
 

 

Fluid transport through porous media: A novel 

application of kinetic Monte Carlo simulations 

 

A doctoral thesis by  

Maria Apostolopoulou 

 

 

In partial fulfilment of the requirements for the degree of 

 

Doctor of Philosophy 

at 

University College London 

 

 

 

Supervised by Prof. Alberto Striolo & Dr. Michail Stamatakis 

UCL Chemical Engineering Department 

 

 

July 2019 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

I, Maria Apostolopoulou confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that they have been properly 

indicated in the thesis. 

 

 

 

 

Signature 

 

  

Date 



 

III 

Acknowledgements 

 

I would first like to thank my supervisor Professor Alberto Striolo for his unwavering 

support and guidance throughout this PhD. Thank you for being honest and always there 

to provide your expertise, support, and guidance. I have truly appreciated all the 

opportunities you have given me and the trust you put in me to undertake this project. 

I would also like to thank my co-supervisor Dr Michail Stamatakis for mentoring me 

through each step of the PhD. Thank you for always keeping an eye on the fine details, 

sharing your unique expertise and teaching me how to write code. 

I am grateful to Halliburton and UCL chemical engineering department not only for the 

financial assistance that they offered me but also the priceless opportunity to work with 

industry leading experts and researchers.  

A special thank you to Ron Dusterhoft and Richard Day for guiding me during my summer 

internship at Halliburton. It has been a pleasure working with you and the team.  

Janette Cortez-Montalvo and Ubong Inyang, thank you for the long stochastic 

conversations and bringing this collaboration to life.  

I would also like to thank Professor Ioannis Economou and his TAMUQ and Democritus 

team for collaborating with me during my PhD. Mirella, Hamza, Louka, and Manoli, I have 

learnt so much from all of you and hope you have enjoyed collaborating as much as I 

have. 

Thank you to all my fellow [Room 310N] colleagues; Abeer, Tran, Tai, Zeynep, Anh, 

Sakiru, Dian, and Olivera, for all the funny moments and bubble tea breaks.  

Lara Rasha, thank you for being such a cool and awesome friend. 

Dina Ibrahim Abou El Amaiem, what to say? This journey wouldn’t have been the same 

without having you with me. Thank you for all your support and sass. 



 

IV 

Paul Nderitu, no words can describe how grateful I am to you. Thank you for always 

being there for me, listening to me talking about hops, trajectories, lattices, and the list 

goes on and on... I believe you are now a KMC expert, among all the other talents that 

you have. Most importantly, thank you for reminding me what matters the most, all your 

loving support, and making me a better person. 

Finally, I would like to thank my wonderful parents, Sakis and Gogo, who have always 

been there for me every step of the way surrounding me with their endless love. 

  



 

V 

 

Abstract 

With increasing global energy demands, unconventional formations, such as shale 

rocks, are becoming an important source of natural gas. Current efforts are focused on 

understanding fluid dynamics to maximise natural gas yields. Although shale gas is 

playing an increasingly important role in the global energy industry, our knowledge of the 

fundamentals of fluid transport through multiscale and heterogeneous porous media is 

incomplete, as both static and dynamic properties of confined fluids differ tremendously 

from those at the macroscopic scale. Transport models, derived from atomistic studies, 

are frequently used to bridge this gap. However, capturing and upscaling the interactions 

between the pore surface and fluids remains challenging. 

In this thesis, a computationally efficient stochastic approach is implemented to simulate 

fluid transport through complex porous media. One-, two-, and three-dimensional kinetic 

Monte Carlo models were developed to predict methane transport in heterogeneous pore 

networks consisting of hydrated and water-free micro-, meso-, and macropores, 

representative of shale rock minerals. Molecular dynamics (MD) simulations, 

experimental imaging and adsorption data, which describe the surface – fluid interaction 

and the pore network features respectively were utilised to inform the KMC models. 

The stochastic approach was used to (1) quantify the effect of the pore network 

characteristics (pore size, chemistry, connectivity, porosity, and anisotropy) on the 

transport of supercritical methane, (2) estimate the permeability of an Eagle Ford shale 

sample and evaluate the effect of proppants on permeability, and (3) to upscale atomistic 

insights and predict fluid diffusivity through different size pores. The results obtained 

were consistent with the analytical solutions of the diffusion equation, experimental data, 

and MD simulations, respectively, demonstrating the effectiveness of the stochastic 

approach. In addition, the applicability of less computationally intensive deterministic 

approaches was examined using multiple case studies; recommendations are provided 

on the optimal conditions under which each method can be used. 
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Impact Statement 

As global energy demands continue to grow, shale rocks, a type of unconventional 

formations, are becoming an important source of natural gas. According to recent 

technoeconomic data, natural gas consumption has risen by 5.3% and natural gas is 

expected to have the highest production growth until 2050. Extensive efforts focus on 

understanding the complex behaviour of fluids (including their transport in the sub-

surface) to maximise natural gas yields. This thesis addresses the important topic of gas 

permeability across unconventional sub-surface formations. This topic is critical for the 

development of conventional, and perhaps even more so for unconventional formations. 

In this research study, a novel stochastic approach, based on Kinetic Monte Carlo (KMC) 

simulations is implemented to ultimately predict the permeability of pore networks, 

resembling those found in shales, based on experimental characterisations that include 

pore size distributions, geochemical composition, and imaging data. The KMC model 

was developed and validated in one-, two-, and three- dimensions (1D, 2D, 3D) and was 

proven to be suitable for studies of fluid transport in porous networks, a field where such 

data was previously lacking. The results obtained from large portions of this research 

study, included in this thesis, have already been peer reviewed and published, with two 

manuscripts pending. During my research I collaborated with many teams, most notably, 

the sponsor of this research, Halliburton, and TAMUQ. The output of the collaborative 

work with Halliburton was the demonstration of the importance of maintaining 

microfracture conductivity when using proppants, which has direct commercial 

application in the field of flow enhancement. 

Compared to other computational approaches, for instance molecular dynamics 

simulations (MD), the low computational cost of the KMC method allows to address long-

standing questions in the porous materials community, such as at what pore sizes can 

the transport properties of confined fluids be described by their bulk counterparts? This 

research study is also used to provide recommendations on how possible technological 

approaches, involved in the hydraulic fracturing design, can be applied to maximise gas 
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extraction, through 3D pore network modelling. Moreover, the insights obtained from the 

use of KMC to study fluid transport in porous media is transferable to numerous relatable 

fields, from waste management of radioactive materials to design of porous catalytic 

beds. 

With further development of the KMC approach, coupled with the generation of digital 

libraries enhanced by AI models would potentially allow an end user to dynamically 

evaluate rock characteristics of new and already explored shale plays to optimise oil and 

gas production. 
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Background and literature review 

Shale gas opportunities – Motivation  

The increase in energy demand, driven by the growth of the global economy, is 

undeniable. The question is, what is the role of natural gas in the efforts to meet this 

increased demand, and how does the future look like for this fossil fuel? According to the 

International Energy Agency (IEA), by comparing the demand in OECD (Organisation 

for Economic Co-operation and Development) member countries, countries of non-

OECD Europe/Eurasia and the rest of the world, it is possible to distinguish three 

markedly different patterns, as shown in Figure 1.1. Over the last 20 years, the latter 

group presented a steady growth in natural gas consumption, while the OECD showed 

a moderate growth and demand.1 In non-OECD Europe/Eurasia, demand has remained 

relatively unchanged.2  

 

Figure 1. 1: World natural gas demand by selected regions. Reproduced from IEA’s 

report.1 
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The economic success related to shale gas production, especially in the United States 

(U.S), has generated great interest worldwide, but has also sparked controversy because 

of various sustainability issues associated with its exploitation and utilisation.3 According 

to BP’s statistical review, in 2018, natural gas consumption rose by 195 billion cubic 

metres (bcm), or 5.3%, and this was one of the fastest rates of growth observed since 

1984. Growth in gas consumption was driven mainly by the U.S (78 bcm), supported by 

China which also saw above-average growth of 17.7% (43 bcm), Russia (23 bcm) and 

Iran (16 bcm). The U.S gas consumption increase of 78 bcm last year is broadly 

equivalent to the entire gas consumption of the UK. Figure 1.2, reproduced by PB’s 

statistical review, presents the 2018 natural gas consumption per capita.4  

 

Figure 1. 2: Natural gas consumption per capita 2018 in tones oil equivalent. Reproduced 

from BP’s report.4 

 

This subsection discusses trends observed from the U.S and UK markets in more detail, 

as well as the technological improvements that have led to this increase in the natural 

gas production to meet the demand requirements. 
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Natural gas in the USA market economy 

According to the latest edition of the World Energy Outlook (WEO), the United States is 

considered as a net energy exporter in 2020 and it is expected to remain as such until 

2050. This is due to large increases in crude oil, natural gas, and natural gas plant liquids 

(NGPL) production coupled with slow growth in U.S. energy consumption. As a result of 

major transformations in the global energy system and recent technological advances, 

which are discussed below, natural gas seems to be gaining ground in the race to meet 

the upcoming growth in energy demand. In just a few decades, shale gas has become 

one of the most important energy resources for the United States, with significant 

contributions to the natural gas production in the country.2,5 However, as Cooper et al.6 

highlight many nations with shale gas reserves lack the skills, knowledge and 

infrastructure of the US, leading to doubts about the economic viability and sustainability 

of shale gas outside the US. 

Natural gas, which belongs in the fossil fuels family, has and will remain to have the 

highest production growth with relative low prices, according to EIA’s predictions for up 

until year 2050.7 These predictions are made using the National Energy Modelling 

System (NEMS), an integrated model that captures interactions of economic changes 

and energy supply, demand, and prices. Based on the model’s predictions, natural gas 

consumption is expected to increase across end-use sectors (industry, transport, 

aviation, buildings, appliances and lighting, etc.), while liquefied natural gas exports are 

believed to rise. It has also been observed that due to the historically low prices of natural 

gas, the energy sector has shifted towards its usage to generate electricity. Figure 1.3, 

reproduced from EIA’s 2019 report, presents the U.S gross energy trade, net energy 

imports and % electricity generation from selected fuels in panels A, B, and C 

respectively.7 
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Figure 1. 3: Historic data and predictions regarding (A) the U.S gross energy trade, (B) 

the U.S net energy imports, and (C) the electricity generation from selected fuels. 

Reproduced and modified by EIA.7 

 

Overall, natural gas production in the U.S is expected to grow 7% per year from 2018 to 

2020, when the average growth rate from 2005 to 2015 was around 4%. A significant 

proportion of this natural gas volumes emanate from shale gas and tight oil plays. After 

2020, natural gas production is expected to continue its upward trend in growth due to 

the size of the resources, which extend over nearly 500,000 square miles, and due to 

improvements in technology that will allow for the development of these resources at 

lower costs.7 

Natural gas in the UK market economy 

As previously discussed, gas demand can be broadly broken down into two main sectors; 

domestic consumption and gas for electricity generation, with demand for industry, 

commercial, public administration and other sectors. Gas is one of the key pillars of the 

UK’s energy mix, accounting for over 30% of the UK’s energy production and second 

only to oil. Gas production from the UK’s Continental Shelf (UKCS) is considered 

sufficient to meet nearly 60% of all energy demand. Gas is particularly important for 

electricity generation where it meets around 40% of the fuel required in power stations, 

due to the substantial decline of coal usage in power generation. It is also critical for 

space heating, domestically and in offices, hotels and restaurants. In 2017 gas met 

nearly two thirds of total domestic energy demand in the UK.8 
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In year 2017/2018, the UK natural gas production remained relatively stable at 465 

Terawatt-hour (TWh), a 0.3% increase, while total gas demand decreased by 3% to 875 

TWh. In particular, final consumption decreased by 2.8 % to 495 TWh, with decreases 

in the domestic (-4.6%), public administration (-4.4%) and commercial (-3.4%) sectors. 

In contrast, industrial usage increased by 3.2%, the principal reason being an 8.4% 

increase in gas used in the chemicals sector. Excluding chemicals, industrial usage rose 

just 2%. Net imports were decreased by 4.5%.  In particular, imports of Liquefied Natural 

Gas (LNG) decreased by over a third to 80 TWh, with imports of LNG from Qatar 

dropping by 40%. In contrast pipeline imports increased by 8.2%, with increased imports 

from Belgium and Norway more than compensating for a halving of imports from the 

Netherlands. Figure 1.4 presents the UK gas imports by country for the 2017/2018 

period. Overall in the UK, the increased output from renewable and nuclear energy is the 

main reason for the reduced demand for gas for electricity generation. In 2017/2018 

natural gas demand for electricity generation dropped by 4%.8 

 

Figure 1. 4: Gas import by country in 2017, reproduced from National Statistics.8 

 

In the year 2018/2019, UK production of natural gas was down by 5.7% in the first quarter 

of 2019 compared with the same quarter of 2018, and 6.8% lower from March to end of 

June compared to the March-June period in 2018. The decrease observed in the first 
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quarter is mainly due to the closure of the Theddlethorpe Gas Terminal and due to 

unfavourable weather conditions. The temperatures reported in the 2018/2019 period 

were substantially higher (+42%) compared to the previous year, when the "Beast from 

the East" brought very low temperatures. Figure 1.5 presents a breakdown for the UK’s 

energy demand in the period 2016-2019. 9 

 

Figure 1. 5: Energy demand in the UK by sector. Image reproduced from National 

Statistics.9 

 

The reduction in demand led to an overall decrease in imports, especially in February 

and March, when a reduction of 14% was recorded. While in April imports returned to 

typical levels, net imports remained low (down by 15%) as exports doubled, showing a 

15% increase compared to April 2018, due to the trade deal with the Republic of Ireland. 

Demand for gas for electricity generation was decreased by 2.9%, compared to the 

previous year.9 Figure 1.6 is reproduced from the UK National Statistics and represents 

the production and nominated flow trades of natural gas in the UK for the period 2016-

2019.9 
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Figure 1. 6: Imports, production and exports of natural gas in the UK. Image reproduced 

from the UK National Statistics.9 

 

Many recent studies aiming to access the UK’s shale gas potential identify the Bowland 

Shale Formation as the most promising shale gas play.10–12 However, the challenges 

involved in successfully planning and exploiting a shale gas play are not insignificant with 

many associated uncertainties and risks. In a recent study, Cooper et al.13 discuss the 

sustainability of UK shale gas in comparison with other electricity options. The authors 

conclude that for shale gas to become sustainable in the UK, the environmental impacts 

need to me significantly reduced.13 The following section provides an overview of those 

environmental risks. 

Hydraulic fracturing, technological improvements, and risks 

Hydraulic fracturing, or fracking, is a well stimulation technique of extracting natural gas 

stored in impermeable rocks, such as shale rocks, that are found approximately between 

1.5 and 2.5 km below the surface. The workflow of a successful shale gas production 

operation consists of 4 stages as summarised in Figure 1.7. In the UK, operators need 

to receive approval for each step by independent regulators and public consultation.14 
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Figure 1. 7: Summary of the stages involved in the production of shale gas and oil, 

reproduced from the report produced by UK’s Department of energy and climate 

change.14 

 

The first stage is exploration and it allows companies to investigate how much oil and 

gas is in place, and whether its extraction is commercially and socially sustainable. 

During the exploration stage, well pads that are usually 1-2 hectares long are created 

together with water storage and disposal, and other operational facilities. Successful 

exploration is followed by the pre-production stage, where more wells are drilled. The 

pre-production stage starts with the creation of a long vertical bore, known as a wellbore. 

When the wellbore reaches a depth between 2.5-3 km, the kick-off point is reached, and 

horizontal drilling follows next, as shown in Figure 1.8 – panel A. The drill makes a 90 

degree turn and it continues to extend horizontally for up to 1.5 km. Then, a perforated 

gun is loaded and fired to generate primary fractures into the rock matrix, see Figure 1.8 

– panel B.2.15 After a period of 3 to 4 months, following the completion of the pre-

production stage, the hydraulic fracturing process begins (production stage). Fracking 

fluids are injected at a very high pressure, leading to the generation of cracks in the rock, 

secondary fractures, as shown in Figure 1.8 – panel B.3, through which the trapped oil 

and gas flow into the main horizontal and vertical fractures that were generated during 

the initial drilling process. The final stage is decommissioning, to ensure that wells are 
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made safe for abandonment, all equipment has been removed and the site is left in its 

original condition.14 

 

Figure 1. 8: A) Combination of horizontal drilling and hydraulic fracturing, reproduced 

from Soeder16, and B) representation of a mutli-fractured system, adapted from Cheng 

et al.,17 B1 shows the fractures generated after the hydraulic fluids have been channelled 

through the primary fractures (B.2), resulting to the generation of secondary fractures 

(B.3). 

 

Hydraulic fracturing was first reported in 1940, but it was not until 1950 until it became 

mainstream. Over the past decade, the combination of horizontal drilling and hydraulic 

fracturing has provided access to large volumes of unconventional oil and gas resources 

which were previously uneconomic to produce due to their low permeability.18,19 The 

technological improvements that have enabled increased hydrocarbon recovery from 

these impermeable rocks, at a lower operational cost, mainly concern the development 

of improved hydraulic fracturing fluids and proppants. Advances in the design of the 

secondary fractures and well spacing, have also played a significant role in the success 

behind this hydrocarbon recovery method.20 

Hydraulic fracturing fluids are predominantly water based (~90%) with the other 10% 

consisting of chemical additives.15 The selection of additives and their concentration 

within the hydraulic fracturing mixture varies, depending of the site’s characteristics, and 

is commonly a trade secret.21 Until today, in the U.S with the exception of state-specific 
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laws, disclosure of the chemicals present in fracturing fluid is primarily based on self-

regulation, and natural gas companies can voluntary report the chemical composition of 

the mixtures used. In 2011, the Groundwater Protection Council and the Interstate Oil 

and Gas Compact responded to public protests and established the FracFocus.org 

website, where fracking companies are encouraged to release the list of chemicals used 

as additives for the hydraulic fracturing fluids used during their operations.22 For most of 

the commercially used fracking fluids, the additives are grouped into three categories; 

acids that are used to dissolve minerals, friction reducing chemicals that are used to 

generate a slippery form of water, and disinfectants to prevent bacteria growth. Recently 

efforts are focused on the generation of “green” hydraulic fracturing fluids, that are free 

of toxic chemicals.23 

Proppants, commonly made of sand and clay, are used to maintain the pressure induced 

fractures open, so oil and gas can be channelled to the main fractures, while the pressure 

drops due to the recovery of the hydrocarbons.15 The first proppants used were made of 

silica, but over the years, glass, resin coated sand, sintered bauxite and kaolin, and fused 

zirconia have been also used as proppants.24 One of the most important features of 

proppants is their size range, usually between 105 μm and 2.38 mm.25 Depending on the 

completion design, a mixture of various proppant sizes can be used. This technique has 

however been found to cause permeability reductions. Another critical feature is the 

proppant suspension in the fracturing fluid, as it affects the way the proppants are 

delivered to the wellbore and the generated fractures.24 

In the UK, shale gas deposits are known to exist in North of England (Bowland formation), 

the Weald Basin which mainly encompasses Sussex, Surrey and Kent, and in the 

Midland Valley south-west of Scotland. In 2011, Cuadrilla was the first company that was 

granted approval to perform the pre-production and production stage. However, shortly 

after the first wells were drilled, a series of microseismic events, which also took place 

during the hydraulic fracturing process, resulted in public outrage and operations were 

immediately suspended.26  
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Besides microseismic events, which can cause small earthquakes and damage to 

infrastructure, other risks associated with the hydraulic fracturing process are leakage 

due to poor chasing, leading to the contamination of aquifers with toxic elements.27 

Groundwater can be found in swallow or deep aquifers, which are located approximately 

30 meters below the surface.28 Another risk is the leakage of methane that has been 

recovered during the drilling and fracturing process. Methane has been found to be 10 

times more pollutant than carbon dioxide as a greenhouse gas. The safe disposal of the 

used fracturing water is another concern of the public, and environmental agencies, as 

it contains dissolved gas, naturally occurring radioactive materials (NORM), chemicals, 

and salts. Usually, this used water is stored in pits drilled in deep wells on-site or is send 

off-site in water treatment facilities. Wells drilled at the preparation stage are usually 

encased in steel and cement to prevent the used water and hydrocarbons leaking into 

the groundwater aquifers. Moreover, it has been estimated that during hydraulic 

fracturing, 3-6 million gallons of water are used per well. Even though this amount of 

water is approximately as high as that required for agricultural purposes, it can have a 

notable impact on local water supplies.27 

Taking into consideration the risks associated with the hydraulic 

fracturing process but also the increase in energy demand, this research 

study aims to produce an accurate computational method to calculate the 

permeability of shale formations. This parameter is crucial for evaluating 

the sustainability and profitability of a shale play and for determining the 

impact of the potential risks, which could then lead to better decision 

making and strategic planning. Shale gas characteristics 

Chemical composition 

The term shale play is used to describe the geographic area, which contains an organic-

rich fine-grained sedimentary rock and exhibits low production rates.5 Shale rocks are 

mainly composed of kerogen (organic part), quartz, clay, carbonates and pyrite 

(inorganic part). Secondary components such as uranium, iron, vanadium, nickel, and 

molybdenum can also be found in the shale matrix.5,29 Rock mineralogy is essential for 
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shale evaluation and the design of the fracture stimulation, as it can greatly affect the 

mechanical properties of rock. Shales with abundant quartz are usually very brittle, while 

shales with high clay content are less brittle.30 Moreover, some of the clay minerals found 

in the shale formations slow the transport of water and natural gas and seem to affect 

the permeability of the matrix.5,31 In a successful shale play, it is estimated that the total 

clay content should be <50% in order to achieve satisfactory hydrocarbon recovery.32 

The experimental techniques used to determine the minerology of a shale sample are 

Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD).33–35 Backeberg et 

al.,36 investigated the chemical composition of an obtained Bowland sample, as 

presented in Figure 1.9. It was reported that the majority of Bowland’s inorganic matrix 

consists of clay minerals (~60% per volume). The clay contained mainly illite (80%), 

which is chemically almost identical to muscovite, kaolinite (14%) and minor smectite. 

The slit fracture presented in Figure 1.9 was found to consist of mainly quartz. 36 

 

Figure 1. 9: QEMSCAN chemical maps of Bowland sample at spacing resolution of (a) 

10 micron and (b) 1 micron. Reproduced from Backeberg et al.36  

 

Kerogen, which represents the majority organic matter contained in the shale rocks, can 

be classified into four types based on its chemical composition.37 The kerogen type is a 
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parameter used to assess the potential of a reservoir to produce oil and/or gas and it is 

believed to be one of the controlling parameters of the transport and storage properties.38 

Spectroscopic techniques and elemental analysis can be implemented in order to 

determine the ratio of carbon, hydrogen and oxygen atoms.37 Kerogen types I and II 

exhibit high initial hydrogen/carbon atomic ratio and low initial oxygen/carbon ratio, 

resulting to a high potential for hydrocarbon generation. On the other hand, type III 

presents low hydrogen/carbon ratio and comparatively higher oxygen/carbon ratio, which 

results in a moderate oil producing potential. However, this kerogen type may still 

generate abundant gas at greater depths. Type IV kerogen has the lowest hydrocarbon 

generating capability as it contains only aromatic components.30,37 

Pore characteristics (porosity and pore size distribution) 

Porosity is a dimensionless parameter used to describe the volume fraction of the voids 

existing in a porous medium of total volume V. The calculated porosity depends on 

whether the method used could access the open or the closed pores of the porous 

material.39 It is one of the most important rock parameters when evaluating a gas shale 

reservoir’s production potential.34,40 Porosimetry methods used in the laboratory mainly 

include Gas Research Institute (GRI), Nuclear Magnetic Resonance (NMR), Mercury 

Injection Capillary Pressure (MICP) and Water Immersion Porosimetry (WIP) 

techniques.41 Shale rocks exhibit low porosity, mostly plate-like micro-porosity and little 

to no macro-porosity.33 

The evaluation of the pore size distribution (PSD) is fundamental in the understanding of 

permeability.40 If Ap is the pore wall area, Vp  is the pore volume and rp is the pore radius, 

the PSD can be calculated from the derivatives 
dAp 

drp
⁄  or 

dVp 
drp
⁄  as a function of the 

pore radius. For shales rocks, as for most porous materials, the International Union of 

Pure and Applied Chemistry (IUPAC) classification system is adopted in order to 

describe the pore size. According to the IUPAC system, pores with diameters less than 
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2 nm are micropores, pores with diameters larger than 50 nm are macropores and 

intermediate pores are termed mesopores.39 Depending on their size, shape and origin, 

pores are classified into four types: dissolved pores, organic matter associated pores, 

inter-granular pores and micro-fractures.42,43 Dissolved pores derive from the chemical 

interaction between the unstable minerals, found in the inorganic shale matrix and air or 

underground water molecules. Their diameter ranges between 100 nm and 300 nm. The 

pores formed during the kerogen thermal cracking, can have diameters up to 200 nm, 

while the inter-granular pores can reach 1000 nm.33 

Information regarding the pore structure of a porous material can also be derived from 

advanced imaging techniques including Focused Ion Beam Scanning Electron 

Microscopy (FIB-SEM), Field Emission Scanning Electron Microscopy/Transmission 

Electron Microscopy (FE-SEM/TEM), Small Angle X-ray Scattering (SAXS) and 

Computer tomography (CT) scan.34,44 For the purpose of characterising an ultra-fine pore 

structure with a generally broad PSD (micropores, mesopores and macropores), low 

pressure nitrogen adsorption and desorption, as well as high-pressure methane injection 

tests can be employed.33 

Matrix permeability 

Permeability is a term used to assess the ability of a porous material to transmit fluids 

and is one of the most important properties in defining the flow capacity of a porous 

structure.45 The dimensions of permeability are usually L2 and relate to the cross-

sectional area of the pore throats. However, a practical unit for expressing permeability 

is the Darcy (D). Permeability depends on a number of factors; pore characteristics, 

chemical composition, transport mechanisms, reactive fluids of high velocity flow effects. 

The true absolute permeability is considered to be an intrinsic property of the porous 

material, unchanged by different types of fluids. This rule holds for all liquids at laminar 

flow regime, but in the presence of low pressure gases, the calculated permeability might 

exceed the true absolute permeability of the rock.46 This phenomenon, explained in the 
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following subsection, inspired Klinkenberg in 1941 to propose the following very useful 

relationship:47 

kg = kl(1 +
bkl

p
) (1.1) 

where, 

kg = apparent permeability, 

kl = true absolute permeability, 

p = mean flowing pressure, 

bkl = Klinkenberg’s factor (constant for a specific gas at a specific porous structure) 

Typical shale rock permeabilities are in the range of micro-Darcy (μD) and nano-Darcy 

(nd).48–50 Table 1.1 provides a summary of the permeability, porosity, and PSDs obtained 

for major shale formations found in the USA and China. 
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Table 1. 1: Properties of major shales in USA, China, and Canada 

Formation Details 
Pore throat 

diameter (nm) 

Porosity 

(%) 

Permeability 

(μD) 
Source 

Unknown Shale, in the 

Beaufort-Mackenzie 

Basin 

23 (average) 7.5 - Gu et al.51 

Unknown Shale, in the 

Appalachian Basin  

(poor organic matter) 

8 (average) 7.2 0.1 Gu et al.51 

Unknown Shale, in 

Appalachian Basin  

(rich organic matter) 

24 (average) 3.6 0.5 Gu et al.51 

Marcellus Shale, USA 10-100 9-11 0.1-0.7 Zou et al.52 

Unknown Shale, Canada 12 (average) 4.9 0.2 Gu et al.51 

Haynesville Shale, USA - 12 0.4 Wang et al.53 

Haynesville Shale, USA 20 8-9 0.1-0.8 Zou et al.52 

Eagle Ford Shale, USA - 10 0.1-0.6 Wang et al.53 

Barnett Shale, USA - 4-7 ~0.1 Wang et al.53 

Barnett Shale, USA 5-750 

(100 average) 

4-5 0.1-0.5 Zou et al.52 

Marcellus Shale, USA - 5.5-7.5 0.7 Wang et al.53 

Fayetteville Shale, USA 5-100 2-8 0.1-0.8 Zou et al.52 

Utica Shale, USA 15-200 3-6 0.8-3.5 Zou et al.52 

Fuling Shale, China 50-200 1.2-8.1 0.001-5.8 Zou et al.52 

Shunan Shale, China 5-100 2-12 0.02-2.8 Zou et al.52 

Yanchang Shale, China 3-100 0.8-3 0.01-0.7 Zou et al.52 

 

Anisotropy and heterogeneity in shales 

Anisotropy is the vectorial variation of a physical property at a certain point of the porous 

medium. This variation causes some properties of the porous medium to have different 

values in different directions.54 Thus to describe the distribution of the anisotropic 

property in the medium, five independent variables need to be considered; the (x,y,z) 

spatial coordinates and the (θ, φ) angular coordinates for the orientation of the 

anisotropy.55 Permeability is one of the shale rock properties that has been found to have 

this anisotropic behaviour, and is frequently suggested that the degree of anisotropy 

correlates to the amount of clay, kerogen, and porosity in the shale samples.36,56–58 In the 

reservoir formations, anisotropy is frequently the result of bedding presence.59 

Anisotropy is a crucial issue for the recovery of hydrocarbons, as it can greatly influence 
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the transport of fluids and the mechanism of fracture propagation during the hydraulic 

fracturing process.60–62 

Shale rocks are also found to be heterogeneous, due to the significant variations of 

porosity and PSDs observed (see Table 1.1).49,63,64 Heterogeneity is detected when a 

physical parameter (e.g. porosity, density, permeability, etc) exhibits variations within a 

sample.  Studies suggest that the observed heterogeneity is a result of the intrinsic 

structure of the medium and depends on the composition and topology.65 The presence 

of heterogeneity often results in anisotropy, however this is not always a necessary 

condition.54 A way of macroscopically assessing the heterogeneity of a porous mediums 

is by examining various samples and obtaining observing pore morphologies that are 

statistically different.66 Figure 1.10 shows an example of heterogeneous grain density 

distribution. Dullien66 suggests that a porous medium can be classified as homogeneous 

when the length scale of the heterogeneity is less than the length scale of the 

observation. 

 

Figure 1. 10: Example of heterogeneous distribution of grain density in a grain rich rock 

sample. Reproduced from Dullien.66 

 

Transport characteristics 

The term "fluid" is used to describe a continuum group of molecules, which are in reality 

discrete entities. The behaviour of fluids, from a molecular point of view, can vary 

significantly under confinement. As the distance between the pore walls decreases, the 

interactions between the molecules and the surface become more frequent and the 
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journey one molecule can travel shortens. According to the kinetic theory, one way to 

assess the average distance a molecule can travel, while following a straight trajectory 

before it collides with another molecule or the pore wall, is to calculate the mean free 

path.31,67 

λ =
kBT

√2πd2p̅
 (1.2) 

where, 

λ is the mean free path, 

kBis the Boltzmann constant, 

T is the absolute temperature, 

p̅ is the absolute average pressure, 

d is the collision diameter of the gas molecules. 

As Eq. (1.2)  shows, the mean free path is proportional to the temperature and irreversibly 

proportional to the pressure for specific pore geometries. However, in order to predict 

the movement of a gas through a porous media and calculate its matrix permeability, a 

transport model needs to be defined.31 Darcy’s law can describe the laminar viscous flow 

of one or more phases in a porous matrix, as long as the rate of the flow is proportional 

to the pressure gradient. This law, named after Hendry Darcy, describes the linear 

relation between the flux and the pressure gradient and has the following form for the 

case of incompressible fluids.68 In Eq. (1.3) the subscripts 1 and 2, designate the up and 

downstream positions, respectively.   

Q = AK
(h1 + z1) − (h2 + z2)

L
 (1.3) 

where, 

Q=the volume flow rate, 
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A=the area of porous media normal to the flow, 

K=the hydraulic conductivity (permeability), 

h=the pressure head (pressure divided by the specific weight), 

z=the elevation, 

L=the length of the flow path. 

The unique and complex structure of the unconventional reservoirs exhibits special flow 

mechanisms that deviate from the Darcy’s law description.69 Many theories have been 

proposed, in order to identify the main characteristics responsible for this deviation. One 

of the prevailing theories suggests the coexistence of different flow regimes due to the 

various pore sizes found in the matrix.67,70 Other theories consider the chemical 

composition of the matrix and the anisotropic permeability to be equally important 

factors.31 

Knudsen number is a dimensionless parameter that characterises the degree of 

rarefaction and can be used to identify the flow regime and hence the transport 

mechanism. It is expressed as the ratio of the mean free path λ and the characteristic 

length of the system as described below.71 

Kn =
λ

Λ
 (1.4) 

where, 

λ=the fluid mean-free-path, 

Λ=the macroscopic length scale of the physical system molecules.   

There are four possible transport mechanisms; the Knudsen diffusion, the slip flow, the 

transition flow and the viscous flow. Knudsen diffusion is dominant in micropores and 

can also be found in the literature as pore diffusion or free-molecule flow. It describes 

the state of a low-pressure system, in which the effect of the pore walls is negligible. In 
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this case, the mean free path of the molecules exceeds the mean pore diameter, 

resulting to a Knudsen number greater than 10 (Kn ≫ 10). As the Knudsen number 

decreases (10−1 < Kn < 10), the interaction between the fluid molecules and the pore 

wall become dominant and the flow regime falls into the category of transitional flow.67,72 

In this regime the transport mechanism exhibits characteristics of free molecular flow, as 

well as slip flow. The slip flow, first introduced by Klinkenberg, occurs when the mean 

free path of the molecules is comparable to the size of the pore (10−3 < Kn < 10−1). The 

interaction between the molecules and the pore wall become more dominant as a result 

of reduced fluid friction.31,47 As pressure increases, the intermolecular collisions, as well 

as the interaction between the molecules and the surface, elevate the wall shear stress 

experienced by the molecules. As a result, the mean free path decreases, and the 

rarefaction follows a similar trend. This type of flow corresponds to a continuum viscous 

flow regime (Kn < 10−3).67 Figure 1.11 presents a classification of the flow regimes as a 

function of the Knudsen number.73 

 

Figure 1. 11: Transition of the flow regimes as a function of the Knudsen number. 

Reproduced from Song el al.73 

 

Nevertheless, besides the four transport mechanisms described above, adsorbed-phase 

diffusion and capillary condensation flow could also be considered as possible transport 

mechanisms. Adsorbed-phase diffusion, also referred as surface diffusion, is the 

mechanism by which the gas molecules get adsorbed at fixed positions on the pore walls. 
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Since the diffusing molecules never escape from the force field of the pore walls, it is 

logical to consider the fluid within the pore as a single adsorbed phase.44,72 Although it is 

considered to be a slow process, it is believed to contribute substantially in the process 

of fluid transport.74,75 A schematic of the transport mechanisms discussed above is 

presented in Figure 1.12 for the case of a single component narrow pore.76 

 

Figure 1. 12: Single component gas transport mechanisms through a narrow pore. 

Reproduced from Wang et al.76 

 

Another potential effect of the confinement, besides the increase of intermolecular 

forces, is the capillary condensation phenomena. When the pore pressure exceeds the 

critical pressure required to fill the pores with adsorbate, the molecules are forced to 

condensate below the saturation vapor pressure. This change in the phase of the fluid 

delays the transport of the vapor through the condensate filled pores.67,70 

To interpret kinetic data in heterogeneous and anisotropic systems, in terms of chemical 

composition and pore size, it is necessary to use a more complicated model which will 

account for micropore, mesopore and macropore diffusional resistances.72 This seems 

to be a non-trivial issue and different experimental, theoretical and computational 

methods have been suggested in the literature. Each approach exhibits certain 

advantages and limitations, which define the applicability of the method, the time scale 

of the analysis and the size of the samples used to extract the transport properties. The 

following section aims to review and compare those methods. 
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Methods of analysis 

Shale rocks exhibit complex and highly heterogeneous pore networks. The chemical 

composition and the pore characteristics may vary significantly, even for samples taken 

from the same reservoir. Many experimental and computational methodologies have 

been implemented aiming to reveal the transport behaviour in such systems. This 

subsection provides a brief overview of the experimental methods commonly used to 

calculate the permeability of shale samples and a review of some of the most important 

computational approaches implemented to study the transport of fluids in porous media. 

Experimental methods 

The transport properties of a porous medium can be defined by obtaining the 

permeability, diffusivity and solubility coefficients. Several experimental techniques have 

been applied, in order to determine these coefficients in shale rocks. Some of the most 

common are the steady state method and the unsteady state method.77,78 However, by 

following an experimental approach, no distinction can be made between diffusion and 

convection (Darcy’s law) and hence, the mechanism of fluid transport cannot be 

identified.79 

The steady state method, based on transmissibility measurements, can calculate the 

permeability coefficient of an intact porous media with length l and cross-sectional area 

A. A certain amount of a gas or liquid is loaded to one side of the membrane, resulting 

in a pressure P1. The other side of the membrane is left empty and usually kept at a 

pressure P2 = 0 (vacuum condition). The amount of permeate Q(t) that crosses the 

membrane over time t is being monitored and the permeability coefficient k can be 

calculated from the following equation: 

k =
Q(t)l

Atp1
 (1.5) 

This method has been used extensively over the past 50 years to determine the 

permeability of the conventional reservoirs. The main advantage of the method is the 
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simple experimental set up required and the straightforward analysis of the data 

collected. However, using the steady state method to calculate the permeability of tight 

rock formations can become quite challenging, as a significant amount of time is needed 

for the system to reach equilibrium and then a steady state. Moreover, due to the low 

flow rates achieved, the accuracy of the method decreases.80 Nevertheless, several 

authors have used the steady state method in order to perform permeation experiments 

on different tight rock formations using intact core samples.81–83 Due to the limitations of 

the steady state approach, for the tight rock formations, the non-steady state techniques 

of measuring permeability gained attention. Three of the most commonly used non-

steady state techniques found in the literature are the pulse decay (or Brace method), 

the GRI method and the oscillating pressure method. 

Computational methods 

At present, the development and profitability of a shale play depends on its permeability. 

Shale rocks consist of organic and inorganic matter with pore sizes ranging from the 

micro- to the meso-scale.84 This section provides a review of the computational methods 

reported in the literature for the calculation of transport properties in shales at various 

scales in ascending order. 

From an atomistic perspective, Molecular Dynamics (MD) simulations have been widely 

implemented in fluid transport studies. Bhattacharya and Lie used this method in their 

studies, contacted in 1990, in order to solve the dynamical equations of confined gas 

particles between two thermal walls. They implemented non-equilibrium MD (NEMD) in 

order to simulate the heat transfer on their system and assumed that whenever a 

temperature jump was observed, it was due to fluid transport.85 Botan et al., also used 

MD in order to capture the changes in adsorption and transport with temperature, 

pressure, pore size and concentration. Their model included values of the local chemical 

potential and density, which were calculated by using grand-canonical Monte Carlo 

(GCMC) simulations. As a next step, they used a lattice model in order to describe 
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transport at larger scales. The lattice was mapped into 3D structures obtained by using 

focused FIB-SEM and tomography. The main outcome of this work was the validation of 

the significant contribution micropores have on the actual gas flux.86 Recently, Ozcan et 

al., conducted a NEMD concentration driven study to simulate the permeation of pure 

fluids and mixtures through a ZIF-8 membrane. They used biased forces to maintain the 

concentration of fluids at target values in the inlet and outlet of the membrane.87 Phan et 

al., also calculated the permeability of various substrates using MD simulations for pure 

fluids and mixtures.88 The details of this work are discussed further in Chapter 3. MD 

simulations however require at the expense of high computational effort, which leads to 

the so-called scale problem.89 

Although atomistic simulations can provide an accurate understanding of the transport 

mechanisms in confinement, upscaling requires significant computational effort. As a 

result, the systems investigated are frequently composed of a single pore, and a limited 

number of pore sizes/chemistries are explicitly considered.90,91 To bridge the gap from 

atomistic simulations in single narrow pores to large scale systems, transport models 

that correlate diffusivity and/or permeability to pore characteristics have been developed. 

Typically, these models account for the three types of diffusion mechanisms; Fickian, 

Knudsen, and surface diffusion.92–94 The contribution of each mechanism to the overall 

fluid transport is assigned by coefficients, derived either from experimental or 

computational data. These coefficients are used to enrich Darcy’s equation. Most 

commonly, these models take into consideration effective stress and slip flow 

contributions, in order to produce expressions of the apparent permeability.  

Albeit the fact that many transport models have been proposed, a gas transport model 

that simultaneously considers organic micropores, inorganic micropores and micro-

fractures is still not available. Further, when using the available models at conditions 

different than those used to construct them, re-parameterisation becomes 

mandatory95,96, as their accuracy is limited to the extent of the conditions used for the 

calculation of the coefficients.94,97,98 To describe shale gas flow through single 
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micropores, Darabi et al., proposed an apparent permeability model that considers 

various parameters (e.g. tortuosity, porosity, mean pore radius, absolute permeability, 

etc.).99 Similarly, Malek and Coppens studied the effects of surface roughness on 

Knudsen regime diffusion in porous media.100 This apparent permeability models have 

been widely applied to extended 2D or 3D pore network modelling studies, providing 

“local” apparent permeability coefficients.101,102 

The first efforts in predicting the effective permeability of the medium, given the “local” 

apparent permeability coefficients, were reported half a century ago,103 with Renard and 

Marsily describing and assessing the available techniques at the time.104 Among multiple 

deterministic methods, the Effective Medium Theory (EMT)105–108 was deemed suitable 

for (1) media exhibiting small heterogeneities with low variance and a log-normal 

permeability distribution, and (2) binary media containing less than 50% low-permeability 

pores.104 Because of these initial observations, the EMT method has been applied in 

many different fields, including geological formations and sediments, composite media, 

heterogeneous catalysts and mixed-matrix substrates with fillers.109–113 It is generally 

accepted that when the low-permeability proportion exceeds a certain threshold, (i.e., 

50%), EMT yields poor predictions.104,113 It has been suggested that this low performance 

is because of the overestimation of the network connectivity.112,114 While recent findings 

have helped improve our understanding regarding both the percolation threshold and the 

mechanisms responsible for poor EMT performance,115 a robust EMT approach with an 

evident identification of its limits of applicability is still elusive. 

