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Improving the odds of drug 
development success through 
human genomics: modelling study
Aroon D. Hingorani   1,2*, Valerie Kuan   1,2,10, Chris Finan1,2, Felix A. Kruger3, Anna Gaulton   4,  
Sandesh Chopade1,2, Reecha Sofat2,5, Raymond J. MacAllister6, John P. Overington   1,7, 
Harry Hemingway   2,5, Spiros Denaxas2,5, David Prieto   5,9,10 & Juan Pablo Casas8

Lack of efficacy in the intended disease indication is the major cause of clinical phase drug development 
failure. Explanations could include the poor external validity of pre-clinical (cell, tissue, and animal) 
models of human disease and the high false discovery rate (FDR) in preclinical science. FDR is related 
to the proportion of true relationships available for discovery (γ), and the type 1 (false-positive) and 
type 2 (false negative) error rates of the experiments designed to uncover them. We estimated the 
FDR in preclinical science, its effect on drug development success rates, and improvements expected 
from use of human genomics rather than preclinical studies as the primary source of evidence for 
drug target identification. Calculations were based on a sample space defined by all human diseases 
– the ‘disease-ome’ – represented as columns; and all protein coding genes – ‘the protein-coding 
genome’– represented as rows, producing a matrix of unique gene- (or protein-) disease pairings. 
We parameterised the space based on 10,000 diseases, 20,000 protein-coding genes, 100 causal 
genes per disease and 4000 genes encoding druggable targets, examining the effect of varying 
the parameters and a range of underlying assumptions, on the inferences drawn. We estimated γ, 
defined mathematical relationships between preclinical FDR and drug development success rates, and 
estimated improvements in success rates based on human genomics (rather than orthodox preclinical 
studies). Around one in every 200 protein-disease pairings was estimated to be causal (γ = 0.005) giving 
an FDR in preclinical research of 92.6%, which likely makes a major contribution to the reported drug 
development failure rate of 96%. Observed success rate was only slightly greater than expected for a 
random pick from the sample space. Values for γ back-calculated from reported preclinical and clinical 
drug development success rates were also close to the a priori estimates. Substituting genome wide 
(or druggable genome wide) association studies for preclinical studies as the major information source 
for drug target identification was estimated to reverse the probability of late stage failure because of 
the more stringent type 1 error rate employed and the ability to interrogate every potential druggable 
target in the same experiment. Genetic studies conducted at much larger scale, with greater resolution 
of disease end-points, e.g. by connecting genomics and electronic health record data within healthcare 
systems has the potential to produce radical improvement in drug development success rate.

Almost all small molecule drugs and bio-therapeutics (such as monoclonal antibodies) act by perturbing the 
function of proteins. Drug development is therefore predicated on identifying those proteins or ‘targets’ that both 
play a causal role in a disease and are also ‘druggable’, i.e. amenable to pharmacological action by small molecule 
compounds, peptides or monoclonal antibody therapeutics. The ensuing challenges are to develop compounds 
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specific for the target, with favourable pharmacokinetics and an acceptable toxicity profile, to prove target engage-
ment, and to demonstrate clinical efficacy and safety in humans (Supplementary Note 1).

The extent of these challenges is revealed in an overall failure rate in drug development of over 96%, including 
a 90% failure rate during clinical development1–6. Failure rates are highest for drugs with a new mechanism of 
action against a previously ‘undrugged’ protein, and for diseases (e.g. Alzheimer’s disease) where the pathogenesis 
is poorly understood.

Consequences of expensive drug development failures for Pharma have included site closures, job losses, and 
pruned R&D budgets. Failed R&D also inflates the price of the few successful drugs that trickle through develop-
ment programmes, which are priced so as to recoup the incurred cost of historical failures and provide sharehold-
ers with a return on their investment7. This cost is borne initially by healthcare providers but then transferred to 
citizens through health insurance premiums or taxation.

High failure rates also discourage real innovation in favour of derivative compounds with identical mecha-
nisms of action to existing drugs (‘me too drugs’), minor formulation changes, or drug combinations, which all 
enjoy the same level of patent protection as drugs with a truly innovative mechanism of action, where the devel-
opment risk is greater8. The result is that some diseases have few, if any, effective therapies, whilst others have a 
surplus of similar medicines jockeying for a market share. However, since healthcare providers are increasingly 
sophisticated in their assessment of the value of new medicines, derivative drugs with marginal benefits are now 
less likely to be taken up by healthcare systems than they once were9.

Governments, who are conflicted in their need to ensure cost-efficient healthcare on the one hand, but to sup-
port the pharmaceutical sector as a major employer and taxpayer on the other, has explored schemes to reduce 
barriers to market access for selected drugs10–12, but such schemes do not address the root of the drug develop-
ment problem.

These issues suggest the need for a fresh approach that directly addresses the reasons for high rates of drug 
development failure13–15.

Superseding poor pharmacokinetics and toxicity, lack of efficacy in the intended indication has recently 
emerged as the major reason for late stage drug development failure, usually established in a randomised con-
trolled clinical trial (RCT), the final step in the drug development pipeline16–21. A failure of this type is effectively 
an expensive demonstration that the target plays no role in the disease.

The reason for the high rate of late stage failure from lack of efficacy can be traced to two system flaws:

	 1.	 Preclinical experiments in isolated systems (cells, tissue preparations, isolated organs) together with animal 
disease models, which are used for the identification and validation of drug targets to progress into clinical 
phase testing, turn out to be poorly predictive of human efficacy

	 2.	 The pivotal clinical experiment, the RCT, is the final step in the drug development pipeline, which means 
that risk accumulates as a development programme progresses inflating the cost of any failure

The poor predictive ability of preclinical studies for human efficacy (an aspect of the so-called ‘reproducibility 
crisis’ in laboratory science) can be attributed in part to correctable flaws in experimental design including infre-
quent use of randomisation and blinding22–25.

However, errors of statistical inference leading to a high false discovery (FDR) rate may be equally important.
It can be shown (Supplementary Note 2 and Table 1) that

α γ
β γ α γ

=
−

− + −
FDR (1 )

(1 ) (1 ) (1)

where:
γ = ‐proportion of true target disease relationships
β = ‐false negative rate

β− =1 power (detection rate for a real effect)
α = ‐false positive rate

FDR gives the probability of no causal relationship given success was declared, by applying Bayes rule to the 
above quantities.

False discoveries likely greatly outnumber true discoveries in preclinical research26 because:

	(a)	 The proportion of true relationships available for discovery (γ) is greatly outweighed by the proportion of 
false ones (1 − γ)

	(b)	 The usual experimental false positive rate (α) of 0.05 leads to many false relationships being declared as real27–32

Outcome
Causal 
pairings

Non-causal 
pairings Hypotheses tested TDR FDR

Declared positive γ(1 − β) α(1 − γ) [γ(1 − β)] + [α(1 − γ)] γ β
γ β α γ

−
− + −

(1 )
(1 ) (1 )

α γ
β γ α γ

−
− + −

(1 )
(1 ) (1 )

Declared negative γβ (1 − α)(1 − γ) [γβ] + [(1 − α)(1 − γ)]

γ 1 − γ 1

Table 1.  The relationship between α, β andγ, the true discovery rate (TDR) and the false discovery rate (FDR).
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	(c)	 Studies are often too small to reliably detect real relationships because the power(1 − β) is often lower than 
that pre-specified at the study design stage. Over optimistic estimates of effect sizes also means that when 
true relationships are detected, the effect sizes will be overestimated30

The result is that seemingly promising but flawed target-disease indication hypotheses are liable to progress 
from preclinical into clinical phase development only to stumble expensively at phase 2 or 3 for lack of efficacy.

The high FDR in standard preclinical research could be reduced by routinely setting more stringent values 
for (1 − β) and α32. However, there is a penalty to pay in the requirement for larger sample sizes (Supplementary 
Note 2). This is outwardly at odds with the 3R principles that encourage reduction in the number of animals sac-
rificed in medical research. However, ultimately, a smaller number of larger but definitive preclinical experiments 
may utilise fewer animals than numerous small, equivocal experiments undertaken in pursuit of an eventually 
futile hypothesis.

Nevertheless, other aspects of preclinical experimentation are unalterable: the proportion of true relation-
ships available for discovery (γ) is fixed; experiments in isolated systems will never be fully representative of the 
situation in the whole animal; nor will animal models of human disease ever be completely reliable predictors of 
human success. A different solution is needed to address these limitations.

Relationships between variation in the genome and normal development and behaviour, physiology, metab-
olism, and disease susceptibility, (collectively, the phenotype), have been progressively uncovered in the last two 
decades. This has been enabled, in large part, by a single research design – the genome wide association study 
(GWAS). But the GWAS design is also beginning to reveal its potential as a new resource for drug development. 
GWAS have ‘rediscovered’ the known treatment indication or mechanism-based adverse for around 70 of the 
670 known targets of licensed drugs33. This observation suggests that new drug targets for diseases with few 
effective therapies could also be identified using the same approach. Retrospective analyses have shown that 
the probability of a gene being associated with a human disease given that it encodes an approved drug target is 
greater than expected by chance34. Studies using variants in genes encoding individual targets have accurately pre-
dicted success or failure in RCTs35,36, helped separate mechanism-based from off-target actions of new drugs37,38, 
and identified new treatment indications and repurposing opportunities for established drugs39 (Supplementary 
Information). Genetic prediction of pharmacological action has been shown to encompass both small molecule 
drugs and bio therapeutics, on proteomics and metabolomics40, as well as physiological biomarkers and disease 
end-points. Collectively, these examples illustrate the potential of genetics and genomics to address the nub of the 
drug development problem: matching the right drug target with the right disease through GWAS (target iden-
tification); and delineating the diverse impacts of perturbing an individual target on a wide range of outcomes 
(target validation).

GWAS overcome many of the design flaws inherent in standard preclinical testing in isolated cells, tissues 
and animal models. They are an experiment in the correct organism (the human); have the lowest false discovery 
rate in any field of biomedicine (Supplementary Note 3); provide the systematic, concurrent interrogation of 
every potential drug target on the condition of interest (rather than a few targets selected from a larger pool); and 
exploit the unique attributes of genetic variation (fixed and allocated at random), which mimics the design of the 
pivotal experiment in drug development, the RCT41–44.

Studies that exploit the naturally randomised allocation of genetic variants that instrument an exposure of 
interest for causal inference have been termed Mendelian randomisation studies. Where the exposure of interest 
is the protein encoded by a specific gene and this is a drug target, the paradigm has been referred to as Mendelian 
randomisation for drug target validation (see Supplementary Information, Ref 1), since it was inspired by, and 
represents a special case of the Mendelian randomisation paradigm, which was applied initially to help determine 
the causal relevance of environmental exposures or disease related biomarkers45. A GWAS study can be consid-
ered to be a type of Mendelian randomisation analysis for drug target validation where variants in every gene 
encoding a drug target are interrogated for their association with a disease at the same time. This is made possible 
because naturally occurring variants in or around a gene (whether common or rare, coding or non-coding) are 
ubiquitous in the genome. Those that influence expression or activity of the encoded protein can, through their 
associations with biomarkers and disease end-points, anticipate the effect of pharmacological action on the same 
protein where this is druggable. Such an approach is disease agnostic, though it may be unsuited to aspects of 
cancer drug development, where somatic rather than germ line mutations perturb the targets of interest, or to 
the development of anti-infective drugs, in cases where the therapeutic drug target is in the pathogen rather than 
the human host.

In this paper, we develop a new conceptual framework and apply simple probabilistic reasoning to (a) explain 
why failure and inefficiency in orthodox preclinical drug development is the norm, and success the exception; 
and (b) estimate the probability of development success given the gene encoding the drug target is associated with 
the corresponding disease.

Methods
Since drug development depends on identifying proteins that play a causal role in a disease of interest, we intro-
duce the concept of a sample space spanned by all human diseases – the ‘disease-ome’ – represented as columns; 
and all protein coding genes – ‘the protein coding genome’– represented as rows. The result is a matrix of unique 
gene- (or equivalently protein-) disease pairings (Fig. 1).

