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ABSTRACT
Many statistical models in cosmology can be simulated forwards but have intractable
likelihood functions. Likelihood-free inference methods allow us to perform Bayesian
inference from these models using only forward simulations, free from any likelihood
assumptions or approximations. Likelihood-free inference generically involves simulat-
ing mock data and comparing to the observed data; this comparison in data-space
suffers from the curse of dimensionality and requires compression of the data to a
small number of summary statistics to be tractable. In this paper we use massive
asymptotically-optimal data compression to reduce the dimensionality of the data-
space to just one number per parameter, providing a natural and optimal framework for
summary statistic choice for likelihood-free inference. Secondly, we present the first cos-
mological application of Density Estimation Likelihood-Free Inference (delfi), which
learns a parameterized model for joint distribution of data and parameters, yielding
both the parameter posterior and the model evidence. This approach is conceptually
simple, requires less tuning than traditional Approximate Bayesian Computation ap-
proaches to likelihood-free inference and can give high-fidelity posteriors from orders
of magnitude fewer forward simulations. As an additional bonus, it enables parameter
inference and Bayesian model comparison simultaneously. We demonstrate Density
Estimation Likelihood-Free Inference with massive data compression on an analysis
of the joint light-curve analysis supernova data, as a simple validation case study. We
show that high-fidelity posterior inference is possible for full-scale cosmological data
analyses with as few as ∼ 104 simulations, with substantial scope for further improve-
ment, demonstrating the scalability of likelihood-free inference to large and complex
cosmological datasets.
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1 INTRODUCTION

In cosmological data analysis we are often faced with sce-
narios where we can generate mock data with sophisti-
cated forward simulations, but are unable to write down
a tractable likelihood function. For example, physics asso-
ciated with non-linear structure formation on small scales
(Springel 2005; Klypin et al. 2011), baryonic feedback (Hell-
wing et al. 2016; Springel et al. 2017; Chisari et al. 2018),
gravitational and hydrodynamical evolution of the inter-
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galactic medium (Arinyo-i Prats et al. 2015; Bolton et al.
2016), epoch of reionization (Mesinger et al. 2016; Kern et al.
2017) etc., may be captured (to varying degrees) by simu-
lations, whilst compact and accurate models for the statis-
tical properties of these processes are often elusive. Simi-
larly on the measurement side, complicated noise models,
subtle measurement and selection biases etc., can often be
simulated but are challenging to incorporate exactly into a
likelihood function.

The standard approach is to build an approximate like-
lihood that tries to capture as much of the known physics
and measurement processes underlying the data as possi-
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ble, in the hope that the adopted approximations do not
lead to biased posterior inferences. Even if the means and
variances of inferences are not appreciably biased, assessing
tensions between data sets (Marshall et al. 2006), combining
inferences and comparing models can be strongly affected by
posterior tail probabilities that are unlikely to be accurate
when using popular likelihood approximations. With widely
reported tensions between key state-of-the art cosmological
datasets, most notably weak lensing and cosmic microwave
background (CMB) measurements of the amplitude of mat-
ter clustering (Ade et al. 2016; Joudaki et al. 2016; Alsing
et al. 2016; Hildebrandt et al. 2017) and local versus CMB
measurements of the Hubble constant (Riess et al. 2011;
Ade et al. 2016; Feeney et al. 2017), it is worthwhile seek-
ing methods that might eliminate likelihood approximations
from the chain of scientific reasoning.

Likelihood-free inference methods allow us to perform
Bayesian inference using forward simulations only, free from
any likelihood assumptions or approximations (see Lin-
tusaari et al. 2017 for a review). This approach has great ap-
peal for cosmological data analysis, since encoding complex
physical processes, instrumental effects, selection biases etc.,
into a forward simulation is typically much easier than incor-
porating these effects into a complicated likelihood function
and solving the inverse problem.

Likelihood-free methods are emerging as a viable way
forward for analyzing complex data-sets in cosmology, with
recent applications to inference of the quasar luminosity
function (Schafer & Freeman 2012), galaxy merger rate
evolution at early times (Cameron & Pettitt 2012), cos-
mological parameters from supernova observations (Weyant
et al. 2013), galaxy-formation (Robin et al. 2014), weak-
lensing peak statistics (Lin & Kilbinger 2015), the galaxy-
halo connection (Hahn et al. 2017), cosmological redshift
distributions (Kacprzak et al. 2017), photometric evolution
of galaxies (Carassou et al. 2017), and Lyman-α and -β
forests (Davies et al. 2017), with public likelihood-free in-
ference codes implementing Approximate Bayesian Compu-
tation (abc) facilitating the rise in popularity of these meth-
ods (Ishida et al. 2015; Akeret et al. 2015; Jennings et al.
2016).

In its simplest form, likelihood-free inference with abc
involves forward simulating mock data given a set of input
parameters drawn from the prior, and then comparing the
simulated data to the observed data, accepting parameters
when the simulated data is close (by some distance-metric)
to the observed data. This comparison in data-space suffers
from the curse of dimensionality, scaling exponentially with
the size of the data set; for large data sets such a comparison
is completely impractical and it is essential to compress the
data down to a small number of summary statistics. The
need for data compression is common amongst even sophis-
ticated likelihood-free inference methods. Data compression
schemes should be carefully designed to reduce the data to
the smallest set of summaries possible, whilst retaining as
much information about the parameters of interest as pos-
sible (see Blum et al. 2013 for a review).

Once a data compression scheme has been prescribed,
the second hurdle for achieving scalable likelihood-free infer-
ence is choosing how to propose parameters and run forward
simulations in the most efficient way, minimizing the num-
ber of simulations required to obtain high-fidelity posterior

inferences. This is of particular importance for applications
in cosmology, where forward simulations are often extremely
computationally expensive; even with very aggressive data
compression, abc methods typically require an unfeasibly
large number of simulations for many cosmological applica-
tions.

