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SUMMARY

p21-Activated kinase 4 (PAK4), a serine/threonine
kinase, is purported to localize to podosomes: tran-
sient adhesive structures that degrade the extracel-
lular matrix to facilitate rapid myeloid cell migration.
We find that treatment of transforming growth factor
b (TGF-b)-differentiatedmonocytic (THP-1) cells with
a PAK4-targeted inhibitor significantly reduces po-
dosome formation and induces the formation of focal
adhesions. This switch in adhesions confers a dimi-
nution of matrix degradation and reduced cell migra-
tion. Furthermore, reduced PAK4 expression causes
a significant reduction in podosome number that
cannot be rescued by kinase-dead PAK4, supporting
a kinase-dependent role. Concomitant with PAK4
depletion, phosphorylation of Akt is perturbed,
whereas a specific phospho-Akt signal is detected
within the podosomes. Using superresolution anal-
ysis, we find that PAK4 specifically localizes in the
podosome ring, nearer to the actin core than other
ring proteins. We propose PAK4 kinase activity
intersects with the Akt pathway at the podosome
ring:core interface to drive regulation of macrophage
podosome turnover.

INTRODUCTION

Previously, PAK4 was found to partially colocalize with podo-

some F-actin cores in primary macrophages, and short hairpin

RNA (shRNA)-mediated knockdown of PAK4 reduced podo-

some numbers (Gringel et al., 2006). In this model, cells express-

ing the kinase-dead mutant PAK4 (K350M) experienced a small

decrease in podosome numbers and reduced podosome size. In

contrast, cells expressing the constitutively active mutant PAK4

(S445N,S474E) did not significantly elevate podosome numbers

but did exhibit an increased podosome size (Gringel et al., 2006).

As the cells in this study retained expression of endogenous

PAK4, this may account for the modest changes in podosome

numbers observed. Moreover, it is not clear if PAK4Dkinase
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localizes to the podosome; thus, the involvement of PAK4 kinase

activity in podosome turnover is still an open question. Recently,

PAK4 kinase activity was shown to play an essential role in the

maturation of invadopodia—a cell adhesion structure related to

podosomes (Nicholas et al., 2016). Moreover, a second PAK

family member (PAK1) was also implicated in regulating invado-

podial turnover. Currently, the role of PAK1/PAK2 in podosomes

remains unclear. Exogenous expression of PAK1 and PAK2were

shown to decrease podosome number in src-transformed fibro-

blasts by phosphorylation of caldesmon (Morita et al., 2007); in

contrast, expression of PAK1 in smooth muscle cells and its

interaction with PIX increased podosome-like F-actin puncta

(Nayal et al., 2006; Webb et al., 2005).

RESULTS AND DISCUSSION

PAK4 Kinase Activity Drives Podosome Formation
Given that the function of PAK1 and PAK4 kinase activity in po-

dosomes remains unclear (Gringel et al., 2006) and that PAK1

and PAK4 show distinct roles in invadopodia dynamics (Nicholas

et al., 2016), we decided to exploit a recently developed PAK4-

targeted small-molecule ATP-competitive inhibitor (Whale

et al., 2013) (herein called PAK4i; see Key Resources Table for

details) and a PAK1-specific inhibitor (IPA-3) (Viaud and Peter-

son, 2009) to elucidate the requirement for PAK1/PAK4 kinase

activity in podosome turnover. To this aim, we have used the

THP-1 human monocyte cell line, where stimulation of cells

with transforming growth factor b (TGF-b) promotes the forma-

tion of podosomes (Bombara and Ignotz, 1992; Rafiq et al.,

2017; Zhang et al., 2016). Initially, we confirmed that these cells

express both PAK1 and PAK4 (Figure S1A). To monitor podo-

some formation, THP-1 cells were seeded on fibronectin and

stimulated with TGF-b. Cells were then incubated with DMSO

vehicle control, PAK4i, or IPA-3. Cells were stained for F-actin

to localize podosome cores and vinculin to highlight the podo-

some ring (Vijayakumar et al., 2015). Although incubation with

DMSO had no impact on podosome formation (Figures S1B–

S1D), incubation with either PAK4i or IPA-3 significantly inhibited

the formation of TGF-b-induced podosomes (Figures 1A and

1B). Moreover, kinase inhibition also suppresses the number of

podosomes per cell (Figure 1C). This is in agreement with previ-

ous work demonstrating that expression of kinase-dead PAK4
ts 29, 3385–3393, December 10, 2019 ª 2019 The Author(s). 3385
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Figure 1. PAK4 Kinase Activity Drives Po-

dosome Formation

(A) Confocal images of THP-1 cells seeded on

fibronectin with TGF-b for 16 h and then treated for

4 h with DMSO control or 1 mM PAK inhibitors

PAK4i or IPA-3. Stained for vinculin (green) and

F-actin (red). Insert zoom of podosomes or pe-

ripheral adhesions.

(B and C) Percentage of THP-1 cells with podo-

somes following treatment with DMSO or 1 or 5

mMPAK inhibitors for 4 h (B) and the percentage of

cells with 0, 1–10, 11–20, 21–30, or R31 podo-

somes per cell was calculated from 300 cells per

condition (C).

(D) Following a 4 h treatment with DMSO or in-

hibitors, the inhibitors were washed out and cells

incubated with TGF-b for a further 4 h. Cells were

fixed and stained for vinculin and F-actin at times

indicated, and the percentage of cells with podo-

somes were counted.

(E) Primary human monocytes isolated from pe-

ripheral human blood from healthy donors were

seeded on fibronectin and differentiated toward

macrophages by incubating for 4.5 days with

50 ng/ml M-CSF. Macrophages were then treated

with DMSO or 1 mM PAK inhibitor PAK4i or IPA-3,

fixed, and stained for vinculin (green) and F-actin

(red).

(F) Percentage of primary human macrophages

with podosomes following a 4 h treatment with

DMSO or 1 or 5mM PAK inhibitors.

(G) Western blot for PAK1 and PAK4 levels in ly-

sates of primary monocytes from two healthy do-

nors (HD1 and HD2) cultured for 6 days, alongside

a THP-1 lysate from cells differentiated for 16 h

with TGF-b.