We focus on common (multifactorial) human diseases of potential therapeutic interest that have both genetic 
and environmental contribution (Supplementary Note 4). We assume subsets of all the proteins encoded in the 
genome (Supplementary Note 5) play a causal role in any disease (Supplementary Note 6), and that only certain 
proteins are amenable to targeting by small molecule drugs or bio-therapeutics, leading to the concept of the 
‘druggable genome: the set of genes encoding actual or potential targets of drugs (Supplementary Note 7).
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We therefore establish some definitions.
−G{ } is the set of protein coding genes

D{ } is the set of common human diseases
−GD{ } is the set of all possible gene (or protein) disease pairs

C{ } is the set of causal genes for a given disease
−CD{ } is the set of all causal gene disease pairs

{T}isthesetofgenesencodingdruggabletargets: the druggable genome

Based on arguments rehearsed in Supplementary Notes 4–7 (see also Table S1 and Fig. 2), we set the following 
parameters:

= − =N Total number of protein coding genes 20,000G
= =N Total number of complex human diseases 10,000D
= − = × = ×N Total number of gene disease pairs 10,000 20,000 200 10GD

6

=C the number of causal genes in a given disease
= =C the average number of causal genes per disease 100

= − = × = ×N Total number of causal gene disease pairs 100 10,000 1 10CD
6

= =N Total number of genes encoding druggable targets 4000T

We next formalise assumptions on which we base the subsequent calculations. Although some of the assump-
tions are oversimplifications, and exceptions can be identified from current drugs and diseases, they help to 
estimate certain ‘base-case’ probabilities. In Supplementary Note 8, we dissect these parameters and assumptions, 
and explore the impact of any modifications on our estimates.

Assumption 1: Each gene encodes a unique protein with a single function
Assumption 2: A given protein can influence the risk of more than one disease
Assumption 3: The probability of a protein influencing the pathogenesis of one disease is independent of the 

probability that it influences any other
Assumption 4: Drug treatments for human disease target proteins encoded in the germ line (We exclude drug 

targets encoded by the abnormal genome of cancer cells as well as antimicrobials, which typically target proteins 
encoded in the genomes of pathogens. For further discussion, see Supplementary Note 8).

Assumption 5: The probability that a protein affects disease pathogenesis and the probability the protein can 
be targeted by a drug is independent

Figure 1.  Sample space (NG × NT) defined by 10,000 human diseases (columns) and 20,000 protein coding 
genes (rows). Expanded region comprising 1/10,000tℎ of the whole sample space is enlarged: (a) based on 10th 
causative genes per disease); (b) (based on 100 causative genes per disease); and c (based on 1000 causative 
genes per disease). Each cell represents a unique gene-disease pairing. Dark blue cells indicate causal gene-
disease pairings, light blue cells druggable gene-disease pairings, with red cells indicating causal and druggable 
gene disease pairings.
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Assumption 6: Inaccurate target selection is the exclusive reason for clinical phase drug development failure
Assumption 7: DNA sequence variants in and around a gene encoding a drug target that alter expression or 

activity of the encoded protein (cis-acting variants), are ubiquitous in the genome
Assumption 8: The association of cis-acting variants with biomarkers and disease end-points in a population 

genetic study accurately predict the effects of pharmacological modification of the encoded target in a clinical trial
Assumption 9: Genotyping arrays used in GWAS provide comprehensive, appropriately powered coverage 

of the genome, and associations discovered at any one gene are independent of those detected at any other gene
We use simple frequencies, binomial or hypergeometric distributions, and 2 × 2 tables to calculate a range of 

metrics relevant to drug development success, and to compare target identification based on standard preclinical 
models with target identification through GWAS.

Results
Part A. Target identification through orthodox preclinical development.  False discovery rate in 
preclinical science and drug development success rate.  Ioannidis27 and others have provided empirical evidence 
from many research fields of extremely high rates of false discovery, leading to pervasive unreliability of the 
evidence base used to inform drug development46. In Bayesian terms, the prior probability of correctly pairing a 
causal gene (or protein) with a disease may be close to that of the background probability of a success in a random 
pick from the sample space.

Let us assume as a start point that this is the case. Then, using assumptions 1–3, the probability (Pc) that any 
gene- (or, equivalently, any protein)-disease pairing selected at random from the set of all possible gene-disease 
pairs {GD} also belongs to the set of causal gene-disease pairs {CD} is given by:

=P N
N (2)C

CD

GD

Or;

=P C
N (3)C

G

Figure 2.  Venn diagram illustrating the (a) the probabilities of selecting and (b) the number of causal, 
druggable gene-disease pair ( ∩CD TD), a druggable gene disease pair (TD) and a causal, gene disease pair 
(CD) from 200 × 106 gene disease pairings, 100 causal genes per disease and 4000 druggable genes from the 
20,000 in the genome. (Not to scale).
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Using either equation, and taking =C 100; PC = 0.005
If =C P1000, C = 0.05
If =C P10, C= 0.0005
As follows from Eq. 3, Pc is independent of the number of diseases under consideration, as long as C  is 

constant.
PC can also be interpreted as the proportion of causal relationships amongst all possible gene-disease pairings, 

and can hence be represented as γC, the proportion of causal protein-disease relationships available for discovery 
(Supplementary Note 2).

Therefore:

γ=P (4)C C

If preclinical experiments are initiated based on target-disease pairings drawn at random from the sample 
space, where =C 100; γC = 0.005; α = 0.05; and (1 − β) = 0.8, then using Eq. 1,

α γ
β γ α γ

=
−

− + −
= .FDR (1 )

(1 ) (1 )
92 6%

This FDR estimate is very close to that made previously by Ioannidis26 and also close the observed rate of drug 
development failure. We return to this point in a later section.

A priori probability of accurate drug target identification.  Only a portion of the genome encodes proteins readily 
accessible to small molecule drugs, monoclonal antibodies or peptides that currently comprise the major chem-
ical categories of medicines.

The probability(PT) of selecting a druggable gene (protein)-disease pairing at random is given by:

=P N
N (5)T

T

G

= = .P 4, 000
20, 000

0 2T

To estimate the probability PCT of selecting a disease-causing and druggable protein-disease pairing at random 
from the sample space, we take the probability that a protein affects disease pathogenesis and the probability the 
protein can be targeted by a drug to be independent (Assumption 5).

Therefore,

= ×P P P (6)CT c T

= . × .
= .

P
P

0 005 0 2
0 001

CT

CT

Corresponding probabilities and counts for scenarios in which = =C C100, and 1000 are shown in Figs. S1 
and S2 and Table S2. Note that these probabilities are independent of ND, the total number of diseases under 
consideration.

Following the arguments presented previously (Eq. 4), PCT can also be interpreted as γCT, the proportion of 
causal, druggable gene-disease pairs from the sample set of all gene-disease pairings.

From Eq. 1, with =C 100, γCT = 0.001, α = 0.05; and (1 − β) = 0.8 the FDR for druggable and causal protein 
disease pairings is estimated as 98.4% (Table 1).

However, the probability of more direct interest is that of identifying a druggable, disease-causing gene having 
already specified the disease of therapeutic interest. Since we assume the probability of a protein influencing the 
pathogenesis of one disease is independent of the probability that it influences any other (Assumption 3) PC, PT 
and PCT are the same for each individual disease, as they are for the sample space overall.

For any given disease, with C causal genes, we can therefore write:

=

=

= × =




















P C
N

P N
N

P P P C
N

N
N (7)

c
G

T
T

G

CT c T
G

T

G

These estimates can now be used to re-assort all genes in the genome from a therapeutic perspective for any 
given disease (Fig. 3).

For example, in a hypothetical disease (d1), where C = 100, the expected number of causal and druggable 
genes is given by:
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× =

















 × =P N 100

20,000
4000

20,000
20,000 20CT G

C − 20 = 80 causal genes would therefore be categorized as non-druggable. Of the NG − C = 19,900 non-causal 
genes, one fifth ( × =19, 900 3980N

N
T

G
) would be expected to be druggable but not causal in disease d1 (though of 

course some could be causal and of therapeutic interest in a different disease). The remaining 
19,900 − 3980 = 15,920 genes would be classified as neither causal for d1, nor druggable.

Table S2 illustrates the influence of different estimates of C on PC(γC) and PCT(γCT).
Based on Eqs. 3–7, we can also write

γ =




















C
N

N
NCT

G

T

G

This equation suggests routes by which the a priori probability of accurate drug target identification might 
be increased. C is not amenable to manipulation, being largely determined by evolutionary forces; NG is also 
fixed; however, NT could be increased by developing technologies that allow a broader range of gene products 
to be targeted therapeutically. The development of therapeutic monoclonal antibodies has already increased NT 
by permitting targeting of proteins that were not previously amenable to a small molecule therapeutic strategy.

γCT could also be increased by constraining the sample space to the druggable genome. We could then write:

γ =




















=










C
N

N
N

C
NCT

G

T

T G

If C = 100, γ = = .0 005CT
100

20, 000
Thus, the simple expedient of focusing target identification on the 4000 druggable genes, rather than all 20,000 

protein-coding genes, increases γCT by a factor of five from 0.001 to 0.005: among the set of druggable genes, all 
causal genes are automatically both causal and druggable.

Alternatively, if it were possible, hypothetically, to reliably remove genes considered to have a low or no prob-
ability of playing a causal role in the disease of interest, i.e. focusing on the set {NC'}, where:

=′N{ },C set of likely to be causal genes in the disease of interest

Figure 3.  Re-assorted ‘therapeutic genome’ of a hypothetical disease (d1). The 20,000 protein coding genes 
are organised into 100 causal and 19,900 non-causal genes. Causal genes are further subdivided into 20 that 
are also druggable and 80 that are not. Of the 20 causal, druggable genes, 3 are the targets of licensed drugs for 
the treatment of d1. Of the non-causal genes, 3980 are druggable but not causal for d1. The right hand panel 
indicates the expected number of true and false positive genes (including druggable genes) expected in a GWAS 
of d1 undertaken with a sample size that provides power, 1 − β = 0.8 and type 1 error rate of α = 5 × 10−8 at all 
loci.
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We could then write:

γ = =


















′

P C
N

N
NCT CT

C

T

G

If it were possible, hypothetically, to reliably remove genes considered to have a low or no probability of play-
ing a causal role in the disease of interest, i.e. focusing on the set of causal genes, then:





































→

















= .
→ ′′

C
N

N
N

C
C

N
N

lim 0 2
N C C

T

G

T

GC

In the limit, among an exclusively causal set of genes, the probability of being causal and druggable is simply 
the probability of being druggable (Assumption 5). Eliminating non-causal while retaining causal genes is the 
crux of the target identification problem. We show later why GWAS (or whole genome or exome sequencing 
studies) address this issue as an inherent feature of their study design.

A posteriori estimates of true and false relationships explored in contemporary drug development.  If the vast 
majority of research findings are false26, then the proportion of target-disease indication pairings studied in drug 
development should be close to that from a random pick from all possible target-indication pairs.

To estimate if this is the case, we use reported preclinical and success rates2,21 to make a posteriori estimates 
of the proportion of true target-disease relationships explored in preclinical and clinical phase development. We 
compare these a posteriori estimates to the a priori estimates based on a random pick of target-disease pairings in 
the sample space.

To facilitate the calculations, we reduce drug development to a two-stage process: a preclinical component 
(stage 1), whose function is to predict target-disease pairings destined for clinical phase success, and a clinical 
component (stage 2), whose function is to evaluate target-disease pairings brought forward from stage 1. Success 
in stage 2 is thus dependent on the predictive performance of stage 1. Since clinical phase drug development fail-
ure due to incorrect target specification accounts for around two in every three late-stage failures2,21, we utilize a 
further simplifying assumption (Assumption 6) that inaccurate target selection is the exclusive reason for clinical 
phase (stage 2) drug development failure.

Key variables in the following section are indexed by the lower-case suffix pc to denote preclinical and the 
lower-case suffix c to denote clinical stage development. Possible outcomes from pre-clinical and clinical phase 
development are summarized Table 2, where:

γ = −proportion of true target disease relationships
TP = true positive rate
FP = false positive rate
TN = true negative rate
FN = false negative rate
S = declared success rate
1 − S = declared failure rate
TDR = true discovery rate
If a clinical phase drug development programme follows every declared preclinical success, the proportion of 

true target disease relationships in clinical phase development is equivalent to the preclinical true discovery rate, 
so we can write:

γ =





=






TDR TDR

TP
S

, where
(8)

c pc pc
pc

pc

It can be also be shown, by substitution and re-arrangement (Supplementary Note 9) that;

True relationship No true relationship All

Stage 1:
Preclinical 
development 
(pc)

Declared success γ β= −( )TP 1pc pc pc α γ= −( )FP 1pc pc pc
Spc

Declared failure γ β=FNpc pc pc α γ= − −( )TN (1 ) 1pc pc pc
− S1 pc

All γpc γ−1 pc
1

Stage 2:
Clinical 
Development 
(c)

Declared success γ β= −TP (1 )c c c α γ= −( )FP 1c c c Sc

Declared failure γ β=FNc c c α γ= − −( )TN (1 ) 1c c c − S1 c

All γc = TDRpc γ−1 c
1

Table 2.  The relationship α, β, and γ TP, TN, FP FN, and the declared success rate (s) in preclinical and clinical 
drug development (see text for details).
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β

β α
= =

−

− + −( )
TDR TP

S
TDR

TDR TDR

(1 )

(1 ) 1 (9)
c

c

c

pc c

pc c c pc

By further substitution and re-arrangement (see Supplementary Note 9):

=
+
















α
β

α

β

γ

γ− −

−( )
TDR 1

1
(10)

C

1 1

1
c

c

pc

pc

pc

pc

Equation 10 illustrates that the clinical phase true discovery rate can be resolved mathematically into terms 
that encompass clinical phase power and experimental false positive rate ­ α

β−( )the term
1

c

c
, preclinical phase 

power and experimental false positive rate 

 ­





α

β−
the term

1
pc

pc
, and the true relationships available for discovery 





­




γ

γ

−
the term

1 pc

pc

. In this sense, Eq. 10 can be conceived as a mathematical summary of the probabilities and 

parameters determining drug development success. Equation 10 expresses TDRC as the odds of a randomly cho-
sen drug being effective, the Bayes factor provided by a preclinical discovery, and the Bayes factor provided by a 
clinical discovery.

