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IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER
Z2-EXTENSIONS

DAVID LOEFFLER AND SARAH LIVIA ZERBES

ABSTRACT. We construct a two-variable analogue of Perrin-Riou’s p-adic reg-
ulator map for the Iwasawa cohomology of a crystalline representation of the
absolute Galois group of Qp, over a Galois extension whose Galois group is an
abelian p-adic Lie group of dimension 2.

We use this regulator map to study p-adic representations of global Galois
groups over certain abelian extensions of number fields whose localisation at
the primes above p is an extension of the above type. In the example of the
restriction to an imaginary quadratic field of the representation attached to a
modular form, we formulate a conjecture on the existence of a “zeta element”,
whose image under the regulator map is a p-adic L-function. We show that this
conjecture implies the known properties of the 2-variable p-adic L-functions
constructed by Perrin-Riou and Kim.

1. INTRODUCTION

In the first part of this paper (Sections B and @), we develop a “two-variable”
analogue of Perrin-Riou’s theory of p-adic regulator maps for crystalline represen-
tations of p-adic Galois groups.

Let us briefly recall Perrin-Riou’s cyclotomic theory as developed in [PR95]. Let
p be an odd prime, F' a finite unramified extension of QQ,, and V' a continuous p-
adic representation of the absolute Galois group G of F', which is crystalline with
Hodge-Tate weights > 0 and with no quotient isomorphic to the trivial represen-
tation. Then there is a “regulator” or “big logarithm” map

‘CE,V : Hllw(F(:uP“’)v V) - HQP (F) ®Qp Dcris(v)

which interpolates the values of the Bloch—Kato dual exponential and logarithm
maps for the twists V (j), j € Z, over each finite subextension F'(j,n ). Here Hg, (I')
is the algebra of Q-valued distributions on the group I' = Gal(F(up=)/F) = Z},
and the Iwasawa cohomology H{. (F(ppe ), V) is defined as Q,®z, im HY(F(ppn),T)
where T is any Gp-stable Z,-lattice in V. This map plays a crucial role in cyclo-
tomic Iwasawa theory for p-adic representations of the Galois groups of number
fields, as a bridge between cohomological objects and p-adic L-functions.

It is natural to ask whether or not the construction of the maps C%V may be
extended to consider twists of V' by more general characters of Gp. In this paper,
we give a complete answer to this question for characters factoring through an
extension Ko./F which is abelian over Q, (thus for all characters if ' = Q).

2010 Mathematics Subject Classification. Mathematics Subject Classification 2010: Primary
11R23, 11G40. Secondary: 11540, 11F80 .
Key words and phrases. Iwasawa theory, p-adic regulator, p-adic L-function.
Supported by a Royal Society University Research Fellowship.
Supported by EPSRC First Grant EP/J018716/1.
1


http://arxiv.org/abs/1108.5954v3

2 DAVID LOEFFLER AND SARAH LIVIA ZERBES

Any such character factors through the Galois group G of an extension of the
form Ko = Foo(ptp), where F is an unramified extension of F' which is a finite
extension of the unique unramified Z,-extension of F. Denote by ﬁoo the p-adic
completion of Fis, and Hp (G) the algebra of Fro-valued distributions on G.

Theorem 1.1. For any crystalline representation V of Gr with non-negative Hodge—
Tate weights, there exists a requlator map

LY Hi (Ko, V) —> Hp_(G) ©g, Deris(V)
interpolating the maps E%V for all unramified extensions K/F contained in Fu,.

See Theorem [£.7] for a precise statement of the result. Unlike the cyclotomic
case, this result holds whether or not V' has trivial quotients.

In Sections [l and [£.2] we use the 2-variable p-adic regulator to study global
Galois representations. Let K be a finite extension of QQ, p a prime of K above
p which is unramified, and K., be a p-adic Lie extension of K such that for any
prime P of K, above p, the local extension Ko g3/K, is of the type considered
above. Let G = Gal(K«/K). In Section B, we extend the regulator map to a map

Ly Ziy (Koo, V) —> Hp (G) ©g, Deris(Kp, V)

where lewm(Koo, V) is the direct sum of the Iwasawa cohomology groups at each
of the primes q | p, and Deyis(Kyp, V') is the Fontaine D¢ functor for V' regarded
as a representation of a decomposition group at p. There is a natural localisation
map
HIIW,S(KOW V) - @ lew,p(Koov V)
plp

where Hllw) (K, V) denotes the inverse limit of global cohomology groups unram-
ified outside a fixed set of primes S. As in the case of Perrin-Riou’s cyclotomic
regulator map, our map L‘G, allows elements of Iwasawa cohomology (or, more gen-
erally, of its exterior powers) to be interpreted as D.s-valued distributions on G
(after extending scalars). Assuming a plausible conjecture analogous to Leopoldt’s
conjecture, we use the map E‘Cj to define a certain submodule Itn (V) of the dis-
tributions on G with values in an exterior power of Ds. Following Perrin-Riou
[PRIS], we call L5t (V) the module of 2-variable L-functions. We conjecture that
there exist special elements of the top exterior power of Hllw)S(Koo, V) (“zeta el-
ements”) whose images under the regulator map are p-adic L-functions, and that
these should generate I..itn (V') as a module over the Iwasawa algebra Ag, (G).