This paper tackles the two key hurdles for scalable
likelihood-free inference: (1) how do we compress large cos-
mological datasets down to a small number of summaries
whilst retaining as much information about the cosmolog-
ical parameters as possible, and (2) how do we perform
likelihood-free inference using a feasible number of forward
simulations. We propose a general two-step data compres-
sion scheme, first compressing the full dataset D ∈ RN down
to d ∈ RM well-chosen heuristic summary statistics as is
standard practice in cosmological data analysis (e.g., com-
pressing maps down to power spectra, supernova lightcurves
and spectra down to estimated distance moduli and red-
shifts), and secondly asymptotically-optimally1 compressing
the M summaries down to just n numbers t ∈ Rn – one for
each parameter of interest – while preserving the Fisher in-
formation content of the data, following Alsing & Wandelt
(2018), Heavens et al. (2000) and Tegmark et al. (1997).

With the two-step compression scheme defined, we
then introduce Density Estimation Likelihood-Free Infer-
ence (delfi; Bonassi et al. 2011; Fan et al. 2013; Papamakar-
ios & Murray 2016), which learns a parameterized model for
the joint density of the parameters and compressed statis-
tics P(θ, t), from which we can extract the posterior density
by simply evaluating the joint density at the observed data
to, ie., P(θ |to) ∝ P(θ, t = to). We will show that high-fidelity
posterior inference can be achieved with orders of magnitude
fewer forward simulations than, for example, available im-
plementations of Population Monte Carlo ABC (pmc-abc),
making likelihood-free inference feasible for full-scale cosmo-
logical data analyses where simulations are expensive. As a
case study, we will demonstrate delfi with massive data
compression on an analysis of the Joint Lightcurve Analysis
(JLA) supernova dataset (Betoule et al. 2014).

The structure of this paper is as follows: in §2 we discuss
massive asymptotically-optimal data compression for appli-
cation to likelihood-free inference methods. In §3 we intro-
duce likelihood-free inference methods, discussing abc and
introducing Density Estimation Likelihood-Free Inference or
delfi (Bonassi et al. 2011; Fan et al. 2013; Papamakarios &
Murray 2016) as a scalable alternative. In §4 we validate the
delfi method with asymptotically-optimal data compres-
sion on a simple analysis of the JLA supernova dataset, and
compare to pmc-abc. We conclude in §5.

2 MASSIVE ASYMPTOTICALLY-OPTIMAL
DATA COMPRESSION

In this section we describe the two-step data compression,
firstly from N data to a set M of well-chosen summary statis-
tics, and then compressing the M summaries down to just n
numbers, where n is equal to the number of parameters to
be inferred.

1 For a discussion of precisely what is meant by optimal in this

context, see §2.3.
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The first step is already common practice in cosmo-
logical data analysis; for example, data from cosmological
surveys are typically compressed to maps and then esti-
mated n-point statistics (power spectra or correlation func-
tions, bispectra etc) or other summary statistics. The sec-
ond step, compressing down to just one number per param-
eter whilst retaining as much (Fisher) information about
the parameters as possible, has been considered by Tegmark
et al. (1997), Heavens et al. (2000) and Alsing & Wandelt
(2018); we follow the most general of these studies here (Als-
ing & Wandelt 2018). These Fisher-information preserving
data compression ideas are already widely used in astron-
omy and cosmology, with applications spanning determin-
ing galaxy star formation histories (Reichardt et al. 2001;
Heavens et al. 2004; Panter et al. 2007), CMB data anal-
ysis (Gupta & Heavens 2002; Zablocki & Dodelson 2016),
gravitational waves (Graff et al. 2011), transient detection
(Protopapas et al. 2005), fast covariance matrix estimation
(Heavens et al. 2017), galaxy power spectrum and bispec-
trum analyses (Gualdi et al. 2017) and optimal power spec-
trum estimation (Tegmark et al. 1997; Bond et al. 1998,
2000).

2.1 Two-step data compression

The two-step compression proceeds as follows:

(I) Compress the full dataset D ∈ RN into a set of sum-
mary statistics d ∈ RM , with the aim of retaining as much
information as possible about the parameters of interest:

D→ d(D) = {list of summary statistics} (1)

(II) Compress the vector of M summary statistics d into
a vector of n numbers t ∈ Rn, as follows: assume an ap-
proximate form for the log-likelihood function L, and define
the compressed statistics t to be the score-function – the
gradient of the log-likelihood – evaluated at some fiducial
parameter set θ∗:

d→ t = ∇θL∗. (2)

In the case where we assume a Gaussian likelihood for the
summary statistics, 2L = −(d−µ)TC−1(d−µ)− ln|C| with the
mean and covariance depending on the parameters, the com-
pressed statistics t are given by (Alsing & Wandelt 2018):

t = ∇θµT
∗C−1
∗ (d − µ∗) +

1
2
(d − µ∗)TC−1

∗ ∇θC∗ C−1
∗ (d − µ∗), (3)

where µ∗ ≡ Eθ∗ [d] and C∗ = Eθ∗

[
(d − µ)(d − µ)T

]
are the

mean and covariance of the summary statistics d (evaluated
at the fiducial parameter values), which can be estimated
from forward simulations.

Let us consider the practical considerations and limita-
tions of steps (I) and (II) in turn.

2.2 Step I: Initial compression to summary
statistics

Compression step (I) retains as much information as can
be captured by the carefully chosen summary statistics d.
In special cases where sufficient summary statistics can be
found, this step will be lossless, but in general step (1) will
be lossy. Nevertheless, it is standard practice to reduce large

cosmological datasets to sets of summary statistics in the
hope of retaining as much information as possible whilst
making the subsequent inference task tractable. A substan-
tial body of literature exists on summary statistic choice for
cosmological data analysis. In the context of likelihood-free
inference, one may include in d a list of as many relevant
summary statistics for the problem as is feasible in the hope
of capturing as much information as possible, without need-
ing to be able to write down a joint likelihood-function for
the summaries.