For all graphs, error bars represent ±SEM, and p

values indicate significant difference to DMSO-

treated cells by one-way ANOVA. Scale bars in (A)

and (E) represent 10 mm.
suppresses the number of podosomes per cell (Gringel et al.,

2006). Importantly, removal of the inhibitors allowed the cells

to recover podosomes (Figure 1D), demonstrating that inhibition

is not toxic and does not irreversibly block the formation of podo-

somes. These data suggest that PAK1 and PAK4 both play a role

in podosome formation; however, we observed a consistently

greater loss of podosomes in the presence of PAK4i compared

to IPA-3 (Figure 1B). THP-1 cells are a well-established model

system to study podosomes (Bombara and Ignotz, 1992; Rafiq

et al., 2017; Zhang et al., 2016); however, we felt it important

to test our findings in a primary setting. We thus isolated primary

peripheral blood mononuclear cells (PBMCs) from two human

donors and differentiated these cells toward macrophages by

culture in macrophage colony stimulating factor (M-CSF) (Lacey

et al., 2012; Martinez et al., 2008). Interestingly, incubation with

IPA-3 did not inhibit podosome formation (Figures 1E and 1F;

Figure S1E). In contrast, incubation with PAK4i almost entirely

suppressed podosome formation in these cells. The lack of

IPA-3 impact is not due to a low level of PAK1 expression,

as there is a readily detectable level of PAK1 in these cells
3386 Cell Reports 29, 3385–3393, December 10, 2019
(Figure 1G). Previous work suggested that expression of

PAK4Dkinase enhanced the level of podosome formation (Grin-

gel et al., 2006), although it was not localized to the podosome.

Wewould speculate that additional/de novo-binding interactions

of PAK4Dkinase precipitated podosome formation in a back-

ground of endogenous PAK4 activity. Our data now clarify the

importance of PAK4 kinase activity for podosome formation.

Loss of PAK-Dependent Podosome Formation Impairs
Migration
Macrophages require mature, degradative podosomes to

migrate efficiently (Burns et al., 2004; Calle et al., 2008; Cougoule

et al., 2010; Dehring et al., 2011; Ley et al., 2007; Olivier et al.,

2006). Using a matrix degradation assay, we next tested if podo-

some loss as a result of PAK inhibition leads to a loss of matrix

degradation in differentiated THP-1 cells. Incubation with

DMSO did not significantly inhibit fibronectin degradation (Fig-

ure 2A). In contrast, incubation with IPA-3 and PAK4i significantly

inhibited matrix degradation, although, as previously observed,

PAK4i had a greater impact (Figure 2A; Figure S2A). Thus,



Figure 2. Podosome Loss Following PAK

Inhibition Is Accompanied by an Increase

in Focal Adhesions and a Reduction of Inva-

sive Migration

(A) For the matrix degradation assay, >20 fields of

view per treatment condition were measured.

(B) Mean cell speed (mm/minute) was calculated

from >90 cells from three separate experiments.

(C) Confocal images of THP-1 cells seeded on

fibronectin with TGF-b for 16 h and then treated for

4 h with 1 mMPAK inhibitors. Cells were stained for

zyxin (green), vinculin (red), and F-actin (blue).

Insert zoom of peripheral adhesion. Scale bars

represent 10 mm.

(D) Percentage of cells with focal adhesions.

(E) Number of focal adhesions/cell.

For all graphs, error bars represent ±SEM, and p

values denote significant difference to DMSO-

treated cells by one-way ANOVA.
incubation with PAK inhibitors suppressesmacrophage function-

ality. The impact of IPA-3 on matrix degradation suggests that

there is a specific disconnect in the MMP (Matrix metalloprotei-

nase) delivery pathway. Disruption of a PAK1-cortactin interac-

tion causes some cancer cells to exhibit stabilized invadopodia

but reduced ability to invade (Jeannot et al., 2017), suggesting a

specific role for PAK1 in matrix degradation. Moreover, cortactin

is required for secretion of MMP1 at podosome sites to mediate

degradation (Bañón-Rodrı́guez et al., 2011; Clark et al., 2007).

To complete our studies, we next tested the ability of PAK-in-

hibited cells to efficiently migrate (Figure 2B; Figure S2B). Inter-

estingly, only inhibition of PAK4 impeded cell migration speed

at higher concentrations (Figure 2B). Thus, the remaining podo-

somes in IPA-3-treated cells (Figure 1B) are sufficient to promote

migration; however, treatment of cells with 5 mM IPA-3 induced

significant cell detachment in this assay and so cell migration po-

tential could not be evaluated (Figure S2C). The substantial lossof

podosomes in PAK4i-treated cells delivers a significant impact on

cell migration speed, again suggesting that PAK4 plays a more

prominent role than PAK1 in podosome turnover and cell migra-

tion. It shouldbenoted thatpodosomesarenot always intrinsically

linked to cell migration potential. Inmyeloid cells that are depleted

ofWASP expression, there are no podosomes and theirmigration

is badly affected (Burns et al., 2001; Linder et al., 1999) but not

intrinsically blocked (Binks et al., 1998). Indeed, cells treated

with1mMPAK4i havea significant reduction inpodosomenumber

but retainmigrationpotential. This of coursemaybeaccounted for

by the induction of focal adhesions in thesecells. It would be inter-

esting to test the link between podosome formation and 3D inva-
Cell Reports
sion (Cougoule et al., 2010, 2018). Never-

theless, in our studies inhibition of PAK4

kinase activity clearly impacts both podo-

some formation and cell migration.

Adhesion Switching Occurs in
PAK4i-Treated Cells
In addition to their roles in invadosome

dynamics, both PAK1 and PAK4 have
been implicated in the regulation of focal adhesions (Dart et al.,

2015; Nayal et al., 2006; Zhao et al., 2000). Thus, we made a

detailed analysis of adhesion formation in treated cells. Cells

were co-stained for vinculin to localize podosomes and zyxin

to localize mature focal adhesions (Block et al., 2008; Nobes

and Hall, 1995; Zamir and Geiger, 2001). Interestingly, we de-

tected a differential response in the PAK4i- versus IPA-3-treated

cells (Figures 2C–2E). Cells incubated with DMSO and IPA-3 ex-

hibited similar numbers of focal adhesions per cell (Figure 2E),

although IPA-3 treatment did increase the number of cells with

focal adhesions (Figure 2D). In contrast, treatment of cells with

PAK4i led to a dramatic increase in the number of cells with focal

adhesions and the number of focal adhesions per cell. This

observation has been previously described for PAK4-depleted

cells (Dart et al., 2015; Wells and Jones, 2010), although this

was not associated with kinase activity. Indeed, the increase in

focal adhesions can also be observed in differentiated PBMCs

(Figure 1E; Figure S1E). Furthermore, treatment with PAK4i did

not reduce cell-matrix adhesion capacity, whereas incubation

with IPA-3 significantly reduced cell adhesion to the extent that

treatment with 5 mm IPA-3 led to undetectable cell numbers

attached to the substratum (Figure S2C). Thus, it is likely that

the increase in focal adhesions observed in PAK4i-treated cells,

in part, accounts for the reduced migration speed (Wells and

Jones, 2010). Whether the formation of focal adhesions is a

direct consequence of reduced PAK4 activity remains unclear;

it is widely reported that when cells are no longer able to make

podosomes they switch to making peripheral adhesions.

Therefore, the increase in peripheral adhesions in PAK4i-treated
29, 3385–3393, December 10, 2019 3387
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THP-1 cells is likely an indirect effect, as PAK4 function in periph-

eral adhesion turnover is kinase independent (Dart et al., 2015).

