among all these control
variables, political preferences appear to be the best predictor of the residual local price of gas, after a state fixed
effect has been removed.

As already stated, the use of these variables is motivated by the idea that they proxy for socio-economic and
cultural local characteristics. We do not model the direct mechanism through which they affect gas price (nor did we
in the case of GWR). However, to gain insight on such a mechanism, we now derive a simple model of monopolistic
competition which can explain how the heterogeneity of the density of population can affect the price of gasoline.

4.2 A minimal theoretical model

We introduce a minimal model to show how some of the above empirical stylized facts are consistent with a
theoretical basis. In particular, the assumption that prices arise partly through the interactions between agents
can be checked through a model including population density only. We adapt a spatial version of the Salop model
introduced by Salop and Stiglitz (1977). In this famous model, firms are located around a circle at regular intervals
and consumers are uniformly distributed around the same circle. The firms can set the price but they take into
account that consumers have to pay transportation cost. This results in an equilibrium price that is the same
across all firms. Here we make two adjustments to this model in order to generate spatial heterogeneity. Namely
we include (i) the fact that consumers are distributed according to a (known) population density and (ii) that the
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Table 3: Source and description of the county level variables
Variable Description Source

Density Household units per sq miles Census 2010
Unemployment Total employed over labor force in 2017 BLS
Nb Stations Number of gas station Own calculation
Manuf Employment share of the manufacturing sec-

tor in 2016
CBP - Census

Bachelor Share of population over 25 with a bachelor
degree in 2017

ACS

Cars Share of people over 16 using their car to com-
mute in 2017

ACS

Poverty Share of people considered in poverty by
SAIPE program

SAIPE - Census

Vote GOP Share of voters that voted for a republican
candidate in the general elections from 2000

MIT election lab

Table 4: Descriptive statistics
Variable mean sd p10 p25 p50 p75 p90 units

Density 113.4 823.8 2.2 8.4 21.0 51.5 164.2 Households per sq mile
Unemployment (x100) 4.6 1.6 2.9 3.5 4.3 5.3 6.5 Share
Nb Stations 28.0 65.9 1.7 3.3 9.4 24.7 64.9 Number
Manuf (x100) 19.3 17.0 0 6.1 15.4 28.5 43.0 Share
Bachelor (x100) 21.2 9.3 12.1 14.7 19 25.3 33.7 Share
Cars (x100) 89.5 7.3 82.5 87.8 91.3 93.5 95 Share
Poverty (x100) 15.4 6.2 8.7 10.9 14.4 18.4 23.4 Share
Vote GOP (x100) 59.4 13.2 41.8 51.4 60.5 68.7 75.5 Share
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Table 5: Ordinary Least Square estimations of Equation 4. Each model includes a state fixed effect. Robust standard
errors are reported in parenthesis. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

(1) (2) (3) (4) (5) (6)

Density (log) -0.006*** -0.006*** -0.007*** -0.008*** -0.009*** -0.011***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cars -0.151*** -0.150*** -0.187*** -0.179*** -0.165***
(0.051) (0.051) (0.019) (0.020) (0.020)

Nb Stations (log) -0.006*** -0.005*** -0.006*** -0.006***
(0.002) (0.001) (0.001) (0.001)

Vote -0.040*** -0.052*** -0.041***
(0.006) (0.008) (0.008)

Poverty -0.075*** -0.063***
(0.016) (0.018)

Manuf -0.020*** -0.014***
(0.004) (0.004)

Bachelor 0.060***
(0.013)

Unemployment 0.238***
(0.063)

0.767 0.777 0.779 0.816 0.825 0.828
Observations 3059 3059 3059 3046 2993 2993

cost of transportation is itself a function of the firms’ output (since in our case, firms are gas stations).12

We now formally describe the model. There are N consumers indexed by n = {1..N} and J gas station indexed
by j = {1..J}. There are both located in a unit circle and we denote by θ(n) the position of consumer n and φ(j)
the location of station j. We assume that stations are located regularly so that φ(j) = 2πj

J while θ(n) follows a
known distribution H with density h. Each station charges a price p(j) and each consumer considers all possible
options to buy gas and choose the cheapest. To purchase gas, a consumer needs to move to the gas station j from
its position at a cost C(n, j) = ηp(j) |θ(n)− φ(j)|, where η is a constant that captures the consumption of gas per
unit of distance.

