
ar
X

iv
:1

90
6.

10
19

4v
1 

 [
ee

ss
.S

P]
  2

4 
Ju

n 
20

19

Deep Neural Network Based Resource Allocation

for V2X Communications

Jin Gao1, Muhammad R. A. Khandaker1, Faisal Tariq2, Kai-Kit Wong3 and Risala T. Khan4

1School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
2James Watt School of Engineering, University of Glasgow, United Kingdom

3Department of Electronic and Electrical Engineering, University College London, United Kingdom
4Institute of Information Technology, Jahangirnagar University, Dhaka, Bangladesh

Corresponding e-mail: m.khandaker@hw.ac.uk

Abstract—This paper focuses on optimal transmit power allo-
cation to maximize the overall system throughput in a vehicle-
to-everything (V2X) communication system. We propose two
methods for solving the power allocation problem namely the
weighted minimum mean square error (WMMSE) algorithm and
the deep learning-based method. In the WMMSE algorithm, we
solve the problem using block coordinate descent (BCD) method.
Then we adopt supervised learning technique for the deep neural
network (DNN) based approach considering the power allocation
from the WMMSE algorithm as the target output. We exploit
an efficient implementation of the mini-batch gradient descent
algorithm for training the DNN. Extensive simulation results
demonstrate that the DNN algorithm can provide very good
approximation of the iterative WMMSE algorithm reducing the
computational overhead significantly.

Index Terms—Machine learning, deep learning, deep neural
network, V2X, V2V, power control, resource allocation.

I. INTRODUCTION

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle

(V2V) communications, also known as V2X communications

together, have become a hot research topic especially since

the emergence of the fifth-generation (5G) communication

systems [1]. With advent of autonomous driverless vehicles,

transmission units mounted on vehicles will need to exchange

massive amount of information signals including speed,

traffic condition, direction, location, traffic incidents etc.

at the frequency of ten times or even more every second

through high-speed wireless links. For example, when a

car pulls an emergency breaking due to an unexpected

emergency situation, the signal should be transmitted to

surrounding vehicles to make them aware of potential hazard

buildup in the vicinity. With the deployment of 5G wireless

communication technology, it is no surprise that the vehicles

can communicate with other communication devices, such as

mobile phones and smart computers or even facilities like

building, traffic lights and road and so on, which will enhance

the proliferation and security of autonomous driving in the

future [2], [3].

The V2X communication systems feature several unique

characteristics as opposed to conventional cellular commu-

nications including high mobility, rapid change of direction

as well as location, and stringent quality-of-service (QoS)

requirements. Furthermore, road safety concerns impose very

strict requirements on ultra-low latency and high reliability

in V2X communications. However, due to high mobility, the

V2X communication channel state information (CSI) becomes

outdated quite rapidly. Thus faster optimization techniques are

of paramount interest for reliable V2X communications.

Furthermore, in order to improve the reliability of V2X

communications, proper interference management as well as

resource allocation strategies must be in place for the V2V and

V2I links. Traditional interference and resource management

schemes for V2X interference-limited scenarios operate in

iterative manner, which has high computational complexity

[4], [5]. While these conventional approaches provide a good

understanding of the problem domain and reveals valuable

insights of the V2X systems, these are unsuitable for most

practical V2X systems requiring ultra-reliable low-latency

communications (URLLC) [3], [2].

Recently, machine learning approaches have gained momen-

tum in the wireless communications domain due to their inher-

ent capability of efficiently dealing with large-scale problems.

Another reason for the boom of machine learning across a

wide range of application domains is that machine learning

approaches can combine learning process with existing field

technologies. Through appropriate training process, the knowl-

edge can generally decide on a particular hypothesis class.

Wireless channel estimation and resource allocation problems

are potential examples where machine learning are increas-

ingly exploited [6]. Of particular interest are deep learning

techniques enabled by deep neural networks (DNN) due to

their reduced computation time. Once trained properly, DNN

can provide real-time resource allocation solutions, which is

very crucial for V2X communications [7].