In Section [6] we investigate in detail two instances of this conjecture that occur
when the field K is imaginary quadratic. We first show that for the representation
Z,(1), our regulator map coincides with the map constructed in [Yag82]. In this
paper, Yager shows that his map sends the Euler system of elliptic units to Katz’s
p-adic L-function. As the second example, we study the representation attached
to a weight 2 cusp form for GLs /K: here we predict the existence of multiple
distributions, depending on a choice of Frobenius eigenvalue at each prime above p
(Conjecture [6.16]), and we show that our conjectures imply the known properties of
the 2-variable p-adic L-functions constructed by Perrin-Riou [PR&8] (for f ordinary)
and by B.D. Kim [KimII] (for f non-ordinary). However, our conjectures also
predict the existence of some new p-adic L-functions. (The existence of these p-
adic L-functions is verified in a forthcoming paper [Loeld] of the first author.)
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In our paper [LLZI3] (joint with Antonio Lei), we use the 2-variable p-adic
regulator to study the critical slope p-adic L-functions of an ordinary CM modular
form. In this case, there are two candidates for the p-adic L-function, one arising
from Kato’s Euler system and a second from p-adic modular symbols. The latter
has been studied by Bellaiche [Belll], who has proved a formula (Theorem 2 of
op.cit.) relating it to the Katz L-function for the CM field. We use the methods of
the present paper to prove a corresponding formula for the L-function arising from
Kato’s construction, implying that the two p-adic L-functions in fact coincide.

2. SETUP AND NOTATION

2.1. Fields and their extensions. Let p be an odd prime, and denote by ppe
the set of p-power roots of unity. Let K be a finite extension of either Q or Q,.
Define the Galois groups Gx = Gal(K/K) and Hx = Gal(K /K (up=)). A p-adic
Lie extension of K is a Galois extension K, /K such that Gal(K,/K) is a compact
p-adic Lie group of finite dimension.

We write I' for the Galois group Gal(Q(up-)/Q) = Gal(Qp (pip=)/Qp), which we
identify with Z) via the cyclotomic character x. Then I' 2 A x T'y, where A is
cyclic of order p — 1 and I'1 = Gal(Qp(tp=)/Qp(1p)) = Zp, so in particular Q
(resp. Qp,o0) is a p-adic Lie extension of Q (resp. Q) of dimension 1.

2.2. Iwasawa algebras and power series. Let G be a compact p-adic Lie group,
and L a complete discretely valued extension of QQ, with ring of integers Or. We
let Ao, (G) be the Iwasawa algebra lim  OL[G/U], where the limit is taken over
open subgroups U C G. We shall always equip this with the inverse limit topology
(sometimes called the “weak topology”) for which it is a Noetherian topological
O-algebra (cf. [Eme04, Theorem 6.2.8]). If L/Q, is a finite extension then Ao, (G)
is compact (but not otherwise).

We let AL(G) = L ®0, Ao(G), which is also Noetherian; it is isomorphic to
the continuous dual of the space C(G, L) of continuous L-valued functions on G.
(See [ST02, Corollary 2.2] for a proof of the last statement when L/Q, is a finite
extension; this extends immediately to general discretely-valued L, since Ap(G) =
L &g, Mg, (G) and similarly for C(G, L).)

Let H1(G) be the space of L-valued locally analytic distributions on G (the con-
tinuous dual of the space C'®(G, L) of L-valued locally analytic functions on G).
There is an injective algebra homomorphism Ay (G) — Hr(G) (see [Eme04, Propo-
sition 2.2.7]), dual to the inclusion of C'3(G, L) as a dense subspace of C(G, L). We
endow Hr,(G) with its natural topology as an inverse limit of Banach spaces, with
respect to which the map Ap(G) — H(G) is continuous.