Importantly, the only requirement for likelihood-free in-
ference is that realizations of the summary statistics can be
generated by forward simulation given a set of input param-
eters; in contrast to likelihood-based analyses, we do not
require a predictive model for the expected summary statis-
tics µ(θ) = Eθ [d]. For cosmological data analysis this has
great appeal, since many problems have summary statistics
that are expected to contain a wealth of information but
that we may not have a reliable predictive model for. Exam-
ples in the context of large-scale structure analyses include
the galaxy power spectrum and bispectrum in redshift-space
and on small scales, the weak lensing power spectrum on
small angular scales, cosmic void statistics, the flux power
spectrum of the Lyman-α forest, and many others.

Whilst step (I) typically results in an enormous reduc-
tion in the size of the data-space, for cosmological appli-
cations the number of summary statistics M is still often
∼ 102 or larger. For example, we may have compressed a
vast number of time-ordered data points from a cosmic mi-
crowave background survey down to a few hundred or thou-
sand estimated power spectrum modes, or measured super-
nova lightcurves and spectra down to an estimated apparent
magnitude, redshift, color and stretch parameter for each of
the sources. Hence the space of M summaries is still typ-
ically much too large for practical data-space comparisons
and likelihood-free inference; further compression of these
summaries down to a small number of compressed statistics
is still required.

2.3 Step II: Asymptotically optimal compression
to the score-function of an approximate
likelihood

Once an appropriate set of summary statistics has been cho-
sen, the massive compression in step (II) proceeds by assum-
ing an approximate form for the likelihood and compressing
to the score-function – the gradient of the log-likelihood eval-
uated at some fiducial parameter set θ∗ (Eq. 2). This com-
pression results in just n numbers – one per parameter of
interest – that are optimal in the sense that they preserve
the Fisher information, to the extent that the assumed form
for the (unknown or intractable) likelihood is a good ap-
proximation to the true likelihood function and the fiducial
expansion point is close to the maximum-likelihood (this can
be iterated if necessary; see Alsing & Wandelt 2018 for de-
tails). A detailed discussion of optimality in this context is
given at the end of this section.

Crucially, the assumed approximate likelihood function
is used for the sole purpose of performing the data com-
pression; once the compression is done, all likelihood as-
sumptions are dropped and the subsequent inference is gen-
uinely likelihood-free. Better likelihood approximations for
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the compression step will lead to more optimally compressed
statistics, but there is no sense in which these choices will
bias the final parameter inferences.

For many applications, a Gaussian likelihood may be
a reasonable first approximation, but not accurate enough
in detail to be used for likelihood-based inferences. In these
situations a Gaussian likelihood may be assumed for the
data compression, leading to compressed statistics given by
Eq. (3). Computing the compression in Eq. (3) requires an
estimate of the mean, covariance matrix and their deriva-
tives at some fiducial parameter set θ∗. These can all be
obtained using forward simulations only, as is already com-
mon practice for mean and covariance estimation for con-
ventional likelihood-based analyses. Derivatives can be esti-
mated quickly by performing simulations with matched ran-
dom seeds but perturbed parameter values.

For likelihood-based analyses assuming Gaussian likeli-
hoods, poorly estimated covariance matrices will in general
lead to biased parameter inferences and great care needs to
be taken to ensure these are determined precisely, including
any parameter dependencies, and any covariance-matrix un-
certainties should be formally marginalized over (Sellentin &
Heavens 2015). In contrast, for likelihood-free analyses, if the
covariance matrix used for the compression in Eq. (3) is ap-
proximate, the worst outcome is that the resulting compres-
sion will be sub-optimal; crucially, there is no sense in which
poorly estimated covariance matrices can bias the final pa-
rameter inferences and parameter dependent covariance ma-
trices are not required. The same principle applies to the
mean and derivatives appearing in Eq. (3); approximations
are always safe, only leading to sub-optimality. This means
that when fast approximate models for the covariances and
means are available, they can be used safely for rapid com-
pression, reducing the total number of forward simulations
required (at the cost of some optimality).

Asymptotic optimality

Compression to the score function of a given likelihood
promises to be optimal in the sense that it preserves the
Fisher information content of the data, to the extent that
the likelihood assumed for the compression is a good ap-
proximation to the true likelihood and the gradient (score)
can be evaluated close to the maximum likelihood.

In typical likelihood-free inference applications, the
form of the likelihood function under the model is either
not known or not computationally tractable, and using an
approximate likelihood function for the compression will be
lossy. In these cases, if the compression is performed under a
“best guess” for the true likelihood then there is still a sense
in which the compression is “optimal”; it preserves as much
Fisher information as possible under the level of knowledge
and resources available for making a good likelihood approx-
imation for the compression. In other words, you can only
do as well as your likelihood-ignorance allows.

Even when the compression is performed under the ex-
act likelihood, compression to the score only promises to pre-
serve the Fisher information content of the data. Whilst this
is a clearly-stated definition of optimality, in cases where the
likelihood is a highly non-Gaussian or multi-modal function
of the parameters the Fisher information is not guaranteed
to be a good measure of the information content of the data

and there may be more effective compression schemes. This
is rarely the case for cosmological applications. Neverthe-
less, in the asymptotic limit where the likelihood becomes
Gaussian with (expected) curvature specified by the Fisher
information matrix, compression to the score exactly pre-
serves the (expected) uncertainties on the inferred parame-
ters. In this sense, compression to the score can be said to
be asymptotically-optimal.

We note that a new approach to data compression is
emerging that does not require the compression to be per-
formed under an approximate likelihood function; Charnock
et al. (2018) develop information maximizing neural net-
works trained on forward simulations that can learn optimal
compression schemes without specifying a likelihood func-
tion.