In contrast, PAK4 kinase activity is intrinsically linked to the

maturation of invadopodia where it is required for the suppres-

sion of RhoA activity (Nicholas et al., 2016). Interestingly, low

RhoA activity was observed in fibroblasts forming podosomes

when plated on a soft matrix (Bays et al., 2014), whereas activa-

tion of RhoA was found to result in podosome dissolution (Rafiq

et al., 2017). We, therefore, suggest that PAK4 may act to sup-

press RhoA activity in podosomes, and in the absence of this

suppression increased RhoA activity promotes the formation of

focal adhesions (Rafiq et al., 2017). In our studies, IPA3-treated

cells lose some podosomes but are unable to promote focal

adhesion formation (Figures 2C–2E and S2C); this suggests a

differential role for PAK1. Indeed, PAK1 has previously been

associated with focal adhesion formation (Nayal et al., 2006).

Overall, our data point to a substantial role for PAK4 in macro-

phage podosomes; we therefore decided to focus on PAK4 for

extended studies.

PAK4 Depletion Suppresses Podosome Turnover in a
Kinase-Dependent Manner
Because PAK4i may also affect PAK5/PAK6 (likely to be mini-

mal—see Key Resources Table), we generated stable PAK4

knockdown cell lines by using three different shRNA sequences

(Figure 3A) to complement our inhibitor studies and negate any

off-target effects. Cells stably depleted of PAK4 expression did

not modulate expression of the other ubiquitously expressed

PAKs, namely, PAK1 and PAK6 (Figure S3A). THP-1 cells ex-

pressing a control shRNA sequence were able to efficiently

generate podosomes in the presence of TGF-b, whereas cells

depleted of PAK4 expression were unable to generate podo-

somes to control levels (Figures 3B, 3C, and S3B). PAK4 knock-

down cells also display peripheral focal adhesions (Figure 3B),

although this phenotype is less pronounced than in PAK4i-

treated cells; this is likely due to PAK4 knockdown cells retaining

low PAK4 expression and low numbers of podosomes. Impor-

tantly, we aimed to confirm the requirement for kinase activity.

We generated two rescue cell lines (Figure 3D): PAK4shRNA4

expressing EGFP-PAK4 (rescue) and PAK4shRNA4 expres-

sing an siRNA-resistant, kinase-dead variant EGFP-PAK4r

(K350,351M) (Wells et al., 2002). Re-expression of wild-type

PAK4 was able to significantly increase the number of podo-

some-positive cells (Figures 3E, 3F, and S3C). Re-expression
Figure 3. PAK4 Knockdown and Rescue Supports a Kinase-Dependen

(A) PAK4 shRNAs or scrambled control cells were probed for PAK4 expression.

(B) PAK4 shRNA-expressing cells were seeded on fibronectin with TGF-b for 16

(C) Percentage of cells with podosomes (>300 cells per cell line).

(D) PAK4 knockdown cells (A) expressing EGFP-tagged shRNA-resistant PA

(K350,351M) were probed for PAK4 expression.

(E) Confocal images of PAK4 rescue THP-1 cells.

(F) Percentage of cells with podosomes.

(G) Cells were probed for pAkt and PAK4.

(H) THP-1 cells on fibronectin with TGF-b for 16 h were treated with indicated con

podosomes.

(I) Confocal images of THP-1 cells fixed and stained for pAkt, F-actin, and vincu

Error bars = ± SEM and p values indicate significant differences between treated

mm.
of wild-type PAK4 in PAK4shRNA4 cells did not completely

rescue podosomes to control levels. This is a particularly chal-

lenging experiment as the level of PAK4 expression needs to

be carefully controlled to prevent analysis of PAK4-overexpress-

ing cells where cell rounding is likely to occur (Wells et al., 2002).

It is, therefore, likely that some podosome-positive cells were

excluded from the analysis based on morphology. However,

we achieve over 80% rescue that is consistent with previous

PAK4 shRNA migratory rescue experiments (Dart et al.,

2015;Whale et al., 2013) and levels of recovery more generally

observed when rescuing kinase phenotypes (Rannou et al.,

2008; Nalepa et al., 2013). Importantly, re-expression of the ki-

nase-dead variant was unable to deliver any phenotypic rescue

(Figures 3E, 3F, and S3C). Taken together with our inhibitor

studies, these data suggest that PAK4 plays a prominent and

essential role in podosome formation across cell types, including

primary human myeloid cells, and that kinase activity at podo-

somes is critical to PAK4 function.

We and others have recently identified a specific impairment in

Akt signaling in PAK4-depleted cells (Jeannot et al., 2017). How-

ever, Akt activity has not been previously associated with

myeloid cell podosome formation. We found that levels of Akt

phosphorylation were suppressed in PAK4sh4RNA-expressing

cells (Figure 3G), whereas pcofilin and pLIMK levels were unaf-

fected (Figure S3D). In contrast, treatment with IPA-3 did not

modulate pAkt levels (Figure S3E). Moreover, we were able to

establish that Akt activity is specifically required for podosome

formation. Incubation of differentiated cells with an Akt inhibitor

significantly suppressed podosome formation (Figure 3H),

concomitant with a suppression of PRAS40 phosphorylation

(Figure S3F). Importantly, subsequent removal of Akt inhibition

restored podosome levels to control (Figure S3G). Recently, a

phosphorylated Akt signal was detected at invadopodia (Sarwar

et al., 2019); using the same antibody, we detected phosphory-

lated Akt within the podosome (Figure 3I). We do not detect a

direct interaction between PAK4 and Akt; we would, therefore,

suggest that an important role of PAK4 in podosome formation

is the activation of the Akt pathway but not by direct phosphor-

ylation of Akt.

PAK4 Is Localized to the Podosome Ring
To gain further insight into PAK4’s functional role, we took a high-

resolutionmicroscopy approach to pinpoint the area of PAK4 ac-

tivity within the podosome. Close inspection of GFP-tagged
t Role for PAK4 in Podosomes through the Activation of Akt

h, fixed, and stained for vinculin (green) and F-actin (red).

K4: EGFP-PAK4 (rescue) or the kinase dead mutant PAK4: EGFP-PAK4r

centrations of Akt inhibitor for 4 h, fixed and stained for F-actin, and scored for

lin.

cells by one-way ANOVA. Scale bars in (B) and (E) = 10 mm; scale bars in (I) = 5
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Figure 4. PAK4 Localizes to the Podosome

Ring

(A and B) THP-1 cells stably expressing EGFP or

EGFP-PAK4 were seeded on fibronectin with

TGF-b for 16 h prior to immunoprecipitation (IP) of

paxillin (A) or vinculin (B). Blots were probed for

endogenous PAK4 and reprobed for GFP and

paxillin or vinculin.