We shall mostly be concerned with the case when G is abelian, in which case G
has the form H x Z{ for H a finite abelian group. In this case Ao, (G) is isomorphic
to the power series ring Op[H][[X1,...,X4]], where X; = ~; — 1 for generators
Y1,---,7a of the Z¢ factor (see [Nek06, §8.4.1]). The weak topology on Ao, (G)
is the I-adic topology, where I is the ideal (p, X1,...,X4). Meanwhile, H(G)
identifies with the algebra of L[H]-valued power series in X7, ..., X4 converging on
the rigid-analytic unit ball | X;| < 1, with the topology given by uniform convergence
on the closed balls | X;| < r for all r < 1.
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In particular, for the group I' = Zy as in Section I, we may identify H(I')
with the space of formal power series

{f € LIA][[X]] : f converges everywhere on the open unit p-adic disc},

where X corresponds to v — 1 for v a topological generator of T'y; and Ay (T') corre-
sponds to the subring of H,(I") consisting of power series with bounded coefficients.
Similarly, we define H(I'1) as the subring of H(T") defined by power series over
Qp, rather than Q,[A].

For each i € Z, we define an element /; € Hq, (I'1) by

o log ~y
" logx(7)

for any non-identity element v € T'y (cf. [Ber03, §I1.1]); note that this differs by a
sign from the element denoted by the same symbol in [PR94].

2.3. Fontaine rings. We review the definitions of some of Fontaine’s rings that
we use in this paper. Details can be found in [Ber04] or [LLZI11]. Let K be a finite
extension of Qp; the rings we shall require are those denoted by A, A;r(, By, IB%;;,
and B;Eg) K-

These rings have intrinsic definitions independent of any choices and valid for
any K; but we shall be interested in the case when K is unramified over Q,. In
this case, they have concrete (but slightly noncanonical) descriptions as follows. A
choice of compatible system ({y)n>0 0of p-power roots of unity defines an element

7 € A}, and allows us to identify Aj; with the formal power series ring O [[7]].

The ring A is simply Aj.[1/n]. The ring B} is defined as A}.[1/p], and similarly
Bx = Ak[l/p]. Finally, we let IB%;EgK be the ring of power series f € K|[[r]] which
converge on the open unit disc |7| < 1.

All these rings are endowed with an Og-linear action of I by (7)) = (7 +1)X(") —
1, and with a Frobenius ¢ which acts as the usual arithmetic Frobenius on O and
on 7 by p(m) = (7w + 1)? — 1. There is also a left inverse ¢ of ¢ on all of the above
rings, satisfying

pob(f(m) == 3 S0 +m) — 1)
P&
Write ¢ = log(1 + 7) € B}

rig,Qp
calculation shows that g(t) = x(g)t for g € I', and ¢(t) = pt.

The action of I' on A}; gives an isomorphism of Ao, (I') with the submodule
(A)¥=0] the so-called “Mellin transform”

M: Aoy (T) — (Af)¥=°
f(y=1) = fly=1)- (7 +1).

This extends to bijections Ax(T) = (By)¥=0 and Hp(T) = (B, ()¥=0 (See

[PRA0, §1.3], [PR94, Proposition 1.2.7], or [LLZ11) §1.C.2] for more details.)

and ¢ = o(m)/m € Aap. A formal power series

2.4. Crystalline and de Rham representations. Let K be a finite extension
of Qp, and V' a continuous representation of Gx on a Q,-vector space of dimension
d. Recall that Dyr (V) denotes the space (V ®g, Bar)9%, where Bqg is Fontaine’s
ring of periods. This space Dgr(V) is a filtered K-vector space of dimension < d,
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and we say V is de Rham if equality holds. If j € Z, Fil’ Dqr (V) denotes the j-th
step in the Hodge filtration of Dgr (V).

If L is a finite extension of K, we shall sometimes write Dag (L, V') for Dar(Vg, ),
which can be canonically identified with L @ x Dar (V).

We also consider the crystalline period ring B..is C Bqr, and define similarly
Deris(V) = (V ®q, Beris)9%. This is a Ko-vector space of dimension < d, where
Ky is the maximal unramified subspace of K, endowed with a semilinear Frobe-
nius (acting as the usual arithmetic Frobenius on Kj). We say V is crystalline
if dimg, Deris(V) = d, in which case V' is automatically de Rham, and there is a
canonical isomorphism of K-vector spaces Dar(V) = K ®k, Deris(V). As above,
we will write Deyis(L, V') for Deyis(Vg, ), where L is a finite extension of K; if V' is
crystalline over K this is isomorphic to Lo @ x, Deris(V).

For an integer j, V(j) denotes the j-th Tate twist of V, ie. V(j) = V ®z,
(l&nn ppn )&, If ¢ = (Cu)n>0 is a choice of a compatible system of p-power roots of
unity, this defines a basis vector e; of Q,(j) and an element t~7 € Bqg; these each
depend on ¢, but the element ¢t Je; € Dgr(Q,(j)) does not, and tensoring with
t~Je; thus gives a canonical isomorphism Dgr (Q,(j)) = Q, for each j.