In [8], [9], the authors have extended the works in [5]

by solving the same resource allocation problem using deep

reinforcement learning (DRL) technique. In particular, the au-

thors in [8], [9] developed a decentralized resource allocation

technique for V2V communications based of DRL technique.

However, with cloud radio access network (C-RAN) being an

inherent part of 5G, it is generally expected that radio resource

management strategies will be implemented at the centralized

cloud [3]. The main advantage of C-RAN is that with access

to enormous information in the cloud, radio resources can be

allocated more efficiently.
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In this paper, we propose a centralized resource allocation

strategy using deep learning technique for V2X communica-

tions, as opposed to the decentralized approaches in [8], [9].

In particular, we consider a sum rate maximization problem

under individual power constraints for each V2I and V2V

communication link using supervised learning technique. The

main contributions in this paper are listed below:

• a) We first develop an iterative power allocation algorithm

for the proposed V2X communications system.

• b) We then propose a DNN based power allocation

scheme for the V2V and the V2I links. We apply the

mini-batch gradient descent (MBGD) algorithm by iden-

tifying the suitable batch size and learning rate through

cross validation.

• c) We have validated the proposed learning algorithm

through extensive simulations that demonstrate the suit-

ability of the algorithm particularly for V2X communi-

cations.

Fig. 1. The proposed V2V and V2I communication system.

II. SYSTEM MODEL

Let us consider a high-mobility vehicular communication

system (cf. Fig. 1) in which K pairs of vehicular nodes

share high-capacity V2I communication links with M cellular

users (CUs) in a 6G communication system. For the ease of

exposition, we consider single-antenna communication nodes.

We also assume that all vehicles may accommodate both CUs

and VUs simultaneously and are capable of radio transmis-

sions from separate antennas. The CUs communicate with the

roadside infrastructure which may be a cellular base station

(BS), traffic lamppost, building or any other fixed structure.

We also assume that the vehicles travel at a constant speed

along the roads and data is transmitted at each time slot using

the same carrier frequency.

The channel power gain between the mth CU and the BS

is defined as [5]

hc
m = Gc

mβc
mAdc

−γ

m , (1)

where Gc
m is assumed to be exponentially distributed fast

fading power gain, βc
m is the log normal shadow fading

component, A is the constant pathloss, dcm is the distance

between the mth CU and the BS, and γ is the pathloss

exponent. Similarly, we can define the channel hv
k between

the kth V2V transmitter and the BS as well as the kth V2V

link gvk . Thus the signal received at the BS from the mth CU

can be expressed as

ycm = hc
mscm

︸ ︷︷ ︸

desired signal

+
M∑

n=1,n6=m

hc
ns

c
n

︸ ︷︷ ︸

interference from the CUs

+
K∑

k=1

hv
ks

v
k

︸ ︷︷ ︸

interference from the VUs

+ nm
︸︷︷︸

noise

, (2)

where sxi ∼ CN (0, P x
i ), x ∈ {c, v}, is the signal transmitted

by the ith transmitter and nm ∼ CN (0, σ2) is the additive

white Gaussian noise component at the BS. Thus the received

signal to noise plus interference ratio (SINR) at the BS for the

mth CU can be expressed as

γc
m =

P c
m|h

c
m|

2

∑M
n=1,n6=m P c

n|h
c
n|

2 +
∑K

k=1 P
v
k |h

v
k|

2 + σ2
. (3)

Similarly, the received SINR in the kth V2V link is given by

γv
k =

P v
k |g

v
k|

2

∑K
l=1,l 6=k P

v
l |g

v
k |

2 +
∑M

m=1 P
c
m|hm,k|2 + σ2

, (4)

where hm,k is the interfering channel from V2I user m to

V2V receiver k.