(C) EGFP-PAK4-expressing THP-1 cells were

seeded on fibronectin with TGF-b for 16 h, fixed,

and stained for vinculin. Datasets of 200 images

were taken for both EGFP-PAK4 and vinculin and

analyzed using the ImageJ 3B plugin. Left panels

are reconstructed localizations from two adjacent

podosomes (reconstruction blur FWHM = 20 nm),

and these localizations are representative of >50

podosomes analyzed using 3B; scale bar repre-

sents 500 nm. Right panel shows a reconstructed

dataset from 3B analysis carried out using a

computer cluster to give localizations in podo-

somes of an entire THP-1 cell; scale bar repre-

sents 2 mm.

(D) STORM and 3B localization of F-actin and

EGFP-PAK4, respectively. Scale bar represents

5 mm.

(E–G) 3B datasets generated for >50 podosomes

from >10 EGFP-PAK4-expressing THP-1 cells

stained for vinculin (E), paxillin (F), or co-express-

ing mCherry-Talin (G) were analyzed using ring

analysis software (Staszowska et al., 2017). His-

tograms show the absolute distances from the

podosome center of EGFP-PAK4 (blue) and vin-

culin/paxillin/mCherry-Talin (red).

(H) A top-down representation of the relative

localizations of PAK4 and the podosome ring

proteins vinculin, paxillin, and talin, based on 3B

localizations.
PAK4 expression in rescue cells (Figure 3E) revealed an inter-

esting discovery regarding the localization of PAK4. EGFP-

PAK4 was clearly localizing to the podosome ring rather than

the podosome core (Figure 3E). This was not an anomaly of ex-

pressing the rescue construct, as we were able to detect ring

localization in wild-type cells overexpressing EGFP-PAK4 (Fig-

ures S4A and S4B). In contrast, kinase-dead PAK4 was less

clearly localized (Figure 3E), again supporting a functional role

for PAK4 kinase activity. Podosomes are highly ordered struc-

tures, and localization to the ring versus core would change

the possible interacting partners and functional consequences.

Furthermore, our observation places a serine/threonine kinase

in the podosome ring. We hypothesized that if PAK4 is indeed

a ring protein, PAK4 should co-immunoprecipitate with ring but
3390 Cell Reports 29, 3385–3393, December 10, 2019
not core proteins. Crucially, we detected

PAK4 in immunoprecipitations of two

ring proteins, paxillin and vinculin, from

GFP-PAK4-expressing cells (Figures 4A

and 4B) and a faint trace of endogenous

PAK4 when a large number of cells

was used (Figure S4C). In contrast, we

did not detect any PAK4 in an anti-WASP

immunoprecipitation (a core protein)
(Figure S4D). These biochemical studies support our localization

imaging but do not provide irrefutable evidence of PAK4

localization.

Nanoscale Resolution of PAK4 Localization
To robustly query the indicated localization of PAK4 in the podo-

some ring, we adopted the Bayesian analysis of blinking and

bleaching (3B analysis), which is able to reveal podosome orga-

nization at the nanoscale (Cox et al., 2011). EGFP-PAK4-ex-

pressing THP-1 cells were seeded on fibronectin in the presence

of TGF-b, fixed, and stained for vinculin or paxillin (Figures 4C

and S4E). Alternatively, EGFP-PAK4/mCherry-Talin-expressing

cells were seeded on fibronectin in the presence of TGF-b and

fixed (Figure S4F). Datasets of 200 images were taken using



stream acquisition for all of the above conditions and processed

using the ImageJ 3B plugin or C++ software (Cox et al., 2011;

Rosten et al., 2013). Reconstructed localizations from one or

two adjacent podosomes clearly illustrate that PAK4, vinculin,

paxillin, and talin localize to the podosome ring (Figures 4C,

S4E, and S4F). Moreover, reconstructions of entire THP-1 cells

clearly illustrate the ring localization across multiple podosomes

(Figures 4C, S4E, and S4F). To further validate our findings, we

have also localized PAK4 with respect to the actin core

(Figure 4D).

Using the reconstructed localizations, we then calculated the

distances of each protein from the podosome center in a given

segment of the podosome ring, as described in Staszowska

et al. (2017). The absolute positions of EGFP-PAK4 localizations

were compared to those of vinculin, paxillin, and mCherry-Talin

(Figures 4E–4G). To account for podosome size variations, we

also calculated the relative positions of these proteins by sub-

tracting the distances of vinculin, paxillin, and mCherry-Talin

from EGFP-PAK4 distance; negative values indicate that PAK4

is closer to the podosome center (Figures S4G–S4I). The

mean absolute distances from the podosome center were

calculated to be 362 nm, 383 nm, 420 nm, and 426 nm for

PAK4, vinculin, talin, and paxillin, respectively. Taken together,

our studies now reveal that PAK4 is definitely localized to the po-

dosome ring and occupies a volume internal to the other ring

proteins analyzed, placing PAK4 closest to the podosome

core (Figure 4H). Thus, our studies have demonstrated that

PAK4 kinase activity is essential for podosome formation and

that PAK4 specifically functions within the podosome ring in

monocytic cells.

It remains to be elucidated how PAK4 is being regulated within

this process. PAK4 binds preferentially to Cdc42; however, bind-

ing to Cdc42 was suggested to be an intermediate step to PAK4

activation, acting to localize PAK4 activity to specific subcellular

compartments (Ha et al., 2012). Active Cdc42 localizes to podo-

somes and promotes their formation (Daubon et al., 2011; Mor-

eau et al., 2003; Tatin et al., 2006); it is generally considered a

core protein given its interaction with WASP, a component of

the Arp2/3-mediated F-actin core. Thus, binding of PAK4 to

Cdc42 might occur at the core-ring interface, as our data put

PAK4 closest to the core. Interestingly, it has been proposed

that full activation of PAK4 requires a secondary binding to

release the inhibitory binding of a pseudosubstrate sequence

to the kinase domain (Abo et al., 1998; Ha et al., 2012). The bind-

ing of the Src SH3 domain increased PAK4 activity (Ha et al.,

2012), and Src is a well-established regulator of podosome dy-

namics and cell migration (Timpson et al., 2001); therefore, Src

may directly promote PAK4 activity in podosomes. Src is often

depicted as a ring protein, but this has not been experimentally

confirmed; it is thus possible that Src could also reside at the

same core-ring interface along with PAK4.

Our data point to the Akt pathway as a potential target for

PAK4 activity within the podosome. However, there may be

other alternative or additional targets. PAK4 can promote paxillin

phosphorylation at focal adhesions (Nayal et al., 2006; Wells and

Jones, 2010). Whether PAK4 mediates phosphorylation of paxil-

lin at podosomes is unknown. PAK4 also interacts with vinculin in

podosome-forming THP-1 cells and focal adhesion-forming
breast cancer cells (Dart et al., 2015). Whether PAK4 can directly

phosphorylate vinculin is unknown, and vinculin phosphorylation

on Ser/Thr residues has not been demonstrated. However, Src-

mediated tyrosine phosphorylation of vinculin was found to

regulate its conformation, affecting force transmission at focal

adhesions and cell-cell junctions (Auernheimer et al., 2015;

Bays et al., 2014; Huang et al., 2014; Ito et al., 1982). It is also

possible that a different protein target of PAK4 resides within

the podosome ring, perhaps PDZ-RhoGEF given that a reduc-

tion in RhoA activity might be required for podosome formation.