Let us consider a consumer n located between stations j and j + 1 (formally 2πj
J < θ(n) < 2π(j+1)

J ). This
consumer is indifferent between the two stations if p(j) + C(n, j) = p(j + 1) + C(n, j + 1), that is if:

p(j)

(
1 + η

(
θ(n)− 2πj

J

))
= p(j + 1)

(
1− η

(
θ(n)− 2π(j + 1)

J

))
This yields:

θ(n) =
1

η

p(j + 1)− p(j)
p(j + 1) + p(j)

+
2πj

J
+

2π

J

p(j + 1)

p(j + 1) + p(j)
≡ θ(j, j + 1)

the position of the indifferent consumer. Hence, the profit of gas station j can be written:

π(j, p(j), p(j + 1), p(j − 1)) = (p(j)− P )

∫ θ(j,j+1)

θ(j−1,j)

dH(θ)

Where P is the unit cost of the gas station input that we assume to be constant (we think at it as the price of
crude oil). Each gas station j chooses the price p(j) that maximizes its profit, taken as given the price vector of all
other gas stations.

First order condition (FOC) from this maximization problem yields:∫ θ(j,j+1)

θ(j−1,j)

dH(θ) + (p(j)− P )

[
dθ(j, j + 1)

dp(j)
h(θ(j, j + 1))− dθ(j − 1, j)

dp(j)
h(θ(j − 1, j))

]
= 0,

12This model is of course very stylized, and in particular space is considered one dimensional (as an angle coordinate on a circle) to
avoid edge effects.
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with
dθ(j, j + 1)

d(p(j))
=

−p(j + 1)

(p(j) + p(j + 1))
2

(
2

η
+

2π

J

)
< 0

and
dθ(j − 1, j)

d(p(j))
=

p(j − 1)

(p(j − 1) + p(j))
2

(
2

η
+

2π

J

)
> 0

Finally (FOC) can be rewritten:∫ θ(j,j+1)

θ(j−1,j)

dH(θ) =

(
2

η
+

2π

J

)
(p(j)− P )

(
p(j + 1)h(θ(j, j + 1))

(p(j) + p(j + 1))
2 +

p(j − 1)h(θ(j − 1, j))

(p(j) + p(j − 1))
2

)
(5)

We solve this system of J equations to derive the distribution of equilibrium prices ~p = p(j). The model does
not allow for a tractable solution for any distribution h(θ). We therefore adopt a numerical optimization strategy
to obtain the price vector. We rewrite equation 5 as a minimization problem fj(~p, h, J, η, P ) = 0 with the single
objective C [h, J, η, P ] =

∑
j fj(~p, h, J, η, P )2 (we take C as a standard squared cost function) that can be solved

conditional on the parameters with an optimization heuristic. We rely to a genetic algorithm to solve the problem,
as this type of heuristic is very flexible in the fitness landscapes handled and in the input space dimensionality.
In particular, we use the R package GA (see Scrucca, 2013), with default setting, a population of size 50 and a
maximal number of iterations of 10000. Each optimization is repeated 50 times following a Monte Carlo method
for a better consistency of final results as the optimization is stochastic and does not always fully converge.

Results from this numerical simulation are shown in Fig. 4.2 with fixed transportation cost η = 1, unit price
P = 0.8, J = 200 gas stations and three different population density profiles: (i) a uniform population with
h(θ) = 1/2π (left-hand side panel); (ii) a linear population such that h(0) = 0, h(π) = 1/π and h varying linearly
between the two (central panel); (iii) a shifted exponential population such that h(θ) = exp(− |θ − π| /θ0) with
θ0 = π/10 such that most of the population is located between π/2 and 3π/2 (right hand side panel). This last
profile is typical of urban population distributions as argued in Anas et al. (1998).

