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Abstract—For high data rate wireless communication systems,
developing an efficient channel estimation approach is extremely
vital for channel detection and signal recovery. With the trend
of high-mobility wireless communications between vehicles and
vehicles-to-infrastructure (V2I), V2I communications pose addi-
tional challenges to obtaining real-time channel measurements.
Deep learning (DL) techniques, in this context, offer learning
ability and optimization capability that can approximate many
kinds of functions. In this paper, we develop a DL-based channel
prediction method to estimate channel responses for V2I com-
munications. We have demonstrated how fast neural networks
can learn V2I channel properties and the changing trend. The
network is trained with a series of channel responses and known
pilots, which then speculates the next channel response based on
the acquired knowledge. The predicted channel is then used to
evaluate the system performance.

Index Terms—Vehicle-to-infrastructure; V2X; Channel estima-
tion; Machine learning; Deep neural network.

I. INTRODUCTION

Since the first generation (1G) wireless communication
network entered the market in the 1980s, the world has been
dramatically changed by the development of mobile commu-
nication technologies. It has gone through several evolutions
in the past few decades, from 1G to 5G, and due to the
huge potential demand all over the world, the technology will
continue to upgrade rapidly [1]. While 2G, 3G and 4G were
about connecting people and parts of things, 5G will connect
everything and it can provide unlimited access to anywhere,
anytime, anybody and anything [2].

In recent years, orthogonal frequency division multiplexing
(OFDM) has become a popular choice for fast-speed and high-
quality communication systems. However, channel modelling
and channel estimation are two major challenges affecting
the performance of OFDM systems. In order to estimate the
channel response, pilot-based channel estimation is commonly
adopted, in which a training sequence composed of known data
symbols (pilots) is transmitted, and the channel parameters
are initially estimated using the received pilot signals [3]].
Minimum mean-square error (MMSE) and least squares (LS)
are two traditional estimation approaches.

Vehicle-to-Infrastructure (V2I) communication is about the
data transmission between vehicles and infrastructure on the
roads. V2I communication system is normally wireless and

two-way: infrastructure like traffic lights can provide informa-
tion to cars and vice-versa. This communication system can
provide quantitative and real-time information that can be used
for safety, mobility, and environmental benefits. When V2I
communications are widely used, revolution of roadways will
occur all over the world. For example, self-driving vehicles
will become reality and it is vital to make successful and safe
autonomous cars. To make this huge change happen, the basic
theory and techniques must now be developed urgently.

To enhance the performance of communication systems and
to solve signal processing and communications problems, deep
learning (DL) has recently drawn utmost popularity [4]-[7].
A deep neural network (DNN) is an algorithm with learning
ability and optimization capability that can approximate many
kinds of functions. Particularly, problems without any precise
numerical model can now be solved using DL methods [S§]].
In order to leverage the advantages of using a large group
of data for communication performance improvement, several
machine learning methods including supervised, unsupervised
and reinforcement learning have been proposed based on the
traditional approaches. The machine learning can be useful in
analyzing communication environment variance, making de-
cisions autonomously, transmission routing, network security,
and system resource management [6], [8].

Recently, some works have concentrated in the area of chan-
nel estimation using DL methods [9]]-[|13]]. The authors in [10],
[11] proposed the back propagation (BP) learning algorithm
to build a multilayered perceptron (MLP) neural network as
an estimator for OFDM communication channels. In [11], a
method of implicit channel state information (CSI) estimation
and direct recovery of transmission symbols based on deep
learning has been proposed. The authors in [12] proposed an
approximate information passing network for millimetre-wave
massive multiple-input and multiple-output (MIMO) systems
based on learned denoising which is a deep learning model
that can analyze channel structure and estimate channel from
a big training database. In [13]], the authors developed a CSI
feedback model by spreading a new learned CSI perception
and restoration architecture. By learning the spatial features
directly and combining the correlation of samples in time-
varying MIMO channels, the system greatly improves the
quality of recovery and the trade-off between the compression



ratio (CR) and the recovery quality [13]].

All of the above works [9]-[|13]] have developed DL-based
channel estimation techniques in traditional quasi-stationery
wireless communication systems. However, with the trend of
high-mobility wireless communications between vehicles and
vehicles-to-infrastructure (V2I), many rising problems appear
because of the high variances in communication environments,
which are fundamentally different from traditional wireless
communication problems. For the communication with large
Doppler-shift and fast-varying channels, the above methods
may not work because in fast time-varying fading environment
channel response is difficult to obtain in real time and the
outdated CSI exhibits a significant negative impact on the
performance. The critical point to fit high-mobility networks
is to develop future informatized and intelligent vehicles
combined with machine learning to benefit the communication
networks [[14].