3 LIKELIHOOD-FREE INFERENCE

In this section we discuss likelihood-free inference. In §3.1
we discuss Approximate Bayesian Computation (abc) meth-
ods, highlighting some of their limitations in the context of
cosmological data analysis. In §3.2 we present Density Esti-
mation Likelihood-Free Inference (delfi), which overcomes
many of the key shortcomings of abc methods.

3.1 Approximate Bayesian Computation (ABC)

In its simplest incarnation, rejection abc works as follows
(Rubin et al. 1984):

(i) Draw parameters from the prior θ ← P(θ);
(ii) Simulate mock data d← P(d|θ);
(iii) If distance between observed and mock data is

smaller than some threshold, ρ(d, do) < ε , accept, else re-
ject;

(iv) Repeat until desired number of samples are obtained.

In the limit where ε → 0, the accepted samples are drawn
from the true posterior, whilst for any non-zero ε , the sam-
ples drawn are from an approximate posterior that is by con-
struction broader than the true posterior density. The dis-
tance metric ρ for comparing simulated and observed data
needs to be specified (with many options existing, McKin-
ley et al. 2009), as does the distance threshold ε . Since the
acceptance rate becomes vanishingly small as ε → 0, abc
posteriors are always broader than the true posterior, but
are unbiased; provided one can make ε small enough, good
posterior approximations can be recovered.

Proposing parameters from the prior in rejection abc
is typically inefficient when the posterior density occupies a
small portion of the total prior volume (see eg., Toni et al.
2009; Toni & Stumpf 2009). In this case, drawing parame-
ters from a proposal distribution that preferentially samples
the relevant portion of parameter space (followed by impor-
tance re-weighting) leads to more efficient abc sampling.
Population Monte Carlo (pmc) and Sequential Monte Carlo
(smc) abc methods (Del Moral et al. 2006; Sisson et al. 2007;
Beaumont et al. 2009; Toni et al. 2009; Bonassi et al. 2015)
are popular advancements on rejection abc that adaptively
learn a more intelligent proposal distribution, whilst at the
same time implementing a “cooling” scheme for ε , gradually
lowering the distance threshold as the proposal distribution

MNRAS 000, 1–14 (2017)



Scalable likelihood-free inference for cosmology 5

becomes more optimized (see Ishida et al. 2015; Akeret et al.
2015; Jennings et al. 2016 for applications in the astronomy
literature).

abc methods have been applied successfully to a num-
ber of problems in cosmological data analysis (Schafer &
Freeman 2012; Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Lin & Kilbinger 2015; Hahn et al. 2017;
Kacprzak et al. 2017; Davies et al. 2017). However, even so-
phisticated abc algorithms suffer from vanishingly small ac-
ceptance rates as ε → 0 by construction, scaling poorly with
the number of parameters of interest, so for high-fidelity
posterior inference this usually means running very large
numbers of forward simulations. For many applications in
cosmology where simulations are expensive, this is imprac-
tical.

In the next section we describe a totally different ap-
proach to likelihood-free inference that is “ε-free”, circum-
venting the need to do direct comparisons in data-space and
ultimately making much more efficient use of forward simu-
lations.

3.2 Density Estimation Likelihood-Free Inference
(DELFI)

Density Estimation Likelihood-Free Inference works by
learning a parameterized model for the joint density P(θ, d),
from a set of samples drawn from that density (Bonassi et al.
2011; Fan et al. 2013; Papamakarios & Murray 2016). In its
simplest form, we start by generating a set of samples {θ, d}
from P(θ, d) by drawing parameters from the prior and for-
ward simulating mock data:

θ ← P(θ)
d← P(d|θ). (4)

We then write down a model for the joint density P(θ, d; η),
parameterized by η, and fit this model to the samples {θ, d}.
The estimated2 posterior density and Bayesian evidence can
then be easily extracted from the fit to the joint density as
follows:

P̂(θ |do) ∝ P(θ, d = do; η)

P̂(do) =
∫

P(θ, d = do; η) dθ, (5)

ie., taking a slice through the joint distribution evaluated at
the observed data d = do, and subsequently integrating over
the parameters for the Bayesian evidence. For many prac-
tical choices of parameterized models for the joint density,
eg., Gaussian mixture models (see below), the evidence in-
tegral in Eq. (5) is analytically tractable. This means that
the evidence comes for free, and if the parameterized model
for the joint density is fit to the samples in a principled
way, the uncertainties on the fit parameters can be propa-
gated through to a principled uncertainty on the estimated
Bayesian evidence.

In contrast to abc, delfi uses all of the available for-
ward simulations {θ, d} to inform the inference of the joint
density P(θ, d), and hence the posterior density and evidence

2 Recall that widely used mcmc methods also produce estimates
of the posterior density (and its properties) and/or the model

evidence, from a set of posterior samples.

estimation. In practice, this means that far fewer forward
simulations may be needed to obtain high-fidelity posterior
inferences (compared to abc that has a vanishingly small ac-
ceptance rate as ε → 0), as demonstrated by Papamakarios
& Murray (2016).

Gaussian mixture density estimation

In this work we parameterize the joint density with a Gaus-
sian mixture model (gmm),

P(θ, d; η) =
K∑
i=1

wiN(µi,Ci), (6)

where N(·) denotes the Gaussian density, and the mixture
model is parameterized by the weights, means and covari-
ances η = {{w}, {µ}, {C}} of each of the K components, with∑
w = 1. gmms are capable of representing any probability

density arbitrarily accurately, provided the number of com-
ponents K is sufficiently large, and are straightforward to
fit to data using expectation-maximization or other meth-
ods (see eg., Bishop 2006). They also have the appeal that
the evidence integrals appearing in Eq. (5) are analytically
tractable, so the Bayesian evidence comes for free:

P̂(do) =
∫

P(θ, d = do; η) dθ =
K∑
i=1

wiN(µd i,Cdd i), (7)

where µd i and Cdd i are the component means and covari-
ances corresponding to the data dimensions in the joint den-
sity.