Another deterministic approach often used for estimating equivalent media permeability, 

particularly by the oil and gas industry, is King’s renormalisation approach.116 For this 

approach, one begins from a grid in a dimensional space (DS), constructed by 

considering 2n cells per coordinate, yielding 2nDS meshes. Aggregations are performed 

iteratively, with each iteration combining two cells per coordinate, thereby producing a 

less finely discretised grid, with 2(n-1)DS meshes. The procedure is completed when one 

single mesh emerges.104 As part of King’s renormalisation approach, an electric network 
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was used as analogous to a porous medium in which the inverse of permeability acts as 

a resistance.116 Le Loc’h proposed a simplified renormalisation technique that performs 

successive groupings between the meshes. If two meshes are in series relative to flow 

direction, point permeabilities are averaged using a harmonic mean. If the two meshes 

are in parallel with respect to flow, an arithmetic mean is used instead. The two 

approaches yield minimum and maximum permeability, respectively. The equivalent 

permeability is estimated as the geometric mean of these extremes.117 Kelkar 

recommended this approach as a reservoir characterisation strategy, and Naraghi et al., 

implemented it to calculate the permeability of an Eagle Ford sample.102,118 

Renormalisation techniques share the EMT weakness when applied to systems with high 

heterogeneity, where highly permeable regions neighbour with low-permeable ones.116 

Shale rock samples are indeed heterogeneous materials; thus the mentioned 

deterministic approaches might not be reliable tools to predict the effective rock 

permeability. However, the promise of fast estimates makes these deterministic 

approaches appealing to practitioners. 

Advanced imaging of core samples reveals the complexity of the pore system within the 

shale matrix.36,119 The properties that define shale permeability are mainly porosity (pore 

size distribution – PSD), organic content (% of total organic carbon - TOC), and 

mineralogy.120 The inorganic matter of shales is predominantly made up of quartz, 

carbonate and clays.38,42,121–123 State of the art computational methodologies have been 

developed to couple imaging data that reveal the chemical composition and pore size 

distribution of a rock sample, to generate realistic pore networks that resemble those in 

shales, and then perform mesoscale simulations to estimate the permeability using, e.g., 

computational fluid dynamics (CFD).101,124–126  

From a modelling perspective, Lattice Boltzmann (LB) simulations, is a mesoscopic CFD 

particle-based method that has been widely applied to simulate complex fluid flow and 

obtain transport properties.127–129 Simplified kinetic models, which incorporate only the 

essential physics of microscopic or mesoscopic processes, are used to obtain 
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macroscopic averaged properties that obey the desired macroscopic equations (Navier-

Stokes equation). The fluid is divided into packets that act as particles. The LB method 

simulates the motion and collision of these particles on a lattice, and allows for the 

extension to multiphase flow, where particles representing fluid elements of two (or more) 

phases, carrying different averaged properties (pressure, density, etc), can be tracked 

while interacting with each other. Moreover, it is a method relatively easy to code and is 

ideally suited for parallel computing platforms. However, the computational cost of the 

method can be significantly high, even in a parallel environment.127,128 Additionally, the 

run-time scales are approximate to the inverse of real flow rate, which makes it difficult 

to capture accurately capillary-controlled displacement on sufficiently large samples to 

make reliable predictions of relative permeability.130 In many studies, imaging data are 

used to reconstruct the pore network and LB simulations are implemented to simulate 

fluid flow, following Hazlett’s131 work.132–135 

In 2009 Chen et al.,125 implemented nanometer-scale SEM to visualise microscopic 

pores inside kerogen found in shales. Most of the pores found inside the kerogen had 

spherical morphology and were isolated from each other. The authors found that these 

pores were not connected to natural or hydraulic induced microfractures. To study the 

transport of fluids within the pore network they implemented LB simulations and 

evaluated the tortuosity and permeability in the three principal directions. From their 

analysis they found both Peclet and Reynolds numbers to be smaller than one, an 

indication that the transport was in the flow regime and diffusion was the main 

mechanism of transport. The permeabilities calculated showed an isotropic permeability 

distribution in the μD scale. Chen et al.,125 highlighted the importance of selecting an 

appropriate sample size, an observation also made by Boek and Venturoli who studied 

the transport properties of Bentheimer sandstone samples using the same methodology. 

They reported a broad distribution of calculated permeabilities for samples with small 

size.134  
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In a similar manner Zhang et al.,136 implemented the LB methodology to simulate the gas 

flow characteristics of a 2D organic rich shale sample. They focused their analysis on 

the effect of the Knudsen number and slip flow effect. The flow rate was found to be 

proportional to the square of the capillary width when the Knudsen number was low and 

slip flow effects were absent. However, they observed that as the capillary width 

decreases the Knudsen number and velocity increases. They also observed that 

increase in the slip flow effect significantly enhances the absolute permeability.136  

Germanou et al.,137 investigated the effect of solid matrix complexity on the intrinsic and 

apparent permeability using synthetic networks. To generate they networks they 

implemented the quartet structure generation set algorithm. They identified the specific 

surface area of pores, tortuosity, heterogeneity and degree of anisotropy to be critical 

parameters. For their calculations they implemented the finite volume method to solve 

the Navier-Stokes equations, using snappyHexMesh, a native mesher of the OpenFOAM 

CFD toolbox.137 

In order to achieve more accurate estimations, pore reconstruction techniques are 

essential. In the petroleum engineering field, Markov Chain Monte Carlo (MCMC) 

simulations are commonly used to recreate a 3D micropore structure, while considering 

properties such as porosity and connectivity, by using data obtained from 2D SEM 

images. After the pore structure is reconstructed, calculations of the matrix permeability 

can be performed, usually using LB simulations or apparent permeability models. Chen 

et al., implemented nanometre-scale SEM imaging to visualise the kerogen micropores 

in shale samples and conducted LB simulations to identify the permeability and tortuosity 

of the 3D reconstructed network. They found permeability to be anisotropic, and higher 

in the z direction, due to the reduced tortuosity.125 Tahmasebi et al., proposed a 

multiscale methodology for 3D reconstruction of a shale sample at a bigger scale. Their 

three-step methodology consists of obtaining high and low resolution 2D images, to 

reveal the micro and macro structure of the pore network and combining them to 

generate a 3D pore network. They used Avizo® to calculate the 3D network permeability 
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and validate their proposed methodology.101,138 This type of approach is believed to 

create a new, more accurate, and most importantly, more realistic insight of the transport 

mechanisms that dominate the fluid transport through microporous channels and 

conductive natural fractures that are present in the rocks. 

Stochastic approaches have been developed to assess the permeability of complex 

heterogeneous systems.104 Such approaches capture the variability and complexity of 

permeability-controlling parameters, such as the porosity, PSD, and network 

connectivity. Among other stochastic approaches, Renard and Marsily identified Monte 

Carlo (MC) methods capable of quantifying the uncertainty of the permeability 

distribution. They suggested that a successful approach should implement a two-part 

workflow: (1) individual ‘local’ permeabilities should be stochastically generated and (2) 

deterministic techniques should be applied to scale up the model and simulate fluid flow 

through the complex pore network.104 It should be evident that KMC approaches require 

significant computational resources, and their performance strongly depends on how 

well the pore network structure is known. A typical MC algorithm samples over a 

Gaussian distribution and randomly selects properties based on probability 

distributions.139 Alternatively, KMC can follow molecular trajectories and yield 

permeability calculations with satisfactory accuracy and orders of magnitude lower 

computational cost compared to MD simulations.140,141,142 

A numerical integrator of the Langevin’s equation of motion could be implemented 

instead of the KMC to describe the time evolution of the system. In fact, this approach 

has been implemented to simulate various systems, from the film growth to ion-DNA 

interactions.143,144 When comparing results obtained using the KMC against the 

numerical integrator of the Langevin’s equation of motion, the selection of the integration 

step used in the latter method has pivotal impact to the accuracy of the results obtained. 

Reducing the integration step, to achieve more accurate results, could increase the 

computational cost of the method. Similarly, to obtain accurate KMC results a number of 

independent runs should be performed to ensure accurate results, which leads to 
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increased computational cost. Another approach to numerically solve the M-equation 

was proposed by Kolokathis and Theodorou142 who implemented their proposed 

methodology to simulated diffusion of xenon in silicalite-1. The authors found this 

numerical approach to be faster when compared against KMC simulations, the numerical 

solution of the master equation by the Euler method, and MD simulations by factors of 

about 104, 103, and 107 respectively. 

Kinetic Monte Carlo (KMC) simulations have been widely used to obtain transport 

properties and simulate diffusive-reactive processes taking place on catalytic surfaces. 

There is a significant amount of literature in this research area, and some key examples 

include the work by Stamatakis and Vlachos145, Darby et al.,146, Alfonso and Tafen147, 

Fragopoulos and Theodoropoulos148, Rai et al.,149, and Wang et al.,150 For studies of fluid 

transport through porous media, Flamm et al.,151 implemented a lattice Kinetic Monte 

Carlo (LKMC) method to study diffusive-adhesive events, for systems subject to external 

fields. Karayannis et al.,152 studied the diffusion of small molecules in disordered media 

by employing KMC simulations and the time-dependent effective medium approximation 

(EMA). Comparative to the published literature on the application of KMC to study 

catalytic processes, its application in the study of fluid transport through porous media is 

relatively limited. As such, the focus of this work has been to develop a novel multiscale 

KMC simulation protocol in 1D, 2D, and 3D to stochastically simulate the transport of 

gases in porous media that resemble those found in shale rocks. To achieve this, a lattice 

is generated to represent the rock sample, which is transformed to a collection of voxels. 

Particles are inserted in the various voxels and fluid transport is simulated as the hop of 

these particles from one voxel to another. A KMC algorithm defines which particle moves 

towards which voxel at each simulation step. The diffusion of particles in a porous 

medium, where external fields are not present, can be described by the Brownian motion. 

KMC algorithms can generate random walks, which at limit correspond to the Brownian 

motion. The proposed KMC methodology is used to evaluate the contributions different 

types of pores (micropores, mesopores and macropores) on the fluid transport and 
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stochastically generate multiple equivalent 2D and 3D pore networks to obtain accurate 

statistics. 

Thesis Structure 

The remainder of this thesis aims to provide the theoretical background of the KMC 

implementation on diffusive systems and examples where the constructed KMC model 

was used to simulate fluid transport in 1D, 2D, and 3D systems. 

Chapter 2 provides the fundamentals of the KMC simulations. Starting with an overview 

and historical evolution of the method, the transition from the MC to KMC simulations is 

explained. Diving into the technical aspects of the method, the discussion is steered 

towards the selection of the transition rates, which play a fundamental role in the 

accuracy of the method. Various computational approaches of obtaining those rates are 

discussed and evaluated. Then, the different types of KMC algorithms are provided, with 

emphasis on the selection of the event executed. From this description, it is evident that 

some methods are more computationally efficient than others, and the discussion 

continues with recommendations on how to further improve computational efficiency. 

The chapter ends with a review of available random number generators and the 

capabilities each one offers. 

The KMC algorithm selected for the study of fluid transport in this thesis is based on 

Gillespie’s KMC implementation for reactive systems. Chapter 3 is divided in two parts; 

Part I describes the transition from reactive to diffusive systems and in Appendix A the 

validation of the constructed KMC model is provided. In Part II the KMC model is 

implemented to reproduce a two-phase, two-species 1D transport study, initially 

conducted using MD simulations. After the method is validated, the KMC model is used 

to provide insights on the impact of pore length and pore network connectivity on the 

transport of gaseous methane. The KMC method shows significant computational 

savings and scalability, compared to the MD method previously implemented.  
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The next chapter is also organised in two parts. Part I details the development of a 2D 

KMC algorithm and its application on synthetic 2D pore networks to elucidate the effects 

resulting from pore size distribution, the impact of micro- and macropores, and the effects 

of anisotropy on the predicted matrix permeability. The 2D KMC model is also 

implemented to estimate the permeability of a shale sample obtained from the Eagle 

Ford formation. The results obtained in Part I are compared against two deterministic 

approaches that are frequently used due to their simplicity and computational efficiency. 

In Part II the 2D KMC model is used to investigate the effect of man-made microfractures 

and proppants on the permeability improvement of a shale sample. The matrix 

permeability calculated in Part I is used as an input for the matrix permeability. The 

insights obtained from Part II provide valuable recommendations on how to improve the 

permeability of source rocks using proppants.  

In Chapter 5 the KMC model is further extended to 3D and validated against analytical 

and computational data. In Part I, the developed 3D KMC model is implemented to 

describe the fluid transport in micro- to meso-scale slit-shaped porous materials. It is 

demonstrated that atomistic molecular dynamics simulations for the self-diffusion 

coefficient of supercritical methane is reproduced, within a 10% uncertainty, by the 

stochastic approach at a significantly lower computational cost. The method is then used 

to predict the diffusion coefficient of methane in single slit-shaped pores with varying 

pore width and chemical composition. Part II investigates the effect of porosity, pore 

network connectivity, pore throat width and pore chemistry on the diffusivity of gasses. 

The results obtained are used to provide recommendations on how possible 

technological approaches, involved in the hydraulic fracturing design, can be applied to 

maximise gas extraction.  

A summary of the main findings is provided in Chapter 6. Considering the strengths of 

the constructed KMC model, the areas that require further improvement and emerging 

computational technologies, a methodology is proposed for the continuation of this work.  



Methodology – Kinetic Monte Carlo simulations 

33 

Methodology – Kinetic Monte Carlo simulations 

Introduction 

KMC simulations are a form of stochastic Monte Carlo methods that describe the 

dynamical phenomena governing various processes, such catalysis, material fabrication, 

defect evolution in crystals and diffusion.141,151,153–155 This form of Monte Carlo algorithm 

that describes the system dynamically as it is moving from state to state, was first 

introduced in 1960 and the earliest application reported was in 1966 for the study of 

radiation damage annealing by Beeler.156 KMC methods have proved to be a powerful 

tool, which enables access to longer time scales (from ms to hours) and larger spatial 

scales (from nm to µm) compared to other computational methods, at comparatively low 

computational expense.146,157 

From MC to KMC 

The Metropolis algorithm, named after Nicholas Metropolis139, was published in 1953 

and describes a procedure of evolving a system from a given state to the desired one. 

Assuming that the transitions through the states are described by a probability 

distribution, old states are replaced by new ones using importance sampling.158 This 

sampling technique is used when the region of importance has low probability of 

occurrence, for instance, it is at the tail of the probability distribution. Importance 

sampling assigns larger weights to the region of interest in order to obtain some samples 

from that particular region. However, in the limit of a large number of such replacements, 

one gets the correct probability density distribution.159 Repeated applications of the 

Metropolis algorithm always bring the system into the correct ensemble – final state, 

regardless of the initial state of the system. Once the equilibrium ensemble (final state) 

is reached, the algorithm maintains the system at the equilibrium ensemble, regardless 

of the additional repetitions of the algorithm. The Metropolis algorithm remains the 

backbone of MC methods for its simplicity, versatility, and ability to provide shortcuts 

when generic sampling requires too much computational effort.160 
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The transition from the Metropolis algorithm to the KMC simulations was the outcome of 

an effort to speed up the MC simulations, proposed by Bortz, Kalos and Lebowitz in 

1975.161 In their proposed N-fold way algorithm, all events selected were considered, in 

contrast to the Metropolis algorithm which discards some of the events selected. To shift 

from MC to KMC the aspect of temporal evolution needs to be address, as an MC 

simulation counts the number of required steps to transition from the initial to the 

equilibrium state, after which time has no physical meaning. In the N-fold way, the time 

required for a transition to happen at a particular time t is calculated based on the total 

propensity at a specific time and a random number, drawn from a Poissonian 

distribution.162 More information regarding the definition of the propensity and the 

equations used to calculate the time required for a transition to happen is provided in 

section 2.8 of this chapter. 

Rare event dynamics and the timescale problem 

Significant methodological advances in the field of solid-state physics and fluid dynamics 

have enabled us to provide answers to fundamental and long-standing questions using 

a variety of computational methods. Deciding on which method is more suitable for a 

given problem depends on the length (quantum, microscopic, mesoscopic, macroscopic) 

and time scales required to observe the system’s evolution. Density functional theory 

(DFT) can describe accurately a wide class of chemical bonds and has enabled the 

modelling of the microscopic dynamics involved in many important processes in 

materials processing or chemistry. However, to answer many questions of scientific or 

technological interest, larger timescales are required to obtain useful insights.157 This is 

because in many cases, the system spends a significant proportion of time vibrating 

within a potential basin of the potential energy surface (PES) before it performs random 

transitional "jump" of sufficient momentum to another state.146,156  

The vibrational movements taking place on the picosecond scale, are orders of 

magnitude faster than the transitional state-to-state jumps, which can be considered as 
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rare events, due to their relatively low frequency. Hence, it can be assumed that between 

these rare events, the system is at a quasi-equilibrium state and that it has enough time 

to forget where it may have been in the past.146 This property of the system is known as 

the Markov property.163 MD simulations, which numerically integrate the Newtonian 

equations, have long been at the forefront of atomistic simulations to address such solid-

state and fluid transport problems.164 To accurately integrate Newton’s equations, a 

relatively large amount of simulation steps, with significantly short time increments are 

required to capture the vibrational motion of the particles, limiting the technique to shorter 

timescales. 

When the problem at hand requires monitoring of these state to state jumps, rather than 

focusing on the vibrational motion of the particles, statistical mechanics and Monte Carlo 

methods can be used to simulate the systems of interest.157 The basic idea behind the 

KMC simulations is to describe the frequency at which these state-to-state transitions 

take place and determine equivalent transition rates constants that depend on the energy 

barriers between the states.146 More specifically, the rate constants express the average 

fraction of systems crossing the barrier per unit time, in a quasi-equilibrated ensemble of 

systems. The waiting time period, before a transition takes place, depends on the energy 

barrier the system has to surmount in order to get from one energy basin (state) to 

another.156 Figure 2.1 represents an example of a transition from a low energy to a high 

energy state (ΔE<0) and an example of a positive ΔE transition. As a result, the KMC 

focuses on the statistics of barrier crossing, rather than the vibrational motion of the 

particles, allowing us to access larger length and time scales. Figure 2.2 provides a 

graphical representation of the length and time scales achieved by implementing DFT, 

MD, and KMC tools to simulate film growth. 
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Figure 2. 1: Representation of a barrier which leads to a higher-energy state (A) and one 

which leads to a lower state (B). 

 

Figure 2. 2: Length and time scales achieved during the modelling of film growth using 

DFT, MD, and KMC simulations, as reproduced by Kratzer.157 

 

Method requirements 

Through the discussion above, some of the requirements needed to develop an accurate 

KMC model have already been mentioned. These requirements are: 1) the satisfaction 

of the Markov property, 2) the satisfaction of microscopic reversibility, 3) the accurate 

determination of transition rates and 4) the correct selection of time increments. The 
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following subsections of this chapter detail the requirements of the KMC method and 

provide a mathematical description for their implementation. Subsection 2.5 deals with 

the first two requirements, subsection 2.6 addresses the calculation of the transition rates 

and subsections 2.8 and 2.9 describe the process of selecting events and calculating the 

time required for an event to happen.  

The Master equation 

The Master equation (M-equation) provides the means to describe a system in a "holistic" 

way, as it gives the time course of the probability density function (p.d.f). Hence, it can 

describe the p.d.f of each possible state of the system at a specific time. The key concept 

is that these systems consist of events that fall into the category of fast and frequent 

vibrations and slow rare transitions. The time gap between two rare events is orders of 

magnitude larger compared to the vibrations taking place and hence, one could argue 

that by the time the system finds its way to state n starting from state n − 1, the memory 

of all previous n − 2 states is lost. This statement can be translated in the following 

equality for the random variable X for any set of n successive times, (i.e  t1t2. . . tn):
163 

Eq. (2.1) expresses the conditional probability density at time tn, given the value xn−1 at 

tn−1 is explicitly defined and independent of all the states prior to state n − 1. Eq. (2.1) 

exhibits the Markov property and P1|1 is called the transition probability. Hence, a Markov 

process is fully defined by the two functions P1(x1, t1) and P1|1(x2, t2|x1, t1), because the 

whole hierarchy Pn can be constructed from them.163 

The M-equation is a differential form of the Chapman-Kolmogorov equation and 

describes the evolution of the probability of finding the system in state i at time t:163 

 𝑃1|𝑛−1(𝑥𝑛, 𝑡𝑛|𝑥1𝑡1; . . . 𝑥𝑛−1, 𝑡𝑛−1 = 𝑃1|1(𝑥𝑛, 𝑡𝑛|𝑥𝑛−1, 𝑡𝑛−1) (2.1) 

 dPi(t)

dt
= −∑

j≠i

ri,j
KMCPi(t) +∑

j≠i

rj.i
KMCPj(t) 

(2.2) 
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The M-equation describes the evolution of the system as a balance of probabilities. It 

accounts for all the inflow from states j to states i minus the outflow from states i towards 

states j. In that formulation, the probability of finding the system at states i (Pi(t)) and j 

(Pj(t)) is multiplied by the transition probabilities per unit time ri,j
KMC and rj.i

KMC which 

describe the i-to-j and j-to-i transitions, respectively.163 Despite its simplicity, the M-

equation can hardly be solved for more than two species. Kolokathis et al., proposed a 

methodology of analytically solving the M-equation for a system evolving on spatially 

periodic network of states.142  However, for the majority of systems where the analytical 

solution of the M-equation is unfeasible, a KMC algorithm can be employed to simulate 

the time evolution of the system.146 

To accurately describe the evolution of the system towards the thermodynamic limit, one 

needs to ensure that the microscopic reversibility is being satisfied. Hence, for any 

connected pair of states i and j, a detailed balance must be obeyed and when the system 

reaches equilibrium (steady state) the first part of Eq. (2.2) must be equal to zero. In that 

case, Eq. (2.2) takes the following form: 

where, Pi
0 is the probability of finding the system at state i at equilibrium. Eq. (2.4) shows 

that for every elementary process i → j there is a reverse process j → i and that the 

average number of transitions from i to j is equal to the number of reverse transitions. 

Hence, the microscopic reversibility of the system is being satisfied at equilibrium. 

However, the detailed balance between states i and j, described by Eq. (2.4) must also 

hold true while the system is not yet at equilibrium. To ensure that the selected 

transitional rates capture correctly the dynamical evolution of the system towards 

equilibrium one can consider the Boltzmann relationship at equilibrium:146 

 ∑

j≠i

ri,j
KMCPi

0 =∑

j≠i

rj.i
KMCPj

0 (2.3) 

 ri,j
KMCPi

0 = rj.i
KMCPj

0 (2.4) 
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This expression correlates the population of states Pi
0 with the free energy of state i 

(Fi(T)) at temperature T. At this point, by taking into consideration Eqs. (2.4) and (2.5) 

the relationship between the kinetic rates ri,j
KMC and rj.i

KMC can be expressed as:146 

This relationship between rates ri,j
KMC and rj.i

KMC, which originates from the description of 

the system at equilibrium, corresponds to a detailed balance of the system applicable for 

all times.146 

Determination of the transition rates 

In order to implement KMC to study the dynamical evolution of the system, all the 

possible transition events – pathways have to be identified. Having knowledge of these 

rate constants for every state the system might visit, the resulting state to state trajectory 

produced by the KMC model should, in principle, be indistinguishable from the one 

generated by atomistic models, such as MD simulations.156 To determine the rates for 

each pathway, statistical mechanical frameworks, such as transition state theory (TST) 

can be utilised.146,156 Although TST is considered to be approximate, it can be used as a 

rate determining technique for a solid-state diffusive event.156 In TST the rate constant 

to escape from state i to state j is taken to be the equilibrium flux through a dividing 

surface area, as shown in Figure 2.3. 

 

 
Pi
0 ∼ exp(−

Fi(T)

kBT
) 

(2.5) 

 ri.j
KMC

rj.i
KMC

= exp(−
Fj(T) − Fi(T)

kBT
) 

(2.6) 
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Figure 2. 3: Illustration of the transition state theory rate constant, reproduced from 

Voter.156 

 

One can obtain the TST rate constant, kTST, by counting the number of successful jumps 

that lead to crossing the dividing surface area per unit time and by dividing this number 

by the number of trajectories on average that are in state i at any time. The particle 

equilibrates to the new position (state j) and vibrates around the new energy minima until 

it performs the next transition. That means that quasi-equilibrium needs to be reached in 

every potential energy basin before moving to the next one, otherwise dynamical 

memory left from the previous state will be transferred to the new state, making the 

assumption of a Markov chain invalid.156 

The implicit assumption in TST is that the successive crossings of the surface area are 

uncorrelated, each step forward is considered to correspond to a complete event. 

However, there is the possibility that the particle may re-cross the surface area one or 

more times before either falling into state j or falling back into state i. In that case TST 

rate constant overestimates the actual rate. This problem can be avoided by using a 

dynamical corrections formalism, in which trajectories are initiated at the dividing surface 

area and intergraded for a short time to allow the re-crossing events to occur. By using 

this dynamical corrections formalism, the multiple-jump events are also being 

considered.156 The calculation of the TST transition rates KTST is described by the 

following equation proposed by Eyring in 1935.146,165 
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where, 

h = Plank’s constant, 

k = factor used as a transmission coefficient for re-crossings of the barrier, 

Ea = barrier energy, 

kB = Boltzmann constant, 

T = temperature, 

Q‡ = molecular partition function for the transition state, 

Qreac = molecular partition function for the reactants. 

Eq. (2.7) shows that the free energy of a transition state comprises of a free energy factor 

associated with other degrees of freedom (except the reaction coordinate) and a kinetic 

energy along the reaction coordinate. The energy barrier described in Eq. (2.7) can be 

computed from density functional theory (DFT), the nudge elastic band (NEB), which 

requires knowledge of both the initial and final point, and the dimer method, which 

requires knowledge of only the starting point (initial configuration).166,167 The parameter 

k was initially introduced by Eyling as an ad-hoc fudge factor, in order to correct the rates 

for the cases when the trajectories would re-cross the transition state. This factor is 

designed to always reduce the rate and hence k ≤ 1.165 In the absence of more detailed 

information, the fudge factor can be assumed to equal 1 (k = 1).146 

Another way to determine the molecular partition function is through a harmonic 

approximation of the potential called harmonic-transition state theory (HTST). By 

following this approach, the molecular partition function can be expressed as a product 

of electronic, vibrational, rotational and transitional contributions, as shown in Eq. 

(2.8)165,166: 

 
KTST = k

kBT

h

Q‡

Qreac
exp (−

Ea
kBT

) 
(2.7) 
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Each of these contributions q represent the sum of the respective contribution type and 

can be calculated from DFT along with the saddle point energy.146 

An alternative methodology of obtaining the reaction rate constants is by determining an 

activation energy plus a prefactor (or pre-exponential factor) and implementing Eq. 

(2.9):168 

where, 

rKMC = transition rate, 

Eact = activation energy, 

ν = prefactor. 

By comparing the Arrhenius for in Eq. (2.7) to Eq. (2.9) it may be mistakenly assumed 

that the terms Eact and Ea are equivalent and that ν is given by the factors before the 

exponential in Eq. (2.7). In most of the cases, this is not correct, as the partition function 

in Eq. (2.7) often hides exponential factors that contribute to Eact. This Arrhenius form is 

applicable and useful only for systems where both the prefactor and activation energy 

are only temperature dependant, as it results in the transition rate constants that are 

temperature dependant.168 

Jansen168 suggests there are two ways of calculating the transition rates using the 

Arrhenius form. As a first method he recommends using Eq. (2.9) to obtain the rate 

constant for the temperature range of interest and perform linear regression (y=ax+b) 

to the plot of ln(K) as a function of the 1 T⁄ . According to Eq. (2.10) the b term will be 

equal to ln(ν) and a equal to  −E
act

kB
⁄ . 168 

 Q = qelecqvibqrotqtran (2.8) 

 
rKMC = ν exp [−

Eact

kBT
] 

(2.9) 
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A simpler, but less accurate approach, is to determine the factors in the partition 

functions that have the same exponential dependence as the activation barrier and 

calculate the transition rates at the temperature of interest. If the calculated transition 

rate constant is rcal
KMC the prefactor can be given by Eq. (2.11):168 

More recently, Neyertz et al.,169,170 presented an alternative method of calculating 

transition rate constants which is based on the analyses of MD trajectories. The 

proposed methodology is referred as trajectory-extending KMC (TEKMC).169,170 This 

approach consists of two stages: the trajectory analyses and the KMC stage. By 

analysing MD trajectories, TEKMC utilises a matrix of transition probabilities pi,j instead 

of calculating diffusive transition rates. The simulation box is divided into a × b × c voxels 

which have the same size and shape. At first, the MD trajectories are used to record the 

diffusion of a target molecule in the various voxels and a probability matrix for the 

transitions pi,j between any two subcells i and j is defined based on the occupancy data 

collected. Then, a KMC simulation is performed using a number of walkers on the order 

of 5000. Each walker is initialised in a randomly assigned voxel and jumps towards other 

voxels according to the probability matrix obtained in the first step. The diffusion 

coefficient is then calculated by analysing the mean square displacement (MSD) of all 

walkers and implementing Einstein’s equation.169,170  

The two critical parameters for implementing the TEKMC method are the time interval 

between the MD configurations, which was selected to be equal to the output frequency 

of the MD trajectories and the size of the voxels. To obtain the optimal voxel size, Neyertz 

et al.,169,170 proposed a lower limit in order to maintain the connectivity of the visited 

voxels. Through a process of trial and error, the optimal voxel size was identified by 

 
ln(rKMC) = −ln (ν) 

Eact

kBT
 

(2.10) 

 
ν =  rcal

KMCexp [
Eact

kBT
] 

(2.11) 



Methodology – Kinetic Monte Carlo simulations 

44 

matching the MSDs obtained from the KMC and MD simulations. Even though the 

TEKMC has been implemented to a number of diffusion related problems,171–174 when 

the dynamical properties of the system are unknown, defining the optimal voxel size 

becomes challenging and thus limits the applicability of the method.175 

For the case of diffusive processes, Jansen176 proposed an equation to obtain the KMC 

transition rates based on the diffusion coefficient of molecules and the distance between 

two adjacent voxels. In Jansen’s description, the focus is on how the position of a particle 

changes over time. He considered a system of a single particle in a square lattice, 

consisting of square voxels. If the centre to centre distance between two neighbouring 

voxels is l, xa is the initial position of the particle, and xb is the final position in the x-

coordinate, then:176 

The x-coordinate changes as the particle hops from one voxel to another. The [xa − xb] 

can possibly have three values: 

• [xa − xb] = l, if xb>xa,  

• [xa − xb] = - l, if xa>xb, or 

• [xa − xb] = 0, if the particle has made a hop perpendicular to the x-axis, in which 

case xa = xb. 

All these hops have a rate constant rHOP
KMC and are equally likely, resulting to 

d〈x〉

dt
= 0. The 

same holds for the y-coordinate. Looking at the square of the coordinates Eq. (2.12) 

becomes:176 

In Eq. (2.13) the [xa
2 − xb

2] can be: 

 d〈x〉

dt
=∑rab

KMCPb[xa − xb]

ab

 
(2.12) 

 d〈x2〉

dt
=∑rab

KMCPb[xa
2 − xb

2]

ab

 
(2.13) 
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• [xa
2 − xb

2] =2lxb + l
2, if xb>xa, 

• [xa
2 − xb

2] =−2lxb + l
2, if xa>xb, or 

• [xa
2 − xb

2] = 0, if xa = xb 

Considering that the hops are still equally likely:176 

The same expression holds true for the y-coordinate. The macroscopic equation for the 

diffusion in 2D:176 

where, D is the diffusion coefficient. Combining Eqs. (2.14) and (2.15), results in the 

expression that translates the diffusion coefficient to the KMC rates:176 

From MD to KMC simulations: Bottom up approach 

As discussed in section 2.3, many elementary processes of interest are classified as rare 

events, as they exhibit high activation barriers, usually much larger than kBT.177 An 

example of such processes are surface transitions, which are crucial in catalysis, and 

transport through heterogeneous porous media, where micro-pores co-exist with macro-

pores. In both examples, fast transitions such as vibrations inside a PES basin or 

diffusion through the macropores take place frequently, while the time between 

consecutive high-barrier events is usually orders of magnitude longer. Looking at these 

systems from a macroscopic point of view, the time evolution manifests itself as a series 

of consecutive jumps from state to state filled with vibrational motion around PES 

minima, as shown in Figure 2.4.177  

 

 d〈x2〉

dt
= 2 rHOP

KMC l2 
(2.14) 

 d〈x2 + y2〉

dt
= 4D 

(2.15) 

 
rKMC =

D

l2
 

(2.16) 
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Figure 2. 4: Coarse-graining of a MD trajectory into a Markov chain. (Left) A possible MD 

trajectory (black) overlaid on the underlying PES of the system with red regions 

representing lower-energy basins. (Middle) Coarse-graining of PES minima into 

positions on a suitably defined lattice. Each lattice position represents the basin of 

attraction of a PES minimum. (Right) Coarse-graining of the continuous MD trajectory 

into a Markov chain of discrete hops between the basins/lattice positions. Reproduced 

from Andersen et al.177 

 

The idea behind the KMC is to generate stochastic trajectories that propagate the system 

from state to state by defining accurate transition rates via ensemble averaging over 

these trajectories. In practice, the challenge of implementing KMC algorithms that 

accurately capture these state-to-state transitions in a coarse-grained manner is to map 

the relevant PES minima into a lattice, without over- or under- simplifying the system’s 

dynamics.178 The TEKMC methodology described in subsection 2.6 can be considered 

as an example of such a bottom-up approach.169,170 When implementing the KMC 

algorithms to study crystalline substrates, the minima of the PES can be mapped onto 

lattice sites and the dynamics of the system can be considered as a sequence of discrete 

transitions, starting and ending at lattice sites (lattice approximation).157 For the studies 

of fluid transport through heterogeneous porous media, the mapping of the sample space 

into a KMC lattice and the determination of transition rates are elusive and 

underreported. This research study is dedicated in addressing these challenges and 

proposes rigorous methodologies to address them. These topics are discussed in detail 

in Chapters 3, 4, and 5. 
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KMC algorithms 

A way of solving the M-equation is via implementation of a KMC algorithm, especially 

when the analytical solution of the method is unfeasible. The KMC algorithm should yield 

a sequence of configurations and calculate the time between these 

configurations/transitions. All the realisations generated by the KMC algorithm must 

follow the statistics of the M-equation. There are many algorithms developed that yield 

such a sequence of configurations and which are statistically equivalent. Some of them 

are the random selection method, the first reaction method and the direct method.146,176 

In this research study the direct method is implemented and detailed information 

regarding the method is given in subsection 2.8.1.5, as well as in Chapters 3–5, where 

the development of the 1D, 2D, and 3D KMC models is discussed. For completeness, 

the basic features of the random selection and first reaction method are provided below. 

In principle, a basic KMC algorithm performs two main tasks, the selection of a transition 

taking place at a specific time, and the update of the system. For the selection of the 

transition events there are two main methodologies that can be implemented, the 

rejection and the rejection–free method. 

Rejection method 

For a system with jmax possible events/transitions, {rj
KMC} is the list of the current set of 

rates. To identify which event n takes place at a specific time, while implementing a 

rejection KMC algorithm the next steps need to be followed:179,180 

Step 1: Scan the list of rates {rj
KMC} and identify a single global upper bound rKMĈ for 

which  rKMĈ ≥ rj
KMC ∀j. 

Step 2: Select a uniformly distributed random number u ∈ [0, jmax) 

Step 3: Calculate jexec = Int(u) + 1 

Step 4: Select event n if jexec − u <
rj
KMC

rKMĈ
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Step 5: Repeat until successful 

The efficiency of this algorithm is proportional to the ratio of attempted to accepted events 

and can be very low for the case of systems with broad distribution of rates. The rejection 

method can also become inefficient when there are one or more large rate constants. 

This can be addressed by implementing a form of importance sampling, as it was 

discussed in section 2.2. In these systems, the partition rates can be divided in two 

categories, one including transitions with high rates and one with small rates. The 

rejection method can be then applied and provides two estimates, one for each category. 

This categorisation of transition rates requires additional work, especially considering 

that after each simulation step, the KMC distribution changes and this process has to be 

repeated.179,180 

Rejection–free method 

While implementing a rejection – free KMC algorithm, the following steps are followed:179 

Step 1: Calculate the sum RKMC = ∑ rj
KMCjmax

j=1  , while retaining the partial sumsRj
KMC. 

Step 2: Choose a random number u ∈ [0, RKMC) 

Step 3: Search the list of partial sums until Rjexec−1
KMC ≤ u < Rjexec

KMC  

Step 4: Select the event jexec 

The efficiency of the rejection–free algorithm is 100%, since all events selected are 

accepted, however the computational cost required for each event selection dependents 

on the size of the system. Typically, the cost becomes large, as jmax increases. A way to 

reduce the cost of each iteration is by sorting the rates from the largest to the smallest, 

in order to speed-up the termination of step 3.179  However, more sophisticated 

algorithms, discussed in subsection 2.9, have been proposed to address this challenge. 
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Random selection method 

The random selection method, or else referred to as the null–event method is one of the 

earlier employed KMC algorithms in which not all MC events (trials) are successful.181 

The Metropolis algorithm is an example of a random selection algorithm. While 

implementing this type of KMC algorithm, the determination of the process taking place 

and the calculation of the time required for the transitions to happen can be split into 

three parts; the selection of the process type, the selection of the site the process 

happens, and the time required for the process to take place. The algorithmic steps 

involved in this type of KMC method are the following:168,181,182 

Step 1: Using a random number select the site at which the process takes place. 

Step 2: Using a random number select the type of process happening at the selected 

site. 

Step 3: Check if the transition selected is feasible at the selected site. If so, update the 

system accordingly. Otherwise, reject the event and return to Step 1. 

Step 4: Calculate the time required for the transition to happen. 

The selection of the site where the event occurs and the selection of the transition 

happening can be performed in any order. The method’s efficiency depends on the ratio 

between the accepted and rejected events, as discussed in the rejection methods above. 

Due to the possibility of selecting an unfeasible event, the method is also referred to as 

the null-event.168,181  

First reaction method 

The first reaction method belongs in the rejection–free family of the KMC simulations and 

combines the three steps described in the Random selection method in one. According 

to this KMC algorithm the next event executed is the one that happens at the shortest 

time. To determine what is the earliest event taking place from a list of transitions, the 
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algorithm scans all possible events and calculates the time required for every possible 

a-to-b transition to happen, identifying the one with the shortest time-value. The time of 

occurrence (ta→b) for each individual a-to-b transition is calculated by Eq. (2.17):168 

where, 

t = the current simulation time, 

rab
KMC = the rate constant for the a-to-b transition, 

u = a random number uniformly distributed 

This algorithm is also called a Discrete Event Simulation (DES). For large systems 

consisting of many transitions, the calculation of all the time transitions at each simulation 

step can come at a significant computational cost and significantly slow the simulation. 

A way of reducing the computational cost is by assuming that the outcome of an executed 

event has no influence on a second transition and thus retain the random time calculated 

for the second transition until (1) the secondary transition takes places, or (2) the number 

of particles/reactants for this secondary transition changes, due to another process 

taking place, or (3) another change in the system happens that forces the transition rate 

of the secondary process to change (e.g. local temperature change).168 

Direct method – Gillespie’s algorithm 

The direct method is another rejection-free algorithm used to simulate the M-equation. It 

requires the selection of two random, uniformly distributed random numbers u1 and u2 

between 0 and 1, u1, u2 ∈ [0,1]. One of the selected numbers is used to select the event 

that takes place and the second is used to determine the time increment due to the 

selected transition. The algorithm steps involved during this type of KMC simulation are 

the same as those presented in subsection 2.1.8.2. 

 
ta→b = t −

1

rab
KMC

ln (u) 
(2.17) 
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In 1977 Daniel Gillespie proposed a variation of the direct method algorithm in order to 

describe the distribution of N chemical species, which could interact through M specified 

reaction channels, while being confined in a fixed volume V. The motivation behind the 

studies performed was the inability of the reaction-rate equations, which provide 

information about the population levels in a deterministic way, to predict the fluctuations 

observed in some cases. With the algorithm he constructed, he was able to treat the time 

evolution of a homogeneous chemical system as a discrete stochastic process rather 

than a continuous deterministic one.183 

The proposed algorithm involved the selection of two random numbers, one to select the 

reaction pathway jexec and one to calculate the time required until the next event τ. The 

difference between the algorithm he proposed, and the direct method algorithm is related 

to the selection of the event jexec. Instead of following the Step 3 of the rejection–free 

procedure discussed in 2.1.8.2, he scaled the stochastic reaction-rate constants with the 

population of species available to react. This product describes the probability of 

occurrence per unit time and is called propensity. 

In order to select the executed event, one needs to create a list of all possible events 

(jmax), define the transition rate constants (rj
KMC) for each event j, and calculate the 

propensity of each event (wj). In diffusive systems, where all transitions involve jumps of 

particles form one voxel to another, the propensity of an event is defined as the product 

of the rate constant and the state vector, which holds information regarding the 

population of particles in the corresponding voxel. As a next step, all the individual 

propensities are summed to give wtot: 

where, w0 = 0, and jmax is the total number of events taking place in the system. A 

random number u1 is then selected and multiplied by the wtot calculated. A loop is then 

 

wtot = ∑

jmax

j=0

wj 

(2.18) 
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initiated and the list containing all the rates, defined in the previous step, is scanned. 

There are different ways to scan the list of rates. The simplest and less efficient is to go 

through the list of all possible events in a linear manner. The random event jexec for which 

the following inequality holds true, is chosen to be the event that will take place. 

As Eq. (2.19) dictates, the probability of selecting an event is proportional to its rate. 

Since Gillespie’s method is meant to be rejection free, the non-realisable events 

shouldn’t be sampled and then rejected. To achieve this, they are assigned zero 

probability and therefore, do not contribute in the calculation of wtot.
146 The time required 

until the next transition to happen (τ) is calculated by the following expression, where u2 

is the second random number selected.146,156 

As a final step, the system needs to get updated. Both the time and the occupancy at 

each position need to change accordingly, in order to reflect the occurrence of the 

randomly selected event jexec. Afterwards, the process is repeated for the configuration 

created until the maximum simulation time is reached. The reader is referred to 

Gillespie’s publications for more information regarding the calculation of the stochastic 

reaction-rates constant.183,184 Figure 2.5 shows a schematic of the algorithm he used, to 

which is referred to as the Gillespie’s algorithm for what follows. 