Thus, the critical downstream target of PAK4 in podosome turn-

over remains to be elucidated.

In conclusion, we have shown that PAK4 kinase activity is

essential in the regulation of macrophage podosomes. Inhibition

of PAK4 results in a dramatic loss of podosomes and the forma-

tion of focal adhesions, both in differentiated THP-1 cells and

dramatically in primary human macrophages. shRNA-mediated

knockdown of PAK4 also reduces podosome number; this

phenotype cannot be rescued by a kinase-dead variant of

PAK4. Importantly, this is a report of serine/threonine kinase ac-

tivity as a crucial component of podosome turnover. The switch

from podosomes to focal adhesions confers a reduction in cell

migration speed and matrix degradative ability, demonstrating

a crucial role for PAK4 in promoting macrophage migration by

the modulation of adhesion phenotype. Finally, we have shown

that PAK4 localizes to the podosome ring by superresolution

3B analysis and that PAK4 is closer to the podosome core

than vinculin, paxillin, and talin.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-PAK4 In-house (Wells et al., 2002) N/A

Rabbit polyclonal anti-PAK4 Cell Signaling Technology Cat. # 3242; RRID:AB_2158622

Rabbit polyclonal anti-PAK1 Cell Signaling Technology Cat. # 2602; RRID:AB_330222

Rabbit polyclonal anti-PAK1 Santa Cruz Biotechnology Cat. # sc-882; RRID:AB_672249

Rabbit polyclonal anti-PAK2 Cell Signaling Technology Cat. # 2608; RRID:AB_2283388

Rabbit polyclonal anti-PAK3 Cell Signaling Technology Cat. # 2609; RRID:AB_2225298

anti-PAK6 GeneTex Cat # GTX127915; RRID:AB_2687660

Mouse monoclonal anti-GFP Roche Cat. # 11 814 460 001; RRID:AB_390913

Mouse monoclonal anti-vinculin Sigma Cat. # V9131-.2ML; RRID:AB_477629

Rabbit polyclonal anti-paxillin Novus Biologicals Cat. # NBP1-19833; RRID:AB_1642794

Rabbit polyclonal anti-zyxin Invitrogen Cat. # PA1-25162; RRID:AB_2221183

Mouse monoclonal anti-WASP Santa Cruz Biotechnology Cat. # Sc-13139; RRID:AB_628445

anti-pAkt Cell Signaling Technology Cat # 9271S; RRID:AB_329825

anti-Akt Cell Signaling Technology Cat #4691; RRID:AB_915783

anti-pLIMK Cell Signaling Technology Cat #3841; RRID:AB_2136943

anti-pCofilin Cell Signaling Technology Cat #3311; RRID:AB_330238

anti-pPRAS40 Cell Signaling Technology Cat #2997; RRID:AB_2258110

Mouse monoclonal anti-GAPDH Millipore Cat # MAB374; RRID:AB_2107445

Rabbit polyclonal anti-HSP90 Santa Cruz Biotechnology Cat. # SC-7947; RRID:AB_2121236

Mouse monoclonal anti-b-tubulin Sigma Cat. # T8328; RRID:AB_1844090

Mouse monoclonal anti-b-actin Sigma Cat. # A1978; RRID:AB_476692

Goat polyclonal anti-mouse-488 Invitrogen Cat. # A11001; RRID:AB_2534069

Goat polyclonal anti-rabbit-488 Invitrogen Cat. # A11008; RRID:AB_143165

Goat polyclonal anti-mouse-568 Invitrogen Cat. # A11004; RRID:AB_2534072

Goat polyclonal anti-rabbit-568 Invitrogen Cat. # A11011; RRID:AB_143157

Alexa Fluor 568 phalloidin Invitrogen Cat. # A12380

Alexa Fluor 647 phalloidin Invitrogen Cat. # A22287; RRID:AB_2620155

Goat polyclonal anti-mouse-HRP Dako Cat. # P0447; RRID:AB_2617137

Goat polyclonal anti-rabbit-HRP Dako Cat. # P0448; RRID:AB_2617138

Bacterial and Virus Strains

One Shot� TOP10 chemically competent E. coli Invitrogen Cat. # C404010

pHR’SINcPPT-SFFV (pLNT-SffV) Vijayakumar et al., 2015 N/A

pLKO.1 Addgene; Moffat et al., 2006 Addgene Plasmid 10878

pCMVDR8.91 Vijayakumar et al., 2015 N/A

pMD.G Vijayakumar et al., 2015 N/A

Biological Samples

Human peripheral blood from healthy donors Human peripheral blood

mononuclear cells (PBMCs)

were obtained from

anonymised human buffy

coats as supplied by the

NHS Blood and Transplant

(London, UK).

N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Recombinant Human TGF-b1 R&D Systems Cat. # 240-B-002