Data compression

The need for data compression for delfi is still clear: the
joint density of the data and parameters has dimensional-
ity N + n, which presents an intimidating density estimation
task for even modestly large datasets. However, implement-
ing the two-step compression scheme described in §2 means
we only have to estimate the joint-density of the parame-
ters and compressed statistics P(t, θ), whose dimensionality
is just 2n. For many cosmological applications, the number
of parameters of interest is typically n . 10.

When using delfi with a data compression scheme,
samples {θ, t} are generated from P(θ, t) as before by draw-
ing parameters from the prior and forward simulating mock
data, with the addition of the subsequent compression step:

θ ← P(θ),
d← P(d|θ),
t = t(d). (8)

These samples {θ, t} are then fit with a mixture density
model in the usual way as described above. Note that when
the Bayesian evidence is estimated from the joint density
P(θ, t), this will be the evidence for the compressed statis-
tics P(to) and not for the original data vector P(do); whilst
these are not numerically equivalent, the evidence under
compressed statistics can still be readily used for model com-
parison purposes provided alternative models are compared
under the same set of compressed summaries.

Importantly, the complexity of the inference problem

MNRAS 000, 1–14 (2017)



6 J. Alsing, B. Wandelt, S. Feeney

stays as a 2n-dimensional density estimation task irrespec-
tive of the size of the dataset (or the number of first-level
summaries used), once the compression scheme has been pre-
scribed. Therefore, the inference step scales easily to large
datasets.

Implementation

We run forward simulations to generate a set of samples
{θ, t} and fit a gmm using pygmmis (Melchior & Goulding
2016), which uses expectation-maximization whilst properly
taking into account any hard prior boundaries.

Gaussian mixture density-estimation with a large num-
ber of components can fall foul to over-fitting. One simple
way to mitigate over-fitting is to set a minimum thresh-
old for the diagonals of the mixture component covariances
(we adopt this approach). For a more sophisticated imple-
mentation that avoids over-fitting without having to specify
thresholds by hand, see Papamakarios & Murray (2016).

Note that when there are hard prior boundaries, the
evidence integral in Eq. 7 is no longer analytically tractable.
In these cases, one can estimate the evidence as follows:
fit a gmm to the samples of {t} alone, ignoring {θ} (this
effectively pre-marginalizes over θ). Then the evidence can
be estimated by simply evaluating at the observed data, ie.,
P̂(t = to).

Sophistications

Papamakarios & Murray (2016) developed a sophisticated
implementation of delfi with two key advancements on the
vanilla set-up described above. Firstly, they parameterize
the joint distribution with a mixture density network (mdn)
– a neural network parameterization of a Gaussian mixture
model – which is fit to the samples using stochastic varia-
tional inference (svi; see Bishop 2006 for a review of mdn
and Hoffman et al. 2013 for svi methods). Secondly, rather
than drawing samples from the prior, they adaptively learn
a proposal distribution that preferentially samples regions
of high posterior density, and subsequently importance re-
weight the samples (in the same spirit as population monte-
carlo abc methods). They find that this set-up is highly
resistant to over-fitting even for small numbers of samples,
enabling the number of forward simulations to be reduced
further. We leave implementation of these sophistications to
future work.

Scaling with number of parameters and dealing
with nuisances

With the compression scheme employed, the inference task
is reduced to learning a 2n dimensional density from a set of
forward simulations, irrespective of the size of the dataset.
The complexity of the inference problem will increase with
the number of parameters n.

For typical cosmological applications, the number of
parameters of interest θ (ie., the cosmological parameters)
will be . 10. However, in many situations there will be
additionally a number of nuisance parameters ξ , captur-
ing observational and astrophysical systematics, selection

effects etc., which need inferring simultaneously and sub-
sequently marginalizing over. If there are n parameters of
interest and m nuisance parameters, delfi involves learning
a 2(n +m) dimensional probability density over the parame-
ters, nuisances and their respective compressed summaries,
P(θ, ξ, tθ, tξ ). However, if the goal is the posterior marginal-
ized over the nuisance parameters, it may be possible to keep
the complexity of the inference task as a 2n-dimensional den-
sity estimation problem. This can be achieved by choosing
compressed summaries tθ ∈ Rn that contain as much infor-
mation as possible about the parameters of interest, whilst
being as insensitive as possible to the nuisance parameters.
Then, draw samples {θ, ξ, tθ } by drawing from the prior and
forward simulating as usual, but only attempt to fit the den-
sity P(θ, tθ ), ie., a 2n-dimensional density pre-marginalized
over the nuisances.

Data compression for marginalized parameter subsets
(under Gaussian likelihoods) is treated in Zablocki & Dodel-
son (2016). We leave a more general treatment of optimal
compression in the presence of nuisances and learning the
nuisance-marginalized posterior density to future work.

4 VALIDATION CASE STUDY: JLA
SUPERNOVA DATA ANALYSIS

To demonstrate the use of Density Estimation Likelihood-
Free Inference (§3) with massive optimal data compression
(§2), in this section we perform an analysis of the Joint
Lightcurve Analysis (JLA) supernova dataset (Betoule et al.
2014). For the purposes of validating the likelihood-free ap-
proach, we perform a simple analysis assuming a Gaussian
likelihood for the JLA data so that we can compare to an
exact likelihood-based analysis, allowing us to demonstrate
the fidelity of the likelihood-free posterior inference against a
ground-truth3. We will compare delfi and pmc-abc against
a long-run Markov Chain Monte Carlo (mcmc) analysis of
the exact (assumed) posterior distribution.

In §4.1–4.3 we describe the JLA data, model and Gaus-
sian likelihood assumptions under which we validate the
likelihood-free approach. In §4.6 we discuss the implemen-
tation of the likelihood-free inference, and in §4.7 we show
the results.

4.1 JLA supernova data

We use the JLA sample comprised of observations of 740
type Ia supernovae, as analyzed in Betoule et al. (2014).
The sample is a compilation of supernova observations from
a number of surveys – see Betoule et al. (2014) and references
therein for details.