A. Problem Formulation

Our aim is to maximize the overall system throughput

of the V2X links by optimally allocating transmit power

among all the users. Accordingly, we formulate the following

optimization problem:

max
{P c

m},{Pv

k
}

M∑

m=1

αm log (1 + γc
m) +

K∑

k=1

αk log (1 + γv
k )

(5a)

s.t. 0 ≤ P c
m ≤ P c

max, ∀m, (5b)

0 ≤ P v
k ≤ P v

max, ∀k, (5c)

αm, αk ≥ 0, ∀m, ∀k, (5d)

where P c
max and P v

max are the maximum transmit power

budget of the CUs and the VUs, respectively, {αm}, {αk} are

the weights, which determine the priority of the corresponding

V2I and V2V links. Note that the problem (5) is non-convex

and hence the exactly optimal solution is non-trivial mainly

due to the log(·) in the objective. In the following, we will

first develop an acceptable solution to the problem following

traditional alternating approaches, and then following machine

learning techniques.



III. THE WEIGHTED MMSE ALGORITHM

In this section, we propose an alternative approach of solv-

ing problem (5). Instead of solving problem (5) directly, we

solve the equivalent WMMSE minimization problem, inspired

by [10]. The equivalence is guaranteed by the well-known

MMSE-SINR equality as proved in [11]. Note that here we

downscale the WMMSE algorithm originally proposed for

MIMO systems in [10] to the equivalent SISO channels for

convenience.

Since neural networks work only with real numbers, the

absolute value terms in (3) and (4) representing channel

power gains tend to be beneficial in the neural network based

design in Section IV. However, in the conventional WMMSE

algorithm, real channel power gains are also convenient for

mathematical operations. Inspired by [10], we assume that

vxi , x ∈ {c, v}, is the amplifier gain used to transmit signal

by the ith transmitter, while ux
i is the receiver amplifier gain

used to estimate the desired signal. Accordingly, the estimated

real symbol ŝcm is given by [12]

ŝcm = uc
m



|hc
m|v

c
mscm +

M∑

n6=m

|hc
n|v

c
ns

c
n

+

K∑

k=1

|hv
k|v

v
ks

v
k + nm

)

, m = 1, · · · ,M. (6)

Thus the MSE of estimating scm is given by [10], [13]

εcm = E (ŝcm − scm)
2

= |uc
mhc

mvcm − 1|2 +
M∑

n6=m

|uc
mhc

nv
c
n|

2

+
K∑

k=1

|uc
mhv

kv
v
k |

2 + σ2|uc
m|

2, m = 1, · · · ,M, (7)

where E(·) indicates the statistical expectation operation.

Similarly, the MSE of estimating svk is given by

εvm = |uv
kh

v
kv

v
k − 1|2 +

K∑

l 6=k

|uv
kh

v
l v

v
l |

2

+

M∑

m=1

|uv
kh

c
mvcm|

2
+ σ2|uv

k|
2, k = 1, · · · ,K. (8)

Thus following the MMSE-SINR equality εm = 1
1+γc

m
derived

in [11], the weighted sum rate (WSR) maximization problem

(5) can be equivalently expressed as the following WMMSE

minimization problem

min
{ux

i
},{vx

i
},{wx

i
}

∑

x∈{c,v}

∑

i

(wx
i ε

x
i − log(wx

i )) (9a)

s.t. 0 ≤ vcm ≤
√

P c
max, ∀m, (9b)

0 ≤ vvk ≤
√

P v
max, ∀k, (9c)

αm, αk ≥ 0, ∀m, ∀k, (9d)

where wx
i is a positive weight factor.