In this paper, we address the adverse effects of imperfect
CSI on V2I communication systems by developing a DL-based
channel prediction approach. Two major challenges facing
V2I channel estimation addressed in this paper are i) the
way to find CSI in real-time with the knowledge of vehicle
information including position and velocity, ii) the technique
to estimate the fast time-variant channel properly and recover
the information with minimum error. The major contributions
of this paper are as follows:

o Firstly, an OFDM modulation based V2I channel esti-
mation technique is introduced as a baseline to verify
effectiveness of the DL-based approach.

o Secondly, DL-based channel prediction method is pro-
posed to deal with the channel estimation problem in V2I
communication system in high-mobility environments.

e Thirdly, the performance of the proposed DL-based
approach is compared with other common algorithms
through extensive numerical simulations.
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Figure 1. The proposed V2V and V2I communication system.

II. SYSTEM MODEL

We consider a high-mobility vehicular communication sys-
tem (cf. Fig.|1) in which a vehicle intends to communicate with
a roadside infrastructure, which can be a traditional cellular
base station (BS), traffic lamppost, building or any other fixed
structure. At both BS and the vehicle, only one antenna for
transmitting and receiving is considered. For simplification,
only 2D horizontal plane is considered where the vehicle

travels at a constant speed along a straight road. Hence, at the
same position the channel is highly similar even at different
time slots, and it can be considered as position related channel
estimation which means that change of channel is related to
the position of vehicle. The channel power gain between the
vehicle at position n and the BS is defined as [15]

h(n) = G(n)B(n)Ad(n)~", (D

where G(n) is assumed to be exponentially distributed fast
fading power gain, S(n) is the log normal shadow fading
component, A is the constant pathloss, d(n) is the distance
between the vehicle and the BS, and «y is the pathloss expo-
nent. For a frequency-selective multipath fading channel, the
channel impulse response (CIR) is given by

L—1
h(n) = Z Ce??M§(n — 7)) (2)
1=0
:al§(n—Tl), (3)

where L is the total number of multipath component and ¢;, 77,
and oy = lL:_Ol Cye7%1(") are phase, time delay, and the time-
dependent complex path gain of the /th multipath component.
For the V2I channel, the time-variant phase associated with
the /th path is defined as [[16, Chapter 2]

o1(n) = ¢y — 2men /A + 2w fo 0, 4

where ¢ = f.\. is the speed of light, A, is the wavelength of
the arriving plane wave (carrier signal), 7, = d;/¢, d; is the
length of the Ith path, and fp ; is the maximum Doppler shift
of the Ith propagation path. For OFDM transmission, the mth
modulated time domain symbols can be expressed as

N-1
1 ,
Tm(n) = — 7Xm(l)eﬂ’ml/N, n=0,---,N—1,
UF 2
(5)

where X, (1) is the mth modulated symbol, n is the subcarrier
index and N is the total number of subcarriers. Cyclic prefix
is then appended to the symbols to prevent inter-symbol
interference (ISI). The signals are then transmitted through
the wireless channel and the signal received at the BS can be
expressed as

where ® indicates the convolution operation and w,, (n) is the
additive white Gaussian noise for the mth subcarrier. At the
receiver, the cyclic prefix is removed first from the received
signal, followed by parallel conversion to frequency domain
by applying fast Fourier transform:

N-1
1 .
Yo (k) = N g ym(n)e_ﬂ”k"/N, k=0,---,N—1. (7)
n=1

Thus in the frequency domain, the input-output relationship
can be expressed as

Y (k) = H)X(E) + W(k), k=0,--- ,N—1. (8)



Consequently, the system can be described as a set of NV
independent parallel Gaussian channels:

yk:hkl‘k+wkak:037N71 (9)
For convenience, we rewrite (I0) using matrix notations as [3]]
y =XFg+w,

where X is a N x N dia%gnal matrix containing x 2

[ (0) Xy (1) -+ - & (N — 1)]r as the main diagonal, g £
T

[9m(0) gm (1) - gm(N = 1)]", w £ [wo w1 -~ wy—1]" and

Foo Fyn-1

. (11)

Fy_10 Fn_1,nv-1

is the DFT matrix with F,, , = ﬁe’jzmk/}v.

The objective of this study is to estimate the CIR H,, (k)
from the observation of Y;,(k) with known pilot signal
X (k). In the following, we will first discuss the conventional
channel estimation approaches, and then develop a deep learn-
ing based channel estimation algorithm for the V2I system (7).