Using the calculations elaborated in Supplementary Note 9, and based on published ‘success rates’ for preclin-
ical (Spc = 0.4)2 and clinical development (Sc = 0.1)2,22 and assuming values of α = 0.05 and 1 − β = 0.8, in both 
preclinical and clinical development, we estimateγc = 0.0667 and γpc = 0.03335; at αpc = 0.386 and FDRpc = 0.933.

Figure 4 illustrates values of γpc and αpc for a range of values for 1 − βpc from 0.2 to 0.8,using a fixed value of 
γc = 0.0667. For values of 1 − βpc in this range, values for γpc lie in the range 0.033 to 0.133, representing between 
a 6.5-fold to 26.5-fold enrichment in the proportion of true relationships actually studied in preclinical drug 
development over a random pick from a sample space demarcated by all diseases and the druggable genome 
(γpc = 0.005). Although these enrichment rates for established preclinical drug development might appear sub-
stantial, this degree of enrichment is insufficient to prevent a large proportion of false target-disease relationships 
being pursued during clinical phase development. This accounts for the low rates of clinical success. It also raises 
the possibility that a large proportion of declared clinical successes are actually themselves false discoveries, as 
illustrated by estimated values of TDRc (Table 2).

Parallel development programmes for a single success.  Pursuing multiple drug development programmes in par-
allel, each pursuing a different target, recognizing that the majority will fail, is a common, though inefficient strat-
egy in contemporary drug development. For example, 1120 unique pipeline drug programmes for Alzheimer’s 
disease were initiated across the industry in the period 1995–201447.

Figure 4.  Back calculation of proportion of true target-disease relationships (γpc) studied in preclinical 
development, inferred from observed rates of clinical success (SC = 0.1) and preclinical success (Spc = 0.4). 
Estimates of γpc assume power in clinical phase development(1 − βc) = 0.8 and false positive rate in clinical 
development, αc = 0.05, so that the proportion of true target-disease relationships in clinical development, 
γc = 0.0667. The graph shows estimates of γpc (red line) for a range of values for power (1 − βpc) in preclinical 
development and corresponding estimates of the preclinical false positive rate, αpc (blue line). (See text for 
details).
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Around 4 in 100(0.04) preclinical drug development programmes yield licensed drugs. However, this estimate 
is based on the success rates of compounds rather than targets. The success in early development of a first-in-class 
molecule for a given disease indication is often followed by a flurry of development programmes, distributed 
across several companies, based on the same target and disease indication. The consequence is that multiple drugs 
may emerge, all in the same class. Using the ChEMBL database, we estimate a median of 2 (mean of 4) licensed 
drugs per efficacy target (Fig. 5). Therefore, the overall developmental success rate for targets could be around half 
that of compounds i.e. 2 in 100(0.02).

With an overall developmental success rate for targets of 0.02, how many parallel programmes (N) should be 
pursued in order to have a 90% chance of at least one success?

Assuming all programmes are independent, the probability of all N programmes failing is:

− P(1 )s
N

where Ps = with in programme success rate
A 90% probability of at least 1 success equates to a 10% probability of no success in any programme (i.e. a 10% 

probability of all programmes failing). Therefore:

− = .P(1 ) 0 1s
N

If Ps = 0.02

=
.

− .
=N log0 1

log(1 0 02)
114

Thus, 114 parallel, independent programmes, should be pursued on average, to have a 90% probability of at 
least one developmental success; 34 programmes to have an 50% (evens) chance of at least one success. Values of 
N for a range of hypothetical values of Psare shown in Table S3.

Impact of a target selection step in orthodox preclinical drug development.  Logistics and cost preclude orthodox 
(non-genomic) pre-clinical studies based on cells, tissues and animal models from evaluating the potential causal 
role of every protein in every disease. This imposes a selection step in drug development in which a subset of 
targets must first be prioritized for inclusion in preclinical drug development programmes. By contrast, as we 
elaborate later, a GWAS is capable of interrogating every target in parallel, without a selection step.

This selection step in standard preclinical drug development introduces two constraints. First, it results in slow 
progress in the investigation of target-disease indication hypotheses. To illustrate, the sample space spanned by 
the druggable genome and human diseases contains NT × ND = 40 × 106 unique druggable gene (or protein tar-
get)-disease pairs, of which 0.005 × (40 × 106) = 200,000 would be expected to be causal =C(if 100). A recent 
survey estimated only 15, 101 unique human target-indication pairings have been studied in drug development 
programmes over the last two decades, representing just 0.04% of this theoretical sample space48.

The second constraint is illustrated by a further probability consideration. The probability that 0, 1, 2, … 
A causal targets occurs in a sample of size N (where each member of the sample corresponds to an independ-
ent development programme based on a different drug target –disease indication pairing), drawn without 

Figure 5.  Distribution of number of licensed drug compounds per target.
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replacement from the pool of 4000 druggable genes (proteins), of which C are causal for the disease of interest, is 
given by the hypergeometric distribution where:

=





−
−













( )
P A

C
A

C
N A

N

( )

4,000

4,000

The expected number of causal, druggable targets E(A) in the sample of development programmes is given by:

=








 =

− −
−

E A N C N C N( )
4,000

, with SD (4,000 C)(4,000 )
4,000 (4,000 1)2

Expected values for A based on a range of values of N and C are shown in Table S3. Four preclinical devel-
opment outcomes are therefore possible: (a) one or more true positives is correctly identified with no false pos-
itives; (b) a mixture of one or more true and false positives emerge; (c) there are no positive findings; or, (d) in a 
worst-case scenario, one or more false positive results emerge with no true positives.

Unless N is very large (e.g. 200 independent preclinical programmes proceeding in parallel, each evaluating 
a different target), there is a very low probability of a causal, druggable target being included in the set of pro-
grammes selected for preclinical studies, based on a random pick. Let us assume one nominally positive target 
is pursued for clinical development under the three scenarios that generate positive findings from preclinical 
studies (regardless of whether they are true or false positives), and that correct target selection is the only barrier 
to eventual drug development success (Assumption 9). Under the first scenario, clinical development will always 
be successful, under the second it will sometimes be successful and under the fourth never successful. The overall 
probabilities of eventual development success are given by equations in Supplementary Note 10 and the results 
are shown in Tables S4 and S5 and Fig. 6. With 20 causal, druggable targets to find, increasing the number of 
parallel preclinical programmes from 20 to 50 to 200 has a modest impact on drug development success if these 
are picked from the full set of 4000 druggable proteins. The expected number of true positives will only be greater 
than the number of false positives if the set of targets in the sampling frame is relatively low (<400 targets) and 
all causal, druggable targets are retained in the sample. This emphasises the need for very strong priors before 
embarking on a drug development programme.

Probability of repurposing success.  It would appear attractive to identify new disease indications for drugs that 
failed to show efficacy for the original indication, but which have proved safe in man; or to expand indications 
for a drug already effective in one disease to another condition (Table S6). However, repurposing or indication 
expansion relies on the assumption that different diseases share at least some common drug targets. How likely 
is this?

The probability of repurposing success can be considered from three perspectives:

•	 How many diseases are likely to be influenced by the perturbation of a single therapeutic target?
•	 How many diseases need to be considered for at least one pair of diseases to share a common therapeutic 

target, under the assumption of independence?
•	 How many diseases need to be studied to find at least one that will be affected by pharmacological perturba-

tion of a particular target of interest?

Diseases influenced by perturbation of a single protein: We showed previously in equation 2 ( =Cassuming 100, 
ND = 10,000, and NG = 20,000):

Figure 6.  Probability of orthodox drug development success according to the number of candidate targets in 
the initial sampling frame (left panel) and the number of parallel preclinical development programmes pursued 
(right panel). The calculations assume there are 4000druggable genes and 20 causal, druggable targets per 
disease.
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With PC = 0.005 the expected number diseases (ED) affected by any given gene (with standard deviation SD) is 
given by:

= × = . × =E P N 0 005 10, 000 50D C D

= − × × = . × . × =S P P N(1 ) 0 995 0 005 10,000 7D C C D

ED declines the fewer diseases (ND) under consideration, or if <C 100 (see Table S2). Since the estimate of ED 
should be precisely the same for a gene encoding a druggable as a non-druggable target, under Assumption 5, it 
can be inferred that even the most specific of medicines is likely to influence a range of conditions; leading either 
to mechanism-based adverse effects, efficacy in more than one condition, or some combination of the two. In fact, 
under the assumptions above, we are 95% confident that perturbation of a therapeutic target will affect between 
36 and 64 diseases and only 1 in 1000 targets would affect 28 or fewer conditions.

Shared therapeutic targets: Consider two diseases. If we assume =C 100, the first disease in the pair could have 
any 100 of the 20,000 genes in the genome in its causal set. The probability of the second disease sharing a number 
x1 of the 100 genes already involved in the first disease is given by the hypergeometric distribution:

=





−
−



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P x

x x
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100 20000 100
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So, the probability that the two diseases do not share any causal gene is:

= =

−
− = .

( )( )
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P x( 0)

100
0

20000 100
100 0

20000
100

0 6051

If we study a third disease, the probability of that disease sharing x2 of the 200 genes involved in the previous 
two diseases would be:

=





−
−



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( )
P x

x x
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So, the probability of the third disease not sharing a single gene with the other two (x2 = 0) is:

= =

−
− = .

( )( )
( )

P x( 0)

200
0

20000 200
100 0

20000
100

0 3652

So the total probability of the three diseases not sharing any of the genes is:

= × = = . × . = .P x P x( 0) ( 0) 0 605 0 365 0 2211 2

With four diseases, the probability of none of them sharing a gene is <5%, and for eight diseases it is less than 
1 in a million: it is almost certain that at least two diseases from this pool of eight, will share at least one common 
susceptibility gene.

Number of diseases that need to be studied to identify at least one that is affected by perturbation of a given target: 
The answer to the third question follows the same reasoning as that used previously to estimate the number of 
drug development programmes that need to be pursued in parallel to have at least a 90% or greater chance of at 
least one development success. With PC = 0.005(i.e. focusing on the druggable genome), 460 diseases would need 
to be studied to have ≥90% chance of identifying at least one condition that is causally affected by perturbation of 
a particular target of interest. When =C 1000, the number of diseases that need to be studied is 45.

Despite these considerations, the ultimate challenge for repurposing remains the same as that for de novo drug 
development: knowing precisely which targets are important in which diseases and therefore which targets are 
shared among a set of diseases of interest. We show in the next section how a human genomic approach to drug 
development is well placed to address this critical issue.

Part B. Target identification through GWAS.  Design features of GWAS that address the major contri-
butions to drug development failure are: (1) investigation of humans, not animal models; (2) a much more strin-
gent∝ value (typically 5 × 10−8) than is routine in orthodox preclinical studies49; (3) concurrent interrogation of 
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every drug target in parallel obviating the need for a selection step; and, (4), the naturally randomised allocation 
of genetic variants that mimics the design of a randomised controlled trial.

To attempt to quantify potential efficiency gains from using GWAS rather than standard preclinical models 
for drug target identification, we review the number of licensed drug targets already ‘rediscovered’ by GWAS; 
estimate the expected ‘yield’ of drug targets from a well powered GWAS in a disease of interest; and the predictive 
accuracy of GWAS for drug target identification, compared to the conventional preclinical study-based approach.

Rediscovery of licensed drug target-disease indications by a GWAS.  Examples of the apparently sporadic ‘redis-
covery’ by GWAS of drug targets already exploited for the treatment of the corresponding disease, as well as 
rediscoveries of the known mechanism-based adverse effects of several drug classes are included in Table 3 and a 
linked paper33. Are such rediscoveries serendipitous or predictable?

Among diseases with at least one licensed drug treatment, the total number of targets exploited by such drugs 
will vary. For example, nine drug classes (corresponding to nine different drug targets) contain compounds cur-
rently licensed for the treatment of type 2 diabetes but only two therapeutic classes contain compounds licensed 
for treatment of dementia. We can safely assume, from the efficacy of these drugs, that their targets (along with 
others, yet to be identified) play a causal role in the course of those diseases.