PAK4i (CRTDL4) Cancer Research Technology N/A

IPA-3 Santa Cruz Biotechnology Cat. # sc-204016

Akt inhibitor

Fibronectin from bovine plasma 0.1% solution Sigma Cat. # F1141

Fibronectin HiLyte 488 Cytoskeleton, Inc. Cat. # FNR02-A

Human M-CSF Miltenyi Biotec Cat. # 103-093-963

MTT reagent Sigma Cat. # M5655

DMSO, sterile filtered Sigma Cat. # D2438

MCP-1 (CCL2) R&D Systems Cat. # 279-MC-010

Critical Commercial Assays

Zero Blunt� PCR Cloning Kit Invitrogen Cat. # K2700-20

QuikChange� XL Site-Directed Mutagenesis Kit Stratagene Cat. # 200516

15ml Lymphoprep Axis-Shield Cat. # 1114544

CD14 Microbeads, human Miltenyi Biotec Cat. # 103-050-201

Experimental Models: Cell Lines

THP-1 cells ATCC TIB-202

HEK293T cells ATCC CRL-3216

Oligonucleotides

Cloning primer: PAK4 shRNA 2 FWD: CCGGGGTGAACATGTATG

AGTGCTCGAGCACTCATACATGTTCACCTTTTTG

This paper N/A

Cloning primer: PAK4 shRNA 2 REV: AATTCAAAAAGGTGAACATG

TATGAGTGCTCGAGCACTCATACATGTTCACC

This paper N/A

Cloning primer: PAK4 shRNA 3 FWD: CCGGCTTCGGACATTCATG

ATCGCTCGAGCGATCATGAATGTCCGAAGTTTTTG

This paper N/A

Cloning primer: PAK4 shRNA 3 REV: AATTCAAAAACTTCGGACAT

TCATGATCGCTCGAGCGATCATGAATGTCCGAAG

This paper N/A

Cloning primer: PAK4 shRNA 4 FWD: CCGGCTGCTGGACGAGTT

TGAGAACCTCGAGGTTCTCAAACTCGTCCAGCAGTTTTTG

This paper N/A

Cloning primer: PAK4 shRNA 4 REV: AATTCAAAAACTGCTGGAC

GAGTTTGAGAACCTCGAGGTTCTCAAACTCGTCCAGCAG

This paper N/A

SDM primer: PAK4 shRNA 4 rescue FWD: GCCCTCACGCTGCTC

CTCGATGAGTTCGAGAACATGTC

This paper N/A

SDM primer: PAK4 shRNA 4 rescue REV: GACATGTTCTCGAACT

CATCGAGGAGCAGCGTGAGGGC

This paper N/A

SDM primer: PAK4r(K350,351M) FWD: CTGGTGGCCGTCATGAT

GATGGACCTGCGC

Wells laboratory N/A

SDM primer: PAK4r(K350,351M) REV: GCGCAGGTCCATCATCAT

GACGGCCACCAG

Wells laboratory N/A

See Table S1 for more details of oligonucleotides used in this study

Recombinant DNA

pHR’SINcPPT-SFFV (pLNT-SffV) Jones laboratory;

Vijayakumar et al., 2015

N/A

pLKO.1 Addgene; Moffat et al., 2006 Addgene Plasmid 10878

pCMVDR8.91 Jones laboratory N/A

pMD.G Jones laboratory N/A

pDEST27-PAK4 Wells laboratory N/A

pLNT/SffV-EGFP-PAK4 This paper N/A

pLNT/SffV-EGFP-PAK4(rescue) This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pLNT/SffV-EGFP-PAK4r(K350,351M) This paper N/A

pLKO.1-NTC (non-targeting control shRNA) This paper N/A

pLKO.1-PAK4shRNA2 This paper N/A

pLKO.1-PAK4shRNA3 This paper N/A

pLKO.1-PAK4shRNA4 This paper N/A

Software and Algorithms

Mathematica Cell tracking notebooks Professor Graham Dunn N/A

DiPer Gorelik and Gautreau, 2014 N/A

3B ImageJ plugin Rosten et al., 2013 http://www.coxphysics.

com/3b/#download

Ring protein analysis software Staszowska et al., 2017 N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr Claire

Wells (claire.wells@kcl.ac.uk). All unique reagents generated in this study are available from the Lead Contact with a completed Ma-

terials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

THP-1 Cells
THP-1 cells purchased from ATCC were cultured in suspension in RPMI-1640 medium (GIBCO) containing 10% heat-inactivated

fetal bovine serum (FBS, Thermo Fisher Scientific), 50mM b-mercaptoethanol (Sigma) and 1% penicillin/ streptomycin (GE Health-

care). Cells were incubated at 37�C with 5% CO2, and maintained at a density between 5x105 and 1x106 cells/ml. Stocks of

THP-1 cells (5x106 cells/ml) were stored in 90% FBS and 10%DMSO in liquid nitrogen. Podosome formation was induced by plating

cells on surfaces coated with 10mg/ml fibronectin (Sigma) in media containing 2ng/ml recombinant human TGF-b1 (R&D Systems),

and incubating for 16 hours.

HEK293T Cells
Adherent HEK293T cells (ATCC) were cultured in RPMI-1640 medium (GIBCO) containing 10% heat-inactivated FBS, 1% penicillin/

streptomycin and 2mMGlutamine (Sigma). HEK293T cells weremaintained at between 50%–100%confluency by subculturing using

2ml trypsin EDTA (GE Healthcare) in PBS. Cells were maintained at 37�C with 5% CO2.

Primary Human Macrophages
Primary human monocytes were isolated from anonymous healthy donors peripheral blood samples purchased from the London

Blood Transfusion service. Density gradient separation by centrifugation was carried out using 15ml Lymphoprep (Axis-Shield, Nor-

way). Peripheral bloodwas dilutedwith PBS at a ratio of 1:2, and the cell suspension added to the density gradient before centrifuging

at 800 x g at room temperature for 30 minutes. Peripheral blood mononuclear cell (PBMC) fraction was harvested and washed twice

with PBS, centrifuging at 200 x g for 10 minutes at room temperature. Cells were resuspended in MACS buffer (PBSwith 10% bovine

serum albumin (BSA; GE Healthcare) and 0.5M EDTA), then CD14+ monocytes were isolated using magnetic bead separation using

CD14 MicroBeads (Miltenyi Biotec) following the manufacturer’s protocol. To differentiate monocytes to macrophages, monocytes

were seeded at a density of 0.3x106 cells/ml on fibronectin coated coverslips (coated following the same protocol as for THP-1 cell

differentiation). Cells were cultured in RPMI-1640 medium containing 10% FBS, 1% penicillin/streptomycin and 2mM Glutamine, in

the presence of 50ng/ml M-CSF (Miltenyi Biotec) for 4.5 days.

METHOD DETAILS

Generation of Lentiviral Vectors
cDNA encoding wild-type human PAK4 was amplified by PCR from pDEST27-PAK4 template plasmid and subcloned into the pCR-

BLUNT vector (Invitrogen; Zero Blunt� PCR Cloning Kit) while incorporating C- and N-terminal restriction sites for subsequent

cloning into the pLNT/SffV lentiviral transfer vector. To generate shRNA-resistant and kinase-dead mutants, the QuikChange� XL

Site-Directed Mutagenesis Kit (Stratagene) was used following the manufacturer’s instructions using the intermediate vector of
e3 Cell Reports 29, 3385–3393.e1–e6, December 10, 2019
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PAK4 in pCR-BLUNT. Primers of approximately 20 nucleotides were designed to introduce the desired mutations. Cloned vectors

were amplified using TOP10 chemically competent E. coli (Invitrogen).

PAK4 shRNA sequences were cloned into the lentiviral transfer vector pLKO.1 (Addgene) following the manufacturer’s protocol.

Three shRNA sequences were chosen and are listed in the Key Resources Table; these sequences are numbered 2 to 4 based on

previous shRNA sequences used by our laboratory. PAK4 shRNA 2 targets the same sequence as oligo 2 from Ahmed et al., 2008 in

the 30 UTR of PAK4. PAK4 shRNA 3 targets a different sequence in the 30 UTR of PAK4, and corresponds to oligo 3 from Dart et al.

(2015). PAK4 shRNA 4 targets a sequence within the coding region of PAK4 and was chosen from a list of SigmaMISSION� shRNAs,

having been validated in mammalian cells.