We write

Dar (V)
Fil’ Dag (V) + Deyis (V) #=1

expgy — HY(K,V)

for the Bloch-Kato exponential of V over K (c.f. [BK90]), which is the boundary
map in the cohomology of the “fundamental exact sequence”

- B
0—V —= Vg, BSL — V&g, (%) — 0.
Bir
The image of this map is denoted H!(K, V), and we denote its inverse by

> Dar (V)
Fil’ Dar (V) + Deyis (V)9=1"

1OgK,V : Hel(Kv V)

We also denote by
expicy : H'(K,V*(1)) — Fil’ Dar(V*(1))

the dual exponential map, which is the dual of expy y with respect to the Tate
duality pairing (c.f. [Kat93, §11.1.4]); it satisfies the identity

<epr)V(a), bk = (a, eXP?{,V(b»dR

for all @ € Dgr(V) and b € H'(K,V), where (—, —)Tatc is the Tate pairing and
(—, —)dr,x is the pairing
* ~ trace
Dar (V) @ Dar(V* (1)) —> Dar(Qy(1)) = K — Q.
Finally, if L is a number field, V is a p-adic representation of Gy, and p is a prime
of L above p, we write Dar (Ly, V') and Deyis(Ly, V') for the Fontaine spaces attached
to V regarded as a representation of Gal(Ly/Ly) for any choice of prime B | p of

L; up to a canonical isomorphism these spaces are independent of the choice of B.
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2.5. (¢,T')-modules and Wach modules. Let K be a finite extension of Q,, and
let T be a Zp-representation of G (that is, a finite-rank free module over Z,, with
a continuous action of Gk ). Denote the (cp, I')-module of T by Dg(T). This is a
module over Fontaine’s ring A .

If K is unramified over Q, and T' is a Z,-representation of Gx which is crystalline
(i.e. such that V = T'[1/p] is crystalline), Wach and Berger have shown that there
exists a canonical Aj-submodule Nk (T') C Dy (T'), the Wach module (see [Wac96],
[Ber04]); this is the unique submodule such that

o Ng(T) is free of rank d over A},
e the action of I preserves Ng (T') and is trivial on Ng(T')/7Ng(T),
e there exists b € Z such that p(m°Ng(T)) C 7Nk (T) and the quotient
7Nk (T)/¢* (m°Ng (T)) is killed by a power of ¢ = ¢() /7.
Here ¢* (7N (T')) denotes the AJ.-submodule of Dy (T') generated by p(m*Ng (T')).

The following lemma is immediate from the definition of the functors Dy (—)

and Ny (—):

Lemma 2.1. Assume that T is a Zy-representation of Gi, and L a finite extension
of K, with L and K both unramified over Q,. There is a canonical isomorphism of
(p,T)-modules

Dp(T) =Dk (T) @0, Or,
where @ acts on Or, via the arithmetic Frobenius o, € Gal(L/Q,). If V = T[1/p]
is crystalline, then this isomorphism restricts to an isomorphism

NL(T) = NK(T) RO Oyr.

2.6. Iwasawa cohomology and the Perrin-Riou pairing. Let K be a finite
extension of Qg for some prime ¢ (which may or may not equal p) and let T be a
Z,-representation of Gx. Let K be a p-adic Lie extension of K.

Definition 2.2. We define
Hi (Koo, T): LHZ (L, T),

where L wvaries over the finite extensions of K contained in K, and the inverse
limit is taken with respect to the corestriction maps.
If V=Q,®z, T, we write

HIiw(va V) = Qp ®z, HIiw(Kom T)
(which is independent of the choice of Z,-lattice T C V).

It is clear that the groups H{,, (Ko, T) are Az, (G)-modules; we show in §Albelow
that they are finitely generated.

There is a natural extension of the Tate pairing to this setting. We may clearly
choose an increasing sequence {K,} of finite extensions of K with (J,, K, = K
and each K, Galois over K. If (—, —)g, denotes the Tate pairing H'(K,,T) x
HY(K,,T*(1)) = Z,, and = (z,,) and y = (y,,) are sequences in H}. (Koo, T) and
H} (Koo, T*(1)), then the sequence whose n-th term is

(1) > (wn0(yn))k, o] € Z,y[Gal(K, /K))]
c€Gal(K, /K)

is compatible under the natural projection maps, and hence defines an element of

Az, (G).
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Definition 2.3. We define the Perrin-Riou pairing to be the pairing
(= ) Keoor t Hiy (Koo, T) % Hiy (Koo, T*(1)) = Az, (G)
defined by the inverse limit of the pairings (D).
It is easy to see that for o, 8 € G we have

(oz, By e = (o, y) Ko B
(The above construction is valid for any p-adic Lie extension K /K, but in this

paper we shall only use the above construction when G is abelian, in which case
the distinction between left and right multiplication is not significant.)