 

∑

jexec−1

j=0

wj ≤ u1 ×wtot < ∑

jexec

j=0

wj 

(2.19) 

 
τ =

ln(u2)

wtot
 

(2.20) 
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Figure 2. 5: Gillespie’s algorithm.183 

 

More efficient selection algorithms 

It is evident that although the linear search algorithm is simple and easy to code, it can 

be very time consuming for systems consisting of many possible events j. To overcome 
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this challenge and allow KMC simulations to be as fast as possible, various alternative 

event selection algorithms have been proposed. To evaluate and classify them according 

to the run time required, the big O notation can be used. For simplicity, let us assume 

that in the linear search algorithm, the total number of events jmax is equal to M. Thus, 

the time required for the event selection through a linear search protocol is O(M).185 

A more time efficient way of scanning through the list of propensities {wj}, is by applying 

the binning search method, proposed by Maksym.185 According to this protocol, the list 

of propensities can be divided in several subsets Sj. Assuming that each subset is a list 

containing m propensities out of the total M found in the main set, M m⁄  subsets will be 

generated. Eq. (2.21) shows how the propensities are mapped into the subsets Sj.
185 

The search for the executed event is then divided into two steps; (1) search through the 

various subsets Sj (bins), and (2) after you select the bin containing the executed event, 

scan through the bin’s elements to find the event jexec. The time required for the first part 

of the scan is proportional to the number of bins (M ⁄ m) and can be expressed as O(𝑀 ⁄

𝑚). The time required for the second part of the search, depends on the number of 

propensities assigned in the bin (m), and can be expressed as O(m). Following this 

scheme, the time required per simulated event is 𝑂(𝑀1 2⁄ ). Blue et al., referred to 

Maksym’s method as a two-level search scheme and suggested that better asymptotic 

behaviour can be obtained by constructing K-level schemes, with K>2. According to this 

K-level scheme, the lowest level is identical to Eq. (21) with a slight change in notation:185 

The higher levels are defined recursively according to Eq. (2.23).185 

 

Sj = ∑ wi

jm

i=1+(j−1)m

,   j = 1,… , [M ⁄ m]  

(2.21) 

 

Sj
(2)
= ∑ wi

jm

i=1+(j−1)m

,   j = 1,… , [M ⁄ m]  

(2.22) 
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The total search time is 𝑂(𝐾𝑀1 𝐾⁄ ). For a given M the best asymptotic time behaviour is 

obtained by using the largest feasible K, namely, the one for which there are only two 

propensities in each partial sum (𝑀1 𝐾⁄ = 2).185 The data structure is then a binary tree, 

similar to the one presented in Figure 2.6 by Gibson and Bruck.186 

 

Figure 2. 6: Binary tree data structure used to store propensities, noted as ar. For each 

partial sum there are only two assigned partial sums – propensities. Reproduced from 

Gibson and Bruck.186 

 

Blue et al.,185 also compared the computational time required per event, when simulating 

a solid-on-solid model of epitaxial growth on a simple N x N lattice. For their comparison 

they considered K=2,3,4,5, and a binary tree implementation. Figure 2.7 presents the 

results they obtained. To help the reader, the K-level has been noted in each curve. The 

linear selection algorithm was implemented in this research study, except for the work 

discussed in Chapter 4, were the binary tree algorithm was applied. 

 

Sj
(k) = ∑ Si

(k−1)

jm

i=1+(j−1)m

,   

  j = 1,… , [M
m(k−1)
⁄ ] , k = 3,… , K  

(2.23) 
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Figure 2. 7: Log-log plot of the time required per event for different search schemes, 

reproduced and modified by Blue et. al.185 K=2 (circles), K=3 (squares), K=4 (triangles 

pointing up), K=5 (triangles pointing down), and binary tree (rhombus). Reproduced and 

modified from Blue et al.185 

 

Selection of the random number generator 

One of the main assumptions made to enable the use of the Markov property is the 

memoryless transition between the states. Thus, the KMC algorithm has to exhibit the 

same property. In subsection 2.6, a mathematical description of how to determine the 

KMC rates, while correctly capturing the dynamics of the system and hence the Markov 

property was discussed. The necessity of an "efficient" uniform random number 

generator (u.r.n.g) emerged in subsection 2.8, where the algorithmic steps required for 

the implementation of the KMC algorithm were listed, including the selection of two 

random numbers, which define the event selected and the time required for the transition. 

The objective of a uniform random number generator is to produce samples of any given 

size that are indistinguishable from samples of the same size from a U(0, 1) 

distribution.187 
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A suitable u.r.n.g should be fast (small CPU times), in order to minimise the 

computational cost of the KMC algorithm, and have a long period, to ensure there is no 

correlation or bias in the process of selecting events. As an example, the minimal 

standard generator of Park and Miller has period of 231-1 (approx. 109.333). Considering 

that Monte Carlo algorithms require random numbers in the order of 1015, this period is 

very short and makes this u.r.n.g unsuitable. While in most KMC applications, including 

those discussed in this research study, uniformly distributed random numbers are 

required, in many cases, random numbers from other distributions, such as the normal 

or exponential, are needed. If the routines for generating random deviates from 

nonuniform distributions use exact transformations from a uniform distribution, their 

quality depends almost solely on the quality of the underlying uniform generator.187 An 

excellent review of some of the most important random number generators was reported 

by L’Ecuyer.188 For this research study, the Mersenne Twister MT19937 is selected as a 

suitable u.r.n.g, due to its long period 219937 − 1 (over 106001), which is safely larger than 

the maximum number of events simulated per run of the KMC algorithm.189 

Summary 

This chapter provided an overview of the KMC method. Initially the first ever type of 

Monte Carlo simulation (MC), the Metropolis algorithm was discussed. Starting from an 

initial state the system evolved towards its final state via importance sampling, where 

equilibrium is reached. After this point, the algorithm maintains the system at the 

equilibrium ensemble, regardless of the additional repetitions of the algorithm. The KMC 

algorithm, first reported as the N-fold way was the outcome of an effort to speed-up the 

MC simulations.  

To achieve an accurate and computationally efficient implementation of the KMC method 

the Markov property needs to be satisfied together with the microscopic reversibility. The 

accuracy on determining the transition rates and the selection of time increments are 

also vital. Various approaches can be implemented to determine the transitions rates, 
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such as statistical mechanical frameworks (transition state theory and harmonic-

transition state theory), density functional theory (DFT), the nudge elastic band (NEB), 

or analysis of molecular dynamics simulation trajectories. The selection of the most 

appropriate method depends on the characteristic timescales of the system of interest.  

The backbone of the KMC simulations is the Master Equation, which is a differential form 

of the Chapman-Kolmogorov equation. KMC algorithms are implemented to solve the M-

equation when numerical solutions are not applicable. There is a variety of KMC 

algorithms, mainly divided into three categories; the rare event selection method, the 

rejection method, and the rejection free method, each having its own limitations and 

advantages. The main difference between these three forms of KMC is the way the event 

executed is selected. It is frequently observed that the rejection method is not very 

computationally efficient. In this research study Gillespie’s direct method is used to 

simulate the diffusive systems. Gillespie’s method is a form of a rejection free algorithm, 

in which the non-realisable events are assigned zero propensity (probability of 

occurrence per unit time)  

Moreover, it is observed that for systems with a large amount of transition events, the 

KMC algorithm spends a significant portion of time scanning through the list of calculated 

propensities in order to select the event executed. The solution to this shortcoming is to 

implement a more efficient selection algorithm. The simplest and most time-consuming 

method is the linear search method, while the most efficient is binary tree 

implementation.  

Finally, it is important to understand the requirements of the system and accordingly 

decide on the most appropriate random number generator. For every computational step 

two random numbers need to be selected, and in order to ensure that there is no 

correlation or bias in the process of selecting events, a random number generator with 

sufficiently long period needs to be selected. 
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Algorithm construction, validation, and application in 1D 

networks 

 

In Chapter 2, Gillespie’s algorithm which simulates reaction networks, was introduced. 

To stochastically simulate diffusive processes using Gillespie’s direct method, the 

sample space needs to be discretised (meshed) in a lattice. Transport can be then 

simulated as a random walk of molecules which "hop" form one mesh point to another. 

This chapter is organised in two parts; Part I shows the reproduction of Gillespie’s KMC 

algorithm, when applied to reaction networks, and describes the modifications made in 

the algorithm, in order to simulate 1D diffusive processes. Reproducing Gillespie’s data 

was essential for the construction of an accurate KMC model and was the starting point 

for this research study. In Part II the produced 1D KMC algorithm, for diffusive events, is 

validated against the analytical solution of the 1D diffusion equation, and then used to 

reproduce MD data obtained for slit micropores in two-phase systems. The results 

obtained in the second part have been published in JCP 147, 134703 (2017) and provide 

a novel way of simplifying and accelerating a 3D two-phase system into a 1D single 

phase one. 
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KMC algorithm construction– Part I 

In his work, Daniel Gillespie183 performed computational studies for five different systems 

while using the direct KMC algorithm he proposed. The first two systems investigated, 

deal with simple reaction networks, while the remaining three describe systems with 

more complicated behaviour. Appendix A provides a brief description of the systems, the 

conditions and the sampling scheme Gillespie used. Based on this information, a KMC 

code was constructed in order to reproduce the results Gillespie reported.183 For every 

system investigated in Appendix A, the results obtained by the developed KMC model 

were compared against the results reported by Gillespie and the deterministic solution 

of the M-equation. The agreement between the results obtained from the constructed 

KMC model and Gillespie’s findings was satisfactory and therefore, the validity of the 

KMC constructed model was established. 

 

From reactive to purely diffusive systems 

A probabilistic model is a quantitative description of an experiment-phenomenon, whose 

outcome is uncertain. In every probabilistic model one needs to define the possible 

outcomes, by specifying a sample space and a probability law through which probabilities 

will be assigned to the possible outcomes. Looking at the surface of a rock sample, from 

a probabilistic point of view, and the possible positions one molecule could occupy over 

time one could argue that the sample space is continuous and infinite, as shown in Figure 

3.1 This representation would create tremendous computational difficulties, in terms of 

the computational power required for such off-lattice simulations, and the level of detail 

needed to describe the probability of each point. Moreover, in such a sample space the 

probability of a molecule to be found at a specific position with infinite precision is close 

to zero. The idea behind the LKMC model is to discretise the sample space and create 

finite domains, subsets of the sample space, in which a molecule can be found. In this 

case there is no need to assign probabilities to individual points; one can instead 
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determine the probability law for these subsets, which are referred as voxels in this 

document. 

 

Figure 3. 1: Representation of the 2D sample space in an off-lattice (left) and on-lattice 

(right) lattice system. 

 

Gillespie’s algorithm was modified to simulate diffusive events. Earlier studies by Flamm 

et al.,151 implemented a lattice Kinetic Monte Carlo (LKMC) method to study diffusive-

adhesive events, for systems subject to external fields. In this research study, the 

movement of molecules from one voxel to another (jumps) was treated as possible 

reaction pathways. As a first step, all possible pathways (jumps) need to be determined, 

and then all rates, through which the transitions take place, need to be defined. The 

possible pathways a molecule can follow, while it diffuses in a 1D domain with periodic 

boundaries and N square voxels is 2N. For a closed and non – reactive system, with 

reflective boundaries (non – periodic) where the population of molecules remains 

constant, the possible pathways are reduced by two and are 2N − 2. Further information 

regarding the calculation of possible pathways in 2D and 3D systems, is provided in 

Chapters 4 and 5.  
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Figure 3. 2: Representation of the possible pathways in a 1D domain with reflective 

boundaries. For N square voxels there are 2N − 2 possible moves a molecule can make.  

 

However, identifying the possible pathways and determining the transition rates is not 

enough in order to build an accurate and efficient model. Two additional parameters need 

to be defined; the sampling frequency (sampling time-step) and the number of 

independent simulations performed to calculate the system properties. To develop a 

strategy for selecting these two parameters for any given system, a simple 1D lattice 

consisting of three square voxels, denoted as Left (L), Middle (M) and Right (R), was 

considered. The boundaries of this domain were reflective and hence there were four 

possible moves (jumps) a molecule could perform. Each one of these pathways was 

assigned an index i ∈ [1,4] and a transition rate constant k(i), as shown in the Figure 

3.3. 

 

Figure 3. 3: Representation of a simple 3 voxel lattice. The possible pathways with rates 

k(i), i ∈ [1,4], are noted as green arrows. 

 

For this simple exercise, it was assumed that there was only one type of species in the 

system and a matrix X(j, t) was defined, in which  j ∈ [1,3] and t ∈ [0, tmax], in order to 

monitor the population of molecules in each voxel. Since there were no reactions taking 

place in the system and the boundaries of the lattice were closed, the population of 

molecules remained constant at all times and equal to Xtot. The four pathways were 

divided in two categories; jumps towards the middle voxels, with rate kI (k1, k4) and 

jumps from the middle voxel, with rate kII (k2, k3). Due to the simplicity of the system, 

the four potential movements were expressed as reaction-type equations: 
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Since there are four possible transitions that can take place during each simulation event, 

four propensities were required: 

From a deterministic point of view, the population of molecules in the middle voxel 

(X(2, t)) over time, could be expressed as: 

Since Xtot =  X(1, t) + X(2, t) + X(3, t) Eq. (3.9) becomes:  

The solution of this differential equation is:  

Since the mathematical description of the system is complete, the transition rates kI and 

kII, as well as the population Xtot need to be defined. The values selected here for these 

parameters are arbitrary and have no physical meaning. It is assumed that kI = 0.005s
−1 

 
L
kI
→M 

(3.1) 

 
M
kII
→ L 

(3.2) 

 
M
kII
→ R 

(3.3) 

 
R
kI
→M 

(3.4) 

 a1 = kIX(1, t) (3.5) 

 a2 = kIIX(2, t) (3.6) 

 a3 = kIIX(2, t) (3.7) 

 a4 = kIX(3, t) (3.8) 

 dX(2, t)

dt
= kIX(1, t) + kIX(3, t) − 2kIIX(2, t) 

(3.9) 

 dX(2, t)

dt
= kIXtot − X(2, t)(kI + 2kII) 

(3.10) 

 
X(2, t) = c0exp[−t(kI + 2kII)] +

kIXtot
kI + 2kII

 
(3.11) 



Algorithm construction, validation, and application in 1D networks 

64 

and kII = 0.003s
−1 and that there are 100 molecules in the system, placed on the left 

voxel initially. 

The first parameter investigated is the sampling frequency. To obtain a general idea of 

how fast the transitions between the voxels take place, a simulation was performed to 

obtain the time between two successive transitions of any kind (τ). Samples were taken 

very 0.1s and the number of events taking place between two consecutive samples was 

recorded. Figure 3.4 presents the frequency of events happening during each interval. 

 

Figure 3. 4: Frequency of event occurrence for different time intervals. The y-axis 

represents the time required for a transition to happen. Each bar represents a 0.1s and 

0 ≤ t ≤ 8s.  

 

As shown in Figure 3.4, there are events that happen rapidly, in less than 1 second and 

some less frequent events. For this simulation run, the minimum, the maximum and the 

mean reported times required for the transitions to take place were tmin = 7.85 x 10
−4s, 

tmax = 10.59s, and t̅ = 1.73s, respectively. To identify a suitable sampling scheme, the 

population of molecules in the middle voxel was simulated using three different sampling 

time-steps; dtsample1 = 0.02s, dtsample2 = 1.73s and dtsample3 = 5s. Figure 3.5 presents 

the molecular density in the middle voxel, as predicted by the KMC algorithm (top panel) 

and the deterministic model, for 0 ≤ t ≤ 300s, and the number of events taking place in-
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between the samples (bottom panel). The size of the voxels was 1(nm) x 1(nm) x 1(nm) 

and sample was taken every 0.02s. 

 

 

Figure 3. 5: The time evolution of the population in the middle voxel as predicted from 

the stochastic and the deterministic approach for 0 ≤ t ≤ 300s (top panel) and dtsample =

0.02s. Representation of the samples taken, represented by red dashed lines and the 

occurrence of events, presented as asterisks (bottom panel). 

 

As shown Figure 3.5, the sampling time-step was very small. Hence, the state of the 

system was being reported several times before a new transition happens. This sampling 

approach is not necessarily mistaken however, it negatively affects the efficiency of the 
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approach and is not a recommended practice. The same analysis was repeated when 

the sampling time-step was dtsample2 = 1.73s and the results are summarised in Figure 

3.6. 

 

 

Figure 3. 6: The time evolution of the population in the middle voxel as predicted from 

the stochastic and the deterministic approach for 0 ≤ t ≤ 300s (top panel) and dtsample =

1.73s. Representation of the samples taken, represented by red dashed lines and the 

occurrence of events, presented as asterisks (bottom panel). 

 

By implementing this sampling time-step many data points were collected however, less 

than before. In Figure 3.7, the same analysis was carried out for a dtsample = 5s.   
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Figure 3. 7: The time evolution of the population in the middle voxel as predicted from 

the stochastic and the deterministic approach for 0 ≤ t ≤ 300s (top panel) and dtsample =

5s. Representation of the samples taken, represented by red dashed lines and the 

occurrence of events, presented as asterisks (bottom panel). 

 

With this sampling time-step, several transitions take place between two consecutive 

events, and as a result, the density plot presented in Figure 3.7 seems smoother, 

compared to the previous ones. However, since the total time of analysis has remained 

the same (300s), the number of samples taken is significantly reduced, and the results 

obtained may suffer significant uncertainties. Hence, a balance between the number of 

samples taken and the sampling frequency needs to be reached. Nevertheless, the 
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sampling scheme followed in each system/simulation should be as detailed as required. 

For the analysis that follows, which aims to prove the validity of the KMC algorithm for 

the diffusive systems, any sampling time-step between 1.73s and 5s can be selected. 

The second parameter of interest is the number of independent runs required for the 

stochastically acquired data to resemble those obtained by following a deterministic 

approach. To this end, the number of independent runs performed was gradually 

increased, by a factor of 10, and the mean value of the population, X̅(2, t), was calculated 

at equilibrium (t ≥ 220ns). The selected sampling time-step was dtsample = 2.5s. 

According to  the central limit theorem (CLT) the standard deviation of a random variable 

X with p.d.f ps(X) calculated for a number of independent runs ν, ps,x(X1, X2, . . . . Xν) 

should satisfy the scaling relation σ(ps,x(X1, X2, . . . . Xν)) =
C

√ν
, where C is a constant and 

ν is the number of averages taken at each time.163 The results obtained follow the trend 

expected by the CLT and are presented in Figure 3.8.  

 

Figure 3. 8: Correlation between the increasing sample size and the standard deviation 

of the error between the stochastic and deterministic model. The sample size increased 

by a factor of 10 in each simulation run. 

 

Figure 3.8 validates the accuracy of the KMC algorithm developed and can be used to 

determine the number of independent runs required, based on the desired standard error 
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value. Another way to validate the developed KMC algorithm, is to compare it against 

the predictions of the diffusion equation. The diffusion equation is a partial differential 

equation which describes concentration fluctuations in a material undergoing diffusion. 

The equation can be written as: 

Where, ρ(r, t) is the population density in the location r = (x, y, z) and D(ρ(r, t)) is the 

collective diffusion coefficient for density ρ and location r. If the diffusion coefficient is 

constant and doesn’t depend on the density the equation reduces to the following linear 

expression: 

Under the assumption of an isotropic 1D diffusion on the x-direction, Eq. (3.13) becomes 

equivalent to Fick’s second law. 

In order to solve Eq. (3.14) two boundary conditions (BC) and one initial condition (IC) 

must be determined. For the IC, one needs to define the initial distribution of molecules 

in a finite domain with total length L at t = 0: 

Assuming that the boundaries of the domain are reflective, leading to zero flux, the BC 

for the left (x = 0) and the right (x = L) boundary can be expressed by the following 

equations: 

 ∂ρ(r, t)

∂t
= ∇ ⋅ (D(ρ(r, t), r)∇ρ(r, t)) 

(3.12) 

 ∂ρ(r, t)

∂t
= D ▽2 ρ(r, t)) 

(3.13) 

 ∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
 

(3.14) 

 C(x, 0) = f(x)        ∀x ∈ [0, L] (3.15) 

 ∂C(x, t)

∂x
= 0        x = 0, ∀t0 

(3.16) 

 ∂C(x, t)

∂x
= 0        x = L, ∀t0 

(3.17) 
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A non-trivial 1D analytical solution of Eq. (3.14), which satisfies both the IC and the two 

BC described above is: 

where C(x, t) is the spatially and temporarily varying concentration, C0 is the initial 

concentration of molecules and -h ≤ x ≤ +h is region in which the molecules where 

initially confined. 

To compare the predictions obtained by the KMC algorithm against the analytical solution 

of the 1D diffusion equation, a 1D domain consisting of 100 voxels in total was 

considered. All of the voxels were equidistant squares with characteristic length l =

0.1nm. The matrix was homogeneous and hence the diffusion coefficient was constant 

for the whole domain, during the time of the analysis. The value of the diffusion coefficient 

was arbitrarily chosen to be D = 1.8 x 10−9m2/s. According to Chubynsky and Slater, the 

results obtained by solving the M-equation should be in agreement with the solutions of 

the continuum equations for slowly decaying modes.190 Since the matrix was 

homogeneous and the diffusion coefficient remained constant, the transition rate of a 

diffusive jump between two neighbouring sites was defined as the ratio of the diffusion 

coefficient on the x-direction to the size of the voxel l. This relationship was derived in 

Chapter 2:176 

To achieve a slow diffusion, which would resemble a Boltzmann distribution, a population 

of 2125 molecules was distributed over the first 25 voxels at t = 0. Both the KMC 

algorithm and the continuum equation, can predict the concentration of molecules over 

time and over place (C(x, t)). Hence, the predictions of these two methods were 

compared by sampling over time and over space. The system was allowed to diffuse for 

a total time of 0.1μs and four samples were collected; at t0 = 0, which is the initial 

 
C(x, 0) =

1

2
Co ∑

∞

n=−∞

[erf(
h + 2nL − x

2√Dt
) + erf(

h − 2nL + x

2√Dt
)] 

(3.18) 

 
rKMC =

D

l2
 

(3.19) 
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configuration of our system, at t1 = 2ns, at t2 = 9ns, and at tmax = 0.1μs . While sampling 

over space, two voxels were selected, the 30th and the last one (100th) and the 

concentration of molecules inside them over time was monitored. The concentration was 

expressed in number  of  molecules
m3⁄ . The data collected are presented in Figure 3.9. 

 

Figure 3. 9: Snapshots of concentration profiles at t0 = 0 (panel A), t1 = 2ns (panel B), 

t2 = 9ns (panel C) and t3 = 0.1μs (panel D), as predicted by the KMC algorithm (blue 

line) and the 1D diffusion equation (red line). 

 

The agreement between the stochastic and the deterministic model is satisfying. At the 

beginning of the simulation all molecules were distributed equally over the first 25 voxels. 

Once the system was let free to diffuse, the species started migrating to the neighbouring 

voxels (panel B and C) until equilibrium was reached (panel D). At equilibrium, the 

population was evenly distributed throughout the domain. Figure 3.10 presents the time 

evolution of the concentration profiles for two selected voxels. 
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Figure 3. 10: Concentration profile of the 30th and 100th voxel as a function of time. The 

blue line corresponds to the stochastic approach and the red line represents the solution 

of the 1D equation.   

 

Since the 30th voxel is closer to the region where the molecules were initially distributed, 

less time is required to get occupied. On the other hand, the 100th voxel, which is the 

last voxel of the domain, stays empty at the beginning of the simulation. However, after 

approximately 20 nanoseconds the system gets equilibrated. In both Figures 3.21 and 

3.22 the blue line corresponds to the KMC prediction and the red one is the solution of 

the diffusion equation.  

In Part I of this chapter the constructed 1D KMC algorithm was a successfully validated 

against the analytical solution of the diffusion equation, for a homogeneous system with 

reflective boundaries. As a next step, the model was applied to simulate more 

complicated systems. In Part II of this chapter, the further development and validation of 

the KMC model is described.  The stochastic model is validated against the MD study 

published by Phan et al.,88 Three different pores, made of silica, MgO, and alumina were 

filled with water and methane to form the systems investigated. The size of the pores 

was 1 nm and the results obtained (methane flux, substrate permeability, and mean first 
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passage times) are used to compare the 1D KMC model against the MD findings 

reported by Phan et. al.88  
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A KMC approach to study fluid transport in 1D pore networks – Part II 

Abstract 

The mechanism of fluid migration in porous networks continues to attract great interest. 

Darcy’s law (phenomenological continuum theory), which is often used to describe 

macroscopically fluid flow through a porous material, is thought to fail in micro-channels. 

Transport through heterogeneous and anisotropic systems, characterised by a broad 

distribution of pores, occurs via a contribution of different transport mechanisms, all of 

which need to be accounted for. The situation is likely more complicated when immiscible 

fluid mixtures are present. To generalise the study of fluid transport through a porous 

network, a stochastic KMC model was developed. In the lattice model implemented for 

this study, the pore network is represented as a set of connected finite volumes (voxels), 

and transport is simulated as a random walk of molecules, which "hop" from voxel to 

voxel. In this study, fluid transport simulations along an effectively 1D pore is discussed.  

The KMC model was implemented to quantify the transport of methane through hydrated 

1D micropores, in which case atomistic MD simulation results were reproduced. The 

model was then used to study flow through 1D pore networks, where it was able to 

quantify the effect of the pore length and the effect of the network’s connectivity. The 

results are consistent with experiments, but also provide additional physical insights. 

Extension of the model in 2D and 3D will be useful to better understand fluid transport in 

shale rocks, topics that are covered in Chapters 4 and 5, respectively.  

Introduction 

The economic success related to shale gas production in the United States has 

generated great interest worldwide. The combination of horizontal drilling and hydraulic 

fracturing has provided access to large volumes of unconventional oil and gas, which 

were previously uneconomic to produce 18,19, to the point that shale gas has become one 

of the most important energy resources for the United States.5  



Algorithm construction, validation, and application in 1D networks 

75 

Shale formations seem ubiquitous. For example the Bowland Shale Formation has been 

identified as the most promising shale gas play in the UK.10–12 However, economically 

producing shale gas in commercially relevant quantities has proven to be highly 

challenging. One of several unknowns, at present not fully understood, is which rock 

features contribute the most to gas transport during the various production steps; the 

microfractures, the existing pores and/or the hydraulic fractures depending on production 

stages. Transport of fluids through shale rocks is complicated because of the chemical 

heterogeneity of the pores, the low conductivity, the lack of a pore connectivity of 

significant extent, and reduced pore width, often in the nanometer scale.191 

Considering that permeability depends on a number of factors, such as pore 

characteristics, chemical composition, and transport mechanisms, an approach that 

accounts for all these factors at low computational cost is required. This study 

investigates how the pore characteristics and the pore network connectivity affect the 

transport properties of light hydrocarbons in hydrated micropores with different chemical 

composition by performing KMC simulations. Methane is selected as it comprises the 

main component of natural gas. Phan et al.,88 reported the transport properties of 

methane in three different 1 nm wide slit-shaped pores filled with water. In these 

molecular simulations models for silica, magnesium oxide and alumina were used as 

solid substrates and the diffusion coefficient of methane inside the pores was obtained 

by performing molecular dynamics MD simulations88 in the canonical ensemble at 300 

K. The three pores were filled with water are considered representative of minerals found 

in the subsurface.88 KMC simulations, for the systems considered by Phan et al.,88, were 

conducted to validate the stochastic model. Then, the validated KMC model is 

implemented to investigate the effect of the pore length and the pore network connectivity 

on methane transport. 

The remainder Part II of this chapter is organised as follows. Section 3.2.3 provides the 

theoretical background under which the KMC algorithm is implemented. In Section 3.2.4 

the physical systems considered by Phan et al.,88 are described, together with the 
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methodology implemented to construct the 1D KMC lattice in order to represent-imitate 

them. This section also describes the methodology followed for the calculation of the 

KMC rates. In Section 3.2.5 results on flux, permeability and Mean First Passage Time 

(MFPT) through a few single pores are presented. The effect of the pore length and the 

network connectivity are also being investigated. 

Theoretical background 

KMC seeks to use state-to-state transition rates to simulate trajectories of the stochastic 

"wandering" of a system around the state space.146 To this end, the KMC implementation 

requires rate constants that capture the probability per unit time of such state-to-state 

transitions.146 A sequence of such transitions constitutes a sample path or trajectory, 

whose statistics follow the so-called Master equation (M-equation) that governs the 

dynamics of the system. The M-equation provides the means to describe a system in a 

"holistic" way, as it gives the time course of the probability of finding the system in a 

certain state at a given time:163 

The M-equation describes the system evolution as a balance of probabilities (Pi(t) and 

Pj(t)) multiplied by the kinetic constants ri,j
KMC and rj,i

KMC, respectively, which quantify the 

propensity of an event, or, in other words, its probability of occurrence per unit time. It 

accounts for all the inflows from states j to states i minus the outflows from states i 

towards states j. Despite its simplicity, the M-equation can hardly be solved. To solve the 

M-equation Instead, a KMC algorithm can be employed to simulate sample paths 

(trajectories) and estimate statistical properties of interest.146 

A KMC algorithm can be implemented to address both surface (solid state) and bulk 

diffusion problems. The mathematical basis of the M-equation is the same but conceptual 

differences exist. Solid state problems can be described by a state vector x and a time 

 dPi(t)

dt
= −∑

j≠i

ri,j
KMCPi(t) +∑

j≠i

rj,i
KMCPj(t) 

(3.20) 
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coordinate t, where x represents local minima on a potential energy surface (PES), and 

the M-equation describes the transition from one such local PES minimum state to 

another.192 Diffusion is an activated process and the kinetic constants that describe such 

transitions depend on the energy barrier between two states. In the case of bulk diffusion 

problems, the state vector x represents the population of species inside a region of a 

certain energy level. The kinetic constants depend on the diffusivity of the species 

considered and can be calculated though diffusion coefficient constants.193 

Microscopic reversibility (i.e. detailed balance) needs to be satisfied for any connected 

pair of states i and j. This implies the following relationship between rates ri,j
KMC (forward 

process) and rj,i
KMC (reverse process):146,168,183 

The reader is reminded that Pi
0 and Pj

0 are the probabilities of finding the system at state 

i and j, respectively, at equilibrium, as described in Chapter 2. The features of the KMC 

algorithm were first described by Young and Elcock in 1966.194 Early implementations of 

the KMC algorithm were reported by Bortz et al.,161 and Gillespie, who utilised a rejection-

free method known as the direct method.183 In this study, the direct method is 

implemented to describe diffusion as a function of jumps between neighbouring voxels. 

The movement of molecules from one voxel to others is treated as a possible transition 

pathway. Firstly, all the possible pathways are identified and then the rates through which 

the transitions take place are determined. The possible pathways a molecule can follow, 

while it diffuses in a 1D domain with periodic boundaries and N square voxels is 2N, as 

discussed in Part I of this chapter (see Figure 3.13). 

The algorithm requires the selection of two random, uniformly distributed numbers u1 

and u2 ∈ [0,1]. The Mersenne Twister MT19937 was implemented as the uniform 

random number generator (u.r.n.g).189 One of the selected numbers, u1, is used to 

determine the event that takes place and the second, u2, is used to calculate the time 

 ri,j
KMCPi

0 = rj.i
KMCPj

0 (3.21) 
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increment due to the selected transition. A detailed description of the direct method, 

including the event selection process and the time tracking is provided in Chapter 2 of 

this research study. 

Simulation models and methodology 

3.2.4.1 Model system 

Each system considered here comprises of three types of voxels regions (Region 1, 

Region 2 and Region 3), two fluid species (methane and water), and two fluid phases. 

Each Region is described as a collection of different voxels, as it is discussed later. In all 

cases two bulk areas surround the pore (Region 1), two layers of liquid water lay outside 

both sides of the pore (Region 2) and a slit pore is filled with water (Region 3). Water 

molecules are in liquid phase while methane molecules are in gas phase. As methane 

migrates through the pore, it first solvates in the liquid water phase and then it diffuses. 

Interfaces separate the bulk and the pore space. The three different regions, through 

which methane migrates, are presented in the schematic is shown in Figure 3.11, which 

corresponds to a silica slit-pore filled with water, and methane molecules occupying both 

bulk regions. In the KMC lattice each Region is composed of voxels. Each voxel is 

assigned a forward and a backward diffusion rate. In Figure 3.11 the transition rates at 

the interfaces are presented. 
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Figure 3. 11: Representation of our simulated system and the transition rates at the 

interfaces. Region 1 (R1) corresponds to the bulk methane reservoirs, Region 2 (R2) 

symbolises the layer of water formed outside of the pores and Region 3 (R3) represents 

the silicon oxide pore. 

 

For the KMC model, the diffusion rates within the three regions and the transition rates 

at the interfaces between them, need to be defined. To determine the transition diffusion 

rates for our KMC lattice the following were considered; (1) the diffusion coefficient of 

methane in the water layer outside the pores, (2) the diffusion coefficient of methane 

inside the hydrated pores, (3) potential of mean force profiles, and (4) methane density 

profiles. Potential of mean force profiles (PMF) and methane density profiles were used 

to assign the transition rates at the interfaces. These data were reported by Phan et al.,88 

The rates that describe the back and forth transitions between neighbouring voxels inside 

each individual region, are equal, due to microscopic reversibility. To calculate the KMC 

rates inside the hydrated pore and the water layer the expression derived n Chapter 2, 

and implemented in Part I of this chapter was used:176 
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where D is the self-diffusion coefficient of methane. The diffusion coefficients of methane 

in the various hydrated pores were obtained by Phan et al., and are summarised in Table 

3.1. The diffusion coefficient of methane inside the water layer is set to 1.8 × 10−9 m2/s.88 

The methane molecules diffuse first through the layer of water outside the pore, where 

the water molecules are able to move freely. However, once they enter the hydrated 

pores, the adsorbed water molecules are firmly attached to the surface and create an 

additional transport barrier that further hinders methane transport. To calculate the 

transition rate at the interfaces, the energy barriers obtained from the PMF profiles were 

used, as reported by Phan et al.88 Then, Boltzmann’s distribution expression was applied 

to define the probability of occupancy in Regions 2 and 3. The energy barriers considered 

here correspond to the maximum height (difference between maxima and minima) of two 

subsequent PMF curves and are reported in Table 3.1. These energy barriers represent 

the transport barrier inside the pores. The probability of occupancy in Regions 2 and 3, 

(p2′, and p3′ respectively) resulting from these energy barriers can also be found in Table 

3.1.      

Table 3. 1: Diffusion coefficient of methane and energy barriers (ΔF), as obtained from 

Phan et al.,88 and probability of occupancy in Regions 2 and 3 for the three substrates 

considered. 

Material 
𝐃𝐭 × 𝟏𝟎𝟏𝟎 

(𝐦𝟐/𝐬) 

ΔF 

(kcal/mol) 
𝐩𝟐′ 𝐩𝟑′ 

𝐒𝐢𝐎𝟐 7.82 1.2 0.895 0.105 

𝐌𝐠𝐎 5.51 1.6 0.946 0.054 

𝐀𝐥𝟐𝐎𝟑 3.26 1.3 0.911 0.089 

 

From the density profiles of methane and water presented in Figure 3.12, the methane 

population inside the water layer and the gaseous phase was determined. Table 3.2 

summarises the estimated thickness of the water layer and the probability of occupancy 

 
rRegion
KMC =

D

l2
 

(3.22) 
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in each Regions 1 and 2 (p1′′, and p2′′ respectively) for each system. The probabilities 

obtained from the PMF and density profiles were normalised and used to describe the 

transition rates at the interfaces. Table 3.3 summarises the probability of occupancy at 

Regions 1 (p1), 2 (p2) and 3 (p3) for the methane molecules in each system. The 

transition rates r1,2
KMC, r2,1

KMC, r2,3
KMC and r3,2

KMC are calculated as: 

 

 

Figure 3. 12: Density profiles of water (red) and methane (blue) molecules inside 1nm 

wide slit-shaped pores. The dashed grey lines denote the borders of the water layer 

(region 2). Reproduced from Phan et al. 88 

 

Table 3. 2: Length of the water layer formed outside of the three pores and the probability 

of occupancy between regions 1 and 2. 

Material Length of water layer (nm) 𝐩𝟏′′ 𝐩𝟐′′ 

𝐒𝐢𝐎𝟐 1.63 0.724 0.276 

𝐌𝐠𝐎 2.12 0.770 0.230 

𝐀𝐥𝟐𝐎𝟑 2.28 0.767 0.233 

 

 r1,2
KMC = p2 × rRegion2

KMC  (3.23) 

 r2,1
KMC = p1 × rRegion2

KMC  (3.24) 

 r2,3
KMC = p3 × rRegion3

KMC  (3.25) 

 r3,2
KMC = p2 × rRegion3

KMC  (3.26) 
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Table 3. 3: The probability of occupancy between Regions 1, 2 and 3. 

Material 𝐩𝟏 𝐩𝟐 𝐩𝟑 

𝐒𝐢𝐎𝟐 0.709 0.270 0.020 

𝐌𝐠𝐎 0.760 0.227 0.012 

𝐀𝐥𝟐𝐎𝟑 0.748 0.227 0.024 

 

As a final step, the KMC lattice was constructed. Because water is considered stagnant, 

the most appropriate way to represent the MD system is to create a 1D lattice and 

consider only one type of species, methane, effectively undergoing 1D transport along 

the direction parallel to the pore. To construct the lattice, the size and the number of the 

voxels need to be defined. To select the size each voxel must be bigger than the mean 

free path of the molecules, as there is no physical meaning in selecting voxels smaller 

than the mean distance the molecules can travel. Each Region contains a different 

number of voxels. Region 1 is represented by a single voxel, assuming the gaseous 

methane to be well mixed. The number of voxels selected to represent Regions 2 and 3 

is decided according to the length of the regions (from the MD study) and the voxel size. 

The methane particles move from one voxel to a neighbouring voxel, located along the 

x-direction, following a 1D trajectory. An example of the lattice used to perform these 

calculations (in this regard for the silicon oxide pore) is presented in Figure 3.13. Further 

information regarding the lattice implemented for all three substrates is shown in Table 

3.4. The number of particles inserted in Region 1 for each substrate depends on the 

density of the systems (from the MD study) and the size of the voxels. 
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Table 3. 4: Description of the lattice implemented for the KMC model. 

Parameter 
System 

𝐒𝐢𝐎𝟐 𝐌𝐠𝐎 𝐀𝐥𝟐𝐎𝟑 

Region 1 dimensions 

(x,y,z) (nm) 
1.6×0.4×0.4 2.12×0.42×0.42 2.30×0.46×0.46 

Region 2 dimensions 

(x,y,z) (nm) 
1.6×0.4×0.4 2.12×0.42×0.42 2.30×0.46×0.46 

Region 3 dimensions 

(x,y,z) (nm) 
5.2×0.4×0.4 5.09×0.42×0.42 4.60×0.46×0.46 

Voxel size 0.4×0.4×0.4 0.42×0.42×0.42 0.46×0.46×0.46 

Number of voxels in 

Region 1 
1 1 1 

Number of voxels in 

Region 2 
4 5 5 

Number of voxels in 

Region 3 
13 12 10 

Number of particles 

in Region 1 
3 8 8 

 

3.2.4.2 Flux calculations 

Methane molecules in gas phase were inserted in one of the bulk areas (feed), resulting 

in a pressure rise. The other bulk area (permeate) was kept empty throughout the 

simulations, yielding a pressure that remains approximately 0. Once the methane 

molecules cross the slit pore and enter the permeate region, they are deleted and 

immediately added back into the feed region. Hence, the pressure drop across the 

substrates was maintained constant. The boundaries of the system were reflective. The 

cumulative number of particles that cross the permeate region, were reported every 30 

ns, and averages were obtained from 100 independent simulations. Replicating the 

simulations as such, results in smooth profiles with minimum fluctuations. Starting from 
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t = 0, the system was allowed to progress for 30 ns, during which time a counter reports 

the number of molecules crossing the pore. After 100 simulations the system was left to 

diffuse for another 30 ns. This procedure was repeated until a total simulation time of 

720 ns was reached. The flux was determined by counting the number of molecules 

crossing the pore (Qt) over time: 

In Eq. (3.27), J is the molar flux of methane, ΔQt/Δt is the slope of the fitted line 

(cumulative number of molecules vs. time), A is the cross-sectional area available for 

gas permeation, perpendicular to the direction of the diffusion. An example of the lattice 

used to perform these calculations (in this regard for the silicon oxide pore) is presented 

in Figure 3.13. 

 

Figure 3. 13: The KMC lattice implemented for the silicon oxide flux calculations. 

Reproduced from Apostolopoulou et al.140 

 

3.2.4.3 Permeability calculation 

The membrane permeability K was calculated as: 

where J is the molar flux of methane from the KMC calculations, l is the length of the 

pore, p1 is the pressure applied in the feed phase, p2 is the pressure applied in the 

 
J =

ΔQt/Δt

A
 

(3.27) 

 
K =

Jl

p1 − p2
 

(3.28) 
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permeate region (p2 = 0). In this calculation the pressure drop remains constant. At most 

5% of the molecules in the feed volume escaped to the pore voxels (i.e., Region 2). 

 

3.2.4.4 Mean First Passage Time (MFPT) 

Useful information regarding the transport in a porous medium can be obtained by the 

calculation of the MFPT. For MFPT calculations, silicon, magnesium and aluminium 

oxide 40 nm long pores were considered. A methane molecule was placed in the middle 

of the pore and it was allowed to move towards any direction (forwards and/or 

backwards). However, to avoid re-crossings the propensity of the methane molecule 

hopping from the middle voxel, voxel No. 86, as shown in Figure 3.14, to its right 

neighbour (voxel No. 87) was set to zero, so that the molecule is not allowed to cross 

the middle of the pore. The molecule’s trajectory was monitored throughout the 

simulation. The molecule was allowed to exit the pore and cover an additional distance 

of approximately 1.5 nm in the water layer. The MFPT reflects the average time required 

for a particle to reach a specific position inside the pore. For MFPT calculations, silicon, 

magnesium and aluminium oxide pores 40 nm long were considered.  

In the beginning of the KMC simulation, a methane molecule was placed in the middle 

of the pore (voxel No. 86), as shown in Figure 3.14. To monitor the molecule’s trajectory 

as it exited the pore, 1000 independent simulations were performed. The KMC lattice 

used for these calculations was symmetric and the analysis is focused on the xa 

direction. Starting from voxel No.86, the first time, at which the molecule visited each 

neighbouring voxel sequentially (i.e. voxel No.85, voxel No.84, etc.), was recorded, until 

it reached voxel No.1. By averaging these "first times" the MFPT were obtained as a 

function of distance from the centre of the pore. Whenever the molecule attempted to 

cross the centre of the pore, by moving into voxel No.87, the simulation was terminated 

and discarded. The size of the voxels used to simulate the layer of water (Region 2) had 
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dimensions 0.25(nm)x0.5(nm)x0.5(nm). The voxels used to represent the pore (Region 

3) had dimensions 0.5(nm)x0.5(nm)x0.5(nm). 

 

Figure 3. 14: The KMC lattice implemented for the MFPT calculations. The methane 

molecule is initially placed in voxel No.86 and moves towards voxel No.1. Movement 

towards direction xb is disabled. Reproduced from Apostolopoulou et al.140 

 

3.2.4.5 Heterogeneous pore networks 

The proposed KMC model was used to investigate the transport properties in 

heterogeneous pore networks, aiming to assess how the flux observed through the 

substrates is affected by the length and the connectivity of the pores. To understand how 

the pore size affects molecular flux, a lattice similar to the one described in Figure 3.13 

is used. The size of the water layer formed outside of the pores is kept the same. To 

obtain better statistics, the density of methane particles in the bulk region is increased. 