As expected, the uniform density profile in Figure 7(a) yields uniform prices.13 The price profiles for the linear
density in Figure 7(b) show a slight increase around the maximal population point, and a sharp increase when the
population approaches the minimum. This effect is more pronounced with a higher number of stations in which
cases areas with a very low population density end up with significantly higher prices. This trend is confirmed by the
exponential population profile 7(c), where prices rises as soon as a certain population threshold is attained. These
qualitative results are robust to the number of stations J , as similar behaviors were obtained with J ∈ {10; 20; 100}.

Although extremely stylized, the model succeed in predicting our main findings which are that gas price are
heterogneous in space and that they are negatively correlated with local population density.14 Here our main
channel is through competition: for a given number of gas stations, a more densely populated area correspond to
higher profit, the equilibrium price of a given station results in a trade off between decreasing its price in order to
“steal” consumers from its neighboring competitors or increasing its price so as to raise its markup. The former
strategy is all the more efficient that the population around the station is large.

While the main goal of the model is to show how more densely populated areas are associated ceteris paribus
with lower gas price, it can be easily related to other covariates that are analyzed in previous section. For example,
the fixed cost P can be related to the local level of price, which in turns is influenced by local economic profile
(captured by the poverty rate, share of manufacturing sector etc...). The model could also further be extended by
considering more heterogeneity (i.e. adding an heterogeneity of income on top of the spatial heterogeneity) or by
considering different preferences (as captured by the vote for the Republican party in Table 5). Another interesting
extension would be to consider a discontinuity in the circle that would reflect a frontier between two different states
with two different level of taxes. All these extensions are left for further research.

Finally, note that in this simple version of the model, the number of gas stations and their location is exogenous
and constant. As shown in the description of the dataset above, this assumption is not absurd given the low
correlation coefficient between population and number of stations at a local level in the most populated areas. This

13The perturbation comes from a small noise that results from the stochasticity of the optimization procedure, which is furthermore
higher when the problem becomes more complex, i.e. when the number of stations increases. This noise does not affect the qualitative
conclusions of the simulation.

14In this model, we have used population and density interchangeably. In practice, the underlying link between the variation of density
and the variation of population of a county is complex and out of the scope of this stylized model. Such relationship typically relates
to more complex geographical processes (links between surface, urban density and population) which are not included here. These can
for example be tackled at the macroscopic scale with urban scaling laws (Marshall, 2007) or at the mesoscopic scale with metropolitan
models of population distribution (Anas et al., 1998).
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(a) Uniform (b) Linear (c) Exponential

Figure 7: Numerical resolution of the theoretical model. We give for each stylized population density profile
(columns) within uniform, linear and exponential, the equilibrium prices as a function of the angle θ (here in
degrees), estimated with the genetic algorithm optimization heuristic. The number of station is set to 200. Points
are averages on the repetitions of the optimization, and shaded areas give corresponding confidence intervals.

however leaves room for an improvement of the model, and in order to fully specify it, one would need to impose
two additional features: (i) gas stations are allowed to enter as long as their expected profit is positive and (ii)
a new entrant can choose its location. Qualitatively, such addition to the model would reinforce the competition
effect and highlight the negative correlation between the density of gas stations and price. In its current form, the
model has been designed to show how a given grid of suppliers results in price heterogeneity through other factors.