Lemma 2.4. If n is any continuous Zy-valued character of G, and we identify
H} (Koo, T(n)) with H (Ks,T)(n), then we have

<:E7 y>Koo,T(n) = Twn*1<$7 y>Koo7T7

where Tw,, is the map Az, (G) — Az, (G) mapping g € G to n(g)g.

Proof. This is immediate if n has finite order, and follows for all 7 by reduction
modulo powers of p; cf. [PR94] §3.6.1]. O

If V = T[1/p], we obtain by extending scalars a pairing
Hyy, (Koo, V) % Hiy (Koo, V(1)) = Ag, (G)

which we denote by (—, —=)kx__,v. This pairing is independent of the choice of lattice
TCV.

It is clear that if T' is an Og-module for some finite extension E/Q,, then we
may similarly define an Og-linear analogue of the Perrin-Riou pairing, and in this
case Lemma [2.4] applies to any Og-valued character 7.

2.7. The Fontaine isomorphism. In the case when Ko, = K (up=), we can de-
scribe HY, (Koo, T') in terms of the (¢, T')-module Dg (T'). Let I'x = Gal(K (up=)/K),
which we identify with a subgroup of I'. The following result is originally due to
Fontaine (unpublished); for a reference see [CC99, Section II].

Theorem 2.5. We have a canonical isomorphism of Az, (I'x)-modules
(2) hir - D (T)P™ — Hiy (K (pp), T).

If T is a representation of Gg,, then the action of I' extends to an action of
Gal(K (pp)/Qp) on both sides of equation (2)), and the map hj,, ; commutes with
the action of this larger group. We shall apply this below in the case when K is
an unramified extension of Qp, so I'x =T" and Gal(K (up=)/Q,) =T x Up, where
Ur = Gal(F/Qp).

Now let K be a finite unramified extension of Q,, and assume that V is a
crystalline representation of G whose Hodge-Tate weight&ﬁ lie in the interval [a, b].
The following result is due to Berger [Ber03, Theorem A.2].

Theorem 2.6. We have D (T)¥=! C 7% Nk (T). Moreover, if V has no quotient
isomorphic to Q,(a), then D (T)¥=! C 7Nk (T).

n this paper we adopt the convention that the Hodge—Tate weight of the cyclotomic character
is +1.
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In particular, if V' has non-negative Hodge-Tate weights and no quotient iso-
morphic to Qp, we have N (T)¥=1 = D (T)¥=*. Then (@) becomes

3) hiwr : Nk (T)=" — Hi, (K (up), T).

2.8. Gauss sums, L- and epsilon-factors. In many of our formulae, epsilon-
factors attached to characters of the Galois group (or rather the Weil group) of Q,
will make an appearance, so we shall fix normalizations for these. We follow the
conventions of [Del73].

Let E be an algebraically closed field of characteristic 0, and let ¢ = ({n)n>0 be
a choice of a compatible system of p-power roots of unity in £. The data of such a
choice is equivalent to the data of an additive character A : Q, — E* with kernel
Zy, defined by A(1/p™) = (.

We first define the Gauss sum of a finitely ramified character w of the Weil group
Wa,, which will in fact depend only on the restriction of w to the inertia subgroup
Gal(Q,/Qp"). If w has conductor n, then we define

T(w,0) = > w(o) " G
o€Gal(QpT (upn)/QpT)

Now let us recall the definition of epsilon-factors given in [Del73] for locally
constant characters of Q.. These depend on the character w, the auxilliary additive
character A\, and a choice of Haar measure dz; we choose dz so that Z, has volume
1. The definition is given as

if w is unramified,

1
E(W, A,dfl;) = {fQX w(xil))\(x) d:Zj‘ lf w iS ramiﬁed.
D

As shown in op.cit., if the conductor of w is n, then it suffices to take the integral
over p~"Z) . For consistency with [CFK™05], we will rather work with the additive
character A(—x) rather than A(z); then we find that

ewA(=z),de) =w(p)" Y w@) G
z€(Z/pnL)*

We now recall that local reciprocity map recg, of class field theory identifies
W(SS with Q. Following [Del73], we normalize recg, such that geometric Frobe-
nius elements of W@E are sent to uniformizers. Then the restriction of recg, to
Gal(Q3P/Qpr) gives an isomorphism

Gal(Q2"/Qp") — Z.%.
Our choice of normalization for the local reciprocity map implies that this coin-
cides with the cyclotomic character. On the other hand, p € Q) corresponds to