The particle flux is expected to gradually decrease, as the length of the pore is increased, 

while keeping the pressure drop constant. The effect of the pore connectivity on flux was 

quantified, starting by a long pore surrounded by water and two bulk regions containing 

methane (as in Figure 3.11). As a next step, two disconnected pores with half the length 

of the original pore are used in place of the single long pore. These pores are also 

surrounded by bulk regions of water layers. Afterwards, the length of the pores is reduced 

by half, yielding four pores, also disconnected. The pore networks studied (type 1, type 

2, and type 3) are illustrated in Figure 3.15. 
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Figure 3. 15: Representation of the network design used to calculate the molar flux. The 

light green colour corresponds to the gas methane region, the light purple denotes the 

water layer outside of the pore and the orange voxels represent the pore. Reproduced 

from Apostolopoulou et al.140 

 

Results and discussion 

3.2.5.1 Flux and permeability through single pores 

A 1D lattice was implemented to represent the three slit-shape micropores studied using 

MD simulations by Phan et al.,88 Information regarding the construction of the 1D lattice 

is provided in Table 3.3 and it refers to Figure 3.13, for the case of the silica pore. Region 

1 corresponds to the bulk area where methane molecules are in gas phase, Region 2 

represents the water layer found on both sides of the pore and Region 3 describes the 

hydrated pore. Plots of the cumulative number of molecules as a function of time 

obtained for every system are presented Figure 3.16. A straight line is fitted to these data 
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to calculate the slope of the linear plots. From the slope, Eq. (3.27) is used to calculate 

the flux of methane molecule. 

 

Figure 3. 16: Cumulative number of methane molecules (Qt) in the permeate region (blue 

dots) as a function of time for the hydrated silica slit-shaped pore (left panel), the 

magnesium oxide (middle panel) and the aluminium oxide pore (right panel). The red line 

corresponds to a least-squares fitted line. 

 

The results obtained by the KMC model are presented in Table 3.5. For validation 

purposes, the values obtained by the stochastic model are compared against those 

reported by Phan et al.88 The results are presented in Figure 3.17. 

Table 3. 5: Flux and permeability calculations obtained by the KMC model 

Material Flux 𝐉(𝐦𝐨𝐥/𝐦𝟐𝐬) Permeability 𝐊(𝐦𝐨𝐥/𝐦𝐬𝐌𝐏𝐚) 

𝐒𝐢𝐎𝟐 74.76 ± 1.42 (5.38 ± 0.11)× 10−9 

𝐌𝐠𝐎 71.83 ± 1.26 (3.05 ± 0.05)× 10−9 

𝐀𝐥𝟐𝐎𝟑 75.91 ± 1.27 (2.04 ± 0.03)× 10−9 

 

The flux observed though the three pores is similar. However, the permeability varies. 

The silicon oxide pore is the most permeable, followed by the magnesium oxide one and 

the alumina oxide. These trends are in quantitative agreement with the MD results 
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reported by Phan et al.88 According to Phan et al., the formation of molecular cavities 

within the water-filled pores is observed close to the pore walls. The cavities observed 

are more pronounced in the case of the silica pores, followed by the ones observed in 

the magnesium oxide and aluminium oxide pores. These structures promote the passage 

of methane molecules through the hydrated pores and increase the methane diffusivity.88 

Performing 100 independent KMC simulation runs for the silica, magnesium oxide and 

aluminium oxide pores required just 32.9s, 63.6s and 83.1s, respectively. Comparison 

between KMC and MD results from the two simulations is presented in Figure 3.17. To 

calculate the error bars shown in Figure 3.17 100 independent simulations were 

performed and the standard deviation for the flux and permeability were calculated. The 

standard deviation of the mean is divided by the square root of the sample size to obtain 

the standard error of the mean, which is reported in Figure 3.17. 

 

Figure 3. 17: Results obtained implementing the KMC model presented here versus MD 

simulations by Phan et al.,88 for flux (left panel) and permeability (right panel). The results 

obtained from both methods are presented with error bars. 

 

3.2.5.2 Mean First Passage Times (MFPTs) 

The MFPT profiles shown in Figure 3.18 were obtained for the three substrates by 

implementing the KMC algorithm. As expected from the diffusion coefficients that 
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describe methane transport inside the slit-shaped pores, transport inside the silicon oxide 

pores is the fastest. Methane moves slowly inside the alumina oxide pores, for which the 

MFPT is almost three times slower compared to than that obtained in the silicon oxide 

pore. The results obtained from the KMC model are in agreement with the ones reported 

by Phan et al.,88 as shown in Figure 3.18. It is worth repeating that, the computational 

effort associated with the KMC approach is significantly smaller than that of the MD 

approach. The CPU times required were 48.9s, 48.8s, and 51.3s for the simulations 

performed on the silica, magnesium and aluminium oxide pores, respectively, when the 

KMC model was implemented. The nodes used to perform these simulations on the 

supercomputer consisted of 2 Intel Xeon E5-2683 v4 cores in total and 128 GB total 

RAM. 

 

Figure 3. 18: Mean First Passage Time profiles of 40 nm wide pores as obtained by KMC 

calculations and Phan et al.,88(MD). 

 

3.2.5.3 Flux versus pore length  

Since the KMC model quantitatively reproduces the results obtained from the MD 

simulations, it can be used to quantify how certain pore characteristics affect 

permeability. To elucidate the effect of the pore length on the observed flux, systematic 

KMC simulations were conducted. To improve the statistics, the number of particles 

inserted in the feed area was increased to 100. The results are shown in Figure. 3.31 
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(left panel) where the calculated flux is plotted against the pore length for the three 

different substrates. For these calculations the pore length was increased from 4 to 25 

nm for all three substrates. As expected, as the pore length increases, the flux 

decreases. The rate of flux decrease is expected to be similar for all substrates. To 

investigate this hypothesis, the % flux decrease was calculated, and the results obtained 

were plotted as a function of the pore length. The results shown in Figure 3.19 (right 

panel) are indicative of the qualitative validity of the KMC model.    

 

Figure 3. 19: Effect of the pore length on membrane flux (left panel) and the effect of 

pore length on the % of flux decrease as calculated from KMC simulations (right panel). 

The flux obtained for the different pore lengths is reported with error bars. 

 

To quantitatively prove the accuracy of the KMC model Eq. (3.29), an analytical 

expression that describes the relationship between the observed flux and the membrane 

thickness, is employed.195 

In Eq. (3.29) L is the membrane thickness, Lm(L) is the mass transport coefficient, xb is 

the mole fraction at the feed-membrane interface and xp is the mole fraction at the 

membrane-permeate interface. As the pore length increases some of the molecules will 

 
J =

Lm(L)RT

L
ln
xb
xp

 
(3.29) 
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occupy positions inside the membrane, thus decreasing the driving force for transport. 

To balance this effect, the population of methane molecules inside the pore was 

monitored during the simulation and the number of feed molecules was adjusted as 

required in order to maintain a constant pressure drop. This adjustment keeps the xb and 

xp mole fractions in Eq. (3.29) constant. 

It is assumed that the mass transfer coefficient linearly decreases as the pore length 

increases, since the conditions under which these simulations take place are kept 

constant. The relationship between the mass transfer coefficient and the pore length can 

then be described as: 

The constants c1 and c2 are fitting parameters obtained from fitting two KMC data points. 

Eq. (3.30) is then used to calculate the expected flux for each pore length. The 

comparison between the KMC model and Eq. (3.30) is quantitative as shown in Figure 

3.20. 

 

Figure 3. 20: Comparison between the KMC model and analytical expressions for the 

effect of pore length on the observed flux. 

 

3.2.5.4 Effect of pore connectivity 

 Lm(L) = c1L + c2 (3.30) 
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Changing the pore network connectivity essentially alters the number of interfaces 

present in the system (see diagrams in Figure 3.15). Assuming that the resistance to 

diffusion is due to the pore length and the interfaces, the analysis below investigates 

whether these two effects equally hinder the gas transport, or whether a rate-limiting step 

is reached. 

The effect of pore connectivity on the overall pore network’s flux was quantified by 

simulating three 1D pore networks, shown in Figure 3.15. The first one consisted of a 

single long pore (4 nm). This pore was cut in half and the newly generated pores (2 nm) 

were surrounded by water layers and vapour bulk areas. These two pores were then cut 

in half to generate the third system. The flux observed for the three pore networks is 

reported in Figure 3.21. The results show that the fluxes in each of the 1D pore networks 

decrease as the number of interfaces increases, suggesting that the rate-limiting step in 

these pore networks is provided by the entrance of methane into the water-filled pores. 

 

Figure 3. 21: Fluxes calculated for 1D pore networks with different pore connectivity (see 

Figure 3.15 for description of Type 1, 2, and 3 networks). 

 

Figures 3.32 and 3.33 show that the pore length and the pore network connectivity are 

equally important in determining the flux. The observed flux decrease is similar whether 

the pore length increases by 1 nm (from 4 nm to 5 nm and from 5 nm to 6 nm) or the 

pore network becomes more disconnected (from Type 1 to Type 2 and from Type 2 to 
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Type 3). It is observed that the percent decrease in flux due to the interfaces added 

follows a similar trend for all three substrates. 

Conclusions 

In the first part of this chapter, a KMC algorithm was produced in order to reproduce 

results obtained by using a similar model for reaction networks. The results obtained by 

the produced code were in quantitative agreement with those report by Gillespie. Small 

fluctuations were observed. It was proved that these fluctuations are a result of the 

systems’ unstable behaviour and the lack of performing a number of independent 

simulations to obtain the mean values. 

Gillespie’s algorithm, reproduced for validation purposes, was then modified in order to 

simulate a diffusive process. The constructed KMC algorithm was implemented to 

simulate diffusion in a homogeneous closed system with reflective boundaries. The 

results obtained from the stochastic approach, were validated against the analytical 

solution of the diffusion equation in 1D. The agreement between the stochastic and 

deterministic approach was satisfactory. 

In the second part of this chapter, a lattice-based KMC model was developed to study 

fluid transport through 1D slit-shaped pores with different chemical composition. The 

substrates analysed represent main components of the inorganic material found in shale 

rocks. The proposed model was used to quantify how the presence of disconnected 

micropores affect the permeability of a heterogeneous domain. 

The chemistry of the pores was found to affect the transport behaviour of gas methane 

molecules, as expected from previously reported studies. The hydrated silicon oxide 

micropores exhibit the highest permeability, followed by the permeability observed in 

hydrated magnesium and aluminium oxide pores. The agreement between the KMC 

model and MD simulations is quantitative, however, the computational times are 

significantly reduced when using the KMC model. The model was then used to provide 

insights regarding the contribution of the pore network characteristics in the transport 
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behaviour. It was found that both the pore length and the network connectivity play a 

significant role on gas migration.  

From the simulations presented in Part II, it was also observed that the chemical 

composition of the substrates affects the absolute values of the flux observed for all pore 

lengths and type of networks, but it does not affect the behaviour of the systems (rate of 

flux decrease). The 1D KMC model developed for this study can be considered as a 

bottom-up approach that can be used to address mesoscopic problems. Any type of 

designed or natural network can be simulated, as long as the kinetic (diffusion constants) 

and thermodynamic (barriers due to the interfaces) properties are provided. The kinetic 

and thermodynamic properties used in Part II, together with the methodology followed 

for the calculation of the transition rates, can be applied to any type of pore networks and 

provide insights regarding the significance of the chemical composition and pore features 

to the resulting transport properties, provided gas transport occurs via diffusion. The 

KMC model should be extended towards the simulation of realistic 2D and 3D pore 

networks at the mesoscopic scale. Such studies will contribute to a better understanding 

of the diffusion encountered in shale rocks and potentially assist the formulation of 

strategies to maximise the natural gas or oil recovery. 
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KMC algorithm extension to 2D; Studies in synthetic pore 

networks and shale samples 

 

In Chapter 3, the construction and validation of the 1D KMC model, to simulate diffusive 

systems, is discussed. The overall aim of this research study is to develop and apply 

stochastic methods to simulate fluid transport in shale rocks and other pore networks 

that exhibit similar properties. Since the pore networks found in shales are often complex, 

synthetic networks can be implemented to individually access the impact of each pore 

network property on the transport of fluids. This chapter is divided in two parts; Part I 

details the development of a 2D KMC algorithm and its application on synthetic 2D pore 

networks to elucidate the effects resulting from pore size distribution, the impact of micro- 

and macropores, and the effects of anisotropy on the predicted matrix permeability. The 

2D KMC model is also implemented to estimate the permeability of a shale sample 

obtained from the Eagle Ford formation. Throughout Part I, the 2D KMC model is being 

compared against deterministic models that have been extensively used in the literature 

for the calculation of network permeability and recommendations are provided on the 

optimal conditions under which each method can be used. The results obtained from 

Part I are published in the Int J Coal Geol, 205 (2019) 140-154. Part II presents the 

outcome of a collaborative project with Halliburton’s production and enhancement team 

that took place as an internship in 2017. During this collaboration the 2D KMC model 

was used to investigate the effect of man-made microfractures and proppants on the 

permeability improvement. The matrix permeability calculated in Part I was used as an 

input for the matrix permeability. The laboratory work presented in Part II, was carried 

out by Halliburton and the results were presented during the SPE Oil and Gas 

Symposium that took place in Oklahoma on the 9th-10th of April and published as a 

conference paper with ID SPE-195220-MS. 
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Estimating permeability in shales and other heterogeneous porous media: 

Deterministic vs. stochastic investigations – Part I 

Abstract 

With increasing global energy demands, unconventional formations, such as shale 

rocks, are becoming an important source of natural gas. Extensive efforts focus on 

understanding the complex behaviour of fluids (including their transport in the sub-

surface) to maximise natural gas yields. Shale rocks are mudstones made up of organic 

and inorganic constituents of varying pore sizes (1-100nm). With cutting-edge imaging 

technologies, detailed structural and chemical description of shale rocks can be obtained 

at different length scales. Using this knowledge to assess macroscopic properties, such 

as fluid permeability, remains challenging. Direct experimental measurements of 

permeability supply answers but at elevated costs of time and resources. To complement 

these, computer simulations are widely available, however, they employ significant 

approximations, and a reliable methodology to estimate permeability in heterogeneous 

pore networks remains elusive. For this study, permeability predictions obtained by 

implementing two deterministic methods and one stochastic approach, using a KMC 

algorithm, are compared. This analysis focuses on the effects resulting from pore size 

distribution, the impact of micro- and macropores, and the effects of anisotropy (induced 

or naturally occurring) on the predicted matrix permeability. While considering multiple 

case studies, recommendations are provided on the optimal conditions under which each 

method can be used. Finally, a stochastic analysis is performed to estimate the 

permeability of an Eagle Ford shale sample using the KMC algorithm. Successful 

comparisons against experimental data demonstrate the appeal of the stochastic 

approach. 

Introduction 

Global primary energy consumption has been increasing slowly but steadily during 

recent years – 1% during 2016, 0.9% during 2015, 1% during 2014 – compared to a 
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10-year average yearly increase of 1.8%.196 To meet these energy demands, in addition 

to developing renewable energy sources, the focus is on optimising the processes to 

recover hydrocarbons from the subsurface.197 Nevertheless, our understanding of fluid 

transport within heterogeneous rocks typically identified in shale formations remains 

limited because of the rocks’ complex texture.198 Experimentally measured properties of 

shale rocks (i.e., porosity, chemical composition, pore size distribution (PSD), and 

wettability) vary greatly.199 Estimating the permeability of porous media will not only 

assist toward improved production rates but will also minimise potential risks associated 

with the technologies currently implemented to stimulate shale formations. Predicting 

reliably medium permeability requires (1) selecting the appropriate transport model to 

quantify the physical properties that microscopically dictate fluid transport and (2) 

implementing effective methods to predict the system’s macroscopic behaviour. While 

many physical properties for shale samples have been reported (PSD, mineralogy, 

organic content), not much progress has been made on combining these datasets to 

yield useful information regarding permeability. 

Understanding the behaviour of fluid transfer through porous rock formations, in 

particular, permeability has been in the spotlight for many years.200 Cutting-edge imaging 

techniques provide detailed structural and chemical analysis of materials at different 

length scales,201 but incorporating this knowledge systematically into models that can 

predict macroscopic properties remains challenging. Experimental methods can supply 

the necessary information, but this practice is often costly, time consuming, or even 

impractical.202 On the contrary, computer simulations are cost effective, but are often 

limited in terms of accuracy or availability of computational resources;203 therefore, a 

balance among the levels of detail needed, the accuracy expected, and the 

computational cost should be determined. In this work, three approaches are 

implemented and compared to predict permeability of complex pore networks 

representing those identified in shale rocks. It is important to highlight that all 

computational approaches can fail to predict the overall permeability of highly 
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heterogeneous systems, compared to experiments, because of the uncertainty 

associated with the exact value of the properties assigned to each domain, as well as 

with uncertainties related to the extent and connectivity of the three-dimensional (3D) 

pore network. 

This work compares two deterministic methods, EMT and a simplified renormalisation 

technique, and the developed stochastic KMC algorithm. The analysis focuses on pore 

size and network connectivity; pore sizes that follow log-normal distributions are 

considered and it is assumed that ‘local’ permeability coefficients depend solely on pore 

size. Further, networks with low, medium and high anisotropy are considered to obtain 

an estimate for the media permeability. The same pore mapping is also used to evaluate 

the three methods and identify applicability ranges of each approach, using a detailed 

understanding of the physical mechanisms responsible for the differences observed. 

Finally, the KMC approach is applied to predict the permeability of a shale rock sample. 

The remainder Part I of this chapter is organised as follows: Section 4.1.3 provides the 

mathematical formulation of the three methods and describes the simulation set-up used. 

Section 4.1.4 describes the systems investigated, while Section 4.1.5 presents the 

results obtained while using synthetic networks and an actual shale sample. A summary 

of the main findings of this study is provided in Section 4.3. 

Methods 

4.1.3.1 Effective Medium Theory (EMT) 

Kirkpatrick generalised the EMT from heterogeneous continuous systems to networks of 

conducting elements. He proposed a general formalism for inhomogeneous, disordered 

lattices, described by a range of conductances gx, where x is the index of a cell or 

element in the network (x = 1,…,X, with X being the total number of elements). These 

conductance values follow a probability distribution function p(g). Assuming no spatial 

correlation among the gx values, the implicit mathematical relation involving the effective 
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gm, the local conductances gx, and the coordination number z, which characterises the 

lattice, is: 

 

 〈
gm − gx

[(z 2⁄ − 1)]gm + gx
〉 = 0 (4.1) 

Considering a lattice, Eq. (4.1) can be solved numerically by Eq. (4.2), where φx 

describes the ‘significance’ of conductance gx in the calculation of the effective gm: 

  

∑φx

X

x=1

gm − gx

[(z 2⁄ − 1)]gm + gx
= 0 

 

 

(4.2) 

The EMT approach is indicated as ‘Method I’ in what follows. For this work Kirkpatrick’s 

formalism is implemented, initially used to describe networks of conductunces, for 

calculating the equivalent permeability for a lattice-based pore network (i.e., a site 

percolation problem). In this study, keff is the effective matrix permeability and ki,j the 

permeability coefficients, as shown in Figure 4.1 and explicitly stated in Eq. (4.3).  

 

∑∑φi,j

NR

i=1

keff − ki,j

[(z 2⁄ − 1)]keff + ki,j

NC

j=1

= 0 

 (4.3) 

In Eq. (4.3), NR is the number of matrix rows, NC is the number of columns. The 

coordination number z is kept constant and equal to 4,204 as rectangular two-dimensional 

(2D) networks are considered. Building on the work on KMC discussed in Chapter 3, the 

term “voxel” refers to a single cell of a matrix representing a pore network. For Eq. (4.3), 

the frequency term φi,j acts as a weighting factor on the permeability coefficient ki,j. The 

weight of φi,j represents the pore volume fraction represented by each voxel. In the 

matrices generated, the voxels are considered to contain the same volume of pores, and 

hence all φi,j have the same weight: 
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φi,j =

1

NC x NR 
 

 (4.4) 

4.1.3.2 Simplified renormalisation method 

The simplified renormalisation method is indicated as ‘Method II’ in what follows. The 

description by Naraghi et al.,102 for a 2D matrix is followed to calculate the effective rock 

permeability using Method II:  

 
kUB =

NR
NC

1

∑
1

∑ ki,j
NC
j=1

NR
i=1

 
 (4.5) 

 

kLB =
NC
NR
∑

1

∑
1
ki,j

NR
i=1

NC

j=1

 

 (4.6) 

 keff = √kLBkUB   (4.7) 

In Eqs. (4.5 – 4.7) ki,j is the permeability of the pores represented by voxel (i, j). 

According to these equations, the flow direction is vertical (top to bottom), and zero cross 

flow is imposed. Figure 4.1 provides a schematic of the calculation of kLB and kUB. 
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Figure 4. 1: Schematic of simplified renormalisation Method algorithm; (left) matrix 

considered and the voxels’ IDs; (middle) process for calculating kLB; (right) process of 

calculating the kUB; AM stands for arithmetic mean and HM for harmonic mean. Eq. (4.7) 

calculates the effective matrix permeability. 

 

 

4.1.3.3 Stochastic KMC approach 

The KMC approach is indicated as ‘Method III’ in what follows. 

KMC algorithms are designed to simulate stochastic realisations of the Master 

Equation.183 For this work, the previous 1D lattice-based KMC algorithm, applied to a 2-

phase system, is extended to 2D by increasing the number of possible moves a particle 

can make. For the 1D model a particle can either move to the left or to the right voxel at 

each algorithmic step, while when implementing a 2D approach it can also access the 

voxels above and below its initial position. In the 2D approach, only 1-phase systems of 

methane at supercritical conditions are considered (see Table 4.2). Using this 2D 

algorithm, the molecular trajectories are monitored and the overall permeability of a rock 
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sample is calculated. The Mersenne Twister MT19937 uniform random number 

generator was used to obtain sequences of random numbers.189  

The computational efficiency of the KMC algorithm is strongly dependent on the matrix 

mesh as the computational cost to select each KMC step scales with the number of 

possible events. For a N  N matrix with z=4, there are 4  N  N possible events at each 

step. Note that for implementing the 1D KMC model to a matrix consisting of N voxels, 

the number of possible events would be 2  N, which is 1 2N⁄  less, compared to the 2D 

KMC model.  For a rather small system consisting of few voxels (i.e. N<50), the 

computational time required for a 1D KMC model could be several seconds, while for an 

equivalent 2D model several minutes would be required.  Other factors that challenge 

the computational efficiency of the KMC algorithm is the size of the system (number of 

particles) and the distribution of the KMC rates152. Considering that the latter factors 

depend on the investigated system, and hence can be rarely optimised, the 

computational efficiency of the KMC algorithm is usually improved by selecting a more 

efficient event selection algorithm. Event selection can be performed in a linear or 

branching manner, with the latter making use of binary tree representations, a topic 

covered in Chapter 2 (see Section 2.9);186 for efficiency purposes, the latter approach is 

implemented in this study. The validation of the branching method and the computational 

savings achieved are reported in subsection 4.1.5.1. 

4.1.3.4 Parameters selection 

To directly compare results obtained when Methods I, II, and III are implemented, all 

system properties are kept constant, including permeability coefficients. This is 

straightforward when either the EMT or renormalisation methods are implemented, 

because the permeability coefficients are parameters in Eq. (4.3) and Eqs. (4.5 – 4.7). 

When the KMC approach is utilised, the permeability coefficients, ki,j, expressed in m2 

or Darcy for Methods I and II, should be translated into KMC rates, expressed in s-1, to 

simulate stochastic realisations of Eq. (4.8). To achieve this, Darcy’s68 and Fick’s205 law 
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are combined in the following relation (see 4.9) to relate diffusion coefficients Di,j, in m2/s, 

and permeability, in m2. 

According to Darcy’s law, the flow J between two points in a 1D system is related to the 

pressure difference ∆P and distance ∆x between them using the permeability k [(mol 

m)/(s m2 MPa)]: 

 
J = −ki,j

∆P

∆x
 

(4.8) 

where J is the molecular flux per surface area (mol/s m2), ∆x is the distance between the 

two points (m), and ∆P is the difference in pressure across the specimen (MPa). 

In a similar manner, Fick’s law expresses the proportionality between the molecular flux 

and the concentration gradient:  

 
J = Di,j

∆C

∆x
 

(4.9) 

where Di,j is the diffusion coefficient (m2/s) in voxel i,j, and ∆C is the difference in 

concentration between two points (mol/m3). 

For a 1D system, one can combine these two fundamental equations (Eqs. 4.8 and 4.9) 

and obtain a relationship between diffusivity and permeability: 

 
Di,j =

ki,j∆P

∆C
 

(4.10) 

where ∆P is the pressure difference applied to the system and ∆C is the fluid 

concentration difference (see the description in subsection 4.1.3.6). With Eq. 4.11, 

assuming that either the diffusion coefficient or the permeability coefficient is known, one 

calculates the other upon applying a concentration gradient. The validation of Eq. (4.11) 

is provided in subsection 4.1.5.2. 

To convert the permeability expressed in (mol m)/(s m2 MPa) to the most commonly used 

permeability unit of m2, one needs to multiply the permeability coefficients ki,j in 
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Eqs. (4.8) and (4.11) by the fluid viscosity μ (MPa s), divide by the molecular 

concentration (mol/m3), and then calculate the KMC transition rates rKMC using Eq. 

(4.12):141 

 
ri,j
KMC =

Di,j

δ2
 

(4.11) 

In Eq. 4.12, δ is the voxel size (m). The KMC rate for each transition depends on the 

permeability coefficient of the neighbour/final destination. The assumption implicit in Eq. 

(4.11) is that the fluid transport from voxel to voxel takes place without encountering any 

thermodynamic barrier. For Eq. (4.11), Di,j is the diffusion coefficient as calculated using 

Eq. (4.10), and δ is the distance between the centres of two consecutive voxels. It is 

assumed that when a transition takes place, the effective distance covered by the 

particles equals δ. An example of the methodology followed to calculate the effective 

matrix permeability using Methods I, II, and III, is provided in the subsection that follows 

(see 4.1.3.5), where it is further demonstrated that all three methods produce equivalent 

effective matrix permeability values when a homogeneous network is considered, thus 

suggesting that further manipulation of the results (e.g., within the Smooth Field 

Approximation),206 is not necessary. 

4.1.3.5 Assigning permeability coefficients for Methods I, II, and III 

This section discusses the methodology followed for calculating the effective matrix 

permeability using EMT, simplified renormalisation, and KMC. As a first step, the lattice 

needs to be constructed; Figure 4.2 shows a 5×5 dual-permeability lattice. The 

green/pink voxels correspond to low-/high-permeability pores (1 and 100 nD, 

respectively). To calculate the effective matrix permeability, Figure 4.2 is converted into 

a permeability array (Table 4.1). 
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Figure 4. 2: Fictitious 5×5 lattice with the numbers representing the voxel ID; green-

coloured voxels are assigned with permeability of 1nD, pink ones with 100 nD. 

 

Table 4. 1: Voxel IDs and array of the corresponding permeability coefficients, as defined 

by Figure 4.2. 

Voxel 

colour ID 

Permeability 

(nD) 

Voxels’ number in 

lattice 

Pink 100 1,7,13,19, 25 

Green 1 2-6, 8-12, 14-18, 20-24 

 

To calculate the effective matrix permeability, the weight of each contribution need to be 

determined. For this example, assuming that all contributions have the same weight, one 

defines φ=0.04 for each voxel. By applying Eq. (4.3) and Eqs. (4.5 – 4.7), the effective 

matrix permeability can be determined using Methods I and II, respectively. 

To implement the KMC method, the rate of each transition needs to be determined. For 

a 2D lattice constructed by square voxels (Figure 4.3), there are four possible transitions 

that enable the particles to “jump” from one voxel to a neighbouring one. The KMC rate 

for each transition depends on the permeability coefficient of the neighbour/final 

destination. Figure 4.3 shows red arrows representing the KMC rates for the transitions 
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from a low- to high-permeability voxel, and the blue arrows indicate KMC rates that apply 

for transitions from a high- to low-permeability voxel. There are no arrows at the lattice 

boundaries because of the nonperiodic boundary conditions implemented; all boundaries 

are reflective, and the KMC rates/propensities of transitions through boundaries are set 

as zero. 

For the last initialisation step, the initial distribution of particles should be defined. The 

protocol used for this study has all particles to be initially placed on top of the matrices 

considered. 

 

Figure 4. 3: KMC rates for the dual-porosity 5×5 lattice. Red arrows represent transitions 

from low- to high-permeability regions, and blue arrows indicate KMC rates for jumps 

between low-permeability regions. 

 

4.1.3.6 Simulation set-up 

2D pore networks (matrices) are constructed, each containing NC columns and NR rows 

along the x- and y- axis. The voxels in the matrix are cubic, but they can be considered 

effectively square, since the depth dimension is significantly smaller than the other two 

dimensions. The transport within the system can only occur on the xy plane, because 

the thickness along the z-axis is assumed to be negligible for a narrow cylindrical pore. 

It is assumed that the particles within voxels are well mixed. 

To estimate the effective matrix permeability using Methods I and II, permeability 

coefficients were assigned to each voxel, and Eq. (4.3) and Eqs. (4.5 – 4.7) were 
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implemented, respectively. The assigned permeability coefficients were calculated 

based on the methodology proposed by Coppens207 and Naraghi et al.:102  

 

 
ki,j =

ηM

RTρav

θ

τ
(δ′Df−2) Dki,j + kDi,j (1 +

bi,j

P
) 

(4.12) 

 
bi,j = (

8πRT

M
)
0.5 η

Ri,j
(
2

αi,j
− 1) 

(4.13) 

 αi,j = 1 − log (1 + Kni,j
0.7) (4.14) 

 
Dki,j =

2Ri,j

3
(
8RT

πM
)
0.5

 
(4.15) 

In Eqs. (4.12 – 4.15) η is the gas viscosity, M is the molar mass, R is the ideal gas 

constant, T is the temperature in Kelvin, ρav is the average gas density, θ is the rock 

porosity, τ is the tortuosity, Ri,j is the pore radius of the voxel (i,j), Df is the fractal 

dimension of the pore surface, Kn is the Knudsen number, Dk is the Knudsen diffusion 

coefficient in a smooth cylindrical pore, kD is the Darcy permeability, and δ′ is the ratio 

of normalised molecular size to local average pore diameter. Here, it is assumed that the 

pores are smooth, so that Df = 2; this would have to be adjusted for fractal pores. Once 

the properties of the diffusing gas are calculated, the diffusion coefficient is determined 

solely from the pore diameter. 

For the lattices of the 2D pore networks generated the size of the voxels is constant. It 

is assumed that multiple pores can occupy a voxel and that these pores are highly 

connected. As a result, each voxel has an effective permeability that could be simplified 

by having a single pore with a corresponding effective radius. This effective radius is an 

input value in Eq. (4.12). 

In the developed 2D KMC model, physical properties that represent supercritical 

methane are considered, as summarised in Table 4.2, together with the rock 
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characteristics. Note that the critical temperature of methane is 190.6 K at 4.6 MPa.208 

The rock total organic content (TOC) shows the % volume of the organic matter and is 

used to construct the shale network (see subsection 4.1.4.4). Initially, a number of 

particles corresponding to a methane concentration C, are placed at the top of the matrix, 

while the rest of the system is empty. The particle concentration C at the top of the matrix 

is maintained constant at all times during the simulations. The amount of particles 

needed for the simulations is determined by knowing the voxels’ volume and the 

methane density. Since the KMC matrix requires an area in which the particle 

concentration is constant, a row above the top row of the matrix is added. As this is a 

computational requirement for implementing the KMC model, the properties of this row 

are not taken into consideration when implementing Methods I and II. 

The left and right matrix boundaries are reflective, while the bottom one is open: once 

the particles reach the bottom boundary, they can either exit the matrix or move to other 

neighbouring voxels. Because of the initial configuration selected, the particles on 

average move through the matrix along the vertical direction, from the top to the bottom 

boundary. A counter is used to track the number of particles leaving the matrix from the 

bottom boundary during the simulation. Once a particle leaves the matrix, it is deleted 

from the simulation. Effectively, this particle can be thought of as entering a large empty 

voxel at the bottom of the domain. To set this up in the KMC simulation an ‘absorbing’ 

row is added to the bottom of the matrix. The properties of this absorbing row are not 

used for Methods I and II. 

Table 4. 2: Input parameters used for the permeability simulations for all three methods. 

Parameter Value 

CH4 Temperature (T) 300 K 

CH4 Pressure (P) 10 MPa 

CH4 Concentration (C) 4685.9 mol/m3 

Rock Porosity (𝛉) 10% 
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Rock Tortuosity (𝝉) 2 

Rock volumetric (TOC) 12% 

 

A constant pressure and concentration difference is maintained during the simulation by 

following the protocol described in Chapter 3. To analyse the results, the number of 

particles leaving the domain ∆Q at constant time steps ∆t is monitored. The time step 

selected depends on the configuration used. The slope of the linear fits is used to 

calculate the molecular flux J:  

 
J =

∆Q

∆t A NA
 

(4.16) 

where A is the cross-sectional area available for the particles to leave the matrix. The 

matrix effective permeability (Method III) is calculated using Darcy’s law: 

 
keff = −

J∆x

∆P
 

(4.17) 

where ∆x is the matrix length, disregarding the top and bottom rows, added for 

computational requirements. The pressure drop is obtained by subtracting the pressure 

at the bottom (0 MPa) from the pressure at the top of the matrix (10 MPa). In this study, 

it is assumed that the macroscopic flow follows Darcy’s law, while allowing for Knudsen 

diffusion to occur within voxels containing narrow smooth pores, as described in Eqs. 

(4.12 – 4.15). 

Systems investigated 

4.1.4.1 Model networks to test sensitivity to pore size distribution 

The general consensus is that deterministic methods, such as Methods I and II, provide 

accurate predictions when the properties investigated follow a narrow log-normal 

distribution. Thus, a log-normal distribution (μ, σ2) of pore sizes is considered in this 

study. The distribution’s μ is kept constant (μ = 1.57 on the logarithmic scale), but sigma 
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(σ) varies between 0.1 and 1 (Figure 4.4). While increasing sigma, the proportion of 

micropores (0-2 nm), mesopores (2-50 nm) and macropores (>50 nm)209 changes. Pore 

classification follows IUPAC guidelines.209 

Methods I, II, and III were used to predict the effective medium permeability. For each σ 

value 10 pore networks were generated. Note that this number (10) is selected as it is 

small, and therefore requires reasonable computational resources, but sufficient to 

ensure that the permeability values calculated for the various sigma scenarios have 

confidence intervals that do not overlap, even when 99.9% confidence level is selected. 

Further discussion on the results obtained using this confidence level follows in 

subsection (4.1.5.4).  Because Method III is stochastic, 10 independent KMC simulation 

runs are performed for each pore network. Note that completing one KMC simulation run 

requires significant computing time (several minutes), while deterministic methods 

require only a few seconds on a modern desktop computer. A 10 x 10 matrix was used 

for each sigma value considered and the voxels used to create the matrix had 

dimensions 100 x 100 x 1 nm. Using a 10 x 10 matrix is advantageous considering the 

computational time required for the KMC simulations but can sometimes generate not 

representative networks. To ensure that all networks simulated were representative of 

the PSD selected, the PSD of each potential network were plotted against the target PSD 

and those deviating were rejected. This was a time consuming, but necessary process.  

A stochastic algorithm assigned pore sizes into the matrix voxels, according to the PSD 

selected, and Eq. (4.13) was used to calculate the permeability of each voxel. Since the 

number of stochastic realisations generated is small (10), Monte Carlo (MC) sampling 

was implemented over the PSDs to generate the stochastic realisations, as suggested 

by Naraghi et al.,102 However, to generate a larger number of stochastic realisations, 

more computationally efficient algorithms should be implemented. For example, First-

Order Reliability Approach (FORM) can produce realisations similar to those obtained 

with MC sampling significantly faster.210,211 Another way to produce stochastic 

realisations is via geostatistical simulation, a method widely used in the petroleum 
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industry for characterising heterogeneous reservoirs that allows generation of many 

equally probable realisations which can be post-processed to quantify and assess 

uncertainty. For instance, Karacan et al., implemented sequential Gaussian simulation 

(SGSIM) and sequential Gaussian co-simulation (co-SGSIM) techniques to generate 

stochastic realisations of coal.212 In this study (subsections 4.1.4.1 and 4.1.4.4) a 

previously reported stochastic MC sampling technique was implemented, to generate 

the 2D pore networks102,213,214, but also a stochastic method (Method III) was used to 

simulate the fluid transport of the gas particles (KMC) through the generated pore 

networks. The time step used for the KMC sampling was set at 100 ns. Once all 

simulations were completed, the average of the effective permeabilities was calculated 

〈keff(σ)〉 for each sigma value. These effective permeability values are compared against 

results obtained from Methods I and II. The error bars for KMC calculations were 

calculated using Eq. (4.18):  

 
Error =

STD(keff(σ))

√n
 

(4.18) 

In Eq. (4.18), STD(keff(σ)) is the standard deviation of the values obtained in each 

individual KMC run for a given PSD, and n is the number of observations (10 for the 

simulations previously discussed). 

 

Figure 4. 4: (Left): Log-scale PSDs considered in this study analysis. In all cases the 

distribution’s μ, is 37.15 nm, while sigma ranges between 0.1 and 1. (Right): Example of 

spatial arrangement of the permeability coefficients for sigma=0.1. 
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4.1.4.2 Model networks to test sensitivity to micro- and macropores 

It is commonly accepted that Methods I and II provide satisfactory predictions when the 

proportion of low-permeability pores is low, in general < 50% and the system is 

sufficiently far from the percolation threshold. To assess how the differences among 

predictions obtained by implementing Methods I, II, and III change as the proportion of 

low-permeability pores vary, three pore-networks were generated, in which the volume 

proportion of low-permeability pores is 25%, 50% and 75%, respectively. Note that, as a 

simplification, each voxel is assumed to contain an equal pore volume, and that all the 

pores within a voxel are considered to be of the same size. In other words, each voxel 

represents a region containing only micro-, meso-, or macropores. Each voxel contains 

different numbers of perfectly conducting pores resulting in an equal pore volume per 

voxel. 

The pore networks considered in this subsection are dual-permeability systems, 

generated within two scenarios: (1) a system comprising only micropores and 

mesopores; or (2) a system of mesopores and macropores. The micropores considered 

have a 1 nm diameter, yielding a permeability coefficient of 15 nD (note that the pore 

size determines the permeability; refer to Eq. 4.12). Mesopores and macropores were 

assumed to have diameters of 10 nm and 100 nm, respectively. The correspondent 

permeability coefficients are 0.3 μD and 17 μD and the dual permeability 10 x 10 matrix 

networks consisted of 100 voxels, each with dimensions of 500 x 500 x 1 nm.  

Figure 4.5 shows the networks generated; note that in the pore networks of Figure 4.5 

there is no distribution of pore diameters: there are only three possible values for these 

diameters, capturing micro-, meso- or macropores. Panels a, b, and c show the spatial 

arrangement of the micro- and mesopores for 25%, 50% and 75% micropores, 

respectively; panels d, e, and f show the arrangement of macro- and mesopores. The 

KMC sampling step was 5 ns and 50 ns for systems (1) and (2) respectively. 
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Figure 4. 5: Networks consisting of micro- and mesopores (a-c) and macro- and 

mesopores (d-f). The colour bars show the permeability coefficients assigned, in μD. 

 

4.1.4.3 Model networks to test sensitivity to anisotropic distributions 

Methods I and II are expected to face difficulties in differentiating between isotropic or 

anisotropic distribution of pores within a network, while it is likely that the stochastic KMC 

approach has the ability to differentiate between permeability along different directions 

within an anisotropic network. In shale rock samples, evidence confirms that permeability 

is indeed anisotropic.36 To quantify the sensitivity of the methods considered here to the 

anisotropic distribution of pores, dual-permeability matrices were created, in which the 

proportion of the low and high-permeability voxels is kept constant (25% and 75%, 

respectively), but these components are spatially distributed in four different 

configurations. Figure 4.6 shows that the low-permeability values are aligned (A) 

horizontally; (B) vertically; (C) in a grid; and (D) both horizontally and vertically. The low 

and high-permeability pores are characterised by 15 nD and 0.3 μD permeability 

coefficients, respectively. For each configuration, 3 independent KMC simulation runs 

were conducted. The matrix size used for all four cases was 10 x 10, the voxel 

dimensions were 500 x 500 x 1 nm, and the sampling time step was 5 ns. 
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Figure 4. 6: Dual-permeability networks with different anisotropic distributions. Cases A 

and B exhibit high anisotropy and cases C and D have low and moderate anisotropy. 

The colour bars show permeability coefficients in μD. 

 

The degree of anisotropy of each system was quantified by implementing covariance 

matrix analysis, as described by Ringnér and Bui et al.215,216 The unit cells considered for 

the covariance matrix analysis had periodic boundary conditions in all directions, and 

when the particle crossed a boundary, its new position was equal to the position in the 

unit cell plus the unit cell vector along the direction of the crossing. The initial position of 

the particle was randomised 100 times. The particle was not allowed to start from the 

same initial position more than once. From each initial position 200 independent runs 

were performed; hence, 20,000 independent runs were conducted for each 

configuration. The position of a single particle after 50 ns was obtained and the final 

position of the particle on the x and y direction was plotted against its initial origin.  

Based on obtained trajectories, the covariance matrix was calculated, along with its 

eigenvectors and eigenvalues. The eigenvectors revealed the direction of the principal 

axis while the eigenvalues established the degree of variance for the data in that 

direction. The differences observed in the estimated eigenvalues are indicative of the 

degree of anisotropy. Additionally, the diffusion coefficient in the x and y directions, and 

in the xy plane was calculated by considering a single methane particle, whose trajectory 

was monitored for a total of 5 μs to obtain its MSD. The Dx, Dy and Dxy coefficients were 

calculated using Einstein’s relation, on the basis of the calculated MSDs: 

 
Dx =

1

2
lim
t→∞

〈|xi(t) − xi(0)|
2〉

t
 

(4.19) 
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Dy =

1

2
lim
t→∞

〈|yi(t) − yi(0)|
2〉

t
 

(4.20) 

 
Dxy =

1

4
lim
t→∞

〈|𝐫i(t) − 𝐫i(0)|
2〉

t
 

(4.21) 

where 〈|𝐫i(t) − 𝐫i(0)|
2〉 is the MSD in the xy-plane and 𝐫i(t) = (xi(t), yi(t)). Covariance 

matrix analysis and diffusivity analyses were performed using KMC. 