Consider the hypothetical disease (d1), for which g1, g2 … gn independent genes encode targets of drugs that 
have already been licensed on the basis of proven efficacy in the condition. Let us assume that a GWAS in disease 
d1 utilises a genotyping array with adequate coverage of all nlicensed drug target genes, that the probability of 
missing such a target is the false negative rate(β) and therefore there is a probability ((1 − β1), (1 − β2) … (1 − βn)) 
of detecting the genetic association at each of these loci. Thus (1 − βi) is the power (or the detection rate) for a real 
effect of gene giin disease d1.

We consider testing for a genetic association at the locus encoding each drug target in each hypothetical 
GWAS of d1 to be an independent trial (Assumption 7), where success equates to detection of an association at 
the locus and failure to overlooking the association. If there are 3 licensed drug targets in disease d1 available for 
rediscovery, and the power to detect true associations is the same at all 3 target loci i.e. (1 − β1) = (1 − β2) = (1 − 
β3) = (1 − β). A GWAS in d1 might detect 0, 1, 2 orall 3 of the known drug targets, and the probability that each of 
these situations occurs is given by the binomial distribution:

β β= − −( )P x n
x( ) (1 )x n x1 1

=P x x( ) the probability of detecting licensed drug targets
=n dthe number of licensed drug targets in disease1 1
− =n x dthe number of undetected licensed drug targets in disease1 1

β = Type II (false negative) error rate at each genetic locus

If β = 0.2, the probability (P) that a GWAS in disease d1:

•	 Detects none of the three licensed drug target genes, P(x = 0) = β3 = 0.008
•	 Detects only one of the three licensed drug target genes but misses the remaining two, 

P(x = 1) = 3β2(1 − β) = 0.096
•	 Detects only two of the three licensed drug target genes but misses the other, P(x = 2) = 3β(1 − β)2 = 0.384
•	 Detects all three licensed drug target genes, P(x = 3) = (1 − β)3 = 0.512
•	 Detects at least one of the three licensed drug target genes, P(x > 0) = 1 − β3 = 1 − 0.008 = 0.992

In general, if power at all loci in a GWAS of a disease dis (1 − β) and there are nd licensed drug targets to 
rediscover, the expected number of drug targets rediscovered (Ed) and its standard deviation (Sd) will be given by:

β= −E n (1 )d d

β β= −S n (1 )d d

In the worked example, we would therefore expect 2.4(SD = 0.7) of the 3 possible licensed drug targets to be 
rediscovered, on average.

Suppose we do one GWAS for each of K different diseases (d1, d2 … dK) where, for each disease, the number 
of licensed targets available for rediscovery is (n1, n2, … nK). If we assume that the power to detect an association 
at gene i encoding the target of licensed drug is the same for all drug targets in all GWAS j, regardless of disease 
(i.e. (1 − βi,j) = (1 − β) for all i and j), then the expected number of true drug target-indication rediscoveries (ET) 
across the K GWAS would be the sum of the expected rediscoveries in each GWAS. Therefore:

= + + … +E E E ET K1 2

β β β= − + − + … + −E n n n(1 ) (1 ) (1 )T K1 2

β= − + + … +E n n n(1 )( )T K1 2

Thus,
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Gene Drug
Molecule
type

Curation 
code GWAS EFO term Drug Indication (FDB) Associated Variant

Reference 
(pmid)

Minimun 
distance 
from 
druggable 
gene (bp)

Distance 
rank of 
druggable 
gene

Number 
of Genes 
In LD 
interval

Number of 
Druggable
genes in 
LD
interval

ALDH2 DISULFIRAM Small  
molecule 1

alcohol 
drinking|drinking 
behavior

Alcoholism (adjunctive 
treatment)

rs11066280|  
rs12229654| 
rs2074356|rs671

21270382| 
21372407| 
23364009| 
24277619

6016–
790230 1–18 22–33 2–4

PDE4D AMINOPHYLLINE Small  
molecule 1 asthma

Acute asthma|Acute 
exacerbation of chronic 
obstructive airways 
disease|Bronchial 
asthma|Chronic obstructive 
pulmonary disease|Left 
ventricular failure - 
cardiac failure - cardiac 
asthma|Reversible airways 
obstruction|Routine 
maintenance therapy in 
chronic bronchitis and 
asthma

rs1588265 19426955 448153 1 2 1

IGF1R MECASERMIN Protein 1 body height Growth failure due to 
primary IGF-1 deficiency rs2871865 20881960| 

25429064 2696 1 2 1

TNFSF11 DENOSUMAB Antibody 1 bone density

Prevention of skeletal 
related events in advanced 
malignancy involving 
bone|Treatment of bone 
loss associated with 
hormone ablation in 
prostate cancer|Treatment 
of osteoporosis in 
postmenopausal women to 
prevent fractures

rs17536328|  
rs9525638 24945404 6157–8295 1 1 1

ESR1 TAMOXIFEN  
CITRATE

Small  
molecule 1 breast carcinoma

Carcinoma of 
breast|Infertility - female - 
anovulatory

rs140068132|  
rs3757318| 
rs9383938

22976474| 
23535729| 
25327703

9531–63713 1–2 2 1

PLG ALTEPLASE Enzyme 1
coronary heart 
disease|large artery 
stroke|stroke

Acute ischaemic stroke: 
fibrinolytic treatment| 
Thrombolysis in acute 
myocardial infarction| 
Thrombolysis of occluded 
central venous access 
devices|Thrombolytic 
treatment in acute massive 
pulmonary embolism

rs10455872 24262325 113152 3 3 2

TNF ADALIMUMAB Antibody 1 Crohn’s disease

Active polyarticular juvenile 
chronic arthritis-inadequate 
response to MTX|Active 
progressive rheumatoid 
arthritis|Moderate to 
severe plaque psoriasis: 
when other treatment is 
inappropriate|Moderate/
severe ulcerative colitis: 
when other treatment is 
inappropriate|Rheumatoid 
arthritis when inadequate 
response to DMARDs incl. 
methotrexate|Severe active 
rheumatoid arthritis|Severe 
ankylosing spondylitis in 
adults if conventional therapy 
inadequate|Treatment of 
active & progressive psoriatic 
arthritis when DMARD 
inadequate|Treatment of 
active Crohn’s disease

rs1799964 21102463 1036 2 13 4

CACNA1D AMLODIPINE Small  
molecule 1 diastolic blood 

pressure

Essential hypertension 
when stabilised on 
same ingreds.in same 
proportions|Hypertension-
not adequately 
controlled by individual 
components|Prinzmetal’s 
angina|Prophylaxis of 
chronic stable angina 
pectoris|Treatment of 
essential hypertension|

rs9810888 25249183 106912 1 1 1

NPC1L1 EZETIMIBE Small  
molecule 1

LDL cholesterol|low 
density lipoprotein 
cholesterol 
measurement|total 
cholesterol 
measurement

Combined hyperlipidaemia: 
lipid lowering 
therapy adjunct to 
diet|Homozygous familial 
hypercholesterolaemia 
(adjunct to statin 
therapy)|Homozygous 
familial 
hypercholesterolaemia: 
Adjunct to diet|Homozygous 
sitosterolaemia 
(phytosterolaemia)|Primary 
hypercholesterolaemia 
(hyperlipidaemia type IIa): 
Adjunct to diet|Primary 
hypercholesterolaemia: lipid 
lowering therapy adjunct 
to diet

rs2072183 20686565| 
24097068 1734 1 1 1

Continued
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Gene Drug
Molecule
type

Curation 
code GWAS EFO term Drug Indication (FDB) Associated Variant

Reference 
(pmid)

Minimun 
distance 
from 
druggable 
gene (bp)

Distance 
rank of 
druggable 
gene

Number 
of Genes 
In LD 
interval

Number of 
Druggable
genes in 
LD
interval

PPARA GEMFIBROZIL Small  
molecule 1

LDL cholesterol|low 
density lipoprotein 
cholesterol 
measurement|total 
cholesterol 
measurement

Mixed hyperlipidaemia when 
statin is contraindicated 
or not tolerated|Primary 
hypercholesterolaemia: 
lipid lowering therapy 
adjunct to diet|Reduction 
of cardiac events in 
hypercholesterolaemia| 
Severe hypertriglyceridaemia 
with or without low HDL 
cholesterol

rs4253772 24097068 12050 1 7 2

CASR CINACALCET 
HYDROCHLORIDE

Small  
molecule 1 calcuim 

measurment

Homoeopathic| 
Hypercalcaemia 
due to malignant 
disease|Hypercalcaemia 
in primary HPT when 
parathyroidectomy 
contraindicated|Secondary 
hyperparathyroidism in end 
stage renal disease: treatment

rs17251221| 
rs1801725

20661308| 
20705733| 
24068962

1585–12095 1 5 1

IL6R TOCILIZUMAB Antibody 1 rheumatoid 
arthritis

Active juvenile idiopathic 
arthritis (unresp to NSAIDs) 
in comb with MTX|Active 
juvenile idiopathic arthritis 
when inadequate response 
to NSAIDs|Rheumatoid 
arthritis (unresp to DMARD/
TNF inhib.) in comb with 
methotrexate|Rheumatoid 
arthritis when inadequate 
response to DMARDs incl. 
methotrexate

rs2228145 24390342 14956 1 1 1

TNF ADALIMUMAB Antibody 1 rheumatoid 
arthritis

Active polyarticular juvenile 
chronic arthritis-inadequate 
response to MTX|Active 
progressive rheumatoid 
arthritis|Moderate to 
severe plaque psoriasis: 
when other treatment is 
inappropriate|Moderate/
severe ulcerative colitis: 
when other treatment is 
inappropriate|Rheumatoid 
arthritis when inadequate 
response to DMARDs incl. 
methotrexate 
|Severe active rheumatoid 
arthritis|Severe ankylosing  
spondylitis in adults if  
conventional the 
rapy inadequate|Treatment  
of active & progressive  
psoriatic arthritis 
when DMARD 
inadequate|Treatment of 
active Crohn’s disease

rs2596565 24532677 190015 24 145 27

ABCC8 GLIPIZIDE Small  
molecule 1 type II diabetes 

mellitus
Non insulin dependent  
diabetes mellitus when diet 
 has failed

rs5219 19056611 4860–5802 3 5 3

ABCC8 GLYBURIDE Small  
molecule 1 type II diabetes 

mellitus
Type 2 diabetes (NIDDM)  
not controlled by diet, 
weight loss & exercise alone

rs5215|rs5219
17463248| 
17463249| 
19056611| 
24509480

4860–5802 3 5 3

ABCC8 NATEGLINIDE Small  
molecule 1 type II diabetes 

mellitus
Control of type-2 diabetes  
(NIDDM) with metformin  
if metformin inadequate

rs5219 19056611 4860–5802 3 5 3

ABCC8 REPAGLINIDE Small  
molecule 1 type II diabetes 

mellitus

Control of type-2 diabetes  
(NIDDM) with metformin  
if metformin inadequate| 
Type 2 diabetes (NIDDM)  
not controlled by diet, 
weight loss & exercise alone

rs5219 19056611 4860–5802 3 5 3

KCNJ11 GLIMEPIRIDE Small  
molecule 1 type II diabetes 

mellitus
Type 2 diabetes (NIDDM)  
not controlled by diet, 
weight loss & exercise alone

rs5219 19056611 1224–1306 1 5 3

KCNJ11 GLIPIZIDE Small  
molecule 1 type II diabetes 

mellitus
Non insulin dependent  
diabetes mellitus when diet  
has failed

rs5219 19056611 1224–1306 1 5 3

KCNJ11 GLYBURIDE Small  
molecule 1 type II diabetes 

mellitus
Type 2 diabetes (NIDDM)  
not controlled by diet, 
weight loss & exercise alone

rs5215|rs5219
17463248| 
17463249| 
19056611| 
24509480

1224–1306 1 5 3

KCNJ11 NATEGLINIDE Small  
molecule 1 type II diabetes 

mellitus
Control of type-2 diabetes  
(NIDDM) with metformin 
 if metformin inadequate

rs5219 19056611 1224–1306 1 5 3

KCNJ11 REPAGLINIDE Small  
molecule 1 type II diabetes 

mellitus

Control of type-2 diabetes  
(NIDDM) with metformin if 
metformin inadequate| 
Type 2 diabetes (NIDDM)  
not controlled by diet, 
weight loss & exercise alone

rs5219 19056611 1224–1306 1 5 3

Continued

https://doi.org/10.1038/s41598-019-54849-w


1 6Scientific Reports |         (2019) 9:18911  | https://doi.org/10.1038/s41598-019-54849-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Gene Drug
Molecule
type

Curation 
code GWAS EFO term Drug Indication (FDB) Associated Variant

Reference 
(pmid)

Minimun 
distance 
from 
druggable 
gene (bp)