The full dataset comprises multicolor lightcurves and
spectroscopic (or sometimes photometric) observations of
each supernova. These lightcurves and spectra are then used
to estimate apparent magnitudes mB and redshifts z, as well
as color at maximum-brightness C and stretch X1 parame-
ters characterizing the lightcurves (see eg., Tripp 1998). In

3 Note that this simple validation case study is for method-
validation purposes only. It is not intended to incorporate new
physics or systematics over-and-above the standard JLA analysis

of Betoule et al. (2014).
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Figure 1. Left: Measured apparent magnitudes with their associated uncertainties (from the diagonal of the covariance matrix) for the

sample of 740 supernovae in the JLA sample. Right: covariance matrix of the measured apparent magnitudes, having taken into account

redshift and lightcurve calibration uncertainties – see Betoule et al. (2014) for details of the covariance matrix construction.

the data analysis (see §4.3, also Betoule et al. 2014), the data
vector will be assumed to be the vector of estimated appar-
ent magnitudes d = (m̂1

B, m̂
2
B, . . . , m̂

M
B ), where uncertainties

in the redshift, color and stretch parameters are propagated
through to the covariance matrix of the observed apparent
magnitudes. This compression of the multicolor lightcurves
and spectra down to a set of estimated apparent magni-
tudes can be thought of as step (I) of the data compression
described in §2.

4.2 wCDM and lightcurve calibration model

As standardizable candles, we assume that the apparent
magnitudes of type Ia supernovae depend on the luminos-
ity distance to the source at a given redshift D∗L(z) (which
is a function of the cosmological model and parameters), a
reference absolute magnitude for type Ia supernovae (as a
function of host-galaxy mass), and calibration corrections for
the light-curve stretch X1 and color at maximum-brightness
C,

mB = 5log10

[ D∗L(z)
10pc

]
+ M̃B(Mstellar; MB, δM) − αX1 + βC (9)

where α and β are calibration parameters for the stretch and
color respectively. The absolute magnitude M̃B is assumed
to be dependent on the properties of the host galaxy; fol-
lowing Betoule et al. (2014), we model the dependence of
the reference absolute magnitude on the stellar mass of the
host as M̃B = MB + δM Θ(Mstellar − 1010M�), where Θ is the
Heaviside function.

The cosmological model enters in the luminosity
distance-redshift relation. We will assume a flat universe
with cold dark matter and dark energy characterized by
equation-of-state p/ρ = w0 (hereafter, wCDM). In a wCDM
universe, the luminosity distance is given by,

D∗L(z) =
(1 + z)c

100

∫ z

0

dz′√
Ωm(1 + z′)3 + (1 −Ωm)(1 + z′)3(w0+1)

,

(10)

where Ωm is the matter density parameter, c is the speed
of light (in vacuum) and w0 is the equation-of-state of dark
energy.

The resulting wCDM model with color and stretch cal-
ibration and host-mass dependent absolute magnitude has
six free parameters of interest: θ = (Ωm,w0, α, β, MB, δM).

4.3 Likelihood

Following Betoule et al. (2014), for this validation case we
will assume the data d = (m̂1

B, m̂
2
B, . . . , m̂

M
B ) are Gaussian dis-

tributed,

L = −1
2
(d − µ(θ))TC−1(d − µ(θ)) − 1

2
ln|C|, (11)

where the mean depends on the parameters and is given
by Eq. (9), and we will assume a fixed covariance matrix4,
shown in Fig. 1, that is assumed to have already accounted
for the uncertainties in the color, stretch and redshift of each
measured supernova (see Betoule et al. 2014 for details of the
covariance matrix construction).

4.4 Priors

We assume broad Gaussian priors on the parameters θ =
(Ωm,w0, α, β, MB, δM) with the following mean and covari-

4 Betoule et al. (2014) constructed a covariance matrix that de-

pends on α and β, and also dropped the |C | term from the like-
lihood (Eq. 11) following March et al. (2011). However, since α
and β are very well constrained by the data, the covariance de-
pendence has a small impact on the final parameter inference.
For this study, we compute the covariance described in Betoule

et al. (2014) but with α and β fixed to their maximum likelihood
values: α = 0.1257, β = 2.644. This also avoids issues arising from
dropping the |C | term from the Gaussian likelihood.
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ance:

µP = (0.3, −0.75, −19.05, 0.125, 2.6, −0.05),

CP =

©«

0.42 −0.24 0 0 0 0
−0.24 0.752 0 0 0 0

0 0 0.12 0 0 0
0 0 0 0.0252 0 0
0 0 0 0 0.252 0
0 0 0 0 0 0.052

ª®®®®®®®®¬
. (12)

In addition to the Gaussian prior, we impose hard prior
boundaries on Ωm ∈ [0, 0.6] and w0 ∈ [−1.5, 0]. The (trun-
cated) Gaussian prior is much broader than the resulting
posterior, having a negligible impact on the the posterior
inference relative to (infinite) uniform priors.

The correlations in the Gaussian prior are chosen to
roughly follow the correlation structure of the inverse Fisher
matrix for the parameters; this allows us to form a broad,
weakly informative prior whilst improving the volume ratio
of the posterior and prior (ie., giving low prior weight to re-
gions of parameter space that are anticipated to be strongly
disfavoured by the likelihood, based on the Fisher matrix).
We find this has negligible impact on the parameter infer-
ences whilst improving the performance of the likelihood-free
inference methods5.