G, ', where &, is the unique element of Gal(Q3"/Q,) which acts as the arithmetic
Frobenius o, on Q" and acts trivially on all p-power roots of unity. Hence

c(w™H N(=x),dz) = w(5,)" w(o)(, 7 = pinw@p)n
(W™ A(=x), dz) = w(5p) Ue%:rn ()¢, 0 O

This quantity (w™*, A(—x), dx), which we shall abbreviate to e(w™1!), will appear
in our formulae for the two-variable regulator.
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We shall also need to consider the case when E is a p-adic field and w is a
continuous character of g@b which is Hodge—Tate, but not necessarily finitely ram-
ified. Any such character is potentially crystalline, and a well-known construction
of Fontaine [Fon94b| allows us to regard Dy (w) as a one-dimensional representa-
tion of the Weil group; concretely, if w = x’w’ where ' is finitely ramified, then
o € Wy, acts on Dpg(w) as p?™(@)w/ (o), where n(o) is the power of the arithmetic
Frobenius by which o acts on Q). We define e(w) = e(w, A(~x),dz) to be the
epsilon-factor attached to Dpg(w), so

pn(l-l-j)w(a.p)n
7(w, Q)

We write P(w, X) for the L-factor of the Weil-Deligne representation Dpg(w).
This is a polynomial P(w, X) in X, which is identically 1 if w is not crystalline;
otherwise, it is given by P(w, X) = 1—uX, where u is the scalar by which crystalline
Frobenius acts on Deyis(w), so u = p~Jw'(0,) 7! if w = y/w’ with ' unramified.

e(w™) =

3. LOCAL THEORY: YAGER MODULES AND WACH MODULES

3.1. Some cohomological preliminaries. Let F' be a finite unramified extension
of Qp, and let Fi,/F' be an unramified p-adic Lie extension with Galois group U.
(Thus U is either a finite cyclic group, or the product of such a group with Z,.)

Let @Fm be the completion of the ring of integers of Fi.

Lemma 3.1. Let M be a free Zy-module of rank d < oo, with a continuous action
of U. Then the module

H(U,Or,, ®z, M)
is free of rank d over Op, and
HY(U,0p_ @ M) =0.

Proof. This is a form of Hilbert’s Theorem 90; for the form of the statement given
here see e.g. [Fon90, Proposition 1.2.4]. O

We will need the following result on trace maps for unramified extensions.
Proposition 3.2. The module
l.gl OK)
K
where K wvaries over finite extensions of F' contained in Foo and the inverse limit
is with respect to the trace maps, is free of rank 1 over Ao, (U).

Proof. We first note that if L/K is any finite unramified extension of local fields,
then the trace map O — Of is surjective, since the residue extension kr/ky is
separable and hence its trace map is surjective. Moreover, Oy, is free of rank 1 over
Ok[Gal(L/K)]; elements of Of, that generate it as a Op[Gal(L/K)]-module are
called integral normal basis generators of L/K. We must show that there exists a
trace-compatible sequence ¢ = (zx ) € l&n X Ok such that zx is an integral normal
basis generator of K/F' for all K.

Let Fy be the largest subfield of F such that [Fy : F)] is prime to p; this is a
finite extension of F', by our hypotheses on F,. Choose a normal basis generator
To of Fo/F
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We claim that if K is any finite extension of Fjy contained in F,, and x is any
element of O with Trg /g, () = xo, then z is an integral normal basis generator
of K/F.

To prove this, consider the group ring R = Op[Gal(K/F)]. As noted above, Ok
is a free R-module of rank 1. Let I be the ideal of R given by the kernel of the natural
map Op[Gal(K/F)] — Op[Gal(Fy/F)]. Then I is contained in the Jacobson radical
J of R (indeed J is generated by I and p). So, by Nakayama’s lemma, an element
x € Ok generates Ok as an R-module if and only if its image in Ok /IO generates
this quotient; but the trace map Trg,p, : Ox — Op, is surjective and factors
through Ok /IO0k, and Op, and Ok /IOk are free Z,-modules of the same rank,
so Trg/p, must give an isomorphism O /IO — OF,. This proves the claim.

So it suffices to take any element of @K Ok lifting xg. O

Remark 3.3. As noted in [Picl0], one can also deduce the above claim from the
work of Semaev [Sem88, Lemma 4.1] on normal bases of extensions of finite fields,
which does not explicitly use Nakayama’s lemma.

3.2. The Yager module. In this section we develop a variant of the construction
in [Yag82, §2] in order to construct a certain module which, in a sense we shall
make precise below, encodes the periods for the unramified characters of Gp.