Distance 
rank of 
druggable 
gene

Number 
of Genes 
In LD 
interval

Number of 
Druggable
genes in 
LD
interval

PPARG PIOGLITAZONE 
HYDROCHLORIDE

Small  
molecule 1 type II diabetes 

mellitus

Combination treatment  
of Type 2 diabetes with  
insulin|Control of type-2  
diabetes if metformin+­
sulphonylurea therapy is 
inadequate|Monotherapy  
for type2 diabetes if  
overweight and metformin 
inappropriate|Oral  
combination treatment of  
type 2 diabetes

rs1801282 24509480 64258 1 1 1

SCN1A OXCARBAZEPINE Small  
molecule 1

Mesial temporal 
lobe epilepsy with 
hippocampal 
sclerosis|febrile 
seizures

Epilepsy - combination of  
both partial and tonic- 
clonic seizures| 
Epilepsy - partial  
seizures

rs7587026 24014518 5773–52194 1 3 1

GRIN3B MEMANTINE 
HYDROCHLORIDE

Small 
molecule 1 Alzheimers disease

Moderate to severe  
Alzheimer’s disease| 
No information available

rs115550680 23571587 40689 8 8 2

SLC22A12 SULFINPYRAZONE Small 
molecule 1 urate measurement Gout (prophylaxis)|Gouty 

arthritis|Hyperuricaemia
rs2078267| 
rs478607

20884846| 
23263486

23999– 
108243 2–3 2–3 2

SLC22A11 PROBENECID Small 
molecule 1

urate 
measurement|uric 
acid measurement

rs17300741| 
rs2078267

19503597| 
20884846| 
23263486

6233–8364 1 1–2 1–2

SCN2A CARBAMAZEPINE Small 
molecule 2 febrile seizures

Epilepsy - grand mal| 
Epilepsy - partial seizures| 
Epilepsy - tonic-clonic 
seizures|Prophylaxis of  
manic-depressive illness  
unresponsive to lithium| 
Trigeminal neuralgia

rs3769955 25344690 14186 1 1 1

DIO1 PROPYLTHIOURACIL Small 
molecule 3 thyroxine|thyroxine 

measurement
Hyperthyroidism|Thyrotoxic 
crisis|Unlicensed product rs2235544 23408906 1189 1 4 1

PDE4D DIPYRIDAMOLE Small 
molecule 4 asthma

Alternative to exercise stress 
in thallium-201 myocardial 
imaging|Ischemic stroke:  
Secondary prevention  
(with/without aspirin)| 
Secondary prevention of  
ischaemic stroke|Secondary 
prevention of transient  
ischaemic attacks| 
Thromboembolism 
+prosthetic heart valve:  
prophylaxis (+oral 
anticoagulant)|Transient  
ischemic attacks: Secondary 
prevention (with/without  
aspirin)

rs1588265 19426955 448153 1 2 1

ACHE RIVASTIGMINE Small 
molecule 4 resting heart rate

Mild - moderate dementia in 
Alzheimer’s disease|Mild -  
moderate dementia in  
idiopathic Parkinson’s disease

rs12666989| 
rs314370 20639392 861–34407 3–7 9 4

ACHE NEOSTIGMINE 
METHYLSULFATE

Small 
molecule 4 heart rate

Myasthenia gravis|Paralytic 
ileus|Paroxysmal supra- 
ventricular tachyarrhythmias 
|Post operative distention|  
Post operative urinary 
retention|Reversal of residual 
competitive neuromuscular 
block|Unlicensed product

rs13245899 23583979 861–34407 1–7l 9 4

CHRM2 TOLTERODINE 
TARTRATE

Small 
molecule 4 heart rate

Symptomatic treatment of  
urinary urgency, frequency  
or urge incontinence

rs2350782 23583979 62368 1 3 1

Table 3.  (following pages). Illustrative examples of mapping SNPs curated in the GWAS catalogue to genomic 
linkage dis-equilibrium (LD) intervals containing targets of licensed and clinically used drugs (adapted 
with modification from.Finan C, Gaulton A, et al. Sci. Translational Med. 2017 Mar 29; 9(383). pii: eaag1166. 
doi: 10.1126/scitranslmed.aag1166). The gene encoding the drug target is listed using Human Genome 
Nomenclature Catalogue designation. Drug names and indications are from First Data bank. GWAS SNPs are 
listed according to Refseq number and physical distances are in base pairs (bp). Curation code refers to the 
correspondence between the treatment indication and GWAS disease or trait association (see Text). Examples 
are shown of treatment indication rediscoveries which refer to a drug target indication-genetic association 
match (Curation code 1 = precise match, code 2 = disease area match). For many of these the drug target gene is 
the sole occupant of the LD interval defined by the GWAS SNP. Examples come from a variety of disease areas 
and, for some diseases (e.g. type 2 diabetes and rheumatoid arthritis), multiple target rediscoveries are noted. 
Examples of rediscoveries of mechanism of action (curation code 3) and mechanism-based side effects are also 
seen (curation code 4).
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β= −E N(1 )T K

Where
NK = (n1 + n2 + … + nK) = the total number of licensed drug targets for K diseases
Dividing and multiplying the above equation by K, we obtain:

β= −E K N K(1 ) /T K

β= −E K n(1 )T

Where;
n = NK/K = the average number of targets of licensed drugs per disease
The standard deviation (SDT) is given by:

β β= −SD n K(1 )T

Suppose a GWAS was done for each of 200 different diseases, each with power (1 − β) = 0.8 to detect each true 
licensed target, and n = 3(i.e. an average of 3 targets per disease and NK = nK = 600 potentially re-discoverable 
target-disease combinations in total).

The total number of licensed drug target rediscoveries from the combined dataset would be expected to be:

β= − =E N(1 ) 480T K

= . × . × = .SD 0 2 0 8 600 9 8T

Values of ET for a range of plausible values of β and n, given K = 200 are provided in Table S7.
It seems reasonable to ask if the number of licensed drug target rediscoveries already made by GWAS is close 

to that expected from these arguments. However, the answer is not straightforward. It requires enumerating the 
number of GWAS that have already been done for conditions that correspond to either a treatment indication or 
a mechanism based adverse effect for at least one licensed drug target, and counting the total number of licensed 
drug targets represented across all these conditions (since some diseases may be connected with multiple licensed 
drug targets). Different disease terminologies used to catalogue GWAS, drug indications and adverse effects ham-
per these efforts. There is also a requirement to make strong assumptions about the average power of eligible 
GWAS to detect a true association at a gene encoding a licensed drug target.

However, the question can also be inverted: given the observed number of rediscoveries, what was the average 
power of GWAS to rediscover loci encoding licensed drug targets for the same indication or through a known 
mechanism-based adverse effect? We previously reported that GWAS to 2015 had encompassed 315 unique 
MeSH disease terms and led to the ‘rediscovery’ of 74 of the 670 or so known licensed drug targets, either through 
treatment indication, or mechanism-based adverse effect association33.

To estimate average power, we use:

β= −E K n(1 )T

β− =
E

n K
(1 ) T

β− =
×n

(1 ) 74
315

β− = ×
n

(1 ) 74
315

1

β− =
.
n

(1 ) 0 23

If β= − = .n 1, (1 ) 0 23
If β< − > .n 1, (1 ) 0 23 (as would be the case if some GWAS concerned diseases with no licensed drug tar-

get available for rediscovery)
nIf 1, (1 ) 0 23β> − < .

Despite the modest estimated average power, the discovery by GWAS of around 74 of the 670 or so known 
licensed targets, suggests the approach shows promise as a means of identifying target-disease indication pairings 
more systematically in the future, particularly if power were to be enhanced. We return to this point in a later 
section.
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Estimated yield of druggable targets from a GWAS.  In the previous section, we discussed the rediscovery of 
known licensed drug targets by GWAS. In this section, we discuss the potential for GWAS to specify new drug 
targets for common diseases prospectively.

For example, take the hypothetical disease (d1), where C = 100, and the expected number of causal and 
druggable genes is 20. Assuming a GWAS in d1interrogates each of the causal protein-coding genes with power 
(1 − β) = 0.8, the expected number of causal, druggable targets (ECT,d1) identified by such a GWAS is given by:

β= −E n (1 )CT d CT d, 1 , 1

(where nCT,d1is the true number of causal, druggable targets in d1)

= × . =E 20 0 8 16CT , 1

β β= − = .SD n (1 ) 1 8CT CT d, 1 , 1

The probability of a GWAS detecting x = 0, 1, 2, 3, 4, … all 20 of the available causal, druggable targets is again 
given by the binomial distribution:

β β= − −( )P x n
x( ) (1 ) ( )CT d x n x, 1 CT d, 1

where:
P(x) is the probability of detecting x causal, druggable targets
nCT,d1 is the number of causal, druggable targets in disease d1 (20 in this example)
nCT,d1 − x is the number of causal, druggable targets not detected in the GWAS
(1 − β) is the power of the GWAS to detect a true association at a genetic locus (set at 0.8 in this analysis and 

assumed to be homogeneous for all loci)
In summary, with C = 100, PC = 0.005, PT = 0.2, i.e. PCT = 0.001,a GWAS with power 1 − β = 0.8 at all loci 

would be expected to discover 16 (SD1.8) of the 20 available, causal, druggable targets, on average. Moreover, it 
would be extremely unlikely that a GWAS with (1 − β = 0.8) at all loci, would discover fewer than 10druggable 
targets.

The exceedingly stringent type 1 error rate (α) incorporated in GWAS (e.g. 5 × 10−8) also makes the proba-
bility of even one false target discovery being present among the declared associations very low indeed (Fig. 3). 
These calculations suggest that adequately powered GWAS (designed with appropriate consideration of the dis-
tribution of genetic effect sizes, sample size and comprehensive coverage of sequence variation in protein coding 
genes) should provide a highly accurate and reliable way of specifying drug targets for human diseases, addressing 
the high FDR problem that underpins inefficiency in drug development.

Comparison of orthodox preclinical drug development vs. human genomics as a predictive test for drug development 
success.  Consider orthodox non-genomic preclinical (stage 1) drug development programmes with base case 
parameters defined by the sample space, NG × ND where:

= − =N Total number of protein coding genes 20,000G
= =N Total number of complex human diseases 10,000D

= =C Average number of causal genes per disease 100
= =N Total number of genes encoding druggable targets 4,000T

From Eq. 7, we can infer that the proportion of causal and druggable target-disease indication pairs available 
for rediscovery is;

γ =




















=

















 = .

C
N

N
N

100
20,000

4,000
20,000

0 001pc
G

T

G

Setting αpc and βpc to 0.05 and 0.2 respectively, see previous note, and assuming it were somehow possible to 
evaluate every protein in every disease in such studies, then TDRpc = 0.016 and FDRpc = 0.984.TDRpc increases to 
0.14 and the FDRpc falls to 0.86 if =C 1000 γ =( )pc

1
100

, but the corresponding values are 0.002 and 0.998 if 
=C 10 γ =( )pc

1
10, 000

 (Table 4).
In striking contrast, with the same sample space but a genomic approach to target identification, where 

(1 − β) = 0.8, α = 5 × 10−8 and all 20,000 targets encoded by the genome are, by definition, interrogated simulta-
neously, TDRpc = 0.999, and FDRpc = 0.001. This is a reversal of TDRpc and FDRpcvalues when compared to the 
orthodox (non-genomic) preclinical approach. The performance of genomic studies for target identification, 
based on these values of α and 1 − β, is little affected by 100-fold differences in C  andγpc (Table 4).

As we showed previously, if sampling were restricted to the a sample space demarcated by the druggable 
genome, NT × ND, where;

= =N Total number of complex human diseases 10,000D
= =N Total number of genes encoding druggable targets 4000T

= =C Average number of causal genes per disease 100
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= − = × = ×N Total number of possible druggable gene disease pairs 4,000 10,000 40 10TD
6

γ =




















=















 = .

C
N

N
N

100
20,000

4,000
4000

0 005pc
G

T

T

Focusing orthodox (non-genomic) preclinical studies on this restricted sample space (with conventional val-
ues for α and (1 − β) marginally increases the TDRpc(from 0.016 to 0.08) and reduces FDRpc but also only mar-
ginally (from 0.998 to 0.920). Applying the genomic approach in the same sample space, where (1 − β) = 0.8, and 
α = 5 × 10−8, and all 4,000 druggable targets encoded by the genome are interrogated simultaneously, the already 
high TDRpc increases to 0.9999, and the already low FDRpc would fall further to 0.0001 (Table 4).

Based on Assumption 7 (DNA sequence variants in and around a gene encoding a drug target that alter 
expression or activity of the encoded protein (cis-acting variants), are ubiquitous in the genome) the approach 
of applying the usual type 1 error rate (α) used in a GWAS (5 × 10−8) but to association tests undertaken on only 
the 2% or so of the genome occupied by protein coding genes (or perhaps 0.5% of the genome occupied by genes 
encoding druggable targets) should reduce the multiple testing burden by about 50-fold compared to a standard 
GWAS, where association tests are undertaken genome wide. Moreover, the use of gene rather than SNP based 
association testing (e.g. using Predixscan50, VEGAS51 and FastBAT52) would also help mitigate the multiple test-
ing burden.