4.1.4.4 Experimental shale sample 

A realistic pore network was also considered in this study. Naraghi et al.,102 applied 

King’s simplified renormalisation method on the scanning electron microscope (SEM) 

image of an Eagle Ford shale sample, presented in Figure 4.7. Light grey areas 

represent inorganic components, and dark grey represents organic components. 

Naraghi et al.,102 segmented the image and determined the probability distribution of the 

organic block’s size, referred to as “patch size” in their work. The patch size distribution 

is a normal Gaussian distribution with a mean of 5 μm and a sigma of 1 μm. To assign 

permeability coefficients within organic and inorganic components, Naraghi et al., used 

PSD data obtained from Brunauer, Emmett, and Teller (BET) measurements. They 

assumed that organic and inorganic components follow distinct log-normal PSDs and 

reported the distributions’ means and standard deviations. It is assumed that the μ and 

sigma of the distributions, expressed on the log-scale, are 0.63 and 0.18 for the organic 

component, and 1.57 and 0.44 for the inorganic matter, respectively. These values are 

slightly different compared to those reported by Naraghi et al., but produce PSDs that 

closely match those reported by the authors. Naraghi et al., first generated a model pore 

network by assigning organic and inorganic components and then distributed pore sizes 

within the two components, while sampling from the appropriate distribution. The 

permeability coefficients were calculated using Eq. (4.13), and the effective network 

permeability was estimated using Method II. 
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Figure 4. 7: SEM image of an Eagle Ford sample, reproduced from Naraghi et al.102 Dark 

grey regions correspond to organic matter and light grey to inorganic. 

 

The experimental SEM image, presented in Figure 4.7, was used to calculate the 

effective matrix permeability using Methods I, II, and III, but to also generate additional 

equivalent networks. Following the approach by Naraghi et al., organic patches were 

distributed within the inorganic matter to generate the matrix for the 2D KMC model. The 

volumetric TOC was used to condition the total amount of organic pores assigned within 

the matrix and the pore sizes within the organic and inorganic matter were assigned 

according to the reported distribution properties. In this study, the effective matrix 

permeability of the organic and inorganic matter was separately calculated to reduce the 

computational load of the KMC simulations; similar calculations were not necessary 

using Model I and II.  

To calculate the effective organic and inorganic permeability, 10 matrices consisting of 

10 x 10 voxels in each case were generated, with voxel dimensions of 20 x 20 x 1 nm 

and 350 x 350 x 1 nm for the organic and inorganic matter, respectively. The effective 

permeability mean and error bars from all three methods for both components were 

calculated and then these ‘effective’ organic and inorganic permeability values were used 

to construct the dual permeability network, which represents the rock of Figure 4.7. To 
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calculate the permeability of the dual permeability network, a 15 x 15 matrix consisting 

of 1 μm x 1 μm x 1 nm voxels was considered. 

To consistently compare Methods I, II, and III to calculate the network’s effective 

permeability, the organic and inorganic permeabilities obtained from the previous step 

were used as input. The KMC sampling time step was 1 ns for all calculations (organic, 

inorganic, dual-permeability), and 10 independent KMC runs were performed for each 

dual-permeability configuration. Using the KMC method, the confidence interval of the 

results obtained was also calculated, for 99.9% confidence level, to ensure that using 10 

stochastic realisations for the organic, inorganic and network permeability provides 

enough statistics to draw meaningful conclusions, especially when the KMC data are 

compared against experiments. 

 

Results and discussion 

Validation of the branching algorithm 

At each step of the KMC simulation, an event is selected and executed, resulting in the 

occupancy at each voxel changing while the simulation progresses; therefore, the 

propensities need to be updated over time (propensity is defined as the product of the 

KMC rate and occupancy at each voxel). For the classic KMC algorithm description 

(linear event selection), after each event execution, the list of all propensities is scanned 

and updated; however, because only one particle transitions at each simulation step for 

our protocol, not all propensities change after the execution of an event. The branching 

algorithm implemented in this study, identifies which voxels are affected by the event 

being executed, and it updates only the propensities associated with these voxels. For 

systems consisting of many voxels (>50), implementing the branching algorithm results 

in significant computational savings. To test and validate the branching algorithm 



KMC algorithm extension to 2D; Studies in synthetic pore networks and shale samples 

119 

implemented in the 2D KMC model, a 100×100 2D uniform lattice with the permeability 

0.1 μD was generated. 

Using the same sequence of random numbers, the KMC algorithm was executed twice. 

The first time the selection of transition events taking place at each time follows the linear 

selection algorithm (this approach is mentioned as “classic algorithm”) and the second 

time, the branching algorithm was implemented. As a next step, the ID of the event 

selected in both cases is reported and the events selected from each selection algorithm 

are compared against each other to determine if the event selected is the same in both 

simulations. A value of “0” is assigned when there is agreement between the two 

algorithms and a value of “1” whenever a different event is being selected; Figure 4.8 

shows the values assigned over time. It is evident that for the 3,000 events sampled, 

there was always agreement between the events selected using the two different 

algorithms. 

 

Figure 4. 8: Validation of the branching algorithm. When the value=0, there is agreement 

between the two algorithms implemented in terms of the event selected at each time. 

 

To quantify the computational savings achieved by implementing the branching 

algorithm vs. the classic one, the CPU time necessary for each algorithm, to identify and 

execute the event at each step, was monitored. Figure 4.9 shows the CPU time 
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necessary for the branching algorithm in purple. Evidently, the computational demand is 

smaller compared to the CPU time necessary using the linear search algorithm (classic 

approach). 

 

Figure 4. 9: Computational savings when implementing the branching algorithm in a 

100×100 lattice. 

 

Calculation of the permeability coefficient from diffusivity 

To validate Eq. (4.11), a 2D homogeneous lattice was generated and a fixed permeability 

value (target permeability) was set. The system was not periodic; instead, the bottom 

boundary was maintained open, and the particles were initially loaded at the top of the 

matrix. Once they reached the bottom, the particles could exit the lattice by being 

“deleted” from the system. The particle concentration at the top boundary was kept 

constant during simulations. With this simulation setup, a pressure differential (high 

pressure at the top, zero pressure at the bottom) that acted as a driving force for the 

particles’ motion, was created. The number of particles exiting the lattice over time was 

monitored, allowing for the calculation of the molecular flux J. From J, using Eq. (4.17), 

the effective matrix permeability was calculated. Note that for Eq. (4.11) to stand true, 

Eq. (4.17) needs also to be valid and vice versa.  
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The sampling time step depends on the diffusivity and the lattice size. The appropriate 

sampling step for the systems considered in this study, is determined following a trial 

and error approach, as discussed in Chapter 2. However, for the systems analysed in 

this chapter, the appropriate sampling step needs to also result in a linear relationship 

between particles leaving the lattice and total time. Since molecules are loaded at the 

top of the matrix, time is required for them to diffuse, reach the bottom boundary, and 

eventually leave the matrix. If the total time of the simulation is too short, it is possible 

that zero molecules have left the matrix and the flux calculated is zero. As the total 

simulation time increases, the flux increases in a non-linear manner, until steady state is 

reached. This is when the observed relationship between the number of particles leaving 

the system and time is linear. As a consequence, the sampling frequency needs to 

account for this delay. The ideal scenario is to use two different sampling schemes, one 

prior- and one post- steady state. However, determining the exact time steady state is 

reached, while the simulation is in progress, can be tricky. In this study, a constant 

sampling step was implemented for all systems investigated. The selected time step 

resulted in (1) a linear flux curve and (2) kept the number of total samples collected to a 

minimum, since oversampling, as discussed in Chapter 2, results is unnecessary 

computational burden. 

The permeability calculated using the KMC approach is compared against the 

permeability set up initially (target) as well as the permeability predicted using the EMT 

and the simplified renormalisation methods. The target permeability calculated using 

either one of the two deterministic methods implemented was always identical to the 

target permeability imposed; Figure 4.10 (panel A) shows the outcome for the KMC 

simulations, and the KMC lattice used for the validation of Eq. (4.11) (panel B). The same 

process was repeated using 10 different target permeability values. At each round of 

simulations, the target permeability was decreased by 10% of the original value, see 

Table 4.3 for further details. 
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Figure 4. 10: A) comparison between the target permeability used as an input for the 

calculation of the KMC rates and the calculated effective matrix permeability at the end 

of the simulations. The results provide the validation of the proposed process. B) 

representation of the KMC lattice used for the validation process. The colour bar 

indicates the number of particles for the initial configuration. 

 

 

 

 

 

 

 

Table 4. 3: List of the target permeability coefficients used as an input during our 

validation process. 

Multiplier Target Permeability (m2) 

1 1.00E-12 

0.9 9.00E-13 

0.8 8.00E-13 

0.7 7.00E-13 

0.6 6.00E-13 

0.5 5.00E-13 

0.4 4.00E-13 

0.3 3.00E-13 

0.2 2.00E-13 

0.1 1.00E-13 

 

Pore size distribution effects 
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Figure 4.4 shows that for the PSDs considered, in which the mean was kept constant, 

as sigma increased, the amount of both micro- and macropores present in the sample 

increased. The proportion of the micro-, meso- and macropores for the different sigma 

values was monitored, and the effective matrix permeability for each distribution using 

Methods I, II, and III was computed. Figure 4.11 shows the results; A) shows the absolute 

results from the three approaches, in terms of matrix effective permeability; B) shows the 

percent deviation of the deterministic Models I and II compared to the stochastic 

calculation (Model III); and C) shows the analysis of the PSD in terms of % structural 

composition due to micro-, meso-, and macropores.  

 

Figure 4. 11: (A) Comparison of the three methods used in this study as a function of the 

distribution’s sigma; KMC error bars are estimated to be smaller than the size of the 

marker. (B) Percent deviation of the deterministic models compared to the stochastic 

calculation. (C) Percent of volume comprised of micro-, meso- and macropores in each 

system shown in (A). Lines in (A) and (B) are guides to the eye. The matrices simulated 

here are isotropic with PSDs shown in Figure 4.4. 
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When sigma ranged between 0.1 and 0.2, the majority of the pore volume consisted of 

mesopores, yielding an isotropic network with a high proportion of low-permeability pore 

volume (only macropores are considered to be high-permeability pores in our analysis). 

Both deterministic methods overestimated the effective network permeability, compared 

to the KMC. This result agrees with expectations based on literature, because the high-

permeability component (macropores) represents a low fraction of the respective pore 

networks, and the deterministic Models I and II are expected to over-estimate the 

contribution of high-permeability pores under the conditions tested. 

When sigma ranged between 0.3 and 0.4, there was good agreement among all three 

methods. Figure 4.11 – C shows that the volume fraction of macropores in the samples 

continuously increased as sigma increased; for sigma greater than 0.4, such pores 

accounted for the majority of pore volume in the system. At these conditions, the 

deterministic methods are expected to be accurate, and indeed the results obtained 

show small deviations compared to predictions based on the stochastic KMC approach, 

reinforcing these observations reinforce our hypothesis that the stochastic KMC method 

can yield accurate predictions for effective medium permeability. 

When sigma=0.5, the pore network still contained only meso- and macropores; however, 

there were 1% fewer mesopores (by volume) and 1% more macropores compared to the 

network characterised by sigma=0.4. In this scenario, the results obtained demonstrate 

that Method I (EMT) significantly over-estimated the permeability, compared to both 

Methods II and Method III, suggesting that the EMT approach is highly sensitive to the 

presence of high-permeability components. Further, both Methods II and III predicted 

increases in effective permeability because of the increased amount of macropores in 

the system, but the effect was moderate. 

When sigma ranged from 0.6 to 1.0, the pore networks contained significant amounts of 

micro-, meso- and macropores. For sigma=0.6, micropores accounted for 1% (by 
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volume) of the pores in the network and macropores for 52% (by volume). Method I 

predicted rapid increases in the effective permeability as sigma increased, which 

increasingly diverged from the KMC predictions, confirming the high sensitivity of EMT 

to high-permeability pores in the network. Method II yielded effective permeability 

predictions that were lower compared to those obtained by the KMC algorithm. It was 

actually observed that for PSDs with sigma larger than 0.3, Method III (KMC) predicted 

an effective permeability between those predicted by Method I and by Method II. This is 

due to the EMT’s sensitivity to macropores and to the zero cross-flow assumption implicit 

in Eqs. (4.5 – 4.7), which describe Method II.  

For distributions with sigma between 0.7 and 1, the volume fraction of mesopores 

dropped, while the volume fraction of micro- and macropores increased. The EMT 

continued to predict very high effective matrix permeability, while the simplified 

renormalisation (Method II) yielded a permeability lower than that obtained using Method 

III. The effective permeability predicted by Method I was up to ~10 times larger than that 

predicted by Method II, based on this case study. Even though the volume of micropores 

present in the network increased when sigma was larger than 0.7, both Methods II and 

III predicted an increased permeability as sigma increased. This is because, as the 

distributions of the pores in the networks became broader the generated networks 

contained larger macropore volumes as well. 

Uncertainty and confidence intervals 

To calculate the confidence interval of the mean in the KMC stochastic simulations Eq. 

(4.22) was implemented: 

 〈x〉 ± z
s

√n
 (4.22) 

In Eq. (4.22), 〈x〉 is the mean value obtained from averaging the KMC simulation data, z 

is the confidence coefficient, s is the standard deviation and n is the sample size. For 

confidence intervals with 99.9% confidence level, the confidence coefficient value is 
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4.1437. Because the number of independent stochastic simulations performed for each 

realisation in subsection 4.1.5.3 is small (10), to calculate the value of s the standard 

deviation of the population was used (instead of the standard deviation of the sample).  

Figure 4.12 shows the results obtained using the KMC model for the network described 

in subsection 4.1.4.1 when the sigma value of the PSD is 0.1. Using a Monte Carlo 

sampling method, 10 stochastic realisations of equiprobable networks were generated. 

For each stochastic realisation, 10 independent KMC runs were performed. The x-axis 

shows the ID of the stochastic realisation and the y-axis the mean value of the 

permeability calculated through the 10 independent KMC runs. The error bars indicate 

the confidence interval for 99.9% confidence level for each stochastic realisation. 

 

Figure 4. 12: Mean and confidence intervals of 10 independent KMC runs for each 

stochastic realisation. The network (Section 3.1) has log-normal PSD with μ=37.15 nm 

and sigma=0.1. 

 

Figure 4.12 shows that all confidence intervals overlap. Therefore, calculating the mean 

permeability using 10 stochastic realisations provides reliable and reproducible 

estimates. However, it is expected that as the sigma value increases and the PSDs 

become broader, the variability/heterogeneity of the systems increases. To test whether 
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using 10 realisations can still capture the heterogeneity of the networks generated, the 

same analysis was performed for all 10 networks mentioned in subsection 4.1.4.1.  

The mean permeability calculated from all 10 stochastic realisations was computed for 

each sigma value together with the confidence intervals, using Eq. (4.22) and 99.9% 

confidence level. The results are presented in Figure 4.13. As expected, all different 

sigma values result in different effective permeability values. Although, the confidence 

intervals increase slightly, as the PSDs become broader, they still remain narrow giving 

acceptable estimates for every sigma value with no overlaps between the various 

networks with 99.9% confidence intervals. Therefore, the risk of the mean permeability 

values presented laying outside of the confidence intervals (Type I error) is ≤ 0.1%. 

 

Figure 4. 13: Mean permeability values calculated using the KMC method for the 

networks described in subsection 4.1.4.1. The error bars represent the confidence 

intervals for 99.9% confidence level. 

 

Micro- vs. macropore effects 

The preceding investigation exhibits the sensitivity of the EMT on macropores. To 

quantify the methods’ sensitivity on micropores, a sensitivity analysis was performed for 

all three methods, using dual-permeability networks consisting of micro- and mesopores, 

and meso- and macropores, respectively (Figure 4.5). The results obtained are reported 
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in Figure 4.14, in which A) and B) depict the effect of micro- and macropores to the 

effective matrix permeability, respectively. 

Initially, the effect of micropores was quantified, Figure 4.14 – panel A. When 25% of the 

pore volume was micropores and the rest were mesopores, KMC and EMT methods 

yielded effective permeabilities in excellent agreement with each other. This is expected, 

considering the amount of the relatively low-permeability component is low for these 

networks. It is perhaps surprising that Method II underestimated the effective matrix 

permeability by almost half. This is due to the assumption of zero cross-flow, which likely 

does not hold when the pore network of Figure 4.5 – a, is considered, coupled with a 

pressure difference imposed along the top-bottom direction. 

When the proportion of micropores volume increased from 25% to 50%, the network’s 

connectivity was effectively reduced. As a result, the zero cross-flow assumption became 

acceptable, and Model II predicted an effective permeability that agreed well with what 

KMC predicted. All models yielded effective permeability values that were lower than 

those for the matrix with 25% micropores volume, which is expected. The fact that 

Methods II and III yielded predictions in excellent agreement with each other suggests 

that the KMC approach provides realistic estimates of the matrix permeability, since the 

network of interest had poor connectivity in the direction of flow. It is not surprising that 

Method I (EMT) over-estimated the effective permeability compared to the other two 

approaches, as EMT fails when the system is close to the percolation threshold. When 

the micropores account for 75% of the pores in the sample, by volume, Fig. 4.5 – c, both 

deterministic Methods I and II overestimated the effective matrix permeability. 
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Figure 4. 14: Sensitivity analysis on the pore type in dual-permeability networks (Figure 

4.5) with varying component % volume amount; (A) shows results for the network 

consisting of micro- and mesopores; (B) for the network with meso- and macropores.  

 

Considering the effect of macropores (Figure 4.5, d – f, pore networks), the results 

(Figure 4.14 – panel B) suggest that there is a satisfactory agreement between the 

predictions by Methods III (KMC) and II (simplified renormalisation) for most of the cases. 

When 75% of the pore volume was macropores, in the dual permeability network (Figure 

4.5 – panel d), both deterministic methods were highly sensitive to the presence of high-

permeability pores, with Method I (EMT) significantly overestimating the effective 

permeability. The sensitivity of EMT to high-permeability coefficients was further 

evidenced by the extent of the over-prediction. When the % volume content of 

macropores was equal to that of mesopores, (Figure 4.5 – panel e), the EMT method 

overestimated the permeability, while Methods II and III were in satisfactory agreement. 

More specifically, the KMC’s prediction lies between the two analytical methods, 

validating the previous observation for sigma 0.5 where the % of meso- and macropores 

was almost equivalent. The gap between the predictions of the EMT and the two other 

methods became smaller as the % of high-permeability components decreased. For 25% 

macropores (Figure 4.5 – panel f), the deterministic methods provided a slightly 

overestimated value for the matrix’s permeability. In that case, the KMC’s prediction was 

lower because the 25% of macropores present in the system were not well connected. 
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The same behaviour was observed for the case of 25% micro- and 75% mesopores, 

where the deterministic methods predicted values almost identical, but higher than the 

KMC’s estimation, validating the reliability of the KMC methodology, as it accounts for 

the network’s connectivity. 

Anisotropy effects 

The networks considered for the previous analysis probe the sensitivity of the three 

methods to micro- and macropores. In all pore networks considered so far (Figure 4.5) 

pore sizes were distributed uniformly within the networks. To quantify the effect of 

anisotropic distribution of the pores, dual-permeability networks containing 25% volume 

micropores and 75% volume mesopores were considered. Four configurations were 

generated (Figure 4.6 Cases A – D) and in all of them, the flow direction was along the 

y-axis. The effective matrix permeability using Methods I, II, and III was calculated, and 

Figure 4.15 shows the results. 

To further assess the effect of anisotropic pore distribution, the diffusion coefficient of a 

particle representing a single methane molecule along the x and y directions was 

calculated, as well as its 2D diffusion coefficient in the xy plane (results in Figure 4.15). 

Figure 4.16 presents covariance matrix analysis results to test whether diffusion 

coefficients and measures of anisotropy can provide insights for the network’s effective 

permeability. 

The results in Figure 4.15 show that Method I (EMT) did not capture the anisotropic 

distribution of the pores within the network. This is expected, considering that EMT 

neglects the network structure. Method II (simplified renormalisation) exhibited some 

effects, because of the connectivity of the pores in the network, but the predicted 

changes in the effective medium permeability can be considered negligible. These 

observations are in stark contrast with the results obtained by the stochastic Method III 

(KMC), whose results exhibited high sensitivity to the anisotropic distribution of the pores. 
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The enhanced reliability of Method III is because KMC allows fluid transport to occur 

along both x and y directions. 

 

 

Figure 4. 15: Effective matrix permeability calculation using the three methods for 

networks with varying anisotropy (left) and diffusivity analysis in the x and y directions 

and the xy plane (right). 

 

 

Figure 4. 16: Covariance matrix analysis of the anisotropic networks. Black x-axis shows 

the first principal component and the black y-axis the second. The purple arrows are 

vectors showing the preferential diffusion direction. 

 

For the Figure 4.6 – Case B pore network, the voxels containing the micropores were 

aligned in the y direction, resulting in Method II predicting lower permeability than that 

predicted by Method III. For the KMC simulation, the vertical bars formed by voxels 

containing micropores added a kinetic barrier to the system, resulting in the fluid 

molecules diffusing through the network and physically “avoiding” the low-permeability 

pathways. Because the micropores were aligned along the flow direction, the fluid 

molecules were not forced to pass through them, as opposed to the situation represented 
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by the network presented in Case A where Methods II and III predicted similar 

permeability. Further, the results obtained demonstrate that Methods I and III are in good 

agreement for Case C, which is expected, because the pore network considered in this 

representation is homogeneous. The lowest matrix permeability predicted with the KMC 

approach corresponds to the Case D network in Figure 4.6. For this system, both x and 

y directions exhibited anisotropy; however, 2% by volume of mesopores were 

surrounded by micropores, and therefore contributed little to the matrix effective 

permeability. While KMC was able to account for this effect, both Methods I and II failed 

to do so. 

According to the diffusion coefficient calculated on the xy plane (see right panel of Figure 

4.15), the following trend was observed, exhibiting the diffusivity in descending order: 

Case B > C > D > A. For the diffusion coefficient calculated along the y direction, the 

same trend was observed. The effective matrix permeability calculated by the KMC 

method agrees with this order; however, note that considering the diffusion coefficients 

alone can lead to false predictions. For instance, the bars corresponding to Cases C and 

D in Figure 4.15, right, were similar; however, the corresponding KMC-predicted matrix 

permeability significantly varied because of the isolated mesopores identified in Case D. 

Covariance matrix analysis was unable to capture this difference, as can be seen in 

Figure 4.16. The results for Cases A and B highlight the anisotropy on the x and y 

direction, respectively, while Cases C and D resemble almost isotropic patterns. These 

observations were confirmed by the molecular trajectories and the % of difference for 

eigenvalues (Figure 4.16) calculated to be 51%, 64%, 16% and 13% for cases A, B, C, 

and D, respectively. It is evident that both diffusivity coefficients and covariance matrix 

analysis are not able to predict the low network connectivity represented by Case D. 

Finally, it should be pointed out that predictions obtained by Methods I and II could be 

improved, especially for the case of anisotropic networks, by implementing formulations 

of Methods I and II specifically derived to model anisotropic systems. For example, the 

Smooth Field Approximation could be applied to enable the EMT to account for the 
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concentration difference imposed.72,206 Further developments have been proposed to 

modify Methods I and II and enable them to predict the properties of anisotropic 

networks.217–220 Implementing these approaches is beyond the scope of this work, which 

is to quantify the deviations of Methods I and II when applying them to heterogeneous 

and/or anisotropic pore networks, against the stochastic approach. It should be 

acknowledged that while in the networks considered here anisotropic features were 

introduced by design; in realistic networks it is not always possible to understand whether 

the pore networks are heterogeneous or anisotropic, because often only 2D 

visualisations such as those of Figure 4.7 are available.221 Under such circumstances, 

deciding whether to implement deterministic approaches becomes complex. Because 

the results obtained are expected to be more likely applicable to practitioners, Methods 

I and II were implemented in their original formulation, with understanding that existing 

and more appropriate deterministic models could be applied to better capture the 

anisotropy and heterogeneity of the investigated systems. 

Permeability estimation for a shale sample 

The insights obtained in terms of the reliability of deterministic and stochastic methods 

are focused on model problems and well-defined networks; hence, realistic networks 

need to be examined in order to assess the applicability of the three methods to samples 

of industrial interest, which consist of an organic and inorganic constituent randomly 

configured. To obtain the effective organic, inorganic, and matrix permeability the 

methodology described in subsection 4.1.4.4 was followed. 

Figure 4.17 shows a sample of the organic (left), inorganic (middle), and matrix networks 

(right) generated stochastically. The left panel shows the permeability distribution within 

the organic matter, middle shows permeabilities assigned with the inorganic matter, and 

right reports a matrix network considered. For the latter dual-permeability network, the 

orange blocks represent organic matter and the purple ones the inorganic pores. 
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Tables 4.4 and 4.5 show the permeability prediction results obtained and the 

experimental data for the Eagle Ford formation. Note that the experimental permeability 

strongly depends on the conditions selected (temperature and pressure).  

 

Figure 4. 17: Example of the permeability distribution within the organic matter (left), 

permeability distribution of the inorganic matter (middle) and the distribution of organic 

matter in the inorganic matrix (right). The colour bars represent permeability coefficients 

in μD. 

 

Table 4. 4: Permeability calculation of the organic and inorganic matter, and the effective 

network permeability using EMT, simplified renormalisation and KMC methods. Error 

bars for matrix permeability calculation for Methods I and II are based on the minimum, 

maximum and average permeability using Eq. (4.18). The uncertainty assigned to the 

KMC calculation represents the confidence interval (99.9%). 

Methods Organic Inorganic Matrix 

EMT 0.05±0.01 μD 2.5±0.13 μD 1.46±0.03 μD 

Simplified renormalisation 0.05±0.01 μD 1.43±0.07 μD 0.38±0.02 μD 

KMC 0.08±0.02 μD 1.56±0.35 μD 1.11±0.15 μD 

Experiments N/A N/A 0.1-0.6 μD50,222,223 

 

As expected from the previous observations for broad log-normal PSDs (Figure 4.11), 

EMT over-estimated the permeability for the inorganic constituent compared to both 

Methods II and III. However, for the organic component, all three methods agree, 

because the PSD is narrow. For the matrix permeability, the EMT predicts the largest 
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permeability, simplified renormalisation predicts the smallest, and KMC predicts a value 

that lies between those from the two deterministic methods. 

The matrix permeability predicted is compared against the values reported by Naraghi 

et al.,102 for the same SEM image. Using Method II with 40 stochastic configurations, 

those authors predicted the permeability to be 0.28 μD; implementing the same 

approach, an effective matrix permeability of 0.38 μD was calculated instead. The 

difference might be because of the slightly higher mean values (μ) assumed in for the 

organic and inorganic PSDs in this study, the reduced number of configurations 

considered, or the methodology followed to calculate separately effective organic and 

inorganic permeability before characterising the dual-permeability network. However, the 

two predictions can be considered proximate. 

More importantly, the predicted matrix permeability is compared against experimental 

data. While varying the confining stress applied to an Eagle Ford plug sample, Peng and 

Locks measured permeabilities between 0.1 and 0.6 μD;223 other experimental 

studies50,222 report values within the same range. The effective matrix permeability 

predicted using Method I was significantly larger than these values, while Method II 

yielded a reasonable estimate (0.38±0.02 μD). For the networks considered for Figure 

4.17 (right), the KMC prediction deviated substantially from experimental data and 

multiple reasons could explain this. For instance, in the model implemented, the rock 

porosity was considered constant (10%) over the 10-network ensemble, while, in reality, 

this is a variable quantity and is generally less than 10%. Adsorption phenomena were 

not considered, but only Knudsen diffusivity was accounted for. The analysis performed 

is based on a single SEM image, which exhibits low anisotropy. It is possible that the 

sample used for the experiments was anisotropic, while only an average permeability 

value was reported.36 Because the KMC approach is affected by assumptions made 

about network connectivity and anisotropy, these simplifications might have affected the 

KMC predictions.  
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Further, it is possible that the deviation between KMC predictions and experimental data 

is because of the underlying assumption about the pore networks. So far, the assumption 

that the narrow pores (1-10 nm) in the shale sample correspond to organic matter 

micropores was followed, attributing the larger pores to the inorganic matter. This 

assumption might not be realistic; actually, recent absorption studies on clays 

demonstrate that the inorganic constituent comprises pore sizes of 1 to 10 nm.224 Loucks 

et al.,225 reported that organic matter particles generally range between 5 and 75 nm in 

length. Taking these observations under consideration, the permeability coefficients in 

Table 4.4 were used, as calculated by the KMC method, to generate networks where the 

organic matter is the high-permeability component (1.56 μD), and the inorganic matter 

the low-permeability one (0.08 μD). The effective matrix permeability calculated from 10 

independent stochastic simulation runs using 10 different configurations with the KMC 

method yielded an effective matrix permeability of 0.36 μD with a confidence interval of 

±0.15 μD (Table 4.5). This falls within the experimental range of permeability reported, 

suggesting that the stochastic KMC approach could be a viable option for predicting 

permeability of shale rock samples. It is expected, however, that 3D representations of 

the model will be much more reliable. For completeness note that Table 4.5 shows that 

Methods I and II also predict permeability values that are consistent with the 

experimental observations. This is not unexpected, considering that Figure 4.7 suggests 

that the shale sample considered here is rather isotropic. A more stringent discrimination 

among the three methods could be attained when data for an anisotropic sample are 

available. Moreover, the results obtained show that despite the heterogeneity of the 

systems (organic, inorganic, dual-permeability network) using 10 realisations for the 

KMC model can provide effective network permeability with confidence intervals that is 

within the range of the experimental data, when the organic matter is considered to be 

the high-permeability component. 
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Table 4. 5: Permeability calculation of the organic and inorganic matter, and the effective 

network permeability using EMT, simplified renormalisation and KMC methods. The 

organic matter is the high-permeability component. The uncertainty assigned to the KMC 

calculation represents the confidence interval (99.9%). 

Methods Organic Inorganic Matrix 

EMT 2.5±0.13 μD 0.05±0.01 μD 0.29±0.02 μD 

Simplified renormalisation 1.43±0.07 μD 0.05±0.01 μD 0.15±0.01 μD 

KMC 1.56±0.35 μD 0.08±0.02 μD 0.36±0.15 μD 

Experiments N/A N/A 0.1-0.6 μD 50,222,223 
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A Kinetic Monte Carlo study to investigate the effective permeability and 

conductivity of microfractures within unconventional reservoirs – Part II 

Abstract 

Estimating the effective permeability and microfracture (MF) conductivity for 

unconventional reservoirs can be challenging and Part II of this chapter investigates the 

potential of the stochastic approach to provide a possible solution. The KMC method, 

used to estimate the matrix permeability of a shale sample in Part I, is now implemented 

to evaluate the unpropped and propped MF conductivities during laboratory testing.  

During those experimental procedures, MFs were propped with ultrafine particles 

(UFPs). KMC simulations form the basis of the method used to estimate effective 

permeability of the system. The KMC approach is used to evaluate the effect of various 

parameters influencing the conductivity of laboratory-created MFs. The case studies 

considered investigate the conductivity improvement of a manmade MF as a function of 

the MF width, the UFP (proppant) concentration, and the leakoff area widths. The leakoff 

area is due to the UFP flow perpendicular into a secondary or adjacent MF zone (2nd MF) 

penetrating the face of an opened MF during flow testing under stress. For the laboratory-

prepared non-propped and propped MF samples, the effective MF width was determined 

to have the greatest effect on the MF conductivity, which increased by two orders of 

magnitude in the presence of the UFPs. The remaining two factors—proppant 

concentration and length of 2nd MFs—helped improve the effective MF conductivity in a 

linear manner. Insights obtained from this study can be used to optimise fracturing 

designs by including UFPs and to create strategies for maximising hydrocarbon recovery 

during development of unconventional resources where MFs are opened during 

stimulation treatments. 
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Introduction 

Unconventional resource plays, particularly resource shales, development has grown 

significantly during the previous ten years. Although production from shale gas began in 

the 1820s60, the interest and scale of investment has only increased substantially during 

the previous decade. The US Energy Information Administration (EIA) estimates that 

during 2017, approximately 16.86 trillion cubic feet (Tcf) of dry natural gas was produced 

from shale resources within the US, which was approximately 62% of the total US dry 

natural gas production, while approximately 4.67 million barrels of crude oil per day 

(BOPD) were produced directly from shale (tight) oil resources within the US, which was 

approximately 50% of the US crude oil production.7 This production increase has been 

fuelled using horizontal well drilling and hydraulic fracturing. Compared to conventional 

reservoirs, unconventional reservoirs are typically characterised as highly anisotropic, 

heterogeneous, and highly laminated, having ultralow permeability, and containing 

varying quantities of natural fractures.226,227 Taking advantage of these resources despite 

these challenges, increasing the fracture-to-shale contact area, referred to as “fracture 

complexity”, is essential for successful developments of unconventional reservoirs.60 

Fracture complexity results from interactions of hydraulic fractures with natural fractures, 

MFs, bedding planes, faults, and pre-existing planes of weakness within the rock matrix. 

Characterising natural fractures, MFs, and planes of weakness can often be extremely 

difficult, considering their heterogeneity.228 Natural fractures can be closed or 

mineralised – plugged, can provide planes of weakness, and are rarely productive until 

opened and connected with a hydraulic fracture.60 When opened and connected, Gale229 

observed that flow through natural fractures at higher stress levels is much larger than 

through induced fractures because natural fractures tend to be much stiffer than induced 

fractures. Therefore, creating, exploiting, and accessing these complex fracture systems 

could potentially be the difference between an economic and uneconomic well. 

To take advantage of fracture complexity, it is important to understand the distribution 

and characteristics of the natural fractures, MFs, faults, and bedding planes and how 
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they affect the overall effective permeability of the reservoir. Studies demonstrate that 

these natural fractures and induced MFs vary in widths from as little as 1 to approximately 

10 microns and lengths between 10 and 250 microns.96,230,231 Many natural fractures and 

MFs are left unpropped, due to their size, which is undesirable. This challenge caused 

the development of the UFPs  implemented in this study, developed to access the 

MFs.232 These UFPs have sufficient mobility to access the MFs without bridging or 

settling out and sufficient strength to withstand high-closure stresses. Calvin et 

al.,227,233,234 and Nguyen et al.,235 documented successfully the use of the developed 

UFPs in field applications. 

During a field study, 11 wells were treated from three different drilling pads where direct 

offset wells on each pad were used for comparison.236 Figure 4.18 shows the normalised 

cumulative production observed in this study, comparing wells treated with and without 

UFPs. For this example, only a small quantity of UFPs was included at the pad fluid 

segment of each fracturing stage, yet the results demonstrate a marked improvement 

with cumulative production. The change in character between the gas and oil cumulative 

production curves was a result of condensate dropout, as this was a retrograde 

condensate reservoir.232 Changes in relative permeability because of condensate 

dropout caused the flattening of the condensate cumulative production, but a significant 

increase for total condensate cumulative production between the wells treated and not 

treated with UFPs is the result of significantly more exposed fracture surface area 

resulting from the UFPs. 
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Figure 4. 18: Results of UFPs within the condensate portion of the Barnett Shale field 

that exhibit normalised cumulative production for an 11 well program on three pads using 

direct offset wells for comparison; UFPs were used for 5 of the 11 wells. Reproduced by 

Dahl et al.236 

 

A production history match was performed on two direct offset wells: one with and one 

without UFPs. A comprehensive earth model was created within this region, making it 

possible to map reservoir quality and create probable distributions of natural fractures 

based upon image logs run and interpreted for each horizontal well within the region. 

This information was used to create a fully compositional reservoir simulator with 

unstructured gridding to perform production history matches (see Figure 4.19). For this 

case, a good history match was achieved on these two wells by simply including the 

natural fractures within the well where UFPs were used and not including conductive 

natural fractures within the well where UFPs were not used. The additional increase for 

the UFP well is attributed to using UFPs compared to the well without UFPs.232 
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Figure 4. 19: Reservoir setup for production history matching and analysis for two direct 

offset wells: Well 9 with UFPs and conductive natural fractures and Well 10 with no UFPs 

and no conductive natural fractures. (Left) unstructured gridding used for the simulation; 

(right) pressure distribution within the reservoir after 242 days. Reproduced by Dahl et 

al.236 

 

From the promising field result observed, it was theorised that additional work was 

essential to understand natural fractures and MFs and the effect of UFPs on the 

conductivity of natural fractures and MFs. This study presents a method for estimating 

the effective permeability and MF conductivity in unconventional reservoirs using the 

developed 2D KMC model, described in Part I of this chapter. Fluid transport is a three-

dimensional (3D) process; however, for computational efficiency purposes, the 3D space 

is often assumed to be a collection of identical two-dimensional (2D) slices, and this 

implementation is followed in this work.  

Materials and methods 

To estimate the permeability and conductivity of MFs, the workflow was divided into two 

complimentary parts: laboratory and modelling work. The laboratory work, performed by 

Halliburton’s flow enhancement team, consisted of performing a series of tests to 



KMC algorithm extension to 2D; Studies in synthetic pore networks and shale samples 

143 

determine the effects of UFPs on the conductivity of MFs. Concurrently, the modelling 

work, performed by me, focused on developing a model to estimate the permeability of 

systems containing propped or unpropped MFs. Results from the laboratory work were 

used to validate the computational model and evaluate the effect of various parameters 

on the effective permeability and conductivity of the MFs. 

Laboratory sample preparation 

Outcrop samples from Eagle Ford and Marcellus formations were used by preparing 1 

in. diameter cores for the laboratory experiments. The cores were cut into a 2 in. length 

sample and then cut lengthwise into two halves using a saw and oil to replicate a MF. 

(Saw and oil were used to reduce variability for surface asperities and to help prevent 

damage to the core from water exposure while cutting the core.) After splitting the core, 

the two halves were realigned along their axial edges to help ensure perfect alignment 

with the small saw mark grooves formed during processing, and a perfluoro-alkoxy 

polymer resin tape around the core reinforced their placement. The core halves were 

properly labelled to indicate top and bottom as well as left and right. 

After sample preparation, the (unstimulated) core was installed into the conductivity 

measurement core system to determine the initial conductivity of the crack between the 

reassembled core halves. The closure (confining or annular) pressure on the core was 

slowly increased from 1,000 to 2,000 psi and then by 2,000-psi increments until 8,000 psi 

was reached (outlet backpressure was set to 500 psi). Conductivity or effective 

permeability measurements were determined at each confining pressure using an 

aqueous solution of a 1-gal/1,000-gal clay control additive, and all initial conductivity 

measurements were performed at room temperature. 

After initial conductivity of the (unstimulated) split core was determined, the core was 

disassembled, and one of the faces of the two halves was treated with a solution 

containing a predetermined amount of UFPs to be studied (see Figure 4.20). To treat the 

core face, the two halves were placed on a flat surface and positioned side by side, flat 

surface facing up. UFPs were placed into a test vial and suspended within acetone, 
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forming a slurry. The test vial was manually swirled, and the slurry was transferred by 

bulb syringe to the core to treat one fracture face. During transfer, the acetone was 

periodically allowed to dry to help prevent the UFPs from spilling over the edge. Care 

was taken that all UFPs were transferred from the test vial onto the fracture face to help 

ensure an accurate UFP concentration was represented. Once all UFPs were transferred 

to one of the core halves and acetone evaporated, they were carefully reassembled and 

wrapped in perfluoro-alkoxy polymer resin tape. 

 

Figure 4. 20: Sawed Marcellus core after one half was treated with 0.001 lbm/ft2 of UFPs. 

Reproduced from Inyang et al.237 

 

The treated core was then reinstalled into the core system to determine final conductivity 

or effective permeability of the MFs stimulated with a known amount of UFPs. The 

confining pressure on the core was slowly increased from 1,000 to 2,000 psi and then 

by 2,000-psi increments until 8,000 psi was reached (backpressure was set to 500 psi). 

Conductivity measurements were determined at each confining pressure using an 

aqueous solution of a clay control additive (1-gal/1,000-gal), and all final conductivity 

measurements were performed at room temperature. 

Methodology used to determine the effect of fracture width 

To investigate the effect of fracture width on permeability, a 11 × 10 lattice consisting of 

1-mm square voxels was considered. Figure 4.21 shows an induced fracture, 
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representing a MF that was formed vertically and can potentially channel proppants, 

placed at the middle of the lattice. 

 

Figure 4. 21: 11 × 10 × 1 mm KMC lattice; each lattice voxel is 1 × 1 × 1mm. The cyan 

voxels represent the low permeability rock matrix and the red ones an induced MF. 

Permeability of the cyan voxels (refer to Table 4.5) is calculated following the previously 

described process. Reproduced from Inyang et al.237 

 

Shortly after the fracture has been generated within the field, it is expected to be relatively 

wide, yielding high conductivity. Because of the stress applied within the formation, the 

fracture is expected to shrink over time; thus, different MF widths (wf) were explicitly 

considered and investigated, including 0.5, 0.1, 0.01, and 0.001 mm. The permeability 

of the red voxels in Figure 4.21, which correspond to areas within the fracture, was 

calculated by Eq. (4.23), inspired by Buckingham’s equation for flow through slit 

fractures. Eq. (4.23) was applied to each red square voxel individually, with the 

understanding that it is a simplification and could be replaced by a more appropriate and 

complex model: 

Methodology used to determine the effect of UFPs concentration 

During a hydraulic fracturing treatment, a mixture of water, chemicals, and proppants are 

injected; in a resource shale rock, this will often generate MFs. After the MFs have been 

generated, UFPs are pushed and channelled to the created 2nd MFs within the rock, due 

 
kfracture =

wf
2

12
 

(4.23) 
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to the pressure build-up. Figure 4.22 shows the lattice used to simulate the effect of the 

proppant concentration on the permeability improvement. The cyan voxels represent the 

rock matrix, the red voxels represent induced MFs, and the yellow regions exhibit the 2nd 

MF zone. The effect of proppant concentration on permeability was quantified by 

considering a specific 2nd MF zone of 1 mm and a homogeneous proppant distribution. 

The fracture width was 0.01 mm, and the rock matrix permeability was 0.36 μD (refer to 

Table 4.5). 

 

Figure 4. 22: KMC lattice used to investigate the effect of the proppant concentration. 

The blue voxels represent the rock matrix, the red voxels represent the induced MFs, 

and the yellow regions are 2nd MFs where proppants were homogeneously distributed. 

Reproduced from Inyang et al.237 

 

The proppant concentration within the yellow regions is a parameter difficult to measure 

and monitor experimentally. To simulate the presence of proppants in the 2nd MFs within 

the rock matrix, the conceptual model from Figure 4.23 was considered. 
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Figure 4. 23: Conceptual model used to represent the effect of a single proppant particle 

(blue sphere) within a compact rock matrix, where ht is height and bt is the base of the 

generated triangle corresponding to void space. Permeability of the void space and the 

compact rock matrix are denoted as kf and kmatrix, respectively. Reproduced from 

Inyang et al.237 

 

A proppant particle or small number of proppant particles can create a void space 

resembling a triangle with height ht and base bt. Assuming d is the diameter of proppant 

ht = d and bt = 0.7d, the open area generated by an isosceles triangle is A = 0.35d2. 