The WMMSE minimization problem (9) can be solved

using block coordinate descent (BCD) method [14]. In each

phase, the BCD method optimizes one set of variables while

fixing the rest. Checking the first optimality condition, one

can find the optimal weight wx
i = 1

εx
i

in closed form and the

optimal receiver gain as the well-known Wiener filter [15]:

ux
i =

hx
i v

x
i

∑M
m=1 |h

c
m|

2|vcm|
2 +

∑K
k=1 |h

v
k|

2|vvk |
2 + σ2

. (10)

In order to obtain the optimal transmitter gain vxi , x ∈ {c, v},
we can decouple problem (9) for each transmitter, fixing the

other variables, as

min
{vx

i
}

∑

i

(wx
i ε

x
i − log(wx

i )) (11a)

s.t. 0 ≤ vxi ≤
√

P x
max. (11b)

Applying the Lagrangian multiplier approach [14], problem

(11) can be solved for vxi . Considering the first-order opti-

mality condition from the Lagrangian approach, we obtain the

optimal vxi as

vxi =
αx
iw

x
i u

x
i |h

x
i |

∑

x∈{c,v}

∑

i α
x
iw

x
i |u

x
i |

2|hx
i |

2 + µx
i σ

2
. (12)

Here µx
i ≥ 0 is the Lagrange multiplier, which should chosen

such that the complementary slackness condition on the power

constraint (11b) is satisfied. The overall WMMSE procedure

of solving problem (9) is summarized in Algorithm 1. It has

been proven in [5] that the WMMSE algorithm eventually

converges to a stationary point.

Algorithm 1 WMMSE algorithm for solving problem (9)

1: Initialize vxi (0), x ∈ {c, v} such that 0 ≤ vxi ≤
√
P x
max.

2: Compute ux
i (0) =

hx

i v
x

i (0)∑
x∈{c,v}

∑
i |h

x

i |
2|vx

i (0)|
2+σ2 .

3: Compute wx
i (0) = [1− ux

i (0)|h
x
i ||v

x
i (0)|]

−1
.

4: Set n := 0.

5: repeat

6: vxi (n+ 1)← αx

iw
x

i (n)u
x

i (n)|h
x

i |∑
x∈{c,v}

∑
i α

x

iw
x

i (n)|u
x

i (n)|
2|hx

i |
2 .

7: ux
i (n+ 1)← hx

i v
x

i (n+1)∑
x∈{c,v}

∑
i
|hx

i
|2|vx

i
(n+1)|2+σ2 .

8: wx
i (n+ 1)← [1− ux

i (n+ 1)|hx
i ||v

x
i (n+ 1)|]−1

.

9: n := n+ 1.

10: until convergence.

11: Output: Optimal power profile P x
i = vxi (n))

2.

IV. PROPOSED MACHINE LEARNING APPROACH

It has been shown in [8], [9] that a multi-layer neural net-

work (MLNN) can provide a very good approximation of the

WMMSE algorithm to leverage the computational efficiency of

the DNN. Hence in the following, we propose a deep learning

based power allocation scheme for the WSR maximization

problem (5). The proposed DNN algorithm offers multi-fold

benefits compared to the WMMSE approach.

The DNN algorithm operates by continuous mapping of

values from the iterations of the WMMSE algorithm. In other



words, with the target output from the WMMSE algorithm, the

DNN needs to learn and approximate the unknown relationship

between the input and the output. Consequently, this ‘black

box’ is transformed to a nonlinear mapping that can perform

like the WMMSE approach.

Inpaut layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

Fig. 2. The proposed deep neural network for approximating the WMMSE
power control problem. Input: channel power gains, Output: optimal power.

A. Defining the Neural Network

For the machine learning based power allocation scheme,

we consider a supervised learning approach which approxi-

mates the iterative WMMSE algorithm using a fully connected

neural network. The DNN consists of one input layer, multiple

hidden layers and one output layer as shown in Fig. 2.