It might be argued that TDRpc and Spc in conventional (non-genomic) preclinical pipelines could also be 
enhanced by simply setting a more stringent false positive rate in experiments involving cells, tissues and ani-
mal models. This is correct, but the change would have practical consequences. Very substantial increases in 
sample size would be required to maintain power. However, attending to the type 1 error rate issue alone fails to 
address the problem of the questionable validity of many animal models of human disease. It is also predicated 
on being able to evaluate every protein in every disease, a task we know to be beyond the capability of orthodox 
(non-genomic) preclinical studies based on cells, tissues and animal models.

Turning now to clinical (stage 2) development, αc and 1 − βc are typically set to 0.05 and 0.8 respectively, so it 
is also possible to examine the influence of variation in γpc, αpc and βpc on preclinical (Spc), clinical (Sc) and overall 
success (So = Spc × Sc), using Eqs. 9 and 10. The results are summarised in Table 4.

For orthodox (non-genomic) preclinical development, with sampling from the whole genome (where 
β= − = .C 100, 1 0 8pc ,  α γ= . =0 05, )pc pc

1
1000

,  S pc =  0 .05(TDR pc =  0 .016;  FDR pc =  0 .984)  and 
Sc = 0.06(TDRc = 0.2; FDRc = 0.8) giving an overall declared drug development success rate So = Spc × Sc = 0.003 
(Table 4).

With the same parameters γ= =( )C 100, pc
1

1000
, but with the genomic approach replacing orthodox 

non-genomic preclinical programmes, Spc = 0.0008(TDRpc = 0.99994; FDRpc = 0.00006), Sc = 0.79995(TDRc = 0.999996; 
FDRc = 0.000004), and So = 0.00064. It may at first seem surprising that Spc (and So) is actually lower for genomic than 
orthodox (non-genomic) stage 1 development, because of a higher stage 1 ‘failure’ rate. However, a stage 1 ‘failure’ in a 
GWAS simply refers to a null association with the disease of interest of a specific gene (from all 20,000 evaluated in a 
single study), which is very different from the expensive failure of a lengthy orthodox preclinical development pro-
gramme focusing on a single target at a time. The high ‘failure rate’ (i.e. high rate of null associations) in GWAS reflects 
the much more stringent αpc in this type of study design, which results in a much lower FDRpc and much higher TDRpc. 
Since TDRpc = γc, the GWAS design ensures fewer false relationships are carried forward into clinical development 

C γpc αpc βpc FDRpc Spc TDRpc = γc αc βc FDRc TDRc Sc So

a

10 0.0001 0.05 0.2 0.9984024 0.05008 0.0015976 0.05 0.2 0.97503657 0.02496343 0.051198203 0.00256

100 0.001 0.05 0.2 0.98423645 0.05075 0.01576355 0.05 0.2 0.79601594 0.20398406 0.06182266 0.00314

1000 0.01 0.05 0.2 0.86086957 0.0575 0.13913043 0.05 0.2 0.27887324 0.72112676 0.154347826 0.00888

10 0.0001 0.00000005 0.2 0.00062455 0.00008 0.99937545 0.05 0.2 0.000039057 0.99996094 0.79953159 0.000064

100 0.001 0.00000005 0.2 0.000062434 0.0008 0.99993757 0.05 0.2 3.9023E-06 0.9999961 0.799953175 0.00064

1000 0.01 0.00000005 0.2 6.1875E-06 0.008 0.99999381 0.05 0.2 3.8672E-07 0.99999961 0.799995359 0.0064

b

10 0.0005 0.05 0.2 0.99205955 0.050375 0.00794045 0.05 0.2 0.8864745 0.1135255 0.055955335 0.00282

100 0.005 0.05 0.2 0.9255814 0.05375 0.074418605 0.05 0.2 0.43736264 0.56263736 0.105813953 0.00569

1000 0.05 0.05 0.2 0.54285714 0.0875 0.45714286 0.05 0.2 0.06909091 0.93090909 0.392857143 0.03438

10 0.0005 0.00000005 0.2 0.00012492 0.00040005 0.99987508 0.05 0.2 7.8085E-06 0.99999219 0.799906309 0.00032

100 0.005 0.00000005 0.2 0.000012437 0.00400005 0.99998756 0.05 0.2 7.7734E-07 0.99999922 0.799990672 0.0032

1000 0.05 0.00000005 0.2 0.000001875 0.04000008 0.99999881 0.05 0.2 7.4219E-08 0.99999993 0.799999109 0.032

Table 4.  A priori estimates of preclinical (pc), clinical (c) and overall (o) drug development success contrasting 
orthodox (non-genomic) with genomic approaches. TDR, FDR, Spc, Sc and So are presented at different values of α 
(Type 1 error rate) β (Type 2 error rate) and γ (proportion causal and druggable targets). (a) C N N N( / )( / )pc G T Gγ =
when the sample space is defined by N NG D× , and (b) C N N N( / )( / )pc G T Tγ =  when the sample space ×N NT D is 
restricted to the druggable genome. See text for details.
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when compared to the non-genomic approach. Consequently, TDRc is much increased with the genomic (compared 
to non-genomic) preclinical target identification.

Discussion
Summary of findings.  In summary, the calculations indicate that a genomic approach to preclinical target 
validation has the potential to reverse the probability of drug development success when compared to the estab-
lished (non-genomic) approach.

Drug development success has previously been constrained by:

	(a)	 The apparently widespread contamination of the scientific literature by false discoveries, which under-
mines the validity of the hypotheses used to prioritise the selection of drug targets for different diseases;

	(b)	 The poor predictive accuracy of orthodox preclinical studies, arising due to shortfalls in design and ani-
mal-human differences in pathophysiology;

	(c)	 The limitation of such preclinical studies in only being able to study a handful of targets at a time, imposing 
a need for selecting only a subset of all possible targets

	(d)	 The system flaw in drug development that sees the definitive target validation step (the RCT) deferred to 
the end of the drug development pipeline.

With reasonable assumptions about the number of protein coding genes, druggable proteins and human dis-
eases, and using probabilistic reasoning, we estimated that the observed success rate in drug development ~( 4

100
 

for compounds; ­~ )for targets2
100

 only marginally exceeds the probability ( )1
200

 of correctly selecting a causal, 
druggable protein-disease pair through a random pick from a sample space defined by the 4,000 genes that are 
predicted to encode druggable targets and 10,000 diseases, assuming an average of 100 causal genes per disease. 
With a target success rate of 2

100
, based on the orthodox (non-genomic) approach to target selection and valida-

tion, over 100 independent drug development programmes for each disease need to proceed in parallel to have a 
90% probability of even one success.

Based on reported clinical and preclinical success rates, and making reasonable assumptions about values of 
clinical phase type 1 and type 2 error rates (αc and βc),we also found evidence that the proportion of true target 
disease relationships studied in preclinical development is small, that these form only the minor proportion of 
nominally positive findings that are brought forward in to clinical phase studies. This likely contributes to the 
high preclinical false discovery rate and low clinical phase success rate.

Even applying the assumption that the probability of a protein influencing the pathogenesis of one disease is 
independent of the probability of it influencing any other, we show that it is highly likely that even small groups 
of diseases taken at random share at least one common target. This implies numerous opportunities should exist 
for therapeutic repurposing, but also that even highly specific modification of any target still runs a high risk of 
mechanism-based adverse effects. The balance between the two remains to be discovered. However, knowledge of 
the effect of target-specific perturbation on multiple disease outcomes currently remains incomplete because the 
orthodox approach to target identification and validation is neither systematic nor comprehensive.

In contrast to established non-genomic, approaches to preclinical drug development, GWAS deliver a method-
ical and reliable means of specifying the correct drug targets for a disease, provided that the genotyping arrays 
that are deployed have sufficient coverage of the druggable genome, and that the studies are adequately powered. 
GWAS differ from established non-genomic preclinical experiments for target identification in that the evidence 
source is the human not an animal model; the false positive (type 1) error rate is low (typically set at 5 × 10−8); 
every potential drug target is interrogated in parallel (not just a selected subset); and the study design shares fea-
tures of an RCT, the pivotal step in drug development. For these reasons, we suggest that genetic studies will soon 
be universally regarded as an indispensable, though not exclusive element of drug development for common dis-
eases. By improving the efficiency and reliability of target identification, GWAS and similar genetic study designs 
offer the potential to overturn the currently poor odds of success currently beleaguering drug development.

Implications for drug development.  Despite the opportunities highlighted by this paper, GWAS are yet 
to be optimally designed or sufficiently widely deployed to maximise their potential for drug development. Most 
genotyping arrays used in early GWAS provided incomplete coverage of variation in genes encoding drugga-
ble targets. To address this, we recently assembled variant content for the Illumina DrugDev genotyping array, 
designed to for low-cost, high-volume genotyping of samples to support genetic association studies for drug 
target selection and validation (‘druggable GWAS’)33.

The range of diseases studied has also been limited. The 400 or so unique diseases and biomarkers tackled 
by GWAS so far represents only a fraction of the thousands of disease terms listed by classification systems or 
ontologies, or that are observed in electronic health record datasets (Supplementary Note 4). Sample sizes in most 
GWAS may also have been too small to detect all contributing genes and all relevant drug targets.

GWAS up to now have also typically been undertaken one disease at a time using investigator-led, research-funded 
case collections. Yet, when the findings are collated, the same genetic loci or even variants are seen to contribute to 
more than one disorder, a phenomenon referred to as ‘pleiotropy’53. Pleiotropy can arise through a number of mecha-
nisms, but where explained by the involvement of the same protein in the pathogenesis of different diseases, it unveils 
opportunities to repurpose therapies ineffective in one condition for another, to expand indications for already effec-
tive therapies, and to identify potential mechanism-based adverse effects of target perturbation. Undertaking GWAS 
one disease at a time, while efficient for accumulating large numbers of cases with a particular condition, is inefficient 
for the investigation of pleiotropy as a means of target validation and developing repurposing hypotheses.
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To realise the full potential of genomics for drug target identification and validation, comprehensive capture 
of variation in the genome (by sequencing or genotyping) needs to be connected to the diversity of human phe-
notype at even larger scale than now, with attention to multiple biological layers and disease end-points. There are 
several routes to achieving this.

Amalgamating large cohort studies and consortia across the globe.  GWAS in population based research cohort 
studies allows interrogation of multiple phenotypes in the same dataset. Such studies are well placed to evaluate 
genetic associations with mRNA and protein expression, with metabolite level and measures of organs and sys-
tems function. Even when obtained in different datasets, information of this type can be connected using a variety 
of statistical methods, because natural genetic variation (unaffected by disease and allocated at random) provides 
a fixed anchor point, exploiting the central dogma of the molecular biology that posits a unidirectional flow of 
information from DNA to RNA to protein54 and, via downstream mechanisms, to disease. In recognition of this, 
the Global Genomic Medicine Collaborative (G2MC) is gathering information on large cohorts worldwide55.

Embedding genomics in whole healthcare systems.  However, cases of common diseases accrue slowly in cohort 
studies, such that power to detect the effects of common variants on such conditions may be limited. This is partly 
addressed by meta-analysis of summary level data from the many existing cohorts and consortia, and through 
the ongoing assimilation of data from very large national biobanks56. Nevertheless, additional effort will also be 
required to increase the scale, breadth and depth of disease outcomes captured. An efficient approach would be to 
embed genomic analysis within the healthcare setting so that information on natural genetic variation could be 
linked to the wealth of laboratory, imaging, and diagnostic data captured routinely during each clinical episode to 
provide insight both on disease aetiology and to unveil new drug targets57.

Some population cohort and healthcare genomics initiatives of this type are beginning, some in conjunction 
with Pharma (Table 5), but if their use is to be expanded, funders, healthcare providers, patients and populations 
will need to be convinced of the benefits of this new model for drug development. Legitimate concerns about data 
security and the secondary use of data also need to be addressed, an issue to which we return later. If successful, 
a new model of drug development might supervene because population and healthcare data typically resides 
outside the domain of the pharmaceutical industry within the academic and healthcare sectors, which, in many 
countries, are wholly or substantially state-run. In turn, this would dictate that a new funding and delivery struc-
ture might need to be established, at least for the component of drug development that relates to target identifi-
cation and validation.