5 Discussion

On the complementarity of Econometric and Spatial Analysis methods

One important aspect of our contribution is methodological. We show that to explore a new panel dataset, geog-
raphers and economists have different approaches, leading to similar generic conclusions but with different paths.
Some studies have already combined GWR and multi-level regressions (e.g. Chen and Truong, 2012), or compared
them in terms of model fit or robustness (Lee et al., 2009). We take here a multi-disciplinary point of view and
combine approaches answering to different questions, GWR aiming at finding precise predictor variables and to
measure the extent of spatial correlation, whereas econometric models explain with more accuracy the effect of
factors at different levels (state, county) but take these geographical characteristics as exogenous. We claim that
both are necessary to understand all dimensions of the studied phenomenon.

Designing localized car-regulation policies

Another potential application of our analysis is to help designing better car-regulation policies. Environmental
and health issues nowadays require a reasoned use of cars, in cities with the problem of air pollution but also
overall to reduce carbon emissions. Fullerton and West (2002) showed that a taxation of fuel and cars can be
equivalent to a taxation on emissions. Brand et al. (2013) highlight the role of incentives for the transition towards
a low carbon transportation. However, such measures cannot be uniform across states or even counties for obvious
reasons of territorial equity: areas with different socioeconomic characteristics or with different amenities should
contribute regarding their capabilities and preferences. Understanding local prices dynamics and their drivers, for
which our study is a preliminary step, may be a path to localized policies taking into account the socioeconomic
configuration and include an equity criterion. To this extent, it is interesting to compare the US: a large territory
with heterogeneous taxes with other countries where the level of tax on oil is uniform.

Going further

We insist that such an analysis is only preliminary. Our goal is to derive simple insights of what a large scale micro
dataset can teach about time and space variations of oil price. Of course the application of such dataset, providing
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it can be collected on a larger time interval are manifold. In addition to shedding new light on the literature already
mentioned in the introduction (estimation of a pass through of tax to gasoline price, asymmetric incidence of fuel
tax, effect of natural disasters etc...), such dataset could be used to calibrate theoretical models of consumer and
producer behaviors.

One other interesting research direction would be to look at gas station located at the border and to see how
they react to change in fuel tax rates in a neighboring states. Standard models of industrial organization suggest
that they should also adjust their price and increase their markups as a result of a reduction in local competition.
More generally, the spatial diffusion of such local changes in tax across other areas that are not directly affected is
a subject that deserve a more careful look, which can be provided by the use of very disaggregated data.

Other developments include similar analysis on a longer time span, developing spatio-temporal models that
factor in the temporal dimension that will arguably be more relevant in that case. This would however again
require an extension of the dataset in time. Similarly, a qualitative microscopic validation of some conclusions
obtained here through fieldwork and for example interview of retailers and companies (Melaina et al., 2017), would
be an interesting development towards the coupling of quantitative and qualitative analyses.

Finally, a development that would exploit the full potential of the microscopic scale of our dataset would be
the development and parametrization of a spatially-explicit agent-based model for the retail fuel market at the
microscopic level, similarly to the study done by Heppenstall et al. (2005). Indeed, our simple model introduced
above was solved through optimization. Yet, an alternative would be to simulate the full model with explicit agents
and consumption processes. This would allow to generalize the model to a more realistic geographical setting
(including real road network and stations positions), which we could augment with the actual price information
from our dataset. This would allow to investigate much more different variables and processes including socio-
economic aspects, and for example be a way to test the impact of territory-specific policies discussed above.

6 Conclusion

We have described a first exploratory study of US fuel prices in space and time, using a new database at the gas
station level spanning two months. Our first result is to show the high spatial heterogeneity of price processes,
using interactive data exploration and auto-correlation analyses. We proceed with two complementary studies of
potential drivers: GWR unveils spatial structures and geographical particularities, and yields a characteristic scale
of processes around 75km; multi-level regressions show that even though most of the variation can be explained
by state level characteristics, and mostly by the level of the tax on fuel that is set by the state, there are still
socioeconomic idiosyncrasies at the county level that can explain spatial variations of fuel price. The effect of
density is consistent with a minimal theoretical model linking population distribution with the formation of prices.
Our contribution paves the way for further detailed studies using similar micro-level datasets.
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