Lentivirus Production
HEK293T cells were seeded at a density of 3-6x105 cells/ml in 12-well plates in 1ml growth medium, and incubated at 37�C with 5%

CO2 overnight. The following day, HEK293T cells were transfected with viral plasmids. A 500ml transfection mixture was made con-

taining 1.3mg p8.91 packaging plasmid, 0.42mg pMD.G envelope plasmid and 1.74mg pLNT/SffV or pLKO.1 transfer plasmid and

4.35mM polyethylenimine (PEI; Invitrogen) in OptiMEM (Invitrogen). This mixture was incubated at room temperature for 15 minutes,

then HEK293T cells were washed gently with OptiMEM before the transfection mix was added. Cells were then incubated at 37�C
with 5% CO2 for 4 hours, before removing the transfection mix and adding 1ml growth medium. Transfected HEK293T cells were

incubated at 37�C with 5% CO2 for 48 hours, before harvesting the virus by collecting the growth medium and centrifuging for 5 mi-

nutes at 2000 x g, then filtering through a 0.45mm syringe filter (Thermo Fisher Scientific).

Viral transduction of THP-1 cells was carried out by seeding 1x105 THP-1 cells in 600ml growth media in each well of a 12-well plate

and adding 400ml filtered lentivirus solution, with 4mg/ml polybrene (Sigma) to increase infection efficiency. Cells were incubated at

37�Cwith 5%CO2 for 72 hours before washing twice by centrifuging at 1200rpm for 5 minutes, removing media and adding 5ml PBS

before centrifuging again at 1200rpm for 5 minutes. Cells were then resuspended in 3-5ml growth medium and cultured at 37�Cwith

5% CO2. For cells transduced with pLKO.1 encoding PAK4 shRNAs, cells were selected at this stage by adding 500nM puromycin

(Sigma) to growth medium.

Inhibitor Treatment
THP-1 cells were differentiated toward a macrophage-like phenotype by seeding on fibronectin-coated coverslips in the presence of

TGF-b for 16 hours. Cells were then treated with 1mM or 5mM small molecule PAK inhibitors (PAK4i from Cancer Research UK and

CRUK Therapeutic Discovery Laboratories) or IPA-3 from Santa Cruz Biotechnology) or 1mM, 5mM or 10mM of Akt inhibitor

(ab142088; Abcam PLC), diluted in DMSO (Sigma) and added to culture media for 4 hours while incubating at 37�C with 5% CO2,

before being fixed in 3.7% paraformaldehyde (PFA; Sigma) in PBS for 30 minutes. See Table 1 below. For inhibitor wash-out exper-

iments, following 4 hours incubation with inhibitors, cells were washed 3 times with fresh media and then incubated for 1-4 hours in

media containing 2ng/ml TGF-b, before being fixed in 3.7%PFA in PBS. Primary humanmacrophages differentiated for 4.5 dayswith

M-CSF were treated with 1mM or 5mM small molecule PAK inhibitors diluted in DMSO for 4 hours while incubating at 37�C with 5%

CO2.
Inhibitor Source IC50 Selectivity profile

PAK4i (CRTDL4) Cancer Research Technologies PAK1 IC50: 9.8 mM The following kinases showed < 1% signal

remaining after treatment with 1mM CRTDL4 in

KINOMEscan at DiscoveRx

PAK4 IC50: 26.3nm BMPR2, MEK5, PAK4, PAK6, PAK7, STK16,

TGFBR2, ULK1, PSK4

IPA3 Santa Cruz Biotechnology PAK1 IC50: 2.5 mM

Akt inhibitor Abcam PLC Catalogue

number ab142088

(IC50 values are 58, 210 nM and 2.12 mM

for Akt1, Akt2, and Akt3, respectively).

No inhibition against pleckstrin homology (PH)

domain lacking Akts, PKA, PKC and SGK.
Podosome Counts in Fixed Cells
TGF-b differentiated THP-1 cells or M-CSF differentiated primary macrophages seeded on fibronectin coated coverslips were fixed

and stained for vinculin and F-actin, and visualized using 100x objectives on LSM510 or Nikon confocal microscopes. For each

coverslip, 5 distinct regions were visualized (top/bottom/left/right/center), and the number of podosomes in 20 cells per region

was counted, to give a total of 100 cells per coverslip. From these counts, percentage of cells with podosomes was calculated,

as well as the number of cells with 0, 1-10, 11-20, 21-30 or >30 podosomes was calculated. For each treatment condition, at least

3 coverslips were counted (> 300 cells per treatment condition) from >3 separate experiments.
Cell Reports 29, 3385–3393.e1–e6, December 10, 2019 e4



MTT Adhesion Assay
6x104 THP-1 cells per treatment condition were taken from suspension culture, centrifuged, and resuspended in 1ml fresh growth

medium. Cells were pre-treated with 1mM or 5mM of the PAK inhibitors PAK4 or IPA3 diluted in DMSO, or DMSO as a control, for

1 hour while incubating at 37�C with 5% CO2. Cells were then taken up into 15ml falcons with 5ml PBS and centrifuged at

1200rpm for 3 minutes. Cells were resuspended in 800ml growth media containing 2ng/ml TGF-b and the same concentration of

PAK inhibitor used for pre-treatment. For each treatment condition, 4 wells of a 96-well plate were coated with fibronectin as previ-

ously described, and these wells were washed twice with PBS before seeding 200ml cells per well. An additional 4 wells were coated

with fibronectin and incubated with media containing TGF-b to give blank measurements. Cells were then incubated at 37�Cwith 5%

CO2 for 16 hours, before dumping the plate roughly onto paper towel to remove media and unattached cells. 0.5mg/ml MTT reagent

(Sigma) in PBSwas sterile filtered before adding 100ml to each well and incubating at 37�Cwith 5%CO2 for 4 hours. MTT reagent was

removed by needle aspiration and 100ml DMSO added to each well, pipetting up and down to mix, before incubating for a further

10 minutes at 37�C. Absorbance at 540nm was measured per well using a FLUOstar� Omega microplate reader (BMG Labtech)

and blank-corrected values used. Readings from 4 wells per treatment condition x 3 separate experiments were used to give

mean absorbance levels.

Matrix Degradation Assay
Fibronectin-488 (HiLyte Fluor 488 labeled fibronectin from bovine plasma, Cytoskeleton Inc.) coating of coverslips was carried out

following the same protocol as used with unlabeled fibronectin: coverslips were inverted onto 200ml of 10mg/ml fibronectin-488

diluted in PBS, and incubated at 37�C for >3 hours. Coverslips were washed twice with PBS before seeding THP-1 cells at a density

of 2x105 cells/ml with 2ng/ml TGF-b for 16 hours. Cells were then fixed and stained.