There would be additional benefits from such an effort. We have focused here mainly on GWAS for matching 
targets to a disease (target identification). However, in related work (see Appendix 1) we (and others) have shown 
that the principle can also be used to anticipate the spectrum of effects of pharmacological action on a specific 
target on biomarkers, disease surrogates and clinically relevant disease end-points (sometimes called phenome 

Initiative Partners Drug development model Aims

Accelerating Drug 
Development and 
Repurposing Incubator at 
Vanderbilt Universitya

Multiple departments at 
Vanderbilt University Medical 
Centre

Academic incubator
De-identified genotype data linked to de-
identified demographic and health record 
data to aid precision drug development and 
drug repurposing

DECODE Geneticsb
Decode is a subsidiary of 
Amgen, a biopharmaceutical 
company

Within-company
Discover genetic variation underlying human 
disease in the Icelandic population with the 
aim of diagnosing, treating and preventing 
disease

Open Targetsc
GSK, Biogen, European 
Bioinformatics Institute, 
Wellcome Trust Sanger Institute

Pre-competitive, open access Public-private initiative based on the use of 
genomics for drug target validation

Astra Zeneca
Centre for Genomics 
Research

Human Longevity, Inc
Wellcome Trust Sanger Institute
Institute for Molecular 
Medicine, Finland

Within-company
‘Integrated genomics initiative to transform 
drug discovery and development across 
(AZ’s) entire therapeutic pipeline’

Eisai
Andover Innovative 
Medicines Institutee

Seeking collaborations with 
external scientific partners

Pre-competitive research 
consortia

‘Executing novel therapeutic targets validated 
by human genetics’

Regeneron Genetics 
Centref

Geisinger Health System,
and other health service and 
academic partners

Within-company
‘Comparing genetic information against 
medical histories.to develop new means 
of diagnosing, preventing and/or treating 
medical conditions’

GSK-Regeneron UK 
Biobank Partnerhshipg

GSK, Regeneron and UK 
Biobank

Industry academia 
partnership, with 9 month 
exclusivity period for 
Pharma partners

Exome sequencing of stored DNA from UK 
Biobank participants: 50,000 samples in year 
1, 500,000 by year 3.

Table 5.  Selected examples of Academia, Pharma, and Pharma-Academia initiatives concerning genomics and 
drug development. ahttp://online.liebertpub.com/doi/10.1089/adt.2016.772 bhttp://www.decode.com/ chttps://
www.opentargets.org/ dhttps://www.astrazeneca.com/media-centre/press-releases/2016/AstraZeneca-launches-
integrated-genomics-approach-to-transform-drug-discovery-and-development-22042016.html ehttp://us.eisai.
com/research/andover-innovative-medicines-institute fhttps://www.regeneron.com/genetics-center ghttp://
www.ukbiobank.ac.uk/2017/03/gsk-regeneron-initiative-to-develop-better-treatments-more-quickly.
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wide association analyses; PheWAS) for target validation (Fig. 7). PheWAS (or Mendelian randomisation for 
drug target validation) has been used to accurately predict phase 3 trial outcomes, distinguish on- from off- target 
effects of drugs, correctly identify detailed biomarker profiles of therapeutic response, and to identify repurposing 
opportunities for licensed therapies. This underscores the view that such studies are not just useful for target iden-
tification but can also for inform drug development programmes from start to finish by indicating biomarkers 
of therapeutic response to measure in phase 1/2 clinical studies, and the relevant spectrum of clinical outcomes 
that should be ascertained in clinical trials. The incorporation of outcomes in clinical trials that are anticipated to 
be affected by pharmacological action on a particular target (target-specific outcomes of both efficacy and safety) 
would represent a departure from the current norm where end-points in a particular therapeutic area tend to be 
uniform regardless of the target being evaluated. Genetic information could also be useful for compound optimi-
sation since the profile of biomarker effects of a SNP in a gene encoding a drug target should be those of a clean 
drug with no off-target actions. Where compounds are developed that have actions that are distinct from those 
observed in a genetic study, these may be off-target effects, and suggest that a more specific compound may need 
to be developed before the programme progresses. By the same principle, PheWAS would inform which clinical 
efficacy and safety end-points should be specified as outcomes in RCTs of compounds against a specified target. 
The spectrum of outcomes could differ from target to target, even for two targets being evaluated for the same 
primary disease indication. RCTs would need to be powered for both safety and efficacy outcomes, so that the bal-
ance between the benefits and any risk of target modification can be quantified before licensing. It should reduce 
the problem of mechanism-based side effects only emerging post marketing. This would also ensure that RCTs 
do not fail for failure to select the correct end-points, or because of the contamination of composite end-points 
(and thereby dilution of any treatment effect) by inclusion of outcomes that are unaffected by target modification.

There are a number of inherent assumptions and limitations to the approach we describe. We provide an 
extensive discussion of these issues in Supplementary Note 8. In brief, we justify our estimates of the number of 
human disease entities, protein coding genes, genes encoding druggable targets and the likely number of causal 
genes critical to the pathogenesis of common diseases. We have assumed that each gene encodes a single protein 
with a unique function; that a protein can influence the risk of more than one disease; that the probability that a 
gene influences one disease is independent of the probability that it influences another; that the probability of a 
protein being causal for a disease and druggable is independent; that variants in a gene encoding a drug target that 
affect expression or function are ubiquitous in the genome and can accurately predict the effect of pharmacolog-
ical action on the same protein;, and that these variants are adequately captured by commonly used genotyping 
arrays. We discuss the validity of all these assumptions and the impact that the failure of these assumptions would 
have on the inferences that we draw in Supplementary Note 8.

Finally, most common disease genetic association studies that might inform drug development that have 
been performed to date have been undertaken in population-based longitudinal cohorts or case-control control 
datasets, where cases typically represent the first occurrence of a condition (e.g. a coronary heart disease event). 
However, first-in-class agents for many other common conditions, are tested or used initially patients with estab-
lished disease, for prevention of disease progression or recurrence58. Mendelian randomization studies for target 
identification and validation in longitudinal clinical cohorts with established disease are few, currently limited by 
the available datasets, and also perhaps by potential biases arising from survivorship of, or indexing by, an initial 

Figure 7.  Study designs relevant to drug target identification and validation based on human genomics: (a) 
conventional genome-wide association analysis in which variation in 20,000 genes is tested against a single 
disease; (b) phenome wide association analysis of a gene encoding a drug target in which variation in a single 
druggable gene is evaluated against many (all) diseases; (c) druggable genome and phenome wide association 
analysis; and (d) whole genome and phenome wide association analysis.
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event, that may limit inferences that can be drawn59. Nevertheless, the rediscovery by GWAS of over 70 drug tar-
gets suggests that genes influencing disease onset can, in many (but perhaps not all) cases, provide useful insight 
on targetable pathways for prevention of progression or recurrence of common conditions.

Conclusions
The fundamental problem in contemporary drug development has been the unreliability of target identification 
leading to low development success rates, inefficiency and escalating cost to healthcare users. Genomics now 
provides a tool to address the problem directly by accurate identification of proteins that both play a controlling 
role in a disease and which are amenable to targeting by drugs. Maximising the opportunities arising from this 
paradigm requires the wider use of genomics in the healthcare setting and with this, the active participation of 
healthcare users in drug development. The democratisation of drug development through human genomics could 
have the consequence of reducing wasted investment, increasing value for investors and, eventually, reducing 
drug price inflation for healthcare providers. It might also provide the sorely needed stimulus for true drug devel-
opment innovation, to the benefit of patients, health systems, business and society.

Data availability
Data sharing is not applicable to this article as no datasets were generated or analysed during the current stud.

Received: 1 March 2019; Accepted: 6 November 2019;
Published: xx xx xxxx

References
	 1.	 Paul, S. M. et al. How to improve RD productivity: The pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 

https://doi.org/10.1038/nrd3078 (2010).
	 2.	 Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational 

drugs. Nat. Biotechnol., https://doi.org/10.1038/nbt.2786 (2014).
	 3.	 Munos, B. Lessons from 60 years of pharmaceutical innovation. Nature Reviews Drug Discovery, https://doi.org/10.1038/nrd2961 

(2009).
	 4.	 Pammolli, F., Magazzini, L. & Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., https://doi.

org/10.1038/nrd3405 (2011).
	 5.	 Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews 

Drug Discovery, https://doi.org/10.1038/nrd3681 (2012).
	 6.	 Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., https://doi.org/10.1038/nrd1470 

(2004).
	 7.	 The price of failure - Pharmaceuticals. Available at: https://www.economist.com/business/2014/11/27/the-price-of-failure. 

(Accessed: 3rd July 2019).
	 8.	 Hitchings, A. W., Baker, E. H. & Khong, T. K. Making medicines evergreen. BMJ (Online), https://doi.org/10.1136/bmj.e7941 (2012).
	 9.	 NICE|The National Institute for Health and Care Excellence.
	10.	 PRIME: priority medicines|European Medicines Agency. Available at: https://www.ema.europa.eu/en/human-regulatory/research-

development/prime-priority-medicines (Accessed: 3rd July 2019).
	11.	 Apply for the early access to medicines scheme (EAMS) - GOV.UK. Available at: https://www.gov.uk/guidance/apply-for-the-early-

access-to-medicines-scheme-eams (Accessed: 3rd July 2019).
	12.	 Darrow, J. J., Avorn, J. & Kesselheim, A. S. The FDA Breakthrough-Drug Designation — Four Years of Experience. N. Engl. J. Med., 

https://doi.org/10.1056/nejmhpr1713338 (2018).
	13.	 Moors, E. H. M., Cohen, A. F. & Schellekens, H. Towards a sustainable system of drug development. Drug Discovery Today, https://

doi.org/10.1016/j.drudis.2014.03.004 (2014).
	14.	 Kola, I. The state of innovation in drug development. Clinical Pharmacology and Therapeutics, https://doi.org/10.1038/

sj.clpt.6100479 (2008).
	15.	 Berndt, E. R., Nass, D., Kleinrock, M. & Aitken, M. Decline in economic returns from new drugs raises questions about sustaining 

innovations. Health Aff., https://doi.org/10.1377/hlthaff.2014.1029 (2015).
	16.	 Arrowsmith, J. Trial watch: Phase II failures: 2008–2010. Nature Reviews Drug Discovery, https://doi.org/10.1038/nrd3439 (2011).
	17.	 Arrowsmith, J. Trial watch: Phase III and submission failures: 2007–2010. Nature Reviews Drug Discovery, https://doi.org/10.1038/

nrd3375 (2011).
	18.	 Arrowsmith, J. & Miller, P. Trial Watch: Phase II and Phase III attrition rates 2011–2012. Nature Reviews Drug Discovery, https://doi.

org/10.1038/nrd4090 (2013).
	19.	 Naci, H. & Ioannidis, J. P. A. How Good Is “Evidence” from Clinical Studies of Drug Effects and Why Might Such Evidence Fail in 

the Prediction of the Clinical Utility of Drugs? Annu. Rev. Pharmacol. Toxicol., https://doi.org/10.1146/annurev-
pharmtox-010814-124614 (2014).

	20.	 Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: A five-dimensional framework. Nature Reviews Drug 
Discovery, https://doi.org/10.1038/nrd4309 (2014).

	21.	 Hwang, T. J. et al. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern. 
Med., https://doi.org/10.1001/jamainternmed.2016.6008 (2016).

	22.	 Lindner, M. D. Clinical attrition due to biased preclinical assessments of potential efficacy. Pharmacology and Therapeutics, https://
doi.org/10.1016/j.pharmthera.2007.05.002 (2007).

	23.	 Macleod, M. R. et al. Risk of Bias in Reports of In Vivo Research: A Focus for Improvement. PLoS Biol., https://doi.org/10.1371/
journal.pbio.1002273 (2015).

	24.	 Perel, P. et al. Comparison of treatment effects between animal experiments and clinical trials: Systematic review. Br. Med. J., https://
doi.org/10.1136/bmj.39048.407928.BE (2007).

	25.	 Henderson, V. C., Kimmelman, J., Fergusson, D., Grimshaw, J. M. & Hackam, D. G. Threats to Validity in the Design and Conduct 
of Preclinical Efficacy Studies: A Systematic Review of Guidelines for In Vivo Animal Experiments. PLoS Med., https://doi.
org/10.1371/journal.pmed.1001489 (2013).

	26.	 Ioannidis, J. P. A. Why most published research findings are false. PLoS Medicine, https://doi.org/10.1371/journal.pmed.0020124 
(2005).

	27.	 Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods, 
https://doi.org/10.1038/nmeth.3288 (2015).