Because each voxel is 1 × 1 × 1 mm, the maximum proppant concentration that could 

be accumulated within the leakoff zone was calculated. The proppant diameter was 50 

μm, and the maximum proppant concentration per voxel was calculated to be 7 

proppants/mm2. For the purpose of this study, three proppant concentrations were 

considered: low (1 proppant/mm2), medium (4 proppants/mm2), and high (7 

proppants/mm2). The total void area generated because of the proppants was calculated, 

and the square root of the value was used to represent the overall effective fracture width 

(wf) maintained by the proppants. This assumption allowed the simplification of the 

complex proppant-MF system. Instead, the void area, maintained by the presence of the 

proppants, was considered to be an evident MF of effective width wf, where fluid flow 

was unobstructed and non-tortuous. The permeability of these induced microfractures 

was calculated using Eq. (4.23). Figure 4.24 shows the resultant permeability 

distribution, which depends on the proppant concentration selected, for each system 

considered. 
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Figure 4. 24: Permeability distribution for the three systems considered. The colour bar 

displays the permeability in μD. For all three systems, an induced MF with uniform 

permeability is included. Reproduced from Inyang et al.237 

 

Methodology used to determine the effect of the 2nd MF Zone.  

Depending on pressure and velocity, fracturing fluid is injected, proppant particles can 

be transferred along different horizontal lengths inside the rock matrix. Therefore, 

perpendicular to the initially created propped MFs, some 2nd MFs can be formed; this 

region is termed 2nd MF zone. To investigate the effect of the 2nd MF (propped or 

unpropped) zone on the achieved permeability, three cases (Zones A, B, and C) were 

considered, as presented in Figure 4.25. Zone A extends 1 mm on both sides of the 

induced fracture, Zone B extends 2 mm, and Zone C is 3 mm in length on both sides of 

the primary MF fracture. The proppant concentration considered for these calculations 

was medium (4 proppants/mm2). 

 

Figure 4. 25: Schematic of the three systems used to quantify the effect of the leakoff 

zone on the achieved permeability. Reproduced from Inyang et al.237 
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Representation of the experimental set-up in the KMC lattice 

Analyses described provide insight on the impact of fracture width, proppant 

concentration, and the leakoff zone on the achieved permeability. Such insights can be 

used to optimise fracture design and/or proppant treatment technologies. However, a 

workflow that evaluates the performance of proppants when tested on actual samples is 

necessary. This section describes a proposed modelling approach to interpret the 

experimental testing data described in the fracture conductivity results section. 

The first goal was to model the relationship between permeability and fracture width 

using an 11 × 10 × 1 lattice consisting of 1 × 1 × 1 mm voxels, similar to how Figure 4.21 

was implemented. Additionally, seven fracture widths—0.001, 0.003, 0.006, 0.01, 0.03, 

0.06, and 0.09 mm—were considered, and fracture permeability was calculated for each 

fracture width using Eq. (4.23). This permeability coefficient was assigned to all red 

voxels of Figure 4.21. It is widely accepted that even when low conductive fractures are 

introduced for ultralow permeability rock masses, the flow through fractures dominates. 

To test this assumption, eight matrix permeability values were considered for each of the 

seven fracture widths, resulting in a total of 56 KMC simulations. The matrix 

permeabilities considered were 0.05, 0.1, 0.5, 1, 5, 10, 50, and 100 μD. At the end of 

each simulation, the permeability obtained against the logarithm of the ratio of fracture 

width and matrix area was plotted, and a nonlinear regression for the two properties was 

performed. Next, the fitted equations were used to interpret experimental data and 

propose an empirical relationship between the MF width maintained and the MF 

conductivity measured. 

Results and discussion 

Fracture conductivity results 

Figure 4.26 shows the comparison of experimental conductivity data for MFs of Eagle 

Ford and Marcellus cores (taken from outcrops) with and without UFP treatment. The 
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current study demonstrated that regardless of the formation and its properties, MFs 

stimulated with UFPs at a concentration as low as 0.001 lbm/ft2 are more conductive 

compared to unstimulated MFs (control). 

 

Figure 4. 26: Conductivity of MFs prepared from Marcellus (left) and Eagle Ford (right) 

cores with and without 0.001 lbm/ft2 of UFP treatments. 

 

Both Marcellus and Eagle Ford UFP-stimulated cores yielded two orders of magnitude 

higher conductivity compared to corresponding fractured but unstimulated cores. It is 

evident that there are differences to the degree of conductivity of MFs across different 

formations, which can be attributed to formation anisotropy, mineralogy, and rock 

mechanical properties.232 However, because UFP performance on the conductivity of 

MFs for these cores resulted in increased conductivity, then it is important to keep these 

MFs open to contribute to the overall production of the reservoir. The results were 

incorporated within the KMC model along with proppant width and proppant in the 2nd 

MF zone. 

Effect of fracture width 

Table 4.6 shows the effective rock permeability measured while considering four fracture 

widths. For comparison purposes, the unfractured effective matrix permeability is 

included in Table 4.6. As expected, the presence of MFs creates a highly conductive 
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pathway for the gas molecules, resulting in a significant matrix effective permeability 

increase. Larger fracture widths result in a higher fracture permeability. 

Table 4. 6: Effect of fracture width on effective matrix permeability 

Fracture Width (mm) Permeability (μD) 

No fracture 0.36 

0.001 2.77 

0.01 26.52 

0.1 265.48 

0.5 1353 

 

Effect of UFPs concentration 

Table 4.7 shows the modelled results obtained and the effective permeability achieved 

without proppants for comparison. While permeability improves as the proppant 

concentration increases, the percent (%) increase achieved is significantly lower when 

compared against the model-calculated effect of fracture width from Table 4.6. 

Table 4. 7: Effect of proppant concentration on permeability achieved. 

Proppant Concentration Permeability (μD) 

No proppant 26.52 

Low 28.96 

Medium 37.08 

High 70.53 

 

Effect of secondary and/or adjacent MF (2nd MF) zone length  

Table 4.8 shows model-calculated permeability achieved while considering Zones A, B, 

and C. Longer 2nd MF zones result in higher domain permeability; however, similarly to 
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the effect of proppant concentration, this factor’s impact is moderate compared to the 

impact of fracture width. 

Table 4. 8: Effect of the leakoff zone on permeability achieved. 

2ndMF Zone Permeability (μD) 

Zone A 37.08 

Zone B 40.80 

Zone C 42.61 

 

Proposed relationship for MF width and conductivity  

The matrix permeabilities considered for the modelling approach are listed in subsection 

4.2.3.5. The maximum percent difference for the calculated overall (rock mass and 

fracture) permeability was determined to be 3.6% when matrix permeability was 

considered to be 50 and 100 μD. This illustrates that considering matrix permeabilities 

approximately four orders of magnitude different will result in an extremely small 

difference of the overall calculated permeability. This is expected, considering that the 

permeability of the fractures is significantly higher compared to rock matrix permeability; 

therefore, transport through the fractures is dominant. 

Figure 4.27 shows a typical plot obtained when considering rock mass permeability of 

50 nD. The plot exhibits permeability calculated using the KMC method in μD as a 

function of the fracture width considered. During the experimental measurements, 

samples of different dimensions can be tested. With the computational approach, the 

matrix area should be factored to help ensure consistency between theory and 

experiments. Therefore, the KMC calculations were reported as per rock matrix area, 

making the obtained permeability-width relationships applicable, when core samples of 

varying dimensions are considered. In Figure 4.27 the term area corresponds to the rock 

mass area of the KMC lattice (cyan voxels).  
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Figure 4. 27: Relationship between the fracture width maintained and the conductivity 

achieved for the case of 50-nD matrix permeability. 

 

Analysis from Figure 4.27 was performed for all conductivities, and eight equations in 

total were obtained of the form y = aebx, where y represents the conductivity in md*ft, x 

the negative logarithm of the ratio width/area, and a and b are fitted constants with values 

a = 3.5328 and b = −4.611. These fitted constants do not have an implicit physical 

meaning and depend on the dataset used. However, they are utilised in order to predict 

the effective permeability as a function of the fracture width in the calculations that follow. 

All eight equations, derived using the KMC model, were used to analyse the conductivity 

values measured experimentally and to calculate the effective width maintained during 

the experimental procedure. The eight effective fracture widths calculated were used to 

obtain the average effective fracture width and calculate the corresponding error bars. 

Consequently, this methodology was then applied to the laboratory experimental data 

obtained for an Eagle Ford and a Marcellus sample before treatment (U) and after 

treatment (T) (refer to Figure 4.26 for further details); Figures 4.29 and 4.30 summarise 

the results, respectively.  
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Figure 4. 28: Effective fracture width calculated for the untreated (U) and treated (T) 

Eagle Ford sample as a function of the confining stress experimentally applied. Purple 

represents the experimental data, and simulation results are red. 

 

 

Figure 4. 29: Effective fracture width calculated for the untreated (U) and treated (T) 

Marcellus sample as a function of the confining stress experimentally applied. Purple 

represent the experimental data, and simulation results are red. 

 

From the interpretation of these charts, it is apparent that Eagle Ford and Marcellus cores 

with UFP treatment (T) have much larger aperture sizes and therefore have much larger 

conductivity values at each of the confining stresses tested compared to the Eagle Ford 

and Marcellus cores having no UFP treatment (U), with the Marcellus cores performing 

slightly better. These charts provide direct evidence of the correlation that exists between 

the conductivity of these manmade MFs and their apparent MF widths, which further 

conveys how effective MF stimulation can significantly impact the overall productivity of 

a well. 
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Additionally, note that the conductivity of the manmade MFs appears to degrade linearly 

with increasing confining stress, whereas the width of the MFs appears to decay 

exponentially, regardless of UFP treatment. This response suggests that cores of the 

same outcrop have similar trends in response to increasing the confining stress. 

Results of the KMC and the laboratory experiments demonstrate that MF width has the 

greatest influence on conductivity of the MFs compared to the other two factors 

investigated: proppant concentration and UFPs 2nd MFs perpendicular to the main MF. 

When maintaining a higher width, care should be taken to help ensure that UFPs used 

do not form a complete pack; rather, UFPs should form a partial pack while maintaining 

a high MF width. Results from a previous work demonstrated that UFPs migrated with 

leakoff after initial placement to form nodes that enhanced the conductivity of the 

MFs.232,235 Additionally, because the width and conductivities of these MFs can be 

estimated, these values can be introduced into a reservoir simulator to get improved 

distribution and properties of the MFs for production matching during reservoir 

simulations. 

Conclusions 

The first part of this chapter (Part I) deals with a thorough comparison between three 

approaches (two deterministic and one stochastic) to assess their ability, when 

evaluating the permeability of model pore networks. The EMT and simplified 

renormalisation methods were selected, within their original derivations, as deterministic 

models because of their simplicity. The results obtained using the deterministic models 

were compared against the developed 2D KMC algorithm that provided useful transport 

insights in the studies discussed in Chapter 3 (Part II), which were restricted to 1D pore 

networks. The pore networks considered in this chapter had varying PSDs; were mainly 

dual-permeability networks with different % content of micro-, meso-, and macropores; 

consisted of isotropic and anisotropic configurations; and one realistic network was 

designed to replicate the cross section of a shale rock sample. 
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The results obtained in Part I of this chapter both confirm observations from previous 

studies and provide new insights. The deterministic results were compared against KMC 

predictions, considering KMC to provide accurate estimations, and narrow log-normal 

distributions were identified to be ideal for applying the EMT and the renormalisation 

method. Both deterministic methods were sensitive to small changes in the amount of 

high-permeability pores rather than changes in the low-permeability ones. For broad 

distributions, the EMT always overestimated the network’s permeability; the simplified 

renormalisation method provided low estimates because of the zero crossflow 

assumption while the KMC predictions were between the two. For networks with dual 

permeability, the simplified renormalisation method was suitable for cases of spatially 

uniform systems that had equal parts of the low- and high-permeability components. The 

EMT was suitable for mesoporous systems containing up to 25% of micro- or 

macropores without generating anisotropy to the flow direction (spatially uniform 

systems). For all other cases considered in this study, EMT overestimated the matrix 

permeability. 

Based on the case studies considered here, among the approaches implemented, KMC 

is the most sensitive and reliable method because it responds to changes in both the 

low- and high-permeability values. For dual-permeability networks, KMC detected 

changes proportional to the components and provided an estimate that captured the 

matrix structural features. The most valuable feature of KMC, compared to the 

deterministic methods considered, is its sensitivity to anisotropy. KMC could be applied 

to low-connectivity networks and could quantify the effect of small-scale heterogeneities 

(e.g., local low connectivity). When the KMC was applied to predict the permeability of a 

shale sample for which one SEM image was available together with data on PSDs, the 

results were reasonably close to experimental data, when considering the organic matter 

to be the highly permeable portion of the matrix. The results obtained were also 

compared against experiments. Note that since there were no experimental data 

available corresponding to the shale SEM image considered for the computational 
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studies, literature resources were considered, where laboratory permeability 

experiments were conducted on Eagle Ford samples. As a result, the experimental 

permeability range used to compare the computational predictions obtained was broad. 

For the purpose of this comparative analysis, given the dataset available, using 10 

stochastic realisations for the organic, inorganic and dual-permeability networks, the 

obtained KMC results were reasonably close to the experimental data, when considering 

the organic matter to be the highly permeable portion of the matrix. However, a narrower 

experimental range would require an increased number of stochastic realisations to be 

simulated, to ensure smaller confidence intervals for the KMC method and make the 

comparison between the two approaches statistically valid, at the expense of the 

computational resources needed. The method’s accuracy can be improved by extending 

the analysis to more images of a plug sample so anisotropy and local heterogeneities 

are considered, accounting for the effect of adsorption and the true porosity. The 

disadvantage of KMC, compared to deterministic techniques, rests with the necessary 

computing time. The deterministic methods provided results in a few seconds while the 

computational cost of KMC ranged from minutes to hours.  

In the second part of this chapter the KMC was applied to a process of industrial interest. 

During the hydraulic fracturing process small particles, referred to as proppants, are 

mixed with the hydraulic fracturing fluid and then injected into the rock formation. The 

role of proppants is to get channelled through the generated microfractures (MFs) and 

stay in place to prevent them from closing. The system containing proppants, MFs, and 

the impermeable rock matrix is very heterogeneous and anisotropic. Based on the study 

performed in Part I, KMC was found suitable to simulate transport through such systems, 

and it was therefore implemented to study the effect of proppants in gas transport. 

Initially, the KMC model was used to simulate gas flow through synthetic systems. In 

those systems the effect of MFs width, proppant concentration, and leakoff zone were 

investigated separately. The results obtained from these systems provided an 

understanding of how these process design parameters impact the transport of fluids. 
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The effective MF width maintained was found to be the most important parameter for 

achieving fast gas transport. In fact, the relationship between the MF width and 

permeability showed an exponential positive correlation. Note that the permeability 

calculated corresponds to the system consisting of the low permeability matrix and the 

inserted MFs. The permeability assigned to the matrix was the value calculated in the 

first study of this chapter, corresponding to an Eagle Ford shale. The increase in the 

proppant concentration and leakoff zone were found to improve the permeability of the 

simulated system, but in a linear manner.  

When the proppants are channelled through the MFs made on the rock fabric, all the 

three investigated parameters are present, enhancing the permeability of the rock. 

According to the initial analysis, the effect of the MF width has a significantly higher 

impact on the overall permeability achieved. Thus, it can be assumed to be the 

controlling parameter. From a design perspective, there are different types of proppants 

that can be used to treat shale formations. The ultrafine particles (UFPs) used to treat 

an Eagle Ford and Marcellus samples increased the MF conductivity by two orders of 

magnitude. 

To determine which proppant is suitable for which formation, laboratory tests need to be 

carried out. Analysis of such experimental data can yield correlations between the MF 

conductivity improvement, the proppant type and the rock formation characteristics. 

However, there was no measure to describe the structural effect the UFPs have on the 

formation, besides post-treatment imaging techniques. To this end, the laboratory data 

obtained from Halliburton were analysed together with results from 56 KMC runs, and an 

empirical correlation between the MF conductivity and the MF width maintained due to 

the presence of the proppants was proposed. This methodology was used as a tool to 

evaluate the MF width maintained when a certain proppant type was used to treat a 

Marcellus and Eagle Ford sample. The empirical relationship proposed, derived from 

KMC and laboratory data, can be used for any formation with matrix permeability 

between 0.05 and 100 μD to conduct the same analysis. 
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KMC algorithm extension to 3D; Studies in single pores and 

pore networks 

 

In this chapter, the KMC model is further extended to 3D and validated against analytical 

and computational data.  The discussion is organised in two parts. In Part I, the 

developed 3D KMC model is implemented to describe the fluid transport in micro- to 

meso-scale slit-shaped porous materials. Firstly, it is demonstrated that atomistic 

molecular dynamics simulations for the self-diffusion coefficient of supercritical methane 

is reproduced, within a 10% uncertainty, by the stochastic approach. Then, the low 

computational cost of the KMC method allowed me to address a long-standing question 

in the porous materials community: at what pore sizes can the transport properties of 

confined fluids be described by their bulk counterparts? To answer this question 

quantitatively, slit-shaped pores of 5 different chemistries were considered, 

demonstrating that the answer is material-specific. In Part I, this new method is 

demonstrated and validated against analytical and computational results. The method is 

shown to be applicable in the investigation of fluid transport in pores of varying pore 

widths using as input molecular dynamics results for narrow pores. The second part of 

this chapter details the effect of four different pore network characteristics on the 

diffusivity of gases, while considering 3D pore networks. The characteristics of interest 

are those that significantly affect the permeability of rocks, namely the porosity, pore 

network connectivity, the pore throat width and pore chemistry. From the obtained 

results, recommendations on how possible technological approaches, involved in the 

hydraulic fracturing design, can be applied to maximise gas extraction are provided. Part 

I is the outcome of a fruitful collaboration with TAMUQ, who conducted the MD atomistic 

simulations, and the work is currently under peer review, while Part II is in preparation 

for submission. 
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Quantifying pore width effects on diffusivity via a novel 3D stochastic 

approach with input from atomistic molecular dynamics simulations – 

Part I 

Abstract 

The increased production of unconventional hydrocarbons emphasises the need of 

understanding the transport of fluids through narrow pores. Although it is well known that 

confinement affects structure and transport of fluids, it is not yet possible to quantitatively 

predict with confidence properties such as diffusivity as a function of pore width in the 

range of 1-50 nm. Such pores are commonly found in shale rocks, but also in a wide 

range of engineering materials, including catalysts. This study proposes a novel and 

computationally efficient methodology to obtain accurate diffusion coefficient predictions 

as a function of pore width for pores carved out of common minerals and engineering 

materials, such as silica, alumina, magnesium oxide, calcite and muscovite. Atomistic 

molecular dynamics (MD) simulations are implemented to quantify fluid structure and 

transport properties within 5 nm-wide pores, in particular, the diffusion coefficient within 

different pore regions. The data obtained for the diffusion coefficient are then used as 

input to the developed KMC model, developed to predict fluid transport in heterogeneous 

mesopores. The KMC model is used to extrapolate the fluid diffusivity for pores of 

increasing width. The stochastic approach is validated against atomistic MD simulation 

results obtained for wider pores. When applied to supercritical methane as a sample 

fluid, and for slit-shaped pores, the results suggest that the methodology implemented 

yields data that are within 10% of the atomistic simulation results, with significant savings 

in computational time. The proposed workflow, which combines the advantages of MD 

and KMC simulations, is used to generate a digital library for the diffusivity of gases as 

a function of pore chemistry and pore width and could be relevant for a number of 

applications, from the prediction of hydrocarbon transport in shale rocks to the 

optimisation of catalysts, especially when surface-fluid interactions significantly impact 

the transport properties. 
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Introduction 

At present, the development and profitability of a shale play depends on its permeability, 

and computational methods can be implemented to calculate this parameter. The 

accuracy of such permeability calculations depends on several factors, most importantly 

on the quality of input data used to generate the pore networks. When implementing 

lattice-based stochastic or deterministic approaches, the transport properties assigned 

to the various pores and connections in the pore network must be carefully selected. Due 

to the significantly small scale of the pores often found in shale formations, but also in 

engineering materials such as catalysts, atomistic molecular dynamics and Monte Carlo 

simulations (MD and MC) have been widely used to quantify fluid transport through 

narrow pores as well as fluid structure and preferential adsorption.238 The atomistic 

simulations allow the user to define 1) the chemical composition of the pores, 2) their 

shape and size, 3) the fluids and mixtures used to fill the constructed pores, and 4) 

conditions such as temperature and pressure. For example, Sui et al., studied adsorption 

and transport of methane in dry and water-wet montmorillonite clays and found that the 

methane self-diffusion coefficient increases rapidly as the pore size increases.239  

Vasileiadis et al., investigated the role of porosity on adsorption and transport of CH4, 

C2H6, CO2, and their mixtures, in over-mature type II kerogen under various temperature 

and pressure conditions.240 Wang et al., investigated the transport of supercritical 

methane in clay, calcite and organic matter as a function of pore size, pressure, and 

moisture.241 Phan et al., calculated the permeability of methane through 1 nm-wide pores 

filled with water,88 and Bui et al., identified the correspondent transport mechanisms by 

analysing the free energy landscape within various pores.215 

Apostolopoulou et al., recently implemented KMC simulations to study fluid transport 

across pore networks.242 KMC methods can access long time scales (up to ms and in 

some cases h) and large spatial scales (nm to µm) at comparatively low computational 

expense.146,157 For example, the bottom-up 1D approach discussed in Chapter 3, 1) used 
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previously-reported MD data to inform the KMC model, 2) simplified a 3D, 2-phase 

system consisting of liquid water and methane  into  a  1D  problem, and 3) obtained 

KMC transport data, using the KMC model, in quantitative agreement  with atomistic MD 

simulations at  a  fraction of the computational  cost.140  The model was extended  in 2D 

to analyse  a  2D  network, see Chapter 4, which was constructed using imaging data, 

previously reported, for an Eagle  Ford  shale  sample, as well as  PSDs.102 The transport 

model of Naraghi and Javadpour was used to assign transport  properties  to  the  various  

pores within the network.102 The KMC approach was validated both against deterministic 

models and experimental data. Could a stochastic approach based on the developed 

KMC model be used to upscale MD simulation results and predict fluid diffusivity in meso-

scale pores when results are available for narrow pores? 

This study addressed this question by developing a bespoke model that uses MD 

simulation findings as input to a KMC model framework. Slit-shaped pores are 

considered, carved out of five solid supports that resemble minerals typically found in 

the inorganic matter of shale formations. The fluid considered is supercritical methane. 

The MD simulations are conducted for pores of width 5 nm. Equilibrium NVT simulations 

yield density profiles, which are used to differentiate ‘adsorbed’ and ‘bulk’ methane layers 

within the pores. Then the diffusivity of methane in such areas is calculated, confirming 

that in the centre of the pores methane behaviour resembles that in the bulk. The data 

are used to construct and inform the developed 3D KMC model, which contains 3 distinct 

regions with substrate-specific transport properties. The stochastic simulations yield the 

effective diffusivity of methane as a function of pore width. The results are validated by 

reproducing independent atomistic MD simulations conducted in wider pores. The KMC 

model is then used to generate a digital library where methane diffusivity is quantified as 

a function of pore chemistry (within the 5 materials considered here) as well as of pore 

width (up to ~ 60 nm). Such digital libraries could be used to describe 3D networks 

consisting of pores with varying chemical compositions and PSDs. This is discussed in 

Part II of this chapter. 
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The remainder of this study is organised as follows. Section 5.1.3 describes the methods 

and algorithms implemented, from the atomistic simulations to the 3D KMC model used 

to predict diffusivity. Section 5.1.4 discusses the results obtained, from the data produced 

with atomistic resolution for supercritical methane in the model pores, to meso-scale 

KMC predictions of diffusivity, which yield the digital library, including the validations 

conducted. A summary of this study’s findings, with a brief overview of possible 

applications of this bespoke approach, as well as of some of its limitations, are presented 

in subsection 5.1.4 and section 5.3. 

Methodology 

A series of equilibrium molecular dynamics (EMD) simulations were conducted to obtain 

the required input data and validate the developed 3D KMC model using 5 nm and 10 

nm slit pores (in one case, a 25 nm pore was also used). This subsection describes, 

briefly, the models implemented to simulate the solid substrates and the force fields used 

to model methane and surface interactions. The discussion continues with information 

regarding the setup of the simulated systems and the algorithms utilised, with particular 

attention to the development and validation of the stochastic KMC model. 

Solid supports 

Slit-shaped pores obtained from five model materials: silica, alumina, MgO, calcite, and 

muscovite were considered. Details about the fabrication of the model materials have 

been reported elsewhere.243–250 All the non-bridging oxygen atoms on silica and alumina 

surfaces were protonated; MgO, muscovite, and calcite surfaces were not hydroxylated. 

The latter modelling choice is an oversimplification, as suggested by Bui et al.,215 and 

Phan et al.,88, but it allows us to understand, computationally, the effects of fluid-solid 

interactions on fluid transport under confinement. The substrates have a surface parallel 

to the X−Y plane of the simulation box. The X and Y dimensions of the substrates are 

shown in Table 5.1. Each pore was obtained by separating the solid substrates along 
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the Z direction, which is perpendicular to the X−Y plane. The Z dimension of the 

simulation box, which includes pore and substrate, is also presented in Table 5.1 for the 

silica, MgO, alumina, calcite and muscovite pores. These dimensions allowed to maintain 

the pore width at 5 nm in all the systems considered. To obtain pores with width 10 nm, 

the Z dimension was increased (see Table 5.1). The pore width was defined as the 

shortest centre-to-centre distance between surface oxygen atoms across the pore 

volume. One pore of width 25 nm made of calcite was also considered. 

Table 5. 1: Simulation box dimensions used to simulate the 5 nm and 10 nm wide pores 

using five solid supports. 

Substrate 

Dimensions in nm 

X Y 

Z 

(5 nm-wide pore) 

Z 

(10 nm-wide pore) 

Silica 5.20 10.10 8.30 13.30 

MgO 5.50 10.40 7.50 12.50 

Alumina 5.12 9.12 7.41 12.41 

Calcite 4.86 9.00 9.90 14.90 

Muscovite 4.73 7.35 8.50 13.50 

 

 

 

 

Force fields 

The force fields recommended by Bui et al.,215 were implemented in this study. To 

simulate silica, MgO, alumina, and muscovite substrates CLAYFF was selected, while 

calcite was described using the force field developed by Xiao et al.,251,252 In the calcite 

substrate, calcium and carbon atoms were kept rigid, whereas the oxygen atoms were 
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allowed to move freely. In the other materials, silicon, aluminum, and oxygen atoms were 

held at fixed positions while the surface hydroxyl hydrogen atoms were allowed to 

vibrate. All atoms in MgO were kept rigid. 

The transferable potentials for phase equilibria in the united atom formalism 

(TraPPE−UA) were implemented to model methane in all solid substrates, except 

calcite.253 To be consistent with Bui et al., the OPLS-UA forcefield was used to model 

methane in calcite.254 Nonbonded interactions were modeled by means of dispersive and 

electrostatic forces. The electrostatic interactions were described by the Coulombic 

potential, with long-range corrections treated using the particle mesh Ewald (PME) 

method.255 Dispersive interactions were modeled by 12−6 Lennard-Jones (LJ) potentials. 

The LJ parameters for unlike interactions were determined by Lorentz−Berthelot 

combining rules from the values of like components.256,257 The cut-off distance for all 

interactions was set to 1.4 nm. Long-range corrections were not applied; according to 

Siperstein et al., consistency in the cut-off radius is more important than the inclusion of 

long-range corrections to the energy.258 

MD simulation set-up and algorithms 

The simulation setup for the pores considered in this study mimics the one adapted by 

Bui et al.,215 which was implemented to investigate the transport properties of methane 

molecules inside hydrated 1 nm-wide micropores. To directly compare results within the 

five different substrates, the overall methane density was kept constant at 0.01314 

atoms/Å3 ~ 0.350 g/cm3 in all substrates investigated. To prepare systems with the 

desired fluid density, the slit-shaped pores surrounded by a bulk reservoir were simulated 

within a periodic simulation box. The pressure at the bulk reservoir regions was 

monitored using the density profiles and the Peng-Robinson equation of state, while 

simulating different amounts of methane, under the assumption that the methane in the 

bulk region behaves like a macroscopic fluid. The methane molecules were initially 

added to the reservoir. As the simulations progressed, some fluid molecules entered the 
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pore. Once the reservoir pressure for all substrates was constant, the molecules that had 

entered the five pores were counted. Then the reservoir was removed, and the desired 

amounts of methane were inserted to the 5 pores. It was necessary to introduce 3450, 

3758, 3068, 2874, and 2284 methane molecules in the 5 nm-wide silica, MgO, alumina, 

calcite, and muscovite pores, respectively. For the 10 nm pores, exactly double the 

number of molecules just listed was used. For all solid substrates, the simulation box is 

periodic in the three directions. Thus, the pores are effectively infinite along X and Y 

dimensions. A representative simulation snapshot for the silica pore is shown in Figure 

5.1. 

 

Figure 5. 1: Schematic of the MD simulation set up (left), the criteria for determining the 

3 regions that describe the density of confined methane (middle), and a 2D slice of a 

typical 3D KMC simulation set up (right). In the left panel, for visualization purposes, the 

solid support is silica. The dashed red lines in the middle panel identify Regions 1, 2, and 

3, and serve as guides to the eye. 

 

EMD simulations were performed in the canonical ensemble (NVT) by maintaining 

constant number of particles (N), simulation volume (V) and temperature (T), using the 

package GROMACS, version 5.1.1.259,260 The temperature was kept constant at 300 K 

using 3 Nose-Hoover thermostats with relaxation time 100 fs.261,262 Two thermostats 

were used to control the temperature of the top and bottom solid surfaces, and one to 

keep the temperature of the methane constant. The leapfrog algorithm was used to solve 

the equations of motion with 1 fs time step.263 To equilibrate the systems, one NVT 

equilibrium simulation was conducted for 50 ns for each solid substrate. To confirm that 

equilibrium was reached, the convergence of methane’s density profile was tested in 
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each system along the Z direction. Then, 3 ns NVT production runs were performed at 

300 K for each system to collect our data. Following the same simulation protocol, 3 

independent bulk methane simulations using 1638 CH4 molecules and a cubic simulation 

box with side of 5 nm.  

Once the EMD simulations were completed, analysis of the density profiles for methane 

in the direction perpendicular to the pore surface allowed to identify 3 regions within each 

of the pores: Region 1 (R1) and Region 3 (R3) are close to the solid surface; Region 2 

(R2) corresponds to the middle of the pore (see Figure 5.1).  

The data obtained from the 5 nm pores, were used as input for our KMC model to predict 

the diffusion of methane in slit pores of varying width, as detailed in subsection 5.1.3.4. 

The validity of the KMC predictions was tested against MD data obtained for methane 

within 10 nm - wide pores. In the case of calcite, as discussed in subsection 5.1.4.1, the 

diffusion was found to be anisotropic and the solid surface strongly interacted with the 

methane molecules. To test whether this increased fluid-surface interaction was 

accurately captured using the KMC model, a 25 nm-wide pore was also simulated using 

EMD simulations and an additional comparison between EMD and KMC was performed. 

Due to the high computational effort required for these simulations, other 25 nm-wide 

pores were not considered in this study. The procedures implemented to simulate 10 

and 25 nm-wide pores are similar to those just described for the 5 nm pores. 

To analyse the molecular trajectories obtained from the EMD simulations, calculations 

of density, diffusion coefficients, and radial distribution functions (RDFs) were performed. 

For the density analysis, bins of width 0.02 nm were used, and the number of molecules 

was counted as a function of the Z distance. From the density plots, Regions 1, 2, and 3 

were identified (see Figure 5.1 for a schematic of the three regions within the pore). The 

trajectories within each region were used to calculate the diffusion coefficients for 

methane in all substrates. The diffusivity was calculated in the X (Dx), Y (Dy), Z (Dz) 

directions, and within the XY plane (Dxy). Also the overall (total) diffusivity (Dxyz) was 
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considered, using Einstein’s relation, on the basis of the calculated mean square 

displacements (MSDs): 
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In Eqs. (5.4 – 5.5), 〈|𝐫𝐩lanei(t) − 𝐫
plane

i(0)|
2
〉 and 〈|ri(t) − ri(0)|

2〉 are the MSDs in the 

XY-plane and XYZ space, respectively, and 𝐫𝐩lanei(t)=(xi(t), yi(t)), and 𝐫i(t) =

(xi(t), yi(t), zi (t)), respectively. The timescale for the diffusion coefficient calculations 

was 20 ps of simulation run time (which corresponds to 100 “frames” in the simulation). 

After these 20 ps, the ri(0) was updated for all molecules. The process was repeated 

150 times and the average diffusion coefficient value was obtained. To ensure that 

methane is at supercritical conditions, thermophysical data were used, considering the 
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density in Region 2, and the system temperature. It was confirmed that in the middle of 

the pore (Region 2) methane is at supercritical conditions. 

3D Kinetic Monte Carlo validation 

The KMC model, applied to 1D and 2D pore networks, is described in Chapters 3 and 4 

and by Apostolopoulou et al.,140,242 The underlying model of the KMC simulation is the 

Master Equation (Eq. 5.6), which can be thought of as a “probability balance”.146 The 

Master Equation expresses the rate of change for the probability Pp(t) of finding the 

system in state p at time t, in terms of the probability influx from other states q, and the 

probability efflux toward these other states:163 

 dPp(t)

dt
= −∑WpqPp(t)

q≠p

+∑WqpPq(t)

q≠p

 
(5.6) 

The generic Master Eq. (5.6) can be used to describe the diffusion of a particle from 

voxel A (x,y,z) to voxel B (x,y+1,z) as follows: in state q, voxel A has nA + 1 particles and 

voxel B has nB − 1  particles. The probability per unit time (propensity) for the 

aforementioned diffusion event to happen is given by the KMC rate for the A-to-B 

transition multiplied by the number of molecules in the A voxel, nA + 1. If the transition is 

performed, the population in the A voxel will be nA, while the number of particles in the 

B will be nB, leading to state q. 

To develop a 3D KMC model, the previously discussed 2D model was extended by 

increasing the number of possible moves a molecule can make from 4 to 6 (left, right, 

up, down, back, and forth). The computational efficiency of the KMC algorithm is strongly 

dependent on the matrix mesh, as the computational cost to select each KMC step 

scales with the number of possible events. Considering M to be the number of voxels, 

for an M  M  M system, there are 6  M  M  M possible events at each step. The 

algorithmic steps implemented for the 3D KMC approach are summarised in Chapter 2 

(subsection 2.8.1.5). The Mersenne Twister MT19937 uniform random number 
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generator was used to obtain sequences of random numbers needed for the selection of 

the event at each step and the calculation of the time required for the transition to 

happen.189  

The 3D KMC algorithm was validated against analytical and deterministic methods for a 

variety of systems. At first the model against the analytical solution of the diffusion 

equation, see Eq. (5.7), for a homogeneous system with non-periodic boundaries. Then, 

homogeneous systems with periodic boundaries were considered. At last, the KMC 

predictions were compared against MD data for three systems with increasing 

heterogeneity and mixed boundaries. 

 

To compare the 3D KMC against the analytical solution of the diffusion equation, a 3 x 3 

x 10 lattice was considered. The unit cell size was 1 nm and all boundaries were 

reflective. Molecules, 1350 in total, were uniformly distributed in a 3 x 3 x 3 cube from 

origin O (0,0,0), as shown in subsection 5.1.4.3, while the rest of the lattice remained 

empty. The diffusion coefficient in all voxels was set at 1 x 10-8 m2/s. The molecules were 

allowed to diffuse and the population in Voxel 5 (5,1,1) and Voxel 10 (10,1,1) was 

monitored as a function of simulation time. A sample was taken every 0.01 ns and the 

total simulation time was 10 ns. The average population over time in the 2 voxels of 

interest was obtained by performing 10 independent simulations. The equation of 

diffusion for a 3D system is shown in Eq. (5.7), where 0 ≤ x ≤ lx, 0 ≤ y ≤ ly, and 0 ≤ z ≤

lz, D is the diffusion coefficient, and C(x,y,z) is the overall concentration of molecules. For 

certain types of initial and boundary conditions, the analytical solution of Eq. (5.7) is the 

product of the analytical solutions of the three one-spatial-variable problems (Cx(x, t),

Cy(y, t), and Cz(z, t)), and hence Eq. (5.7) can be transformed into Eq.(5.8): 264 
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 C(t) = Cx(x, t) ∗ Cy(y, t) ∗ Cz(z, t) (5.8) 

For reflective periodic boundary systems, where the molecules are initially distributed in 

a well-defined region −hx ≤ x ≤ hx, −hy ≤ y ≤ hy, and −hz ≤ z ≤ hz with concentration 

C0x, C0y, and C0z, initially distributed in the X, Y, and Z dimension, respectively, the 

concentration distribution over time is described by:264 
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To validate the accuracy of the 3D KMC model, the analytical solution of the diffusion 

equation (Eq.7) was obtained, which is the product of Eqs.(5.8 – 5.11), and the stochastic 

vs. analytical results were compared. It was found that the stochastic approach is in 

excellent agreement with the analytical solution of the diffusion equation (see subsection 

5.1.4.3). 

To test the 3D KMC model for systems with periodic boundary conditions, a 5 x 6 x 3 

lattice was used, with unit cell size of 1 nm. The lattice was periodic in all directions and 

the diffusion coefficient was uniform along X, Y, and Z directions, with values ranging 

from 1.3 to 2.3 x 10-8 m2/s (target diffusivity). A single molecule was inserted in a random 

position and was let to diffuse. Its trajectory was monitored for 70 ns in total; samples 

were taken every 0.7 ns. For every value of the diffusion coefficient selected (target), 3 

independent runs were performed. From the stochastic trajectories obtained, the 

diffusion coefficient of the particle  was calculated and compared against the input 

diffusion coefficient (target). The results showed perfect agreement between the input 

and output diffusion coefficient values, providing further validation of the 3D KMC model. 
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In Chapter 4 the appeal of a 2D KMC model to quantify the effect of heterogeneity, within 

a pore network in terms of the effective permeability of the medium, was discussed. In 

this study the accuracy of the developed 3D KMC model is tested, while considering 

systems with strong fluid-surface interactions and increasing degree of heterogeneity. 

The 5 nm silica set up was used as a base case and the ε (epsilon) parameter that 

describes methane-silicon and methane-hydroxyl interactions was increased 5 and 25 

times. The resulting force field is not realistic, but it works as an artificial system exhibiting 

strong surface-fluid attractions and high degree of heterogeneity. Methane molecules, 

3000 in total, were used to fill each artificial system and the results obtained from all 

three cases are compared. The diffusion coefficient values, predicted from the EMD 

simulations within the three regions (R1, R2, and R3) using a set-up similar to the one 

presented in Figure 5.1, were used to assist this comparison. The overall (total) diffusion 

coefficient of methane was calculated using EMD simulations and the 3D KMC model. 

At the end, the coefficients obtained from the two methods were compared and the 

results were in excellent agreement. For each system 3 independent EMD runs  were 

performed. The mean error was calculated using the standard error equation, shown in 

Eq. (5.12): 

 Error̅̅ ̅̅ ̅̅ ̅ =
STD(D(i))

√n
 (5.12) 

where, STD is the standard deviation, D(i) is the diffusion coefficient calculated at each 

independent run, and n is the number of independent runs. For these calculations, 

i=[1,3] and hence n=3. 

 

3D Kinetic Monte Carlo set-up 

The developed 3D KMC model was set up to mimic the EMD slit pore described in Figure 

5.1. The simulation boxes were periodic along X and Y directions and reflective along Z, 

to represent the presence of the pore slab. To set up the transition rates, rKMC, required 
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to describe the probability of methane moving from one voxel to another within the 

simulation box, the kinetic barriers were considered consistent with the diffusion 

coefficients in Regions 1, 2 and 3, using Eq. (5.13):151,176 

 rKMC = −
D

l2
 (5.13) 

where D is the diffusion coefficient, and l is the voxel size. Thermodynamic barriers were 

not considered, as there are no pore entrance or exit effects in the present model. The 

diffusion coefficient values from the EMD simulations, for the 5 nm wide pores, were 

used as input for the stochastic KMC model’s Region 1 and 3 (see Figure 5.1 for a 

schematic). These values are reported in Figure 5.5 (panel A) in subsection 5.1.4.1 for 

each solid support considered. The diffusion coefficient assigned to Region 2 in the 

stochastic model, was obtained from bulk EMD simulations: 1.91 ± 0.08 x 10-8 m2/s. The 

error bars for all the input values used to feed the KMC model, were calculated by 

performing 3 independent EMD simulations for each system. To increase the accuracy 

and minimise the uncertainty of the stochastic model, the error bars calculated were 

incorporated when assigning the transition rates for the stochastic approach. 

To predict the overall (total) methane diffusivity in large pores, the necessary voxels were 

added to Region 2. For all five substrates 35 different pore widths were considered. For 

each pore width, a single molecule was initially placed at a random position. The 

molecule was allowed to move freely through the simulation box for a total of 70 ns. A 

sample monitoring the position of the molecule was taken every 0.7 ns. This process 

was repeated 10 times, while starting the molecule from the same position. At the end of 

the 10th iteration, a different random position was selected for the molecule and 10 

independent runs followed. For each pore width simulated 75 initial configurations were 

generated. The simulation protocol followed for the KMC simulations is presented in 

Figure 5.2. The confidence intervals obtained of the diffusion coefficient calculations 

were considered, while simulating different pore sizes for each substrate, and no overlap 
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was observed. Hence, this number of iterations and initialisations of the particle position 

allowed to obtain sufficient statistics for the calculation of the molecule’s diffusivity.  

 

Figure 5. 2: Schematic of the KMC algorithmic steps performed to simulate methane 

diffusion through pores of varying widths. 

 

Results and discussion 

Data analysis 

Density plots were obtained for methane inside the 5 nm and 10 nm-wide pores from 

EMD simulations.  Using MATLAB, the density profiles were integrated, and the total 

amount of molecules was counted in all systems, to ensure less than 1% deviation 

between the number of molecules in Regions 1 and 3 for both 5 nm and 10 nm-wide 

pores, and to confirm that equilibrium was reached. From the density profiles, the extend 

of the three regions inside the pore was identified (see Table 5.2) together with the 

number of molecules counted in each. From the analysis of the density profiles, it was 

confirmed that the regions close to the pore surface (R1 and R3) do not change in 

thickness when the pore width increases. It was also ensured that the difference between 
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the number of molecules in Regions 1 and 3 was less than 5% for each pore-fluid system. 