Definition 3.4. Let K/F be a finite unramified extension. For x € Ok, we define
yr/r(x) = Z 27 [071] € Ok [Gal(K/F)].
o€Gal(K/F)

It is clear that y g/ p is Op-linear and injective, and we have y,p(29) = [glyx/r ()
for all g € Gal(K/F), where [u] is the image of w in the group ring. Moreover, the
image of yg,p is precisely the submodule Sk /p of Ox[Gal(K/F')] consisting of
elements satisfying y? = [g]y for all g € Gal(K/F), where y9 denotes the action of
Gal(K/F) on the coefficients Ok

Proposition 3.5. If L D K D F are finite unramified extensions and x € O, the
image of yr,/p(x) under the reduction map

OL[Gal(L/F)] = OL[Gal(K/F)]
induced by the surjection Gal(L/F) — Gal(K/F) is equal to yx/p(Trp/kx). In

particular, the reduction has coefficients in Ok .

Proof. Clear from the formula defining the maps yx,r and yp,p. O

Now let Fio/F be any unramified p-adic Lie extension with Galois group U, as
in the previous section. Passing to inverse limits with respect to the trace maps,
we deduce that there is an isomorphism of Ao, (U)-modules

(4) Yro/Fp:  Jim Ok — Sr/F = fm  Sk/p.
FCKCFa. FCKCFa

Proposition 3.6. We have
Skor =1 € Mg, (U): f* = [ulf}

for any topological generator u of U.
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Proof. Let us set X = {f € As, (U) : f* = [u]f}. Let F,, be a family of finite
extensions of F' whose union is Fi, and let U,, = Gal(Fuo/Fy,).

Firstly, since Sp, /p C OF, [U/Un] C Op._[U/U,], we clearly have an embedding
Sp./F = A@Fm (U), which must land in X, because of the Galois-equivariance
property of the elements of Sp, ,p. However, it is clear that for any z € X, the
image z,, of 2 in Op_[U/U,] has coefficients in O, (since (Op_)V» = O, by
Lemma B.T)) and satisfies (2,,)" = [u]z,, thus lies in Sg,. So the map Sp_/p — X
is a bijection. O

We shall always equip Sg_,r with the inverse limit topology (arising from the
p-adic topology of the finitely generated Z,-modules Sg, ,r). This topology is
compact and Hausdorff, and coincides with the subspace topology from Ag (U).

Definition 3.7. We refer to Sg_ /r as the Yager module, since it is closely related
to the objects appearing in [Yag82 §2].

We now explain the relation between Sy, and the periods for characters of U.
Let M be a finite-rank free Z,-module with an action of U, given by a continuous
map p : U — Autg,(M). Then p induces a ring homomorphism Az (U) —

@Fw ®z, Endz, M, which we also denote by p.

Proposition 3.8. Let w € Sg_/p. Then p(w) € Or.. ®z, Endgz, (M) is a period
for p, in the sense that

forallueU.

Proof. Since w € Sp_,r, we have w" = [u]w for any v € U. However, the map
Ag, (U) = Or.. ®z, Endz, M commutes with the action of U on the coefficient

ring Op_; so we have

p(w)" = pw") = p([u] - w) = p(u)p(w).
O

Remark 3.9. After the results in this section had been proven, we discovered that
similar results had been obtained by Pasol in his unpublished PhD thesis [Pas05,
§2.5]. Our module Sp_ /5 is the same as his module Dy. He uses the module Dy to
relate Katz’s 2-variable p-adic L-functions attached to a CM elliptic curve to the
modular symbols construction by Greenberg and Stevens [GS93].

3.3. P-adic representations. Let T be a crystalline Z,-representation of Gp. If
K/F is any unramified extension, we have isomorphisms Ng(T) = Np(T) ®0,
Ok, so we have trace maps Np(T) — Ng(T) for L/K any two finite unramified
extensions of F.

Definition 3.10. Let Np_(T) = @FchFm Ny (T), where the inverse limit is
taken with respect to the trace maps.

By construction, Np_ (T') has actions of I and U, since these act on the modules
Ng (T) compatibly with the trace maps.

Proposition 3.11. We have an isomorphism of topological modules
Np (T) 2 Np(T) ®0, Sr./F-
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Proof. Clear by construction. O

By construction, Np_ (T) has Op-linear actions of I and of U, which extend to
a continuous action of Ap,. (T' x U).