	28.	 Goodman, S. N. Toward evidence-based medical statistics. 1: The P value fallacy. Annals of Internal Medicine, https://doi.
org/10.7326/0003-4819-130-12-199906150-00008 (1999).

https://doi.org/10.1038/s41598-019-54849-w
https://doi.org/10.1038/nrd3078
https://doi.org/10.1038/nbt.2786
https://doi.org/10.1038/nrd2961
https://doi.org/10.1038/nrd3405
https://doi.org/10.1038/nrd3405
https://doi.org/10.1038/nrd3681
https://doi.org/10.1038/nrd1470
https://www.economist.com/business/2014/11/27/the-price-of-failure
https://doi.org/10.1136/bmj.e7941
https://www.ema.europa.eu/en/human-regulatory/research-development/prime-priority-medicines
https://www.ema.europa.eu/en/human-regulatory/research-development/prime-priority-medicines
https://www.gov.uk/guidance/apply-for-the-early-access-to-medicines-scheme-eams
https://www.gov.uk/guidance/apply-for-the-early-access-to-medicines-scheme-eams
https://doi.org/10.1056/nejmhpr1713338
https://doi.org/10.1016/j.drudis.2014.03.004
https://doi.org/10.1016/j.drudis.2014.03.004
https://doi.org/10.1038/sj.clpt.6100479
https://doi.org/10.1038/sj.clpt.6100479
https://doi.org/10.1377/hlthaff.2014.1029
https://doi.org/10.1038/nrd3439
https://doi.org/10.1038/nrd3375
https://doi.org/10.1038/nrd3375
https://doi.org/10.1038/nrd4090
https://doi.org/10.1038/nrd4090
https://doi.org/10.1146/annurev-pharmtox-010814-124614
https://doi.org/10.1146/annurev-pharmtox-010814-124614
https://doi.org/10.1038/nrd4309
https://doi.org/10.1001/jamainternmed.2016.6008
https://doi.org/10.1016/j.pharmthera.2007.05.002
https://doi.org/10.1016/j.pharmthera.2007.05.002
https://doi.org/10.1371/journal.pbio.1002273
https://doi.org/10.1371/journal.pbio.1002273
https://doi.org/10.1136/bmj.39048.407928.BE
https://doi.org/10.1136/bmj.39048.407928.BE
https://doi.org/10.1371/journal.pmed.1001489
https://doi.org/10.1371/journal.pmed.1001489
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1038/nmeth.3288
https://doi.org/10.7326/0003-4819-130-12-199906150-00008
https://doi.org/10.7326/0003-4819-130-12-199906150-00008


2 4Scientific Reports |         (2019) 9:18911  | https://doi.org/10.1038/s41598-019-54849-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

	29.	 Sterne, J. A. C., Smith, G. D. & Cox, D. R. Sifting the evidence—what’s wrong with significance tests? BMJ, https://doi.org/10.1136/
bmj.322.7280.226 (2001).

	30.	 Colquhoun, D. An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open Sci., https://doi.
org/10.1098/rsos.140216 (2014).

	31.	 Colquhoun, D. The reproducibility of research and the misinterpretation of p-values. R. Soc. open Sci. 4, 171085 (2017).
	32.	 Ioannidis, J. P. A. The proposal to lower P value thresholds to .005. JAMA - Journal of the American Medical Association, https://doi.

org/10.1001/jama.2018.1536 (2018).
	33.	 Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9 

(2017).
	34.	 Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet., https://doi.org/10.1038/

ng.3314 (2015).
	35.	 Casas, J. P. et al. PLA2G7 Genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 

cases and 15 624 controls of european ancestry. Circulation 121 (2010).
	36.	 Holmes, M. V. et al. Secretory phospholipase A<inf>2</inf>-IIA and cardiovascular disease: A mendelian randomization study. 

J. Am. Coll. Cardiol. 62 (2013).
	37.	 Sofat, R. et al. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene 

polymorphisms. Circulation 121 (2010).
	38.	 Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: Evidence from genetic analysis and 

randomised trials. Lancet 385 (2015).
	39.	 Swerdlow, D. I. et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: A mendelian randomisation 

analysis. Lancet 379 (2012).
	40.	 Würtz, P. et al. Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase. J. Am. Coll. Cardiol. 67 (2016).
	41.	 Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet 366 (2005).
	42.	 Thanassoulis, G. & O’Donnell, C. J. Mendelian randomization: Nature’s randomized trial in the post-genome era. JAMA - Journal of 

the American Medical Association, https://doi.org/10.1001/jama.2009.812 (2009).
	43.	 Swerdlow, D. I. et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int. J. 

Epidemiol. 45 (2016).
	44.	 Plenge, R. M. Disciplined approach to drug discovery and early development. Sci. Transl. Med., https://doi.org/10.1126/scitranslmed.

aaf2608 (2016).
	45.	 Ebrahim, S. & Davey, S G. Mendelian randomization: Can genetic epidemiology help redress the failures of observational 

epidemiology? Hum. Genet., https://doi.org/10.1007/s00439-007-0448-6 (2008).
	46.	 Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. 

Drug Discov., https://doi.org/10.1038/nrd3439-c1 (2011).
	47.	 Calcoen, D., Elias, L. & Yu, X. What does it take to produce a breakthrough drug? Nat. Rev. Drug Discov., https://doi.org/10.1038/

nrd4570 (2015).
	48.	 Shih, H. P., Zhang, X. & Aronov, A. M. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. 

Nat. Rev. Drug Discov., https://doi.org/10.1038/nrd.2017.194 (2018).
	49.	 Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide association scans. Genet. Epidemiol., https://

doi.org/10.1002/gepi.20297 (2008).
	50.	 Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., https://

doi.org/10.1038/ng.3367 (2015).
	51.	 Liu, J. Z. et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet., https://doi.org/10.1016/j.

ajhg.2010.06.009 (2010).
	52.	 Bakshi, A. et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex 

traits. Sci. Rep., https://doi.org/10.1038/srep32894 (2016).
	53.	 Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: Challenges and strategies. Nature 

Reviews Genetics, https://doi.org/10.1038/nrg3461 (2013).
	54.	 Crick, F. Central dogma of molecular biology. Nature, https://doi.org/10.1038/227561a0 (1970).
	55.	 G.P., P. Global initiatives in genomics: The global genomic medicine collaborative (G2MC) and the genomic medicine alliance 

(GMA). Public Health Genomics, https://doi.org/10.1159/000493202 LK - http://bb2sz3ek3z.search.serialssolutions.com?sid=EMB
ASE&issn=16628063&id=doi:10.1159%2F000493202&atitle=­Global+initiatives+in+­genomics%3A+­The+­global+genomic+m
edicine+­collaborative+­%28G2MC%29+and+the+genomic+medicine+­alliance+%28GMA%29&stitle=­Public+Health+­Geno
mics&title=Public+Health+Genomics&volume=21&issue=&spage=8&epage=&aulast=Patrinos&aufirst=G.P.&auinit=G.P.&
aufull=Patrinos+G.P.&coden=&isbn=&pages=8-&date=2018&auinit1=G&auinitm=P (2018).

	56.	 UK Biobank. Available at: https://www.ukbiobank.ac.uk/ (Accessed: 4th January 2019).
	57.	 Denny, J. C., Bastarache, L. & Roden, D. M. Phenome-Wide Association Studies as a Tool to Advance Precision Medicine. Annu. Rev. 

Genomics Hum. Genet., https://doi.org/10.1146/annurev-genom-090314-024956 (2016).
	58.	 Paternoster, L., Tilling, K. & Davey Smith, G. Genetic epidemiology and Mendelian randomization for informing disease 

therapeutics: Conceptual and methodological challenges. PLoS Genetics, https://doi.org/10.1371/journal.pgen.1006944 (2017).
	59.	 Hu, Y. J. et al. Impact of Selection Bias on Estimation of Subsequent Event Risk. Circ. Cardiovasc. Genet., https://doi.org/10.1161/

CIRCGENETICS.116.001616 (2017).

Acknowledgements
A.D.H. and H.H. are NIHR Senior Investigators and supported by UCL Hospitals NIHR Biomedical Research 
Centre, the UCL BHF Research Accelerator, Rosetrees Trust. J.P.O. is an employee of Medicines Discovery 
Catapult, a UK non-profit aimed at supporting the discovery of novel medicines. SD holds an Alan Turing 
Fellowship Work at the Farr Institute of Health Informatics Research was funded by The Medical Research 
Council (K006584/1), in partnership with Arthritis Research UK, the British Heart Foundation, Cancer Research 
UK, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council, 
the National Institute of Health Research, the National Institute for Social Care and Health Research (Welsh 
Assembly Government), the Chief Scientist Office (Scottish Government Health Directorates) and the Wellcome 
Trust. Work at the European Bioinformatics Institute is funded by Member States of the European Molecular 
Biology Laboratory.

https://doi.org/10.1038/s41598-019-54849-w
https://doi.org/10.1136/bmj.322.7280.226
https://doi.org/10.1136/bmj.322.7280.226
https://doi.org/10.1098/rsos.140216
https://doi.org/10.1098/rsos.140216
https://doi.org/10.1001/jama.2018.1536
https://doi.org/10.1001/jama.2018.1536
https://doi.org/10.1038/ng.3314
https://doi.org/10.1038/ng.3314
https://doi.org/10.1001/jama.2009.812
https://doi.org/10.1126/scitranslmed.aaf2608
https://doi.org/10.1126/scitranslmed.aaf2608
https://doi.org/10.1007/s00439-007-0448-6
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1038/nrd4570
https://doi.org/10.1038/nrd4570
https://doi.org/10.1038/nrd.2017.194
https://doi.org/10.1002/gepi.20297
https://doi.org/10.1002/gepi.20297
https://doi.org/10.1038/ng.3367
https://doi.org/10.1038/ng.3367
https://doi.org/10.1016/j.ajhg.2010.06.009
https://doi.org/10.1016/j.ajhg.2010.06.009
https://doi.org/10.1038/srep32894
https://doi.org/10.1038/nrg3461
https://doi.org/10.1038/227561a0
https://doi.org/10.1159/000493202
https://www.ukbiobank.ac.uk/
https://doi.org/10.1146/annurev-genom-090314-024956
https://doi.org/10.1371/journal.pgen.1006944
https://doi.org/10.1161/CIRCGENETICS.116.001616
https://doi.org/10.1161/CIRCGENETICS.116.001616


25Scientific Reports |         (2019) 9:18911  | https://doi.org/10.1038/s41598-019-54849-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
A.D.H., J.P.C., R.S., A.G., R.J.M., J.P.O., S.D. and H.H. shaped the concepts explored in this paper; A.D.H., V.K., 
F.K. and D.P. did the calculations. S.C. and C.F. contributed to the research underpinning the assumptions 
underlying the calculations. A.D.H. wrote the first draft of the manuscript and all authors contributed to a critical 
revision and redrafting.

Competing interests
Benevolent AI provided financial support in the form of salaries for two authors – Dr. Felix Kruger and 
Professor John Overington during part of the period covered by this work. Benevolent AI did not play a role in 
the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-54849-w.
Correspondence and requests for materials should be addressed to A.D.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-54849-w
https://doi.org/10.1038/s41598-019-54849-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Improving the odds of drug development success through human genomics: modelling study

	Methods

	Results

	Part A. Target identification through orthodox preclinical development. 
	False discovery rate in preclinical science and drug development success rate. 
	A priori probability of accurate drug target identification. 
	A posteriori estimates of true and false relationships explored in contemporary drug development. 
	Parallel development programmes for a single success. 
	Impact of a target selection step in orthodox preclinical drug development. 
	Probability of repurposing success. 

	Part B. Target identification through GWAS. 
	Rediscovery of licensed drug target-disease indications by a GWAS. 
	Estimated yield of druggable targets from a GWAS. 
	Comparison of orthodox preclinical drug development vs. human genomics as a predictive test for drug development success. 


	Discussion

	Summary of findings. 
	Implications for drug development. 
	Amalgamating large cohort studies and consortia across the globe. 
	Embedding genomics in whole healthcare systems. 


	Conclusions

	Acknowledgements

	Figure 1 Sample space (NG × NT) defined by 10,000 human diseases (columns) and 20,000 protein coding genes (rows).
	Figure 2 Venn diagram illustrating the (a) the probabilities of selecting and (b) the number of causal, druggable gene-disease pair (), a druggable gene disease pair (TD) and a causal, gene disease pair (CD) from 200 × 106 gene disease pairings, 100 causa
	Figure 3 Re-assorted ‘therapeutic genome’ of a hypothetical disease (d1).
	Figure 4 Back calculation of proportion of true target-disease relationships (γpc) studied in preclinical development, inferred from observed rates of clinical success (SC = 0.
	Figure 5 Distribution of number of licensed drug compounds per target.
	Figure 6 Probability of orthodox drug development success according to the number of candidate targets in the initial sampling frame (left panel) and the number of parallel preclinical development programmes pursued (right panel).
	Figure 7 Study designs relevant to drug target identification and validation based on human genomics: (a) conventional genome-wide association analysis in which variation in 20,000 genes is tested against a single disease (b) phenome wide association anal
	Table 1 The relationship between α, β andγ, the true discovery rate (TDR) and the false discovery rate (FDR).
	T﻿able 2 The relationship α, β, and γ TP, TN, FP FN, and the declared success rate (s) in preclinical and clinical drug development (see text for details).
	Table 3 (following pages).
	Tab﻿le 4 A priori estimates of preclinical (pc), clinical (c) and overall (o) drug development success contrasting orthodox (non-genomic) with genomic approaches.
	Table 5 Selected examples of Academia, Pharma, and Pharma-Academia initiatives concerning genomics and drug development.