The number of molecules adsorbed on the pore surface was found to remain 

approximately the same (within 5%) when the pore width is increased from 5 to 10 nm. 

The numbers of molecules found within each of the 3 regions within each substrate are 

reported in Table 5.2. 

To characterise the structure of the adsorbed methane on each pore surface, the surface 

density of methane was plotted for the 5 systems, as shown in Figure 5.3. Methane 

molecules in the first and second adsorbed layer were considered for this analysis. In 

some of the substrates, methane shows evidence of patterning (silica, calcite, and 

muscovite), while in others the molecular distribution is close to uniform.  

Figure 5.4 shows the density profiles obtained along the Z direction within the 5 nm (black 

line) and the 10 nm pores (blue line). From the analysis of the density profiles, it is 

confirmed that the density measured in the middle of all pores remains constant when 

the pore substrate is changed and when the width is increased. 

 

Figure 5. 3: Density of CH4 close to the surface of the 5 substrates (bottom panel). The 

top panel shows the composition of the 5 solid supports, as reproduced by Bui et al.,215 

Colour code: Si=yellow, Mg= tan, Al=pink, K=purple, C=green, Ca=blue, O=red, and 

H=white. 
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Figure 5. 4: Density profiles for the 5 nm pores (black lines) and the 10 nm pores (blue 

lines). The top panel (Silica) provides the comparison between the 5 nm and 10 nm 

density profiles as a function of the distance from the pore wall. 
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Table 5. 2: Comparison between the thicknesses of regions 1 and 3, the density (in 

atoms/nm3), and the number of molecules contained in all three regions formed, when 

considering slit pores of width 5 and 10 nm. The values reported for R1 & R3 represent 

the average of the two regions. The % difference between them is less than 5%, 

confirming the hypothesis regarding the non-changing properties in Regions 1 and 3. 

Substrate 

Length (nm) Density (atoms/nm3) | Molecules 

Regions 1&3 Regions 1&3 Region 2 

5nm 

pore 

10nm 

pore 
5nm pore 10nm pore 5nm pore 10nm pore 

Silica 0.70 0.70 13.8 | 506 13.7 | 505 12.9 | 2438 13.0 | 5890 

MgO 0.64 0.64 14.8 | 543 14.2 | 520 12.6 | 2672 13.0 | 6476 

Alumina 0.82 0.83 12.2 | 467 12.0 | 466 13.6 | 2134 13.4 | 5204 

Calcite 0.63 0.62 16.4 | 451 16.8 | 456 12.1 | 1972 12.6 | 4836 

Muscovite 0.74 0.72 15.0 | 385 14.9 | 372 12.4 | 1514 12.8 | 3824 

 

Within each region, the self-diffusion coefficients were calculated as described 

subsection 5.1.3.3. Figure 5.5 summarises the results within 5 nm (panel A) and 10 nm 

pores (panel B). The error bars shown in panel (A) are obtained by calculating the 

standard error, see Eq. (5.12), from results obtained in 3 independent EMD simulations. 

Error bars for panel (B) are not available using the standard error formula, as shown in 

Eq. (5.12), since the simulations were performed only once to validate the 3D KMC 

model and not to be used as inputs. The diffusion coefficient close to the pore surface is 

lower than in the pore centre, where methane exhibits bulk-like behaviour. When 

considering the average values for the 5 nm wide silica, MgO, alumina, and muscovite 

pores, the diffusion coefficient in Region 2 is slightly lower than the bulk diffusion 

coefficient, which was calculated to be 1.91 ± 0.08 x 10-8 m2/s for CH4 density of 0.01314 

atoms/Å3 at 300 K. This is due to the slightly higher density observed in the middle of 
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these pores. For the case of calcite, the opposite behaviour was observed. This is due 

to the significantly stronger interaction between the fluid and the calcite surface, which 

yields a higher number of absorbed molecules close to the pore surface, leaving the 

middle of the pore (Region 2) less crowded, as shown in Table 5.2. Since much fewer 

molecules are in Region 2, compared to the other substrates, a higher diffusivity in 

calcite’s Region 2 was observed. When considering the error bars estimated for these 

diffusivity values, it is observed that all diffusion coefficient values, besides calcite’s, for 

Region 2 agree with each other within the error bars. This observation confirms that the 

molecules found in Region 2 are beyond the range of interactions due to the surface, 

when the pores are at least 5 nm wide. Wang et al., reached a similar conclusion, for 

simulations conducted within 5.4 nm-wide slit-pores made of montmorillonite and calcite 

and filled with supercritical methane at various densities.241 All methane densities 

considered by those authors were lower than the densities considered in our work. 

The diffusion coefficient in Regions 1 and 3 for each substrate is similar, as expected. 

Moreover, the diffusion coefficient in the regions close to the pore remains almost 

constant when comparing 5 and 10 nm pores. This is expected, since the number of 

adsorbed molecules and the thickness of the adsorbed regions remains unaltered while 

increasing the size of the pore. Wang et al., also observed the mass density of the two 

adsorbed layers to remain unchanged when simulating supercritical methane confined 

in 1.8 and 5.4 nm wide calcite pores.241 When considering pores of the same material, 

the results in this study show that the overall (total) diffusivity increases as the pore width 

increases.  It is later discussed at which pore width the diffusivity of confined methane 

reaches values comparable to those found in the bulk. The hypothesis is that this 

increase in diffusivity with pore width is due to the relative increase of the Region 2 

thickness when pore width increases. In fact, within Region 2 the diffusion coefficients 

are significantly higher compared to the areas close to the pore walls.  

When considering the diffusivity across the whole substrate (Regions 1, 2, and 3), the Dx 

and Dy values calculated for silica, MgO, alumina and muscovite pores are very similar 
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– less than 1% different, which is an indicator of isotropic diffusion.  The same behaviour 

is also observed when comparing the Dx and Dy values in Regions 1, 2, and 3 individually 

(see Figure 5.6). However, within calcite pores, the Dx and Dy values in Regions 1 and 3 

are significantly different, approximately 33%, 40%, and 17%, when considering 5, 10, 

and 25 nm pores, respectively, as presented in Figure 5.7. In the middle of the pore, 

Region 2, the % difference between the Dx and Dy values is significantly smaller, as the 

effect of the surface is vanished. Similar anisotropic effects, in the region close to the 

calcite surface, were also observed by Bui et al.,215 and Franco et al.,265 Bui et al., 

proposed an explanation for the anisotropic behaviour of methane in hydrated calcite 

micropores using free energy landscape calculations to further characterise the surface 

of the calcite pores, although in that case the pores were filled with water. They showed 

that, because of the structure of confined water, the path of minimum resistance for 

methane diffusion along the Y direction is a straight line, while the preferable path along 

the X direction is tortuous and zigzag-like.215 Note that the determination of the X and Y 

directions is arbitrary; in the above comparisons X and Y directions are those shown in 

Figure 5.3. Franco et al., also observed the methane diffusivity along the Y direction to 

be higher than the diffusivity in the X direction close to the calcite surface for three pore 

widths.265 The results produced in this study agree with this observation, as shown in 

Figure 5.7.  

To verify that the thermodynamic conditions inside all pores correspond to supercritical 

methane, thermophysical data were used, considering the density in Region 2, and the 

system temperature. Based on these data it was confirmed that methane in Region 2 is 

at supercritical conditions within all systems considered. 
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Figure 5. 5: Diffusion coefficient calculated in Regions 1, 2, and 3, as well as in the whole 

simulation box (Total). Panel (A) shows the results obtained for the 5 nm pores, and 

panel (B) shows the results for the 10 nm pores, respectively. 

 

Figure 5. 6: Diffusion coefficients in the X and Y direction, calculated in Regions 1, 2, 

and 3, as well as in the whole simulation box (Total). Panel (A) shows the results obtained 

for the 5 nm pores, and panel (B) shows the results for the 10 nm pores, respectively. 

 

Figure 5. 7: Analysis of anisotropic diffusion in calcite. The y axis shows the % absolute 

deviation between Dx and Dy values measured in the three regions and the overall 

(Total) pore, using 3 different pore widths. 
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Model systems with exceptionally strong surface-fluid interactions 

The analysis discussed above was also performed for the silica substrates when the 

force fields were modified to represent exceptionally strong surface-fluid interactions. In 

these model systems, the methane-silicon and methane-hydroxyl interactions were 

increased by 5 and 25 times, as described in subsection 5.1.3.4. Figures 5.8 and 5.9, 

compare the results obtained against those gathered for methane within the realistic 

silica substrate. Note that for the systems considered here, the number of molecules 

inserted in the pores was 3000. Figure 5.8 shows how the three systems compare in 

terms of density profiles (panel A) and RDF profiles (panel B). The comparison between 

the diffusion coefficients calculated in the three regions are reported in Figure 5.9 (panel 

C, panel D). 

 

 

Figure 5. 8: Density (panel – A) and RDFs (panel – B) for the 3 systems used to represent 

systems with exceptionally strong solid-fluid interactions. 

 

The effect of the strong surface interaction is evident from the density profiles and RDF 

plots, as shown in Figure 5.8. To further characterise the systems, Figure 5.10 presents 

the planar density profiles parallel to the pore surface for methane within the second 

adsorption layer. The absorption layer is determined from the density profiles in Figure 

5.8. The colour-bar has been kept constant to allow for visual comparison. According to 

panel (A), methane molecules preferably arrange in circles surrounding the oxygen 

atoms on the surface. As the interaction between surface and methane increases (panels 
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B and C), the amount of methane molecules occupying positions aligned with the oxygen 

atoms increases. This is probably because the maximum number of molecules that can 

occupy the peripheral positions surrounding the oxygen atoms has been reached, and 

additional molecules have to occupy positions that correspond to higher conformational 

energy.  

In Figure 5.9, panel (A), the thickness of Regions 1 and 3 is presented, as calculated 

from the density plots. As the solid-fluid attraction increases, these regions narrow and 

the methane density in Regions 1 and 3 increases, which is in qualitative agreement with 

the 2D density profiles presented in Figure 5.10. On the contrary, the methane density 

in Region 2 decreases, as confirmed by the density profiles shown in Figure 5.8. As a 

result, the diffusivity of methane in the 3 regions is expected to significantly change as 

the solid-fluid interactions increase. The number of molecules in the 3 regions within 

these pores is summarised in Figure 5.9, panel (B). As the attraction between the surface 

and the fluid increases, the number of molecules adsorbed on the surface increases, 

leading to a reduced occupancy in the middle of the pore. 

As the surface-methane attraction increases, the methane diffusion coefficient in 

Regions 1 and 3 was found to drop significantly, by almost one order of magnitude every 

time the solid-surface interaction increased by 5 times, while the diffusivity in Region 2 

increases moderately. However, the overall (total) diffusivity was found to remain 

constant. To explain these observations, the hypothesis is that the following two effects 

cancel each other out: 1) decreased R1 and R3 thickness, with correspondingly 

decreased diffusivity, and 2) increased R2 thickness, with correspondingly increased 

diffusivity. 
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Figure 5. 9: Analysis of the surface interaction effect as a function of the physical extent 

of Regions 1 & 3 (panel A), number of molecules absorbed (panel B), diffusivity in 

Regions 1,2, and 3 (panel C), and overall (total) diffusivity predicted using EMD 

simulations and the KMC model (panel D). 

 

Figure 5. 10: Surface density profiles for the 3 silica-methane systems as a function of 

surface-methane interactions. Panel (A) shows the realistic silica surface, while panels 

(B) and (C) the surfaces that are 5 and 25 times more attractive, respectively. Methane 

molecules in the first and second adsorbed layer were considered for this analysis. 
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3D KMC model validation 

The 3D KMC was validated against the analytical solution of the diffusion equation. To 

solve Eq. (5.8) and Eqs. (5.9-5.11), a system containing 10 columns (X direction), 3 rows 

(Z direction), and 3 slices (Y direction) was considered. All boundaries were reflective: 

once a molecule reached a boundary, it bounced back to the lattice. Molecules, 1350 in 

total, were distributed in the first third of the system, as shown in red in Figure 5.11, panel 

(A). The diffusion in all voxels within the KMC model was set to be 1 x 10-8 m2/s. The 

population in the 5th and 10th voxels was monitored over time, and Eqs. (5.8-5.11) were 

solved. The results obtained from the 3D KMC and those from the analytical equation 

are plotted in Figure 5.11 panels (B) and (C). Visual inspection confirms that there is 

satisfactory agreement. The stochastic approach shows fluctuations around the 

deterministic values. These fluctuations can be reduced by performing more 

independent runs and obtaining the average values. 

 

Figure 5. 11: (A) Representation of the 3D KMC non-periodic system. The red region 

represents the area where the molecules were initially distributed. The comparison 

between the analytical equation and the 3D KMC predictions for (B) Voxel 5 and (C) 

Voxel 10, respectively. 

 

The 3D KMC model was also tested for a homogeneous and periodic system. In this 

case, 6 different systems were considered, consisting of 5 columns (X direction), 6 rows 

(Z direction), and 3 slices (Y direction). A single molecule was then inserted in the lattice 

and was let to diffuse. Samples were collected every 0.07 ns during a total of 70 ns of 

simulations. At the end of the simulations, the MSD from the trajectories was calculated, 

leading to the calculation of the diffusion coefficient. Each system was homogeneous 
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and the input (target) diffusion coefficient varied from 1.3 x 10-8 to 2.3 x 10-8 m2/s. Figure 

5.12 presents the mean square displacements calculated from the 6 systems (panel A) 

and the comparison between the input (target) and calculated diffusion coefficient (panel 

B) when using the 3D KMC algorithm.  

 

Figure 5. 12: Validation of the 3D KMC algorithm using a periodic system. 

 

Finally, the effect of the unit cell size on the diffusion coefficient calculated was tested, 

when implementing the 3D MC approach. No statistically significant differences were 

observed when using smaller or bigger unit cell sizes. This confirms the validity of the 

3D KMC model in representing periodic systems. To test the 3D KMC model in a 

heterogeneous system the 3 systems where the surface - fluid interaction was altered 

(see subsection 5.1.3.4) were considered. To set the diffusivity in Regions 1, 2, and 3 

the values reported in Figure 5.9. were used. The algorithmic steps described in Figure 

5.2 were also implemented, but for only 1 value of the pore width. From the trajectories 

obtained, the diffusion coefficient from 10 independent runs was calculated. The results 

are presented in Figure 9 panel (D), which shows agreement between the KMC and EMD 

approaches, validating the applicability of the KMC model in heterogeneous systems. 
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3D KMC predictions of supercritical methane diffusivity in pores 

This subsection presents the results obtained using the 3D KMC on the slit pore systems, 

using as input the results from atomistic EMD simulations. Regions 1, 2, and 3 were 

spatially defined within the KMC lattice based on analysing density profiles such as those 

in Figure 5.4. The diffusion coefficient assigned to voxels within each region was the 

output of the EMD results of Figure 5.5. To predict the overall (total) diffusivity in pores 

of increasing width, the algorithmic steps described in Figure 5.2 were followed. Figure 

5.13 presents the results obtained for the pores carved out of the 5 solid supports, for 

widths ranging from 3 to 60 nm. Note that the limit of the x-axis in the five panels shown 

in Figure 5.13 changes from one system to another. This is because of the protocol used 

to set up the 3D KMC systems, according to which the number of pore widths was the 

parameter used to determine the systems (35 pore widths for each substrate), together 

with the thickness of Regions 1 and 3, which differ among the substrates, as shown in 

Table 5.2.  The KMC data points are shown as blue circles. The error bars calculated 

according to Eq. (5.12), considering 10 independent runs, are shown in red. The grey 

fitted line is used as a guide to the eye and the blue dashed line shows the diffusion 

coefficient of the bulk methane, as calculated from 3 independent EMD simulations in 

the bulk. It is helpful to remember that the density of the bulk methane is set to 0.01314 

atoms/ Å3 and the temperature is 300 K.  
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Figure 5. 13: Overall (Dxyz) diffusion coefficient as a function of the pore width for the 5 

solid supports considered here for the whole pore. Comparison between KMC 

predictions and EMD data. Note that the deviation between KMC and MD data is less 

than 10%. 

 

As the pore width increases, the diffusion coefficient of methane increases, until it 

reaches its bulk value, 1.91 ± 0.08 x 10-8 m2/s, in all of the pores considered. According 

to the results in Figure 5.13, the supercritical methane confined in MgO and silica slit-

shaped pores exhibit bulk-like diffusivity when the pore width is slightly above 30 nm and 

35 nm, respectively. Within the muscovite pores, supercritical methane reaches bulk 
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behaviour when the pore width is almost 40 nm. Within the alumina pores, this happens 

when the pore width is slightly wider than 37 nm, while in calcite the pore width required 

for supercritical methane to achieve bulk-like diffusivity is almost 50 nm. The hypothesis 

here is that this substrate-specific behaviour is due to the preferential distribution of 

methane in Regions 1 and 3, near the solid substrates. While comparing the surface 

density profiles within the first adsorbed layer, presented in Figure 5.3, the MgO 

substrate shows the most uniform methane distribution, with silica, alumina, and 

muscovite substrates following. However, calcite exhibits sites that strongly attract 

methane. In a few pores, notably within the silica one, the results seem to suggest that 

in some cases the diffusion coefficient for the confined methane can be larger than in 

the bulk. This is ascribed to numerical errors, which are quantified in what follows. It is 

noted that the datapoints that appear to have faster diffusion than bulk are, when the 

error bars are considered, consistent with bulk-like diffusion. 

In the five panels of Figure 5.13, the diffusion coefficient data obtained by atomistic EMD 

simulations are also reported. For silica, MgO, alumina, and muscovite, there are 2 EMD 

data points, corresponding to the 5 nm and 10 nm pore widths. For calcite, an additional 

data point is reported, at 25 nm pore width. The deviation between EMD data and KMC 

predictions in all cases is less than 10%. For the 5 nm pores, the % deviation is 8.8%, 

8.1%, 7.4%, 9.3%, and 4.5% for the silica, MgO, alumina, calcite, and muscovite, 

respectively, while for the 10 nm pores the % deviations values become -1.3%, -4%, -

0.8%, 6.1%, and 7.9%, respectively. From the plots reported in Figure 13 and the % 

deviation calculated it appears that the 3D KMC predictions agree better with the EMD 

predictions as the pore width increases. This is because of the diffusion coefficient 

assigned to Region 2, during the set-up of the KMC model. As discussed in subsection 

5.1.4.1, the diffusion coefficient calculated in the middle of the pores was very similar to 

the bulk value, yet not identical; calcite exhibited a higher diffusion coefficient in Region 

2, compared to the bulk value, and for the rest of the substrates the diffusivity calculated 

was slightly lower.  Therefore, it is expected that as the pore width increases, the diffusion 



KMC algorithm extension to 3D; Studies in single pores and pore networks 

189 

coefficient of methane in Region 2 converges to the bulk value, and the KMC input for 

the region becomes more accurate. This can be further confirmed by the case of the 25 

nm calcite pore, where the difference between the EMD and the KMC values is -2.3%. 

These deviations are satisfactorily small and presumably could be further reduced if 

more independent EMD simulations were performed and more accurate inputs for 

Regions 1 and 3 were used to initiate the 3D KMC model, at the expense of increased 

demands on computational resources. The additional independent EMD simulations 

could also provide error bars and further aid the comparison between the two 

approaches. However, in pores smaller than 5 nm, each parallel pore wall may interact 

with fluid molecules adsorbed near both the opposite walls, causing strong deviations 

from bulk-like behaviour for the whole methane within the pore, even for those molecules 

in the middle of the pore. In this case, the accuracy of the KMC model is expected to 

worsen and the % deviation between the KMC and EMD simulation data will potentially 

exceed the 10% threshold. 

It should be emphasised that using the 3D KMC model for estimating self-diffusion 

coefficient in pores with varying pore width provides accurate results at very low 

computational cost. For the 5 nm pores considered here, atomistic EMD simulations for 

53 ns were performed for each solid support. The time required for these calculations, 

using a supercomputer, ranged between 30 and 42 hours; the time required for 

conducting atomistic EMD simulations within the 10 nm and 25 nm simulations was 

higher, as the number of molecules increased in those systems. By comparison, the time 

required for the KMC simulations, per substrate, was approximately 35 minutes on the 

supercomputer to predict self-diffusion coefficient in pores of 35 different pore widths. 

The nodes used to perform these simulations on the supercomputer consisted of 2 Intel 

Xeon E5-2683 v4 cores in total and 128 GB total RAM. For each pore width, 75 different 

initial configurations were tested in one simulation run, and 10 independent runs were 

performed, leading to a total of 26,250 simulations. This amount of simulations takes 

approximately 4 hours on a standard desktop computer, where it would be prohibitive for 
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the atomistic EMD simulations to be completed. Admittedly, transport models such as 

those discussed in subsection 5.1.2, could be used to generate digital libraries similar to 

those shown in Figure 5.13. However, to make those models applicable for the systems 

investigated, a certain number of parameters, usually obtained from EMD data, should 

be fitted to describe each substrate.266 
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A novel 3D pore network modelling approach to stochastically evaluate 

the impact of pore network geometry, chemistry and topology on fluid 

transport – Part II 

Abstract 

Fine-grained sandstones, siltstones, and shales have become increasingly important to 

satisfy the ever-growing energy demands, globally. Of particular current interest are 

shale rocks, which are mudstones made up of organic and inorganic constituents of 

varying pore sizes. These materials exhibit high heterogeneity, low porosity, varying 

chemical composition and low pore connectivity. Due to the complexity and the 

importance of such materials, many experimental, theoretical and numerical efforts 

attempt to quantify the impact of rock features on fluids diffusivity, and ultimately on 

permeability. It is becoming apparent that a successful approach should consider 

realistic 3D pore networks consisting of pore bodies that communicate via pore throats, 

which however requires prohibitive computational resources. To overcome current 

limitations, this study presents a rigorous protocol to stochastically generate synthetic 

3D pore networks in which pore features can be isolated and varied individually. Using 

this protocol, the contribution of pore network’s connectivity, porosity, minerology, and 

pore throat width distribution, on the diffusivity of supercritical methane is quantified. To 

conduct these calculations and simulate the fluid transport, the developed 3D stochastic 

KMC model, discussed in Part I of this chapter, is implemented. A sensitivity analysis is 

conducted to rank the significance of the various network’s features on methane 

diffusivity. Connectivity is found to be the most important feature, followed by pore throat 

width distribution, and porosity. Based on such insights, recommendations are provided 

on possible technological approaches to enhance fluid transport through shale rocks and 

equally complex pore networks. These findings could be relevant for applications that 

make use of porous media, ranging from catalysis to radioactive waste management, 

from shale gas production to environmental remediation. 
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Introduction 

In view of the growing demand for energy, production rocks that were once considered 

non-reservoirs, such as fine-grained sandstones, siltstones, and shales, are becoming 

increasingly important. These drastic changes have been enabled by technological 

advances in horizontal drilling and hydraulic fracturing, which permitted dramatic 

increases in hydrocarbon (gas and oil) production from shale formations.267–269 It is 

known that fluid flow and mass transport through rocks are controlled by pore networks’ 

characteristics such as pore size distribution, pore connectivity, porosity, pore throat 

width distribution, and mineralogy.66,79,270,271  Current research focus includes attempts 

to determine which, out of these and other features, control fluid migration. For example, 

Sahimi described pore connectivity by an equivalent network of pore throats, i.e., the 

narrow passages through which fluids flow, and pore bodies, large voids that meet 

through the throats.272 This feature of the porous media, frequently referred to as 

topology, pore throat connectivity, or coordination number, has been widely identified as 

one of the most important parameters that affect transport in many porous media, 

including shale rocks.273,274 According to Rabbani et al.,275 connectivity can be measured 

following either forward or backward methods: forward methods mainly involve 2D or 3D 

image analysis of core samples, followed by sophisticated morphological analysis and 

image processing to extract the network’s coordination number;276,277  backward methods 

first quantify some macroscopic characteristics of the porous media, e.g., capillary 

pressure, porosity, or relative permeability, and then back-calculate the features of the 

underlying pore network model.278–282  

When applied to USA shale rocks, e.g., Barnett and Haynesville samples, such 

approaches revealed pore networks with low connectivity.283 Similar results have been 

reported for UK samples from the Bowland, and it is now generally assumed that most 

shale formations consist of poorly connected pore networks. Moreover, it is common that 

during hydraulic fracturing, due to the large pressure gradients applied and in-situ stress 
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alterations, part of these poorly connected networks crush and the connectivity further 

reduces.284,285 To support this possibility, Davudov et al.,286 identified connectivity loss as 

the main mechanism controlling permeability reduction in shale samples. From a 

modelling perspective, the effect of pore network connectivity on permeability can be 

quantified by modifying selected parameters within the permeability models used. Few 

examples include Civan’s287 modified Kozeny–Carman (KC) permeability model, and 

Pape’s288 model, which is derived from fractal theory. The aim of this study is to explore 

an alternative method of quantifying the effect of connectivity on fluid transport, by 

implementing a stochastic approach to generate pore networks with desired properties 

and quantify methane gas diffusion within these materials. 

In addition to connectivity, other materials properties are important in this quest. For 

example, the porosity of a porous medium, defined as the volume fraction of its voids.289 

Porosity affects permeability so strongly,290,291 that Archie proposed a porosity-

permeability relationship, derived for sandstones, limestones and muddy sands, which 

predicts a tenfold increase in permeability, if porosity is increased by 3%.292 Because it 

has been suggested that porosity intrinsically depends on the microstructure of porous 

materials,293 a sensitivity analysis on the effect of macro and micro porosity on 

permeability was performed in Chapter 4. A plethora of published studies have also 

attempted to correlate the porosity of a formation to its permeability. Magara, e.g., 

proposed a log-derived permeability-porosity relationship to fit laboratory-based porosity-

permeability data.294 Additionally, several modifications to the classic fractal theory295 

have been proposed to better capture such relationship.296–298 Zhang et al.,299 utilised the 

theory of poroelasticity to derive this correlation, and Javadpour proposed a dynamic 

model to describe dynamic porosity and apparent permeability, taking into consideration 

the poromechanical processes that occur during reservoir stimulation.300 These authors 

also correlated permeability, porosity and formation depth using neural networks.301 

These efforts are justified by the fact that understanding the effect of porosity on 
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permeability is crucial in developing stimulation strategies and for the evaluation of shale 

formations profitability. 

Pore size and pore throats are also certainly important. In conventional reservoir rocks, 

pore sizes and throats are relatively large, sufficiently so to store and deliver economic 

quantities of petroleum. On the contrary, pore throats in unconventional reservoirs are 

so small that they can limit hydrocarbons passage.302 Nelson reported that the 

experimentally measured pore-throat sizes in samples from Devonian, Jurassic, 

Cretaceous, Pennsylvanian, and Pilocene shale formations range from 5 nm to 50 nm, 

although in some samples these values can reach 100 nm.302 Other experimental studies 

also confirm this assessment.283 Zhang et al.,303 evaluated pore size distribution (PSD) 

and permeability of a tight reservoir, located in China, and reported that throat sizes are 

slightly positively correlated with permeability. On the other hand, Katsube et al.,304 found 

that the PSDs’ mode significantly impact permeability for various Canadian shale 

samples. However, even these groups acknowledge that other material properties are 

likely to affect the relationships reported. 

Another material property that is often considered important in determining fluid transport 

is the chemistry of the porous medium. This is quantified in terms of the mineralogy of 

the pore throats. It has been observed that in narrow, single pores, the pore throat 

surface interacts with the fluids, in some cases yielding kinetic barriers that hinder 

transport.241,265 This is more pronounced when the throat surfaces are charged and water 

is present, especially if two-phase systems are present.88,215,305 In Part I of this chapter, 

the developed 3D KMC model was implemented to generate digital libraries correlating 

gas diffusivity to the pore size for five solid substrates. In those single-pore systems, it 

was found that the solid substrate chemistry has little effect on gas diffusivity for pore 

widths larger than ~30 nm, although the effect can be large in smaller pores.  

Although the importance of the pore network features has been excessively discussed 

in the literature, the classification of these features in order of importance remains 
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elusive. A rigorous systematic approach is employed here to generate 3D pore networks 

in which connectivity, porosity, PSD, and mineralogy are treated as variables and altered 

individually to quantify their impact on the transport of supercritical methane. The 

remainder of this study is organised as follows. Section 5.2.3 describes the protocols 

implemented to generate the pore networks, the systems investigated, and the stochastic 

3D KMC model used to model supercritical methane transport. The results obtained are 

presented in Section 5.2.5, when the pore network features are altered separately. The 

sensitivity analysis is also reported to reveal the relative importance of the pore networks 

characteristics. Finally, a summary of the observations obtained, followed by 

recommendations to practitioners are provided in Section 5.3. 

Methodology 

Pore network features 

As discussed above, in this study pore networks whose features are changed 

systematically are generated. The following subsections discuss how pore connectivity, 

network porosity, pore throat size distribution, and pore throat chemistry are changed 

systematically in the implementation of the developed 3D KMC model. In the 3D pore 

networks generated, the pores are of same size and are represented as binary variables; 

each voxel can either have a single pore or be empty. Similarly, pore connectivity is a 

represented as a binary variable for a set of adjacent pores, i.e. the neighbouring voxels 

i and j can be either connected via a pore throat or not. The number of connections a 

voxel has with its neighbouring 6 voxels defines the connectivity, which is an integer 

variable with values between 0 and 6. The pore throats are slit shaped, have the same 

length and different widths. 

Pore connectivity 

According to Sahimi, the pores in natural porous media can be divided into two groups: 

the pore bodies, which comprise most of the porosity, and the pore throats, which are 
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narrow channels connecting pore bodies. To construct the pore networks considered in 

this study, both pore bodies and throats were employed. The connectivity level 

determines the number of connections between neighbouring pores, and therefore the 

number of pore throats in the network. The minimum number of throats per pore is 0, 

when the pore is not connected to any adjacent pores; the maximum is 6, when the pore 

is surrounded by neighbouring pores in all 3 dimensions and is connected with them all. 

The maximum number of connections is defined by the shape of the voxels implemented 

for the construction of the 3D KMC lattice. Since cubic voxels are used in this 3D KMC 

model, the maximum number of connections is 6. If a different mesh type is used to 

generate the 3D KMC lattice (ex. triangular or hexagonal voxels), the number of 

maximum connections will be different. 

To make the generated pore networks realistic, log-normal distributions were used to 

determine the degree of connectivity. For each distribution, the mu and sigma values 

were specified. Sensitivity analysis is performed on both parameters separately. 

The mu values considered were 2, 3, 4, 5, and 6. In these networks, the sigma value 

was kept constant at 1 (Figure 5.14A). Because connectivity is one of the most important 

parameters affecting fluid transport, an additional step was implemented to ensure that 

the simulations conducted were not biased by a poor choice of the connectivity via the 

mu parameter. To this end, two sets of networks were generated, five networks with low 

connectivity (mu=2) and sigma ranging from 0.5 to 2.5 (shown in Figure 5.14B) and five 

networks with high connectivity (mu =5) with sigma values also from 0.5 to 2.5 (Figure 

5.14C). Sensitivity analysis is performed on these two sets separately. 

The sigma parameters considered were 0.5, 1, 1.5, 2, and 2.5. In these cases, the mu 

value constant and equal to 2, and 5, for the low and high connectivity networks. As 

sigma increases, the heterogeneity of the system increases because the connectivity 

distribution becomes broader, and the pores with low connectivity coexist with pores that 

are highly connected and can easily transport fluids. 
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Figure 5. 14: Distributions considered for the networks’ connectivity. A) Sigma=1 and 

constant, B) Mu=2, and constant, and C) Mu=5, and constant. 
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Porosity 

To quantify the effect of porosity on fluid diffusion, pore networks on increasing porosity 

were considered: 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%. These 

porosity values, when multiplied by the total number of voxels in the 3D KMC lattice, yield 

the number of pores present in the network. The pores are randomly inserted in the pore 

network. To ensure that the diffusivity calculated does not depend on the pore 

distribution, 5 configurations were generated for each porosity. The diffusion coefficient 

in each network was calculated to obtain the average, together with the uncertainty 

quantified using the standard error formula: 

 
Error̅̅ ̅̅ ̅̅ ̅ =

STD(D(i))

√n
 

(5.12) 

In Eq. (5.12), STD is the standard deviation, D(i) is the diffusion coefficient obtained for 

i ∈ [1, n], and n is the number of 3D pore network considered for the calculation. Figure 

5.15 shows an example of the pore networks with porosity 10%, 20%, 30%, 40%, and 

50%. Figure 5.16 presents an example of three different pore networks with 25% 

porosity. For all networks presented in Figures 5.15 and 5.16, the connectivity of the 

networks is high (mu=5). 

 

Figure 5. 15: Representation of the 3D and 2D pore networks generated while 

considering porosity values 10%-50%. As porosity increases, the cluster connectivity 

increases. 
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Figure 5. 16: Representation of three equivalent 3D pore networks with 25% porosity 

and high connectivity (mu=5). For every porosity value considered, 5 equivalent 

networks were generated. 

 

Pore throat Size Distribution (PSD) 

As discussed in Chapter 4, in 2D pore networks, the pore size distribution was found to 

strongly affect permeability. In this study, a similar sensitivity analysis is performed on 

the effect of pore throat size distribution, while considering 3D networks. To be consistent 

with the literature, log-normal distributions were considered, which characterise shale 

rock formations.306 The impact of the distribution’s mu and sigma was investigated, within 

10 systems. In the first five pore networks, sigma is kept constant and equal to 1, while 

mu changes (5, 10, 15, 20, and 25 nm) (see Figure 5.17A). These mu values are relative 

low, as shales are characterised by a significant amount of microporosity.283,302 In the 

other five pore networks, mu is kept  constant and equal to 25 nm, while sigma changes 

(0.5, 1, 1.5, 2, and 2.50 nm). As sigma increases, the distribution becomes broader and 

the level of heterogeneity in the pore networks increases (see Figure 5.17B). 
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Figure 5. 17: Pore throat size distributions considered when (A) Sigma=1 nm and 

remains constant while mu changes, and (B) Mu = 25 nm and remains constant while 

sigma changes. 

 

Pore throat chemistry 

This study considers systems with varying mineralogy content, namely, silicon oxide 

(silica), magnesium oxide (MgO), aluminum oxide (alumina), calcite, and muscovite. 

These minerals closely resemble those found in the inorganic part of shale rocks.36,307,308 

Five different compositions, shown in Table 5.3, were implemented. The composition of 

the pore throats was used, together with their size, to determine the diffusivity of 

supercritical methane. To assign diffusion coefficient values to the pore throat diameters 

for each substrate, the digital libraries produced in Part I of this chapter (see Figures 5.13 

and 5.18) were used. Note that to generate these libraries, only supercritical methane 

was considered, as a pure fluid. If moisture was present, water would could fill (partially 

or fully) some of the pore throats, generating additional barriers to fluid transport. For the 

pore networks considered in subsections 5.2.3.1.1 – 5.2.3.1.3, the composition of pore 

throats was 100% silica. 
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Table 5. 3: The mineral composition of the five systems generated to investigate the 

impact of pore throat chemistry on the diffusivity of supercritical methane. 

Mineral 

concentration 
Silica MgO Alumina Calcite Muscovite 

System 1 20% 20% 20% 20% 20% 

System 2 10% 30% 20% 20% 20% 

System 3 30% 20% 10% 20% 20% 

System 4 20% 20% 10% 30% 20% 

System 5 20% 20% 30% 20% 10% 

 

 

Figure 5. 18: Digital Libraries obtained from Part I of this chapter, presenting the 

relationship between the pore chemistry, the pore throat width, and the diffusivity. 

 

Pore network generation – Algorithmic steps 

Several sets of pore networks were generated, within each of which only one pore 

feature was changed, while the other parameters remained constant. The number of 

voxels in the simulation box was kept constant for the various pore networks. The 

simulation box is made by inserting 10 voxels in the x and y directions, respectively, and 

5 voxels in the z direction. The boundaries of the lattice are open, making the lattice 
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periodic in all three dimensions. The outcome is a 10 x 10 x 5 matrix, presented in Figure 

5.19. 

 

Figure 5. 19: Representation of the 3D KMC lattice containing 10 voxels in the x, and y 

dimensions, and 5 voxels in the z, yielding a 500-voxel lattice. All boundaries are 

periodic. 

 

To construct the pore networks, the algorithmic steps presented in Figure 5.20 were 

followed. The first parameter selected is the matrix porosity, which defines the number 

of pores inserted in the lattice. All the pores have the same size and are assumed to act 

as reservoirs, where molecules preferably accumulate. These can be considered as well-

mixed systems, were transitions happen fast and could resemble minima in a PES. On 

the other hand, the pore-to-pore throat transitions and vice versa are more difficult to 

take place and can considered as rare events. To speed-up the 3D KMC simulations, 

only on the latter type of transitions is simulated. The positions of the pores are randomly 

assigned within the lattice, via the uniform random number generator. If a lattice voxel 

chosen in the routine is already occupied by a pore, a different position is selected for 

the new pore. 
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Figure 5. 20: The algorithmic steps implemented for the pore network generation using 

a stochastic approach. 

 



KMC algorithm extension to 3D; Studies in single pores and pore networks 

204 

Once all pores are placed in the lattice, the connectivity is needed to identify the pore 

throats. While sampling through a connectivity distribution, a list of connections is 

generated. To test whether the generated distribution of connectivity matches the target 

distribution, the mu and sigma of the two distributions are analysed. The generated 

networks are accepted if the % deviation between these values is less than 5%, 

otherwise a new distribution needs to be generated. The number of elements in the 

produced list of coordination numbers, in other words the number of samples taken from 

the connectivity distribution, is equal to the number of pores in the network, as defined 

by the porosity value. At this stage, each pore has a maximum of 6 connections available. 

Once the list of connections has been identified, each pore is matched randomly with a 

coordination number. Depending on the coordination number selected, there are up to 6 

possible KMC rates that can be determined for a given pore.  

These rates define the direction a particle may follow travelling from that pore; towards 

the voxel on top, bottom, left, right, back, and forth. The direction of the jump is randomly 

selected, so that diffusion is equally probable in all three dimensions. Once the direction 

is defined, a test is performed to see if a pore is present in the neighbouring voxel. If the 

voxel is empty, a different direction is selected, etc. All connections must begin and end 

in a pore body, otherwise a new configuration of pore bodies is produced. The process 

is repeated until all connections are assigned to voxels containing pores and the 

appropriate number of neighbours surrounding them. However, using this methodology, 

a pore may be connected to a neighbouring voxel with zero connectivity. In that case, if 

a molecule ends up in this pore it remains “stuck” and is unable to transport anywhere 

else during the simulation. The process of assigning coordination numbers to pores is 

time consuming but necessary, especially when generating networks with low porosity 

and high connectivity. 

Next, the width of the pore throats is determined. The pore throats are considered to be 

slit-shaped, and their diameter is dictated by a selected PSD. Stochastic sampling is 

implemented to sample through the target PSD and select the diameter of each pore 
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throat. To validate the network, the generated PSDs are plotted against the reference 

PSDs presented in Figure 5.17. The mu and sigma values of the generated PSDs are 

also extracted and compared against the initial ones. If the % deviation between the 

produced and actual PSDs is less than 5%, the pore chemistry is assigned, which is an 

input parameter. According to the % of silica, MgO, alumina, calcite, and muscovite in 

the network, the number of pores made of these materials is specified. The last step of 

the algorithm is to assign the KMC rates across the network. To that ends, the digital 

libraries obtained from Part I of this chapter (as summarised in Figure 5.18) are utilised. 

Depending on the pore throat chemistry, the diffusion coefficient associated with the pore 

diameter selected from step 5, is obtained from the corresponding digital library. The 

diffusion coefficient values are then transformed to KMC rates using Eq. (5.13), as 

discussed in Part I of this chapter:151,176 

 
rKMC =

D

l2
 

 

(5.13) 

When all 7 algorithmic steps are completed, the generated list of KMC rates is used to 

inform the 3D KMC model. 

3D KMC model for fluid diffusion 

The KMC algorithm, as described in Part I of this chapter was implemented for the 3D 

pore network modelling presented in this study. The Mersenne Twister MT19937189 

uniform random number generator was utilised to produce the required random numbers, 

for the selection of the event and the calculation of the time required for the selected 

event to happen, at each iteration of the KMC algorithm. 

To simulate diffusion, a single particle was randomly inserted in the lattice. To obtain 

accurate statistics, several independent runs are performed, as summarised in Figure 

5.21. The initial position of the particle is randomised 75 times for each initial 
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configuration, 10 independent KMC runs are performed to compute the diffusion 

coefficient. 

 

Figure 5. 21: Algorithm for 3D KMC independent runs 

 

The particle trajectory was monitored and the mean square displacement (MSD) was 

calculated over time, which, coupled with the Einstein equation, see Eq. (5.5), yield the 

fluid diffusivity. 

 
Dxyz =

1

6
lim
t→∞

〈|𝐫i(t) − 𝐫i(0)|
2〉

t
 (5.14) 

 

In Eq. (5.5), 〈|ri(t) − ri(0)|
2〉 are the MSDs in the XYZ space. The simulation time is 70 

ns and a sample to monitor the particle’s position is taken every 0.07 ns. From the 10 

independent runs performed, the standard error was calculated using Eq. (5.12). 

Results and discussion 

Effect of network’s connectivity 
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To quantify the impact of pore throat connectivity, 15 networks were generated with 

constant porosity (15%), chemical composition (silica), and pore throat size distribution 

(mu=25 nm, and sigma=1). The only parameter changing among these 15 networks was 

the connectivity level, also referred to as coordination number (see Figure 5.14 for 

details). In the first 5 networks, mu was increased incrementally, from 2 to 6, while sigma 

was kept constant at 1. For the next 5 networks, connectivity was low (mu=2) and sigma 

was gradually increased from 0.5 to 2.5. For the last 5 networks, connectivity was high 

(mu=5) and sigma was from 0.5 to 2.5. Note that the pore throat widths are described 

via a size distribution, rather than a single value. Thus, when a pore is connected to 

several other pores, the slit pore throats used as channels have different widths. The 

smaller the widths are, the lower the likelihood of transition of molecules, due to the 

higher resistance to flow. Thus, when the molecules are given the option to choose 

between wide and narrow pore throat widths, it is expected that the fast transitions 

through the wider pore throats will be more frequent compared to those that are 

narrower.  