While increasing the number of hidden layers may help in

decreasing the number of hidden neurons at each hidden

layer thus improving the computation efficiency, the optimal

number of hidden layers is intractable. In our simulations (in

Section V) we consider three hidden layers resulting in good

performance efficiency. The channel power gains of the V2I

and the V2V links are the inputs to the DNN and the optimal

power allocation is the output of the DNN. Note that we do

not consider any bias inputs to the neurons at any layer. We

apply rectified liner unit (ReLU) as the activation function at

the hidden layers, while the activation function at the output

layer is specifically tailored to enforce the power constraints in

problem (5). In particular, the hidden layer activation function

is defined as

yhidden = max(0, xhidden), (13)

and that at the output layer is defined as

yout = min (max(0, xout), P
x
max) . (14)

B. Training the DNN

For training the DNN, we first generate a large set of

channel realizations {hm,B} and {gk,B} following certain

channel distributions to reflect the V2I and V2V channels

as defined in (1). Then we generate the corresponding power

allocation for each training sample using the DNN in Fig. 2.

The training data sets are used to optimize the weights of

the neural network such that the MSE of the target power

allocation obtained from the WMMSE algorithm and the

current DNN output is minimized. Accordingly, we define the

cost function as the MSE between DNN output and the target

output as

MSE =
1

M +K

M+K∑

i=1

(outi − targeti)
2. (15)

Since training the DNN with a very large data samples

is highly time-demanding, we use the so called mini-batch

gradient descent (MBGD) algorithm for training the proposed

DNN. An efficient implementation of the MBGD algorithm

which divides the learning rate (or, gradient) by a running

average of magnitudes of recent gradients. This approach is

referred to as RMSprop [16]. In RMSprop, the running average

of the squared gradients is updated as

E
{

(∇w(t))
2
}

= 0.9 ∗ E
{

(∇w(t− 1))2
}

+ 0.1 ∗ (∇w(t))
2
, (16)

and the weights (w) at iteration t is updated as [17]

w(t + 1) = w(t) −
η

√

E
{

(∇w(t))
2
}

+ ǫ

∇w(t), (17)

where E indicates arithmetic average, ∇w(t) =
∂MSE
∂w(t) is the

gradient of the learning objective (in our case, the MSE) and ǫ

is a smoothing term to avoid division by zero (usually on the

order of 1e−8) [18]. Note that the running average at time t in

(17) depends only on the most recent average of the squared

gradients (at time t−1) and the current gradient. Interestingly,

the previous average squared-gradient carries more weight

(90%) than the current gradient (10%). It has been shown

in [17] that dividing the gradient by the square root of the

running average makes the learning work much better. In order

to normalize the variance of each neuron’s output, we then

divide the weights of each neuron by the square root of is

number of inputs. Similar tactic has also been applied in [19].

C. Testing the DNN

Once we learn the optimal weights of the neural network

from the training stage, the next task is to validate the

performance of the neural network based approach with testing

data set. Again we generate a reasonably large number of

random channel realizations following the same distribution

as the did for training. Each set of channels is then applied to

the input of the trained neural network for an optimal power

allocation at the output. The sum rate is then averaged over

the number of test data sets.

V. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations to demon-

strate the effectiveness of the proposed machine learning based

power allocation scheme for wireless V2X communications.

Throughout this section, we compare the performance of the

proposed approach against the WMMSE based iterative bench-

mark scheme, originally proposed for a MIMO system in [10].

Towards this end, we first simulate the equivalent WMMSE

scheme developed in Section III, following Algorithm 1.
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Fig. 3. Effect of batch size on learning time.
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Fig. 4. Effect of batch size on training epoch.

The V2X network consists of one cellular base station, M =
8 CUs and K = 10 V2V transmitters. We construct a fully

connected DNN for the system with one input layer, three

hidden layers and one output layer. The input layer consists

of N+K+N×K neurons, the three hidden layers consist of

50, 22, 20 neurons, respectively, and the output layer has N +
K neurons to produce the power profile. The V2X channels

are generated following the model in [5] and assumed to be

exponentially distributed. In all cases, the noise variance is

assumed to be 0.1.

It is important to choose a suitable batch-size as well

as the learning rate for the MBGD algorithm since both

parameters can affect the network performance and efficiency.