Images were taken using a 100x objective on a Nikon confocal microscope and analyzed using ImageJ. Fibronectin-488 images

were converted to binary images with fibronectin-488 appearing white with black degradation spots. A threshold was applied (keep-

ing the threshold the same for all images) and the ImageJ Analyze Particles tool used to measure the total degradation area for each

image. The same process was carried out using the F-actin channel to give a measure of total cell area in each image. The degra-

dation area was divided by total cell area. For each treatment condition, >20 images were measured, and the mean degraded area/

cell area (mm2) or degraded area (mm2)/cell was calculated.

Random Migration Assay
TGF-b differentiated THP-1 cells or M-CSF differentiated primary macrophages were seeded in fibronectin coated 96-well plates,

and treated with PAK inhibitors for 4 hours. After 3 hours, 5ng/ml MCP-1 was added to induce random cell migration (1 hour prior

to filming). Just before filming, 25mM HEPES (GE Healthcare) was added to each well. Cells were imaged at 37�C in phase contrast

using a 10x objective on an Olympus IX-71 microscope, taking images of 2 regions per well every 2.5 minutes for 2 hours.

Cells were tracked using the ImageJ Manual Tracking tool (x/y calibration = 1.1013 pixels/mm). All cells in the starting frame were

tracked, except cells that migrated outside the field of view during the duration of the film. Tracks were saved and analyzed using

Mathematica notebooks developed by Professor Graham Dunn, to calculate mean cell speed for each treatment condition. To

plot cell tracks, DiPerTM was used following the developers’ instructions (Gorelik and Gautreau, 2014). Approximately 30 tracks

per treatment condition were plotted.

Western Blot and Immunoprecipitation
Adherent THP-1 cell lysates were made by seeding THP-1 cells on fibronectin-coated 10cm plates with 2ng/ml TGF-b for 16 hours,

before washing twice with ice cold PBS and adding 1ml lysis buffer (4M sodium chloride, 1M Tris-HCl pH 7.4, 100mM sodium ortho-

vanadate, 500mM sodium fluoride, 1mM EGTA, 0.5% NP-40, Roche proteinase inhibitor cocktail containing EDTA), then incubating

on ice for 10 minutes. Cells were then scraped into 1.5ml Eppendorf tubes, before incubating on ice for a further 10 minutes. For non-

adherent cells, THP-1 cells were counted and centrifuged at 1200rpm for 3 minutes, culture medium removed and pelleted cells

washed twice with ice cold PBS before resuspending in 1ml lysis buffer and incubating on ice for 20 minutes while vortexing every

5 minutes. Lysates were then spun down at 4�C for 10 minutes at 13,000 rpm, and the supernatant was transferred to new tubes.

Before running on SDS polyacrylamide gels, 5x SDS sample buffer was added to lysates before heating at 95�C for 5 minutes.

SDS-PAGE was carried out using 7.5%–12% gels and transferring onto nitrocellulose membranes. To immunoblot for protein levels,

membranes were blocked with 5% milk in TTBS before probing with primary antibodies followed by secondary antibodies listed in

the Key Resources Table. Membranes were immersed in in enhanced chemiluminescence reagent (ECL, Amersham) for 1 minute

before imaging using a Bio-Rad ChemiDoc MP imaging system.

For immunoprecipitation, 6x107 TGF-b differentiated THP-1 cells were lysed in 1ml lysis buffer. 30ml lysatewith 20ml 5x SDS sample

buffer was kept at�20�C as input. The remaining lysate was incubated with 1-2mg antibody for immunoprecipitation overnight at 4�C
while rotating. 60ml protein A/G agarose beads were washed 3 x in lysis buffer, and lysate/antibody samples added to the beads,

before rotating at 4�C for 1 hour. Samples were centrifuged at 4000rpm for 3 minutes at 4�C and the supernatant removed, before

washing beads 3x by incubating with 1ml lysis buffer for 5minutes while rotating at 4�C. Lysis buffer was removed before adding 30ml

5x SDS sample buffer and boiling for 10 minutes to precipitate proteins from the beads. Immunoprecipitates were loaded on poly-

acrylamide gels and western blots carried out.
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Immunocytochemistry
Cells were stained for immunofluorescence imaging at room temperature as follows: cells were fixed with 3.7% PFA for 30 minutes,

then washed 3x with PBS before permeabilization with 0.1% Triton X-100 (Sigma) in PBS for 5 minutes. Cells were again washed 3x

with PBS, then blocked with 3% BSA in PBS for 30 minutes, before incubating with primary antibody diluted in 3% BSA in PBS for 1

hour. Cells were then washed 4x for 5 minutes per wash with PBS, before incubating with secondary antibody diluted in 3% BSA in

PBS for 30 minutes. Cells were again washed 4x for 5 minutes per wash with PBS, before mounting coverslips. Coverslips were

washedwith ddH20 beforemounting on glass slides on 15ml mountingmedia (MOWIOL, Sigma) and incubating at 37�C for 20minutes

before storing at room temperature in the dark. For all antibodies used, see the Key Resources Table.

Imaging
Images of fixed cells were acquired using 100x oil Plan Fluor immersion objectives (numerical aperture 1.4) on Zeiss LSM510, Nikon

TIRF or Nikon Spectral confocal microscopes. Excitation wavelengths of 488nm, 543nm and 633nm were used. Images were con-

verted to PNG files from database files.mdb or ND2 files using ImageJ, and merged or single channel images generated using

ImageJ. For live cell imaging, a 10x objective on anOlympus IX-71wide-field invertedmicroscope equippedwith a 37�C environment

chamber was used. Image acquisition was controlled byMetamorph imaging software (Universal Imaging), and images were taken in

phase contrast every 2.5 minutes for 2 hours. Combined STORM and 3B imaging was carried out with Nikon N-STORMmicroscope.

For STORM imaging, 10,000 frames per sample were processed with ThunderSTORM software (Ovesný et al., 2014) using default

processing parameters. For 3B analysis, datasets of >200 images were taken using stream acquisition. A 100x oil immersion objec-

tive on an Olympus IX-81 wide-field inverted microscope was used, and imaging controlled by Metamorph imaging software. 3B

analysis was carried out using the ImageJ 3B plugin, following instructions in Rosten et al. (2013). For datasets where two channels

are analyzed, the exact same selection region was applied to both channels using coordinates listed by ImageJ. Analysis of ring pro-

tein localizations was carried out as described in Staszowska et al. (2017).

QUANTIFICATION AND STATISTICAL ANALYSIS

Focal adhesions were quantified using ImageJ as follows: vinculin images were converted to binary images, a threshold applied and

the ImageJ Analyze Particles tool used tomeasure themean number of adhesions per cell. Statistical analyses were performed using

SPSS Statistics software (IBM). Checks for normality were performed before the appropriate statistical test for the data was chosen.

Student’s t test or one-way analysis of variance (ANOVA) was used; for each set of data, the test used and n values are indicated in the

figure legend. Results were defined as significantly different with a p value of < 0.05.

DATA CODE AND AVAILABILITY

This study did not generate any unique datasets or code. All data are contained within the paper.
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