Diffusion was calculated using the stochastic KMC method and analysing the molecular 

trajectories. Figure 22 – panel A presents the results obtained from the first 5 networks 

(increasing connectivity). An exponential increase in diffusivity is observed as the 

networks’ connectivity increases. Indeed, when mu increases from 2 to 6, the diffusivity 

increases by almost 1 order of magnitude. This is expected for two main reasons. Firstly, 

as the connectivity increases, more pore to pore connections are available, yielding 

longer pathways. This is captured by the MSD obtained. Secondly, since more pathways 

are generated, the particles have more choices among pathways, which enables them 

to visit more of the material.  
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Figure 5. 22: Effect of the networks’ connectivity on methane diffusivity. A - Results 

obtained when the networks’ sigma value equals 1 and mu increases. B and C – Results 

for networks with low (mu=2), and high (mu=5) connectivity, respectively, with increasing 

sigma. The distributions representing the networks in A-C are shown in Figure’s 1 A-C, 

respectively. 

 

The 15 generated networks, presented in Figure 5.14, are assumed to exhibit an 

exponential relationship (according to Figure 5.22) between the pore network’s 

connectivity and methane diffusivity that can be expressed as: 

 y = Kie
Lix (5.15) 

In Eq. (5.15), y is the diffusion coefficient (in m2/s), x is the value of the distribution’s 

parameter (connectivity), K and L are constants, and i = 1, 2 and 3 for the networks 

presented in panels A, B, and C of Figure 5.22, respectively. According to the R2 value 

calculated during fitting, the variance in the diffusivity is strongly associated to the 

variance in the network’s connectivity characteristics. However, a linear or polynomial 

fitting could also be implemented, since there is sufficient evidence that the relationship 

between the network connectivity and diffusivity is explicitly exponential. In this work it is 

assumed that an exponential fitting is adequate. To allow for better comparison between 

panels A-C in Figure 5.14, the fitting is set exponential to all three figures. If a linear or 

polynomial fitting was to be employed, the values of the corresponding K and L are 

constants (quantitative measures) are expected to be different than those reported here, 

but the discussion regarding the trend observed (qualitative measures) are expected be 

similar. The error bars calculated are shown in red. They are relatively small for all 

networks considered. Visualising the results obtained, together with the error bars, no 
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overlaps are observed, confirming that the number of independent runs selected for our 

calculations was appropriate. 

In the remaining two sets of pore networks as the connectivity distributions become 

broader, pores that are poorly connected co-exist with others that are highly connected. 

It is not clear how these changes affect fluid transport. On one hand, the increase in the 

proportion of highly connected pores could promote fast diffusivity. On the other hand, 

more pores with low connectivity could yield the opposite effect. It is also likely that the 

results depend on the sensitivity of fluid transport on the existence of poorly- vs. highly-

connected pore bodies. 

For both low (mu=2) and high (mu=5) connectivity systems (Figure 5.14 – panels B and 

C, respectively), diffusivity is found to decrease as the sigma increases (Figure 5.22 – 

panels B and C). Considering that the diffusion coefficient reduces when the amount of 

pores with low connectivity is increased, and that the connectivity distributions 

considered are log-normal, it is concluded that the diffusivity is more sensitive to the 

presence of poorly connected pores. Comparing L2 and L3 values, calculated from the 

exponential trendline fitting (Eq. (5.15)), it is found that L2=0.07 and L3=0.13, suggesting 

that when the connectivity is high, the decrease in diffusivity due to increasing sigma is 

more pronounced. To better understand the reason behind this observation, the 

distributions presented in Figure 5.14 – panels B and C were investigated. When the 

connectivity is low (mu=2), the number of highly connected pores increases as sigma 

increases. Contrary, when the connectivity is high, an increase in the sigma value results 

in the appearance of more poorly-connected pores. This confirms that low-connectivity 

pores have a more significant impact on diffusion, compared to high-connectivity ones. 

In practical terms, building from this observation, it is possible that when it is desired to 

increase diffusivity and permeability for a network characterised by high connectivity, 

applying techniques to increase the network’s connectivity (i.e., generate secondary 

fractures in a reservoir) will result in modest improvements of the transport properties. 



KMC algorithm extension to 3D; Studies in single pores and pore networks 

210 

On the contrary, the same treatment will have much stronger beneficial effects when 

applied to a low-connectivity network. 

Moreover, the coefficients L1 (equal to 0.32), L2, and L3 are indicative of how sensitive 

the diffusivity is when the networks’ connectivity changes. Since L1 is significantly higher 

than the absolute values of L2 and L3 it can be extrapolated that the diffusivity is more 

sensitive to changes in the network’s connectivity (mu), rather than the degree of 

heterogeneity, caused due to the increase in the sigma’s value. 

Effect of porosity 

To investigate the effect of porosity, two sets of pore networks were considered, one of 

which with low (mu=2) and one with high connectivity (mu=5). In each set of networks, 

10 porosities were assigned, ranging from 5% to 50%. To obtain meaningful statistics, 

for each porosity 5 equivalent networks were generated, following the protocol described 

in Figure 5.20. In all cases, the pore throats that connect the pore bodies are made of 

silica and are characterised by pore width distribution described by mu=25 nm and 

sigma=1. 

Figure 5.23 presents the mean values obtained for the diffusion coefficient, as a function 

of porosity, for the two network families. Panel A presents the results obtained when 

considering networks with low connectivity and panel B those with highly connected pore 

bodies. The results show that, for porosity from 5% to 30% there is no change in the 

diffusion coefficient calculated. However, a rapid, almost exponential increase is 

predicted when the porosity exceeds the 35% threshold. This trend is observed in pore 

networks with both low and high connectivity. 

As the porosity of the system increases, more pore bodies are present within the system. 

Considering that the connectivity remains unaltered, the new additional pores provide 

the connections with their adjacent neighbours as described by the connectivity 

distribution curves. As the number of pores in the system increases, more pores become 
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interconnected, generating longer pathways. This is also shown in the 3D pore networks 

presented in Figure 5.15. As this higher effective connectivity due to increased porosity, 

appears, the initial plateau in calculated diffusivity transitions to a rapidly increasing 

function of porosity, as shown in Figure 5.23. Since the 3D lattices are periodic in all 3 

dimensions, this 35% threshold is not expected to be strongly dependent on the 

representative elementary volume (REV) used to construct our systems. In fact, a similar 

threshold porosity value (~39%) was observed by Prasianakis et al.,309 who simulated 

an acidic aqueous mixture diffusing through a calcite mineral matrix, dissolving part of it, 

thus increasing the system’s porosity. An exponential increase in permeability was 

observed when the 39% porosity threshold was reached. In agreement with those 

observations, the results obtained in this study suggest that the network’s transport 

behaviour can be significantly improved when the porosity is artificially altered. However, 

the process of modifying the network’s porosity utilising chemical reactions should be 

carefully planned, as the reaction by-products (mineral precipitation in Prasianaki et al.,’s 

case study) could clog the existing pore bodies thus reducing the network’s connectivity, 

and fluid transport.  

 

Figure 5. 23: Relationship between the networks’ porosity and methane diffusivity for (A) 

low connectivity (mu=2) and (B) high connectivity (mu=5) networks. The error bars are 

calculated considering 5 equivalent pore networks for each porosity value and applying 

Eq. (5.12). 

 

Effect of pore throats size distribution 
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For the investigation of the impact pore throat widths have on the diffusivity, 20 pore 

networks in total, were considered. In those networks, the pore throat size distribution 

was described via log-normal distributions. In the first 10 pore network sets the PSDs’ 

sigma was kept constant and equal to 1, while the PSDs’ mu was ranging between 5 and 

25 nm. The network connectivity was low (mu=2). The next 10 pore network sets 

consisted of PSDs with constant mu (mu=25 nm), while sigma was in the range of 0.5-

2.5. The connectivity of those networks was high (mu=5). For consistency, the pore 

throats were all made of silica. Figure 5.24 – panel A presents the results obtained for 

the low connectivity systems and in Figure 5.24 – panel B presents those for the highly 

connected networks, respectively. 

 

Figure 5. 24: Relationship between the pore throats width size distribution and methane 

diffusivity for (A) low connectivity and (B) high connectivity networks. For the mu of the 

pore throat widths, the distributions presented in Figure 5.17 – panel A are considered. 

 

For both panels A and B in Figure 5.24, the results show that as the pore throat size 

distribution increases, the methane diffusion coefficient also increases. This is expected, 

since wider pore throats allow fluid to transport faster, as shown in Figure 5.18. The 

results in Figure 5.24 show that when the pore throats are narrow, increasing their size 

yields moderate increases in diffusivity, while the effect is less pronounced when the 

pore throats are wide (i.e., see the plateau in the datasets). This is a direct consequence 

of the relationship between diffusion coefficient and pore width, as observed for single 
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pores (see Figure 5.18). The practical implication of this observation is that once the pore 

throats have reached sizes of ~30 nm, further widening them has little effect on the 

overall diffusion coefficient of supercritical methane.  

In Figure 5.24, the error bars as estimated by applying Eq. (5.12) are also reported. In 

panel A the error bars are smaller than the symbols, while in panel B they are slightly 

larger. Analysis of the errors shows no overlaps among results obtained for different pore 

throat size distributions, which confirms that the number of independent runs performed 

was sufficient to obtain statistically significant results. Comparing the results shown in 

panel A to those in panel B, an almost 2.5 times increase is observed, which is due to 

the change in the networks’ connectivity. By observing the trend of the diffusivity 

increase, as a function of the pore throat width, it is observed that the connectivity of the 

network (low or high), affects the diffusivity in a similar manner, from a qualitative 

perspective.  

The effect of changing the PSDs’ sigma on the diffusivity calculated is quantified in Figure 

5.25. It is expected that as the PSDs’ sigma increases, narrow pore throat widths coexist 

with wider ones. Pore networks with low and high connectivity (results shown in panel A 

and B of Figure 5.25, respectively) were both considered. It is observed that the 

heterogeneity of the pore throat size distributions, i.e. the sigma value, has no impact on 

methane diffusion coefficient. This result is phenomenologically explained by the 

following observation: when particles have the option of diffusing to neighbouring pore 

bodies travelling across narrow or wide pore throats, they mostly prefer the pathways of 

lowest resistance, i.e., the wider pore throats. This is reinforced by the observation that 

the same trend is observed for both low and high connectivity pores, although the self-

diffusion coefficients obtained in networks with high connectivity are larger than the 

others by, in general, a factor of almost 2.5. When the networks are highly connected, 

there are more possible pathways available for the particles to diffuse, and the proportion 

of the wider pore throats is considerably increased. 
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Figure 5. 25: Relationship between the pore throat width size distribution and methane 

diffusivity for (A) low connectivity and (B) high connectivity networks. For the sigma of 

the pore throat widths, the distributions presented in Figure 5.17 – panel B are 

considered. 

 

Effect of pore throat chemistry 

To investigate the effect of the chemistry of the pore throat widths, 2 sets of networks, 

each containing 5 pore networks, were generated. The first set contained networks with 

low connectivity (mu=2), the second, high connectivity (mu=5). The pore throats size 

distribution and the network porosity were kept constant. The composition of the pore 

networks in each of the 2 sets of 5 networks is shown in Table 5.3. The results obtained 

for the self-diffusion of methane, together with the error bars, are presented in Figure 

5.26. The chemical composition of the pore throats seems to have little to no effect on 

the diffusion coefficient calculated. The same observation was reported by lsmail and 

Zoback, in which permeability measurements indicated that shale mineralogy does not 

have a strong effect on permeability.310 Based on the results obtained, this observation 

could be explained considering the diffusion coefficients obtained in single pores of 

different widths (see Figure 5.18): when the pores are of width ~15 nm or wider, the 

chemistry of the solid substrate has little effect on the diffusion coefficient of supercritical 
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methane. This result could change when the composition of the fluid changes. For 

example, in hydrated pore networks (similar to those discussed Chapter 3), water 

molecules could accumulate near the pore throats, depending on the chemistry of the 

solid, yielding additional kinetic barriers to gas transport that are not explicitly considered 

in this study. It is worth noting that in Figure 5.26 no statistically significant difference is 

observed between the self-diffusion coefficients obtained in the networks with low and 

high connectivity (panels A and B, respectively). This is expected and validates the 

accuracy of the protocol followed to construct the various pore networks.  

 

Figure 5. 26: The effect of pore throat chemistry on the self-diffusion coefficient of 

supercritical methane. Results for pore networks with low and high connectivity are 

shown in panels A and B, respectively. 

 

Sensitivity analysis 

This subsection presents an overview of the results obtained and discussed above, by 

performing a sensitivity analysis to determine the impact of connectivity, porosity and 

pore throat size distribution on the diffusion coefficient of supercritical methane within the 

various pore networks. To determine the contribution of each network feature on the 

output (methane diffusion coefficient), the % change in output is plotted as a function of 

the % change in network feature. In this analysis the effect of the spread (sigma) for the 

connectivity and pore throat width sizes is not considered, since it was found to have 

moderate to low significance on methane diffusivity. For the same reason, the effect of 
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the pore throat chemistry is also not considered in the sensitivity analysis. Because the 

analysis presented in subsections 5.2.4.1 – 5.2.4.3 quantifies how changes in pore 

network features promote or hinder diffusivity, only the absolute % change in output is 

considered here. Figure 5.27 presents the results obtained for pore networks with low 

(panel A) and high (panel B) connectivity. 

 

Figure 5. 27: Sensitivity analysis on the impact of connectivity, porosity, and pore throat 

width size distribution on methane diffusion coefficient. Results for pore networks with 

low and high connectivity are shown in panel A and B, respectively. 

 

Comparing the results in panels (A) and (B), it is observed that the trends, and their 

magnitudes are consistent. It is found that: (1) changes in the pore networks connectivity 

have the greatest impact on methane diffusion; (2) changes in pore throat size 

distributions yield the second largest impact on methane diffusion, at least when the 

network feature changes for up to 400%; (3) changes in porosity have little effect on 

methane diffusion until changes in porosity are of at least 400%.  

Considering the results shown in Figure 5.18 (methane diffusion coefficient in single 

pores as a function of pore width and pore chemistry), supercritical methane shows a 

self-diffusion coefficient within the pores that is bulk-like when the pore width is of at least 

30 nm. To achieve a 700% change in the pore throat size distribution’s mu, mu should 

be 40 nm. The diffusion coefficient of supercritical methane is expected to be 
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approximately 1.18 x 10-8 m2/s, for the case of the highly connected network, which 

corresponds to an almost 40% improvement in diffusivity. For 700% change in porosity, 

the % change in diffusivity is almost 45% and for higher porosity values the diffusivity 

exponentially increases. Thus, it can be assumed that the porosity and PSD ranking will 

remain the same if the analysis of the PSDs’ mu was to be extended for mu>25 nm 

values. 

From a practical perspective, these observations can be used to provide 

recommendations on how to increase the transport properties within a pore network, 

when the network’s characteristics are known. Since connectivity is the most important 

parameter, any strategy aiming to increase this feature is expected to result in significant 

improvements in fluids transport. For example, during the hydraulic fracturing process, 

the creation of more dense secondary fractures could yield significant increases in 

production rates. This observation is consistent with field measurements during the 

development of the Wolfcamp and Spraberry formations.311 Improvements in the 

network’s porosity are also expected to be beneficial, but only after the ‘critical’ threshold 

of ~30% porosity is reached. This is consistent with results reported by Prasianakis et 

al.,309 The pore throats size distribution is an important feature, but, in the case of 

unconventional reservoirs, it depends on factors that operators have no control of. 

However, this feature can be altered in engineering materials used for example in 

catalysis (e.g., zeolites). Finally, it is important to highlight that the synergistic alteration 

of both connectivity and porosity is expected to be the most impactful, as shown in 

Prasianaki’s et al., study, where the chemically active agents were dissolving the rock 

matrix, resulting to a simultaneous increase in porosity and pore network connectivity. 

 

Conclusions 

In this chapter a, 3D KMC model was developed and used to perform two separate 

studies. In the first study (Part I), a methodology that synergistically implements atomistic 

equilibrium molecular dynamics (EMD) simulations and stochastic 3D kinetic Monte 
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Carlo (KMC) calculations was proposed and validated. The proposed methodology was 

used to predict self-diffusion coefficient for gases confined in pores as a function of pore 

width. In this study, slit-shaped pores were considered, but the methodology proposed 

can be applied to cylindrical or rough pores as well. Initially atomistic EMD simulations 

were conducted in pores of moderate width (5nm) and the representative data, obtained 

within 3 regions inside the pores, were used as input to inform the 3D KMC model. Then 

a sophisticated simulation protocol was implemented to obtain diffusion coefficients as a 

function of the pore width. The number of iterations and initialisations implemented in 

this protocol ensured that the KMC data obtained for the various pore widths were 

statistically different and not overlapping. 

The proposed methodology acknowledges advantages and disadvantages of EMD and 

KMC approaches and implements each in the most efficient and impactful way. For 

instance, the EMD simulations provided detailed and accurate atomic-scale data, which 

are necessary for obtaining accurate KMC calculations, at the expense of long run times. 

Considering that the computational time required for the KMC simulations is significantly 

smaller than that required for EMD simulations, the KMC model was used to predict the 

diffusivity of methane in slit-shaped pores of increasing pore width. Comparing the KMC 

predictions to atomistic EMD simulations in pores of width 10 and 25 nm, it was found 

that the % deviation between the two methods is less than 10% for all cases considered 

here. Further, the combined EMD-KMC approach allowed for the quantitatively 

description of the self-diffusion coefficient of confined supercritical methane as a function 

of pore width. The outcome of this study was a digital library that matches diffusivity to 

pore widths and pore chemistry at minimum computational cost. Within the pores 

considered, it was found that confinement reduces the methane diffusivity, and that bulk-

like diffusivity is reached when the pore width is at least 30 nm, and in some cases more 

than 50 nm, depending on the pore chemistry. This digital library was used in the second 

study performed (Part II) to simulate 3D pore networks that contain pores with varying 

chemistry and pore sizes. It is expected that the methodology proposed, in Part I, can be 
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applied to study gasses at different densities and temperature conditions, as well as 

mixtures. While the approach is expected to be useful in improving our ability to predict 

gas permeability in shale samples, many applications that involve fluid transport across 

pore network, including catalysis, could benefit from the proposed methodology. 

In the second part of this chapter, the developed 3D KMC model was implemented to 

determine the impact of four pore network characteristics on the transport of fluids. The 

characteristics considered are the pore network’s connectivity, porosity, pore throat 

widths, and pore chemistry. The 3D pore networks generated consisted of pore bodies, 

pockets where molecules accumulate, connected via slit-shaped pore throats. To 

generate the 3D pore networks a rigorous protocol was followed. 

For all the 3D pore networks generated for this study, the uncertainty of the mean values 

reported was calculated using a standard error formula. It was found that the results 

obtained together with the reported errors did not overlap for most of the case studies 

considered. This confirms that the number of independent runs selected for the 

stochastic calculations were appropriate to provide results that are statistically valid. The 

systems that yield overlapping results are those investigating the effect of pore chemistry 

and the pore throats distributions’ variance in the diffusion coefficient of supercritical 

methane. This is because of the similar transport properties of the substrates considered, 

and the ability of molecules to select a low resistance pathway when the networks 

become highly heterogeneous. 

It was also found that the pore network connectivity has a significant impact on the 

diffusivity of fluids. This is expected, since the increase in connectivity results in the 

generation of additional pathways for the molecules to diffuse. In fact, as the connectivity 

increases the transport of fluids accelerates exponentially. This means that if a low 

connectivity network was to be treated to improve its connectivity, the improvement in 

transport properties is expected to be significant. Porosity was also found to yield an 

exponential increase in methane diffusivity, after a threshold value (~35%) was achieved. 



KMC algorithm extension to 3D; Studies in single pores and pore networks 

220 

Similar observations have been reported in other computational studies, strengthening 

this argument. For low porosity values, the diffusion coefficient exhibited a slow increase 

with the increase of porosity. The hypothesis is that, for low porosity values, the pores 

may be connected, but the level of cluster connectivity is low. When considering pore 

throats with increasing width diameters, the calculated diffusion coefficient increased 

with a moderate rate initially, until a plateau was almost reached. This is probably due to 

the digital libraries considered to correlate the pore widths selected and the diffusion 

coefficient, when considering single pore throats. The sensitivity analysis revealed the 

connectivity to be the most important parameter that affects the diffusivity of fluids 

followed by the pore throat widths and finally porosity. The network connectivity and 

porosity are both characteristics that can be artificially altered. For example, during the 

hydraulic fracturing process, the creation of denser secondary fractures and treatment 

of the rock formation with chemically reactive compounds can increase the network’s 

connectivity, and porosity respectively. However, a synergistic approach that combines 

the improvement of both features is expected to result the best outcomes, as long as 

these strategies are carefully planned, sustainable, taking into consideration their 

environmental effects. 
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Summary and future work 

Summary and conclusions 

In this research study, Kinetic Monte Carlo (KMC) is implemented as a stochastic 

approach to investigate the transport of fluids in porous media. Although KMC has been 

widely applied to address a number of surface diffusion-reaction problems, only a few 

studies have reported on the use of KMC to address mesoscopic transport in porous 

media. The media of interest in this research study are those that resemble shale rocks, 

which have a complex and heterogeneous structure and very low permeability. These 

formations contain large amounts of natural gas and have been widely exploited in the 

U.S, but not yet in the UK.  

The first aim was to construct and validate a 1D KMC algorithm that simulates particle 

diffusion, and test whether it is suitable for fluid transport studies. In an effort to simplify 

a 3D two-phase transport problem in a 1D single phase one, previously studied using 

molecular dynamics (MD), it was evident that the KMC rates need to be carefully 

selected. From the studies undertaken in this thesis, different approaches were 

implemented towards the calculation of the transition rates, depending on the available 

input data. For example, in Chapter 3, density profiles together with potential of mean 

force calculations and diffusion coefficients, obtained from the literature, were used to 

calculate the KMC rates. From this initial study, KMC was found to be able to simulate 

fluid transport processed while certain advantages of the method emerged. 

Then, the 1D KMC was extended to 2D and was implemented to calculate the effective 

matrix permeability of synthetic networks, shale sample, and rock samples that were 

treated with proppants. The 2D KMC was validated against analytical solutions of the 2D 

diffusion equation. To select the KMC rates, transport models from the literature were 

used to assign permeability coefficients in the voxels of the lattice. To convert these 

permeability coefficients into KMC rates, an equation was proposed and validated. The 

predictions obtained from the 2D KMC model were compared against those obtained 
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from two deterministic approaches. From a series of several synthetic networks and 

sensitivity analysis, recommendations were made on the optimal conditions under which 

each method should be used. The 2D KMC was then implemented to estimate the 

permeability of a shale rock sample and investigate the effect of proppants on the 

permeability improvement. An empirical correlation was generated that “translates” 

microfracture (MF) conductivity to fracture width maintained. 

The 2D KMC was thereafter extended to 3D and implemented to generate digital libraries 

and perform pore network modelling studies. For the generation of the digital libraries, 

MD data were used as inputs. The outcome of this study was to obtain gas diffusivity as 

a function of the pore width at minimum computational cost. Single slit-shaped pores 

were considered consisting of minerals similar to those found in shales’ inorganic part. 

Then, the 3D KMC was employed to quantify the impact of four key pore network 

characteristics, including the pore chemistry, on the diffusivity of gasses. According to 

the results obtained, recommendations are provided on possible technological 

approaches to enhance fluid transport through shale rocks and equally complex pore 

networks. 

The advantages of implementing KMC to simulate fluid transport are numerous. Firstly, 

the computation time required was significantly less compared to similar calculations 

conducted using MD simulations. Such KMC-MD comparisons were made in Chapters 

3 and 5. However, to obtain accurate KMC rates, time consuming MD simulations need 

to be performed. As an effort to minimise the need of extensive MD simulations, which 

are often not available, a synergistic methodology was proposed in Chapter 5. This 

methodology acknowledges advantages and disadvantages of MD and KMC 

approaches and implements each in the most efficient and impactful way. The 

predictions made using this approach were in satisfactory agreement with results 

obtained from atomistic studies (MD) and the % deviation between the two methods was 

less than 10%. 
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Another advantage of the KMC is the ability to perform multiple independent runs and 

quantify the degree of uncertainty in the predictions. This is an essential step to (1) 

minimise the statistical noise, and (2) obtain results that are statistically valid. Moreover, 

since KMC simulations are significantly faster than MD calculations, multiple realisations 

of the pore networks can be constructed and simulated. When the analysis is based on 

a set of equivalent networks rather than a single one, uncertainties that may arise during 

the process of the networks’ generation are minimised. 

Although the KMC is significantly less time consuming, compared to MD simulations, it 

still requires a considerable amount of computing time, when compared to deterministic 

methods, such as the effective medium theory, or the simplified renormalisation 

technique. The computational efficiency of the KMC simulations strongly depends on the 

lattice size selected. When considering pore networks in which both the microscopic and 

mesoscopic features need to be simulated, such those found in shales, a very fine mesh 

needs to be created making the KMC challenging to implement. To address this issue 

two strategies were employed in this research study. The first was to optimise the event 

selection process, which is ultimately the most time-consuming step. The binary tree 

selection algorithm was employed in Chapter 4, replacing the linear selection one, 

resulting in significant computational savings. The second strategy was to implement 

multi-stage modelling. In Chapter 4, the shale rock, consisting of organic and inorganic 

matter, was simulated in two steps. In the first step the transport properties of the organic 

and inorganic matter were calculated and then used in the second stage of the analysis 

as input parameters. This multi-scale type of analysis furthered the applicability of the 

KMC, which can be now used as a tool to simulate fluid transport at different scales. 

Proposed future work 

The existing approaches for completion design and well space optimisation are 

inconclusive. Very recently, for example, Sen et al., reported that increasing well-spacing 

improves recovery after the 1st year of production, while Jaripatke et al., reported that 

tighter cluster spacing and shorter stage lengths improve productivity.311,312 Further, the 
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successful development of unconventional reservoirs using multi-stage hydraulic 

fracturing depends on multiple factors including geology and production practices/rock 

treatments (proppants, reactive fluids to partially dissolve the rock matrix, etc.), leading 

to un-foreseeable investment losses. To reduce financial risk, considering the intrinsic 

diversity of unconventional reservoirs, completion and production strategies should be 

customised for each formation, sometimes on a well-by-well case. This is a monumental 

challenge. Tackling this challenge, a user-friendly protocol is required to 

i. harmonise characterisation insights, recovery predictions and field-testing data 

to yield a reliable interpretation of the production potential;  

ii. seamlessly optimise completion design and production strategies to maximise 

unconventionals’ productivity, ideally on a well-by-well case. 

Artificial Intelligence (AI) promises to revolutionise the technological landscape. Among 

various AI approaches, recent studies demonstrated that machine learning algorithms 

such as 2D and 3D convolutional neural networks (CNNs), using digitised rock samples 

as a training dataset, are able to predict permeability from image analysis alone.313 As 

with other AI approaches, the quality of the predictions depend on the quantity and 

quality of the input data and the training label accuracy (known pore network 

characteristics). To this end, the proposed methodology should consist of the following 

development stages: 

1. Development of a versatile and comprehensive digital library. 

2. Implementation of the KMC approach in a multi-scale framework to predict 

permeability. 

3. Calibration of an AI model to extend predictive capabilities. 

4. Quantify recovery improvement due to completion design and treatment 

strategies. 
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In the first stage of the proposed methodology a diverse digital library needs to be 

constructed including geological information, physical properties, imaging data and 

permeability measurements for various formations. Additional data obtained from sample 

materials (e.g., ceramics, zeolites, concrete), as well as from custom-made 3D printed 

materials representative of unconventional formations could also be included in the 

digital library. These sample or custom-made materials would be beneficial, especially 

for the third stage of the proposed methodology, which is to train the AI model, as they 

have known pore network characteristics. This data will be categorised to generate a 

digital library. It is critical that the library must contain information on permeability at a 

variety of length scales, from that of the rock mass, to that of extensively fractured 

formations. Figure 6.1 summarises a proposed protocol that could be used for the multi-

scale permeability modelling using the KMC. Once the AI model has been developed, 

trained, and tested, it can be used to systematically quantify the effects of various rock 

treatment technologies on the permeability improvement, such as reactive fluid 

stimulation, proppant loading and size effects.  

 

Figure 6.1: A stochastic approach to calculate matrix permeability using imaging, porosity 

and pore size distribution data. 

 

The implementation of the KMC approach, combined with the development of the AI 

model could significantly speed-up the time required to perform case study runs. Thus, 

multiple scenarios can be considered by the user, who could quantify different stages 
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throughout the life of an asset (pressure depletion, proppant deactivation, rock 

dissolution, etc.) achieving a dynamic time-dependent evaluation of the reservoir’s 

permeability. This could lead to optimisation of completion design and production 

strategies on a well-by-well case, which is essential for maximising unconventionals’ 

productivity and reducing financial risks. 
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Appendix A 

Validation of the KMC algorithm – Gillespie’s reaction networks 

In his work, Daniel Gillespie183 performed computational studies for five different systems 

while using the direct KMC algorithm he proposed. The first two systems investigated, 

deal with simple reaction networks, while the remaining three describe systems with 

more complicated behaviour. Appendix A provides a brief description of the systems, the 

conditions and the sampling scheme Gillespie used. Based on this information, a KMC 

code was constructed in order to reproduce the results Gillespie reported.183 As an effort 

to compare the stochastic and the deterministic formalism, the deterministic reaction-

rate equations together with the propensity expressions used in the KMC algorithm are 

reported for each system. Moreover, for every system investigated in Appendix A 

(Systems 1 – 5), the results obtained by the developed KMC model (blue colour – right 

panels) are compared against the results reported by Gillespie (left panels) and the 

deterministic solution of the M-equation (red colour – right panels). Further information 

regarding the calculation of the stochastic rate constants and their dimensionality can be 

found in Gillespie’s work.183,184 To be consistent with the notation used by Gillespie, the 

symbol ai is used for the propensities, where i is the index representing the type of 

reaction-transition taking place. 

System 1 

The first system investigated, is a simple set of coupled chemical reactions, which 

describe the decay of species X to species Z, as shown in Eq. (A.1) 

The reaction proceeds with a rate constant c = 0.5 s-1 and the initial population of the X 

species is 1000. Since there is only one type of reaction taking place in this system, only 

one propensity needs to be defined in the KMC algorithm, given by Eq. (A.2):  

 X
c
→ Z (A.1) 
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For system 1 there was no sampling scheme implemented and hence all data points 

were saved and reported. Each time an event took place, the time and the population of 

the system were plotted. Moreover, due to the simplicity of the system, the population of 

X species can be predicted by solving the M-equation or by following the deterministic 

formulation, as expressed in Eq.  (A.3): 

Figure A.1 combines the results reported by Gillespie and the results produced by the 

developed KMC code. To validate his results, Gillespie reported the population of 

species X, as predicted by his KMC algorithm, against those obtained by solving the M-

equation. In Figure A.1 (left panel) Gillespie’s stochastic results are plotted together with 

a one-standard deviation envelope (shown in dashed lines), and a two-standard 

deviation envelope (shown as a continuous line). In a similar manner, the results 

obtained by the developed KMC algorithm (blue colour – right panel) were validated 

against the deterministic predictions (red colour – right panel).  

 

Figure A. 1: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel). 

 

System 2 

Another example of a simple reaction network can be described by the following set of 

reactions:  

 a1 = cX  (A.2) 

 X(t) = Xoe
−ct (A.3) 
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This system consists of 3 species; an ambulant reactant X, a product Z and a compound 

Y, which serves both as a reactant and as an intermediate product. The population of 

the X species is constant, either because the system is open to a large reservoir of X, or 

because the amount of X initially found in the system is so high, that its depletion during 

the reaction can be considered negligible. From a deterministic point of view, the reaction 

rate equation for species Y can be expressed by Eq. (A.6): 

The two propensities required to describe the stochastic behaviour of this system can be 

calculated from Eq. (A.7) and Eq. (A.8) :   

The rate constants for this system are c1X = 5 and c2 = 0.005. Two different initial 

configurations were selected for this system; in the first one, the initial amount of Y 

species was 10 and in the second one the population was set at 3000. In both cases a 

sample was taken for every 10 reactions performed. In Figure A.2 the results obtained 

by the KMC model for the two initial configurations are compared against the results 

reported by Gillespie.  

 X̅ + Y 
c1
→ 2Y (A.4) 

 2Y
c2
→ Z (A.5) 

 dY

dt
= c1XY − 2(

c2
2
)Y2 

(A.6) 

 a1 = c1XY (A.7) 

 
a2 = c2

Y(Y − 1)

2
 

(A.8) 
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Figure A. 2: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel) for the second system. Two different initial configurations are shown for the 

population of Y species together with the deterministic steady state Ys = 1000. 

 

The agreement between the two KMC algorithms is satisfactory from a qualitative 

perspective. Differences between the numbers predicted do exist, but can be considered 

negligible, as the data plotted in both cases are obtained by performing a single KMC 

run. As discussed in Chapter 2, for every event simulated, two random numbers have to 

get selected. The random number generator used in both cases requires a starter 

number (seed) in order to get initiated. This starter number defines the sequence of 

random numbers produced by the u.r.n.g. Each starter number generates a unique 

sequence of numbers and every time this number is selected to initiate the u.r.n.g, the 

exact same sequence of numbers will be generated. 

By changing the sequence of random numbers, one would expect a different KMC 

prediction. For instance, in system 2 there are two possible reaction pathways. If both 

pathways shared the same propensity, there would be 50% chance for each one to 

happen at each reaction event. By performing the same simulation for different starter 

numbers, and hence for different chains of generated random numbers, the pathway 

selected at a specific time t(i) at each independent simulation might be different, 

however, the average frequency of the two pathways will always be the same. Hence by 

following a stochastic approach, it is expected to predict a feasible but uncertain 
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sequence of events. In order to minimise the uncertainty enclosed to the KMC predictions 

(stochastic noise), a sufficient amount of independent simulations is required.  

System 3 

Moving on to a system with more complex behaviour, Gillespie simulated the Lotka 

reactions, a set of coupled auto-catalytic reactions described by Eqs. (A.9 - A.11):  

This set of chemical reactions exhibit remarkable dynamical properties. Species Y2 

behave as predators who reproduce by feeding on species Y1, which can be considered 

as the prey. The population of species Y1 and Y2 over time can be described from the 

following deterministic reaction-rate equations:  

System 3 consists of three coupled reactions and hence, three propensities need to be 

determined in the KMC algorithm. These propensities are:  

The rate-constants of this system are c1X = 10, c2 = 0.01 and c3 = 10. The population of 

species X remains constant throughout the simulation and the initial population of 

species Y1 and Y2 was 1000. Results are being reported for every 100 reactions 

 X̅ +  Y1
c1
→  2Y1 

(A.9) 

 Y1 + Y2
c2
→  2Y2 

(A.10) 

 Y2
c3
→ Z (A.11) 

 dY1
dt
= c1XY1 − c2Y1Y2 

(A.12) 

 dY2
dt
= c2Y1Y2 − c3Y2 

(A.13) 

 a1 = c1XY1 (A.14) 

 a2 = c2Y1Y2 (A.15) 

 a3 = c3Y2 (A.16) 
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performed. Figures A.3 – A.5 depict the population level of species Y1 and Y2 for 0 ≤ t ≤

10 s and 0 ≤ t ≤ 30 s.  

 

Figure A. 3: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel) for species Y1 and Y2 for 0 ≤ t ≤ 10 s. The straight black line corresponds 

to the deterministic steady state Y1s, Y2s = 1000. 

 

 

Figure A. 4: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel) for species Y1 for 0 ≤ t ≤ 30 s. The straight black line corresponds to the 

deterministic steady state Y1s = 1000. 
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Figure A. 5: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel). The population of species Y1 is plotted against the population of species Y2 

for 0 ≤ t ≤ 30 s. 

 

In Figures A.3 – A.5. differences between the two predictions are observed. At this point 

it is essential to prove that the disagreement observed is due to the starter numbers used 

and not due to an error in the developed KMC algorithm. Therefore, three additional 

independent simulations were performed. In each one a different starter number was 

selected to initiate the u.r.n.g. The population of species Y1 for all four simulations are 

presented in Figure A.6. 
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Figure A. 6: The population of species Y1 as calculated by four independent KMC 

simulations for 0 ≤ t ≤ 30 s, while using different starter numbers to initiate the u.r.n.g. 

 

As expected, the different starter numbers yield different profiles for the population of Y1 

species. Since the set of reactions that apply for this system describe an auto-catalytic 

reaction, there are times when the population of Y1 species (prey) is high, leading to a 

rise in the predator population. As a result, an increased consumption of Y1 species is 

observed. However, this leads to a food shortage and hence a decrease of the predators, 

which permits the increase of the prey population. Clearly, it is a matter of time until a 

random fluctuation of the system leads to the extinction of the prey species Y1. Shortly 

after the prey extinction the predators should also disappear (Y1 = 0, Y2 = 0). Similarly, 

if the population of the predators is led to extinction, the population of species Y1 should 

increase infinitely (Y1 = ∞, Y2 = 0). In order to test whether the KMC algorithm can 
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predict that behaviour, two independent KMC simulations were performed until these two 

states were observed. In Figure A.7, the population of species Y1 and Y2 are plotted 

against time, just before the extinction takes place. 

 

Figure A. 7: The population of species Y1 and Y2 in the case of mutual extinction (left 

panel) and in the case of species Y2 extinction (right panel). 

 

System 4 

As Gillespie observed, the set of reactions in the Lotka model exhibited a neutrally stable 

oscillating behaviour. As a next step, he wanted to simulate a system with positively 

stable oscillations. The system he selected, comprises of two intermediate species Y1 

and Y2, two products Z1 and Z2 and two reactants X1 and X2 in abundant concentration. 

The system is described by the following set of reactions: 

The deterministic rate-reaction equations that describe the evolution of species Y1 and 

Y2 over time are: 

 X1̅̅ ̅  
c1
→ Y1 

(A.17) 

 X2̅̅ ̅ + Y1  
c2
→  Y2 + Z1   

(A.18) 

 2Y1 +  Y2  
c3
→  3Y1 

(A.19) 

 Y1
c4
→ Z2 

(A.20) 
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The four propensities required to describe the four reaction pathways in the KMC 

algorithm are calculated by the following equations: 

The reaction-rate constants selected for this system are c1X1 = 5000, c2X2 = 50, c3 =

0.00005 and c4 = 5 and the initial population of species Y1 and Y2 is 1000 and 2000, 

respectively. Figures A.8 and A.9 present the evolution of species Y1 and Y2 over the 

time interval 0 ≤ t ≤ 14 s for every 100 reactions simulated. Figure A.10 shows the 

population of the two intermediate species against each other, for a slightly longer time 

interval 0 ≤ t ≤ 18 s, for every 50 reactions occurred. 

 

 

Figure A. 8: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel) for species Y1 for 0 ≤ t ≤ 14 s. Samples are exported for every 100 reactions 

simulated. 

 dY1
dt
= c1X1 − c2X2Y1 +

c3
2
Y1
2Y2 − c4Y1 

(A.21) 

 dY2
dt
= c2X2Y1 −

c3
2
Y1
2Y2 

(A.22) 

 a1 = c1X1 (A.23) 

 a2 = c2X2Y1 (A.24) 

 
a3 = c3Y2Y1

(Y1 − 1)

2
 

(A.25) 

 a4 = c4Y1 (A.26) 
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Figure A. 9: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel) for species Y1 for 0 ≤ t ≤ 14 s. Samples are exported for every 100 reactions 

simulated. 

 

 

Figure A. 10: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel). The population of species Y1 is plotted against the population of species Y2 

for 0 ≤ t ≤ 18 s. Samples are exported for every 50 reactions simulated. 

 

For this system small discrepancies were detected between the two algorithms. 

However, as previously discussed, the differences noticed can be attributed to the 

different starter numbers used. 
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System 5 

The final system simulated in Gillespie’s work resembles the 4th system and introduces 

a third intermediate species (Y3) and a third reactant (X3) at high and constant 

concentration. The reaction network corresponding to that model is as follows: 

The deterministic reaction-rate equations that can be used in order to calculate the 

population of all three intermediate species are: 

Assuming that the deterministic reaction rates of the first two equations are ρ1s and ρ2s 

and that the steady state values of the intermediate species are Y1s,Y2s and Y3s, the 

reaction-rate constants for the five pathways can be expressed as: 

 X1̅̅ ̅ + Y2  
c1
→ Y1 

(A.27) 

 Y1 +  Y2   
c2
→ Z1 

(A.28) 

 X2̅̅ ̅ + Y1  
c3
→  2Y1 + Y3 

(A.29) 

 2Y1   
c4
→ Z2 

(A.30) 

 X3̅̅ ̅ + Y3  
c5
→ Y2 

(A.31) 

 dY1
dt
= c1X1Y2 − c2Y1Y2 + c3X2Y1 − c4Y1

2 
(A.32) 

 dY2
dt
= −c1X1Y2 − c2Y1Y2 + c5X3Y3 

(A.33) 

 dY2
dt
= c3X2Y1 − c5X3Y3 

(A.34) 
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Since there are five possible reactions that can take place during each simulation event, 

five propensities need to be defined: 

The initial population of species Y1,Y2 and Y3 is 500, 1000 and 2000 respectively, while 

the reaction rates are ρ1s = 2000 and ρ2s = 50000. By implementing these inputs in the 

KMC algorithm, the evolution of the three intermediate species over the time interval 0 ≤

t ≤ 6 s, for every 100 reactions simulated is presented in Figure A.11. 

 c1X1 =
ρ1s
Y2s

 (A.35) 

 c2 =
ρ2s
Y1sY2s

 (A.36) 

 
c3X2 =

ρ1s + ρ2s
Y1s

 
(A.37) 

 
c4 =

2ρ1s

Y1s
2  

(A.38) 

 
c5 =

ρ1s + ρ2s
Y3s

 
(A.39) 

 a1 = c1X1Y2 (A.40) 

 a2 = c2Y1Y2 (A.41) 

 a3 = c3X2Y1 (A.42) 

 
a4 = c4Y1

Y1 − 1

2
 

(A.43) 

 a5 = c5X3Y3 (A.44) 
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Figure A. 11: Comparison between Gillespie’s data (left panel) and the developed KMC 

(right panel). The time evolution of species Y1, Y2 and Y3 is plotted for every 100 reactions 

simulated. 

 

Similarly, the population of the intermediate species is being plotted for a shorter time 

interval. Figure A.12 shows the results obtained when samples are taken every 250 

reactions. 

 

Figure A. 12: Comparison between Gillespie’s data (left panel) and the KMC code data 

(right panel), over the time interval 0 ≤ t ≤ 3 s. The time evolution of species Y1, Y2 and 

Y3 is plotted for every 250 reactions simulated. 

 

In his paper Gillespie performed more simulations for these five systems. The variables 

in those simulations were the sampling step, the value of the reaction-rate constants and 

the availability of the X1, X2 and X3 reactants. These simulations were performed for 
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validation purposes, but the results are not reported here. With the data presented so 

far, the validity of the constructed KMC algorithm was established. 
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