Unfortunately, there is no generic mathematical model for

defining suitable values for these two parameters. Therefore,

we choose these parameters by cross-validation during the

training phase.

The effects of ‘batch size’ on learning time and the required

number of epochs have been demonstrated in Figs. 3 and 4,

respectively. In both pictures, the fluctuation of batch size =

100 is much more significant than other two curves, while

batch size 1000 experiences the smallest fluctuation. The

results in Fig. 3 show the training speed with batch size 100
requiring the least amount of time to reach the convergence,

0 5000 10000 15000
Time (s)

0.1

0.15

0.2
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Fig. 5. Impact of learning rate on training MSE.
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Fig. 6. Performance on the test data set. The data set is exclusively generated
after the training phase.

while batch size 1000 costs the most time. On the other hand,

Fig. 4 demonstrates that the batch size 1000 requires the least

number of epochs to converge, which is in contradiction with

the results in Fig. 3. We must make our choice trading off the

opposing tendencies of the two graphs. While the different

batch size results in Fig. 3 meet after a while, those in Fig. 4

do not. Although the graphs in Fig. 4 are different from each

other, we must stop at some point, just like the results in Fig. 3.

If the epoch extends to a very large value, the difference at the

beginning may become hard to be distinguished, especially for

batch size 500 and batch size 1000.

The effect of learning rate on the training MSE has been

shown in Fig. 5. The results demonstrate that the cost function

converges faster for larger learning rates at the low end,

however, if the learning rate is significantly high (e.g., 0.03),

the MSE performance may not show a similar tendency and

start worsening instead. Although intuitively a larger learning

rate means faster converging speed, the learning rate cannot

be increased arbitrarily as indicated by the results in Fig. 5.

After parameter selection by cross-validation and improve-

ment of DNN, we evaluate the performance of this trained

network. In Fig. 6, we compare the MSE performance of

the test data set not exclusively used in training the DNN
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against the training data set. The blue curve is the MSE during

training the DNN while the red one denotes to the testing error.

From Fig. 6, it is obvious that: a) no ‘over fitting’ problem

occurs, and the gap between training error and testing error

is negligible, b) the direction of convergence on the target

data set is as desirable since there is no big fluctuation, c. the

performance of the DNN is determined by its testing error and

the performance in this case is acceptable since the error is

very low.

Next, we evaluate the sum rate performance of the proposed

DNN-based power allocation scheme against the WMMSE

scheme proposed in [10] originally for a conventional interfer-

ence system. Fig. 7 shows the cumulative distribution function

(CDF) of the two schemes for 105 random test samples. Since

we adopted the supervised learning technique, the DNN ap-

proach can not outperform the WMMSE algorithm. However,

it can be easily observed from Fig. 7 that the proposed scheme

has comparable sum rate performance against the WMMSE

approach.

Finally, we plot the probability density functions (PDFs)

of the sum rate for both algorithms in Fig. 8. The result of

the trained network and the WMMSE algorithm is shown by

their PDFs. From Fig. 8, it is obvious that the DNN approach

follows almost identical distribution to the WMMSE approach.

These results further validates the effectiveness of the proposed

machine learning approach.

VI. CONCLUSION

We have considered the resource allocation problem for

wireless V2X communications and shown that deep learning

techniques bring enormous prospects for V2X communica-

tions where we need fast processing of optimization al-

gorithms. Although training the DNN is a time-consuming

procedure, the trained network can, however, offer a much

faster solution. We have applied supervised learning approach

to develop a DNN based power allocation scheme taking

the classical iterative WMMSE based solution as the base

line. While the supervised learning can not offer a better

solution than the target one, our results demonstrate that

the proposed DNN based solution can achieve very close

performance to the WMMSE approach. A particular aspect of

the proposed solution is that the trained DNN offers a real-time

solution which is crucial for V2X communications. However,

developing an unsupervised learning based power allocation

scheme could be an interesting future work.
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