4.5 Massive asymptotically-optimal compression

For step (II) of the data compression, from N = 740 esti-
mated apparent magnitudes down to n = 6 numbers (one
per parameter, following §2) we assume a Gaussian likeli-
hood as in Eq. (11) where only the mean depends on the
parameters. In this case, following Eq. (3) (Alsing & Wan-
delt 2018; Heavens et al. 2000) the optimally compressed
statistics are given by6:

t = ∇θµT
∗C−1
∗ (d − µ∗) + C−1

P (µP − θ∗), (13)

where the mean, its derivative, and the covariance matrix
are evaluated at some fiducial point θ∗ and the second term
includes the impact of the Gaussian prior7. To choose an op-
timal fiducial parameter set for the compression, we iterate
the parameters using the Fisher scoring method (Alsing &
Wandelt 2018):

θk+1 = θk + F−1
k tk, (14)

where F = ∇µTC−1∇Tµ is the Fisher information matrix
(Tegmark et al. 1997), and tk are the compressed statis-
tics computed about the fiducial point θk . We find that Eq.

5 Note that pmc abc and similar pmc approaches to delfi (Pa-

pamakarios & Murray 2016) will be less sensitive to the posterior-
prior volume ratio, since they adaptively learn a proposal density

rather than blindly proposing parameters from the prior.
6 Note that under the assumptions of Gaussian data where the

only parameter dependence is in the mean, the compressed statis-

tics are equivalent to the moped linear data compression of Heav-
ens et al. (2000).
7 This is a minor extension of the derivation in Alsing & Wandelt

(2018), replacing the log-likelihood in t = ∇θL with the sum of
the log-likelihood and log-prior, to incorporate the impact of the

prior into the optimal compression.

(14) converges very quickly and gives the following expan-
sion point: θ∗ = (0.202,−0.748,−19.04, 0.126, 2.644,−0.0525).

The derivatives of the mean with respect to the param-
eters can be written down analytically for α, β, MB and δM
(see Eq. 9), whilst we use a simple leap-frog approximation
for the derivatives with respect to Ωm and w0.

4.6 Likelihood-free inference implementation

For this validation case we are assuming that the data is
Gaussian distributed, with mean given by Eq. (9) and fixed
covariance as shown in Fig. 1. Forward simulating data re-
alizations given parameters is hence as simple as drawing
Gaussian random variates, and samples from the joint data-
parameter density {θ, t} are generated as follows:

θ ← N(µP,CP),
d = µ(θ) + n, where n← N(0,C∗)
t = ∇θµT

∗C−1
∗ (d − µ∗) (15)

We generated a set of 20, 000 samples {θ, t} from the joint
distribution and fit them with Gaussian mixture models.
The gmm fits are performed using expectation-maximization
(implemented using pygmmis; Melchior & Goulding 2016)
as described in §3.2, with K = 1 through to K = 18 mix-
ture components. The mixture component covariances are
regularized by setting a minimum threshold value of 10−6

for the diagonal values, to avoid over-fitting. We assess con-
vergence with respect to the number of mixture components
by looking at the total log-likelihood of the samples under
the Gaussian mixture model, as a function of the number
of mixture components (see Fig. 2, discussion in §4.7). Con-
vergence with respect to the number of samples fed to the
gmm is assessed by looking for convergence in the recovered
posterior means and covariances (see Fig. 3, discussion in
§4.7).

Since the prior in this case has hard boundaries, the
Bayesian evidence integral from the gmm (Eq. 7) is no longer
analytically tractable. We estimate the evidence by fitting
a gmm directly to the samples {t} to obtain an estimate of
the density P(t), and then evaluating at the observed data
to estimate the evidence P(to). We use the same gmm set-up
(ie., number of components) for the evidence as was used for
the final posterior inference (discussion in §4.7).

4.7 Results

To assess convergence with respect to the number of mixture
components, Fig. 2 shows the log-likelihood of the samples
under the gmm model fits to the joint density, as a func-
tion of the number of mixture components K (using the full
20, 000 samples; see below). The log-likelihood of the samples
clearly converges with the number of components, reaching a
point where adding more components does not improve the
fit further. The regularization of the mixture-component co-
variances has ostensibly protected against over-fitting suc-
cessfully (cf., §4.6). We use the K = 12 component gmm
model moving forward, which appears to be well into the
regime where the log-likelihood of the fit has converged.

Fig. 3 shows convergence of the posterior means and
standard deviations (for each parameter) as a function of
the number of samples N that are fed to the gmm model fit

MNRAS 000, 1–14 (2017)
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§4.6).

to the joint density. The posterior means and standard de-
viations converge after N ≈ 8000, with some residual scatter
of . 0.05σ for each parameter in the means, and a few per-
cent in the standard deviations. This gives confidence that
a reasonable posterior approximation may be obtained from
just a few thousand forward simulations. However, if we are
interested in high-fidelity posterior inference capturing the
detailed shape of the posterior, a most sophisticated con-
vergence diagnostic may be required and we leave this to
future work. We proceed using the Gaussian mixture model
fit to 20, 000 forward simulations to ensure excellent conver-
gence, but note that in practice perfectly adequate posterior
inferences may be made with far fewer simulations.

Fig. 4 shows the gmm fit (blue) to the samples (red).
The mixture model with 12 components is a remarkably
good representation of the samples, successfully capturing
the substantial and varied non-Gaussianity, degeneracies be-
tween parameters and hard prior boundaries.

Fig. 5 shows the posterior reconstruction from a long
mcmc run on the exact posterior8 (red), and the poste-
rior recovered from density-estimation likelihood-free infer-
ence (blue), following Eq. (5) applied to the gmm fit shown
in Fig. 4. The posterior recovered from delfi, using only
20,000 forward simulations, is an excellent representation of
the true posterior. This is not surprising given the fidelity
of the gmm fit to the joint data-parameter density, Fig. 4.
Crucially, this also demonstrates that the massive optimal
compression step – compressing the 740 supernovae appar-
ent magnitudes down to just six numbers – is for all intents
and purposes, lossless; we find no perceptible increase in
width of the delfi posteriors computed from the compressed
statistics compared to the exact (mcmc sampled) posterior
computed on the full dataset. In this validation case, since
we are comparing to a ground truth with an assumed like-
lihood function, the compression is indeed optimal (and in
this case, effectively lossless).