III. CONVENTIONAL CHANNEL ESTIMATION TECHNIQUE

In conventional communication systems, both blind and
non-blind channel estimation techniques have been considered
for estimating the CIR. Popular channel estimation algorithms
include maximum likelihood (ML), least mean square (LMS),
minimum mean square error (MMSE) and least square (LS)
methods. These methods have been studied thoroughly to
estimate CSI within a certain time and frequency range.
Although the LS algorithm has a worse performance in time-
varying environments compared to the other approaches, its
implementation is very simple. On the other hand, the MMSE
algorithm can be well-behaved in all general fading channels
with both frequency and time selectivity.

A. The LS Algorithm

The LS algorithm tries to minimize the squared error (i.e.,
Euclidian distance) between the transmitted and the received
signals which is expressed as

2 H

ly — XFg| = (y—-XFg)" (y—XFg). (12)
Taking the derivative of (I2) and equating the derivative to 0,
the LS estimate of the channel frequency response is given by

hs = F (FIXYXF) " Xy, (13)
Since the optimal training sequence is orthonormal [[17]], [[18]],
(T3) eventually reduces to

hrs = X ly. (14)

B. The MMSE Algorithm

The MMSE channel estimator takes the effect of channel
noise into consideration. Meanwhile, the MMSE estimate of
g is given by

gumse = Ry R,y (15)
where
R,, =E{gy"”} =R ,F'X", (16)
R,, =E{yy?} = XFR,,FIX" + o215y (17
(18)

are the corresponding covariance matrices and o2, is the noise
. 2 . .
variance E{|wk\ } Since the columns of F in (II) are

orthonormal, the frequency-domain MMSE estimate of h is
given by [3|]

A ~ —1
hyvse = Feguvse = FRyy [(FHXHXF) o2 + Rgg]
x (FUXHXF) " FIX y. (19)
IV. PROPOSED MACHINE LEARNING APPROACH

It has been shown in [[11]] that a multi-layer neural network
(MLNN) can provide a very good approximation of channels.
Hence in the following, we propose a deep learning based
V2I channel estimation algorithm using back propagation
technique.

X, = Real(Y(k)) 0,°" = Real(X(k))

X, =Imag(Y (k)) 0, = Imag(X(k))

Input Layer € R? Output Layer € R?

Hidden Layer € R '°

Figure 2. The proposed deep neural network for estimating the V2I channel.

A. Defining the Neural Network

As shown in Fig. [2] the neural network contains two inputs
and two outputs and ny hidden nodes. The inputs to the
network are the received signals, and the estimated channel
response parameters are the outputs. The two inputs and
outputs of the MLNN are connected to the real and imaginary
components of the corresponding complex numbers, since
neural networks work only with real numbers.

For the machine learning based channel estimation scheme,
we consider a supervised learning approach which estimates
the CIRs using a fully connected neural network. Note that we
do not consider any bias inputs to the neurons at any layer.
We apply sigmoid function for the activation of the hidden
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neurons, while the activation function at the output layer is
linear. The output of each neuron is generated by computing
the weighted sum of the inputs coming into that node and then
applying the activation function.

Let us now assume that wz(lj) is the 7th input to jth hidden

neuron weight and w(Q,g is the jth hidden node to the kth
output node weight. The hidden layer activation function is
the sigmoid function

1 e
d(2) = = . 20
(2) 14+e 2 e +1 (20
Thus, the hidden layer output is defined as
1
h Sy i=1....
0 —(I)(lll]) - ]_-|-e—inj’ J 1, » h, (21)

where in; = Z"‘“ XMw in w, ] , Niy 1s the number of input layer
nodes and X" is the ith input to the DNN. Similarly, each
output node computes its net output as

1

t__
oot = & =t

(ing) = =1,2, (22)
where inj, = Z?il ijﬁ Then, the sum of weighted inputs
to the nodes is applied to the output layer activation function
which is assumed to be a linear function. Thus the network

outputs can be calculated as

h Tin

2 1
> win® (Z w§,j)Xi> , k=12 (23)
Jj=1 i=1

B. Training the Neural Network

oyt =

In training process, the weights of all the layers are adjusted
according to the mismatches between the outputs and the
targets. In each epoch, the direction of changes are that tending
to minimize the mean-squared error (MSE). Accordingly, we
define the cost function as the MSE between DNN output and
the target output as

1no ou 2
e=5 3 (- 0p)

k=1

(24)

where t; is the kth desired output and n, is the number
of outputs (2 in this case). The gradient descent based back
propagation learning rule is exploited to optimize the weights
for improving the DNN performance. The gradient descent
method minimizes the cost function € by updating the weights
in the opposite direction of the gradient of the objective
function w.r.t. to the weights [[19]. Thus the weight update
in each iteration is given by

Oe
e
where 0 < 1 < 1 is the learning rate that determines the size

of the steps in each iteration. Thus the update of hidden-to-
output-layer weights can be expressed as

aop o,
owji,

Vuw = 25)

ijk. =n (tk — Ozut) (26)
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Figure 3. Proposed DNN-based channel estimation method.