8 106 posterior samples drawn using the affine-invariant mcmc

code emcee (Foreman-Mackey et al. 2013).

For comparison against the state-of-the art in abc, in
Fig. 6 we show the recovered posterior from a long pmc-abc
run9. The pmc-abc was run through fourteen population
iterations, generating 20, 000 accepted samples in the final
iteration. This required > 2 × 106 forward simulations in to-
tal, since the vast majority of samples are rejected in the
pmc abc approach. The posterior approximation obtained
from the final set of samples is shown (blue) against the long
run mcmc chain (red). The pmc abc run yields a reasonable
approximation to the true posterior, which is unbiased but
broader than the exact posterior, as expected for abc meth-
ods. The massive optimal data compression has enabled us
to successfully perform abc, which would have been unfeasi-
ble in the full data-space. However, in comparison to delfi
(Fig. 5), pmc abc required ∼ 106 forward simulations com-
pared to ∼ 104 for delfi, for a poorer approximation to the
true posterior in the end. We conclude that whilst current
implementations of abc have limited applicability for scal-
able cosmological data analyses where forward simulations
are expensive, delfi allows us to perform scalable likelihood-
free Bayesian inference with a reasonable number of forward
simulations (with scope for further improvement).

Finally, we estimate the Bayesian evidence using delfi.
We separately fit a 12 component gmm to the 20, 000 sam-
ples {t} (neglecting the θ samples), and evaluate this esti-
mated density at the observed data to to obtain the evidence.
This gives an evidence estimate of ln P(to) = 7.38. In this
validation case, we can compare to the evidence estimated
directly from the known likelihood using nested sampling
(multinest; Feroz & Hobson 2008). Using multinest we
find ln P(to) = 7.4(1), so the evidence estimates from delfi
and multinest are in excellent agreement.

5 CONCLUSIONS

Likelihood-free inference methods allow us to perform
Bayesian inference using forward simulations only, with no
reference to a likelihood function. This is of particular ap-
peal for cosmological data analysis problems where complex
physical processes and instrumental effects can often be sim-
ulated, but incorporating them into a likelihood function and
solving the inverse inference problem is much harder.

Likelihood-free methods generically require large
datasets to be compressed down to a small number of sum-
mary statistics in order to be scalable. We have developed
a two-step compression scheme that has widespread appli-
cability for cosmological data analysis problems. First, we
compress the data down to a list of summary statistics that
are carefully chosen to contain as much information about
the parameters as possible, eg., compressing galaxy survey
data to power spectra or other summary statistics. This type
of compression is already standard practice in the analysis
of cosmological surveys. Secondly, we use the optimal data
compression scheme of Alsing & Wandelt (2018) (following
earlier work by Tegmark et al. 1997 and Heavens et al. 2000)

9 The pmc-abc implementation used here follows the algorithm

described in Ishida et al. (2015). We also tested modified pmc-abc
algorithms following Jennings et al. (2016), Akeret et al. (2015)

and Bonassi et al. (2015); our conclusions are unchanged by these

modifications to the pmc-abc set-up.
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Figure 3. Top row: Convergence in the estimated posterior mean as a function of the number of forward simulations fed to the Gaussian
mixture model fit to the joint density P̂(θ, t). The panels show ∆µ̂/σ̂ = (µ̂N − µ̂N=20,000)/σ̂N=20,000, where µ̂N and σ̂N are the estimated

posterior mean and standard deviation from a Gaussian mixture fit to N forward simulated samples {t, θ }. The posterior mean converges
after a few thousand simulations, with some residual scatter of . 0.05σ for each parameter. Bottom row: Similarly, convergence of the

estimated posterior standard deviation for each parameter as a function of the number of simulations fed to the gmm. The standard

deviations also converge after a few thousand forward simulations, with some residual scatter at the level of a few percent. Much of the
residual scatter in the posterior means and standard deviations is due to small residual gmm fitting uncertainties.

to compress the list of summary statistics down to just n
numbers – one per parameter – whilst preserving the Fisher
information with respect to the parameters of interest. This
second compression step requires the assumption of an ap-
proximate likelihood function, and will be optimal to the
extent that this is a reasonable approximation to the true
(unknown) likelihood. Once the data has been compressed,
all subsequent likelihood-free inference based on the mas-
sively compressed statistics is genuinely likelihood-free.

Approximate Bayesian Computation (abc) approaches
to likelihood-free inference draw parameters from the prior
and forward simulate mock data, accepting points when the
simulated data fall inside some ε-ball around the observed
data. This generates samples from an approximate posterior
density that becomes exact in the limit ε → 0. However,
abc methods suffer from vanishingly small acceptance rates
as ε → 0, leading to either the need for unfeasibly large
numbers of forward simulations, or poor approximations to
the posterior (with undesirably large values of ε), or both.

We have presented a new approach to likelihood-free in-
ference for cosmology – Density-Estimation Likelihood-Free
Inference (delfi; Bonassi et al. 2011; Fan et al. 2013; Papa-
makarios & Murray 2016) – that involves learning a param-
eterized model for the joint data-parameter probability den-
sity, from which (analytical models for) the posterior density
and Bayesian evidence can be straightforwardly extracted.
We have shown that when combined with the massive two-
step data compression scheme, delfi is able to recover high-
fidelity posterior inferences for full-scale cosmological data
analyses from ∼ 104 forward simulations (for a six-parameter
inference task), with scope for further improvement. In con-
trast, current implementations of abc methods require or-
ders of magnitude more forward simulations for approximate
posterior inferences.

Together, massive data compression and Density Es-
timation Likelihood-Free Inference provide a framework
for performing scalable likelihood-free inference from large
cosmological datasets, even when forward simulations are
computationally expensive. This opens the door to a new

paradigm for principled, simulation-based Bayesian infer-
ence in cosmology.
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