Note that the gradient of output layer activation function is
always unity. Similarly, the back propagated updates of the
input-to-hidden-layer weights can be expressed as
80zut 80?
awjk

no
Vwjr, =1 ijk (tk — Ozut)
k=1

Dws; X;. (27

For training the DNN, we first generate a large set of pilot
symbols following a particular modulation scheme. We then
use a series of historical channel responses between moving
vehicle and BS for optimizing the weights of the neural net-
work. The training process continues until the target accuracy
is reached. The overall training procedure is summarized in

Fig. 3]
V. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations to demon-
strate the effectiveness of the proposed machine learning based
channel estimation method for wireless V2I communications.
Throughout this section, we compare the performance of the
proposed approach against the conventional LS and MMSE
based estimation schemes in [3]. We first demonstrate the
estimation accuracy of the DNN method considering a low-
mobility environment. We then test the trained DNN perfor-
mance for V2I channel estimation.

We assume that the multipath V2I channel has time delays
and data is transmitted using 4-QAM modulation. The neural
network is designed to have a single hidden layer with 10
neurons and single output layer with two nodes. Sigmoid
and linear activation functions has been utilized in the hidden
layer and the output layer, respectively. The DNN algorithm
is implemented in two ways. The first one is built from sketch
using the structure illustrated in Section (identified as
‘build’ in the figures), and the second one is implemented
based on the ANN toolbox in MATLAB, whose performance
has also been compared in simulations where applicable.

Fig. 4| shows the performance of the proposed DNN ap-
proach in the training process according to normalized MSE
at different SNR environment. We run for 20 epochs for each
training data set and It is clear that the error between network
outputs and the targets is being minimized as the training
progresses. It can also be found that with higher SNR, which
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Figure 5. BER performance during the training process.

means the noise power is low compared with signal power,
the error of the estimated channel response becomes lower.
Then, Fig. [5|compares the bit error rate (BER) performances
of all the methods. It can be seen that the LS algorithm
results in the worst behaviour compared to the others and it
cannot correctly estimate the channel especially when SNR is
very low. From this figure it is clear that the performance of
proposed back propagation DNN approaches are much better
than the LS algorithm at low SNR values as well as high
SNR values. The results also show that both DNN approaches
perform close to each other in a low-mobility environment, and
are very close to the MMSE algorithm. Obviously, the MMSE
algorithm performs the best according to the simulation results.
Next, simulations of a V2I wireless communication system
in a fast time-varying fading channel are carried out to
demonstrate the performances of different channel estimation
methods. Figs. [6] to 0] show the training process of DNN for
V2I channel prediction. In these simulations, the entire data set
is divided into three subsets namely: training (70%), validation
(15%) and testing (15%), respectively. During the training
process, the MSE reduces sharply and the best estimate is

Best Validation Performance is 0.021209 at epoch 49
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Figure 6. MSE at different phases of the DNN appraoch.
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Figure 7. Training progression over different epochs.

achieved at the 49th epoch with the minimum error distribu-
tion. Fig. [§] shows the histogram of each subset. From Fig. 0]
it can also be seen that the outputs fit the targets very well.

Finally, we plot the BER performance of the algorithms
in Fig. [0} It can be seen from the results that the BER
performance of the traditional DNN methods is significantly
worse than the other methods. The reason for this is that the
channel estimation in V2I communication is influenced by
many factors, such as fast variation of channels, large Doppler-
shift, high interference and noise. These results further justify
the effectiveness of the proposed DL-based approach for V2I
channel estimation.

VI. CONCLUSION

We have introduced a deep learning based channel esti-
mation approach for V2I wireless communication systems.
We have demonstrated that the channels in high-mobility
environment can be estimated using DNN based prediction
methods with a group of historical CIR to solve the outdated
CSI problem. Extensive simulation results illustrate that the
proposed channel prediction method is able to dramatically
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improve the performance of channel estimation in particular
in high-mobility environment. Considering the nonuniform
movement of vehicles, including variant position and changing
velocity in the training process of DNN can be an interesting
future work.
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