Define ¢*Np_(T) as the Af-submodule of Np__ (T)[¢~!] generated by ¢(Npg_ (T));
this is in fact an Af ®0, Ae, (U)-submodule, since ¢ acts bijectively on Ao, (U).
If T has non-negative Hodge-Tate weights, then we have an inclusion

Np, (T) = ¢*Ng(T),

with quotient annihilated by ¢”, for any h such that the Hodge-Tate weights of T'
lie in [0, h]. Note that the map ¢ : Ng_(T) = ¢*Np_ (T') commutes with the action
of G = U x I'. Similarly, the maps ¢ on N (T)[q~!] for each K assemble to a map

¥ ¢*Np, (T) = Np (T),

which is a left inverse of ¢.
The following proposition will be important for constructing the regulator map:

Proposition 3.12. We have
(¢"Neo (1) = (¢ Np (1) Gop Sk yp-

Proof. Choose a basis niy,...,ng of Np(T) as an A}-module, and a basis Q of
Sp./r as a Ao, (U)-module. Then any vector v € ¢*Npg_(T) can be uniquely

written as
p—1 d

ZZ 14 m)’ e(xij) - (p(nj) ® Q),
=0 j=0
for some z;; € Af ®o, Ao, (U), since {(1 +7)": 0 <i <p—1}is a basis of AL
over p(AL).
Applying 1, we have
p—1 d )
P(v) = Z Z ¢ ((L+7)) 2 - (nj ®0,'Q),

i=0 j=0

where o, is the arithmetic Frobenius element of Gal(F/Qp). The element o, 10
is also a Ao, (U)-generator of Sg_,p. Moreover, it is well known that ¢ ((1 + 7))
islifi=0and0if 1 <i<p—1. So we have ¢(v) = 0 if and only if v is in the

submodule
p—1
@(1 +71)'p(Np(T)) ®or Sk /r = ¢*Np(T)"=" ®0,. Sr_/r.
i=1

O

3.4. Recovering unramified twists. Let us pick a finite-rank free Z,-module
M equipped with a continuous action of U, via a homomorphism p : Az, (U) —
Endz, (M) as above.

There is a “twisting” map from M ®z, Az, (U) to itself, defined by m ® [u] —
p(w)™tm ® [u] for u € U. This map intertwines two different actions of U: on the
left-hand side the action given by

w-(m® ) = m e [uy]
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and on the right the action given by
w-(m @ o)) = pluym ® [u"v].

Taking the completed tensor product with O r.. (endowed with its natural U-action)
and passing to U-invariants, we obtain a bijection

o . U
ing: M ®z, Sp)p — Sk /F - (M ®z, OFOO) -
Proposition 3.13. There is a canonical isomorphism
~ U
(5) Np(T) @o, (Or. ®2, M) —= Np(T &z, M),

commuting with the actions of AJIE, T, ¢ and ¢ (where the latter two elements act
on O as the arithmetic Frobenius and its inverse).

Proof. Wach modules are known to commute with tensor products [Ber04], so it
suffices to check that

Np(M) = A} ®0, ((5Foo ?z, M)U,

This follows from the fact that there is a canonical embedding of o F., into Fontaine’s
ring A, hence there is a canonical inclusion

~ U
(Or. @2, M)~ C (M @z, 4)" =Dp(M).

Since the left-hand side is free of rank d over Op, extending scalars to A;,C gives
a submodule of Dp(M) which is free of rank d over Al and clearly satisfies the
conditions defining the Wach module Np(M) C Dp(M). O

Remark 3.14. Suppose (for simplicity) that F = Q, and M = Z, with U acting

. U
via a character 7 : U — Z,'. Since (M ® OFOO) is free of rank 1 over Z,, any

choice of basis of this space gives a non-canonical isomorphism between Ng, (T'(7))
and Ng, (T') with its ¢-action twisted by 7(c,)~'. However, the isomorphism (&)
is canonical and does not depend on any such choice.

Theorem 3.15. There is a canonical isomorphism
Vs M®Zp NFoo(T) — NOO(M ®ZP T)

which commutes with the actions of o, I', A} and Endg, (M), and satisfies

ine(u-x) = p(u) "t in(2)
forueU and x € Np_(T).
Proof. This follows immediately by tensoring the map

o o~ U
iM . M®Zp SFoo/F — SFoo/F . (M ®ZF OFOO)

with Np(T'), and using the isomorphism (). O
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4. THE 2-VARIABLE P-ADIC REGULATOR

4.1. A lemma on universal norms. Let I’ be a finite unramified extension of
Qp, and let T be a Zp-representation of Gp.

Definition 4.1. The representation T is good crystalline if V' = T[1/p] is crys-
talline and has non-negative Hodge-Tate weights.

By [Ber03l Theorem A.3], for any good crystalline T there is a canonical isomor-
phism
=~ _ p=1
Hiy(F(ptp=), T) — (7~ 'Np(T))
We define a “residue” map
ey iy (F(pp= ), T) = Deis(F, V)
by composing the above isomorphism with the natural map
FﬁlNF(V) ~ NF(V)
NF (V) a WNF (V)
As is shown in the proof of [Ber03| Theorem A.3], the image of the map rz y is con-
tained in Deyis(F, V)?=1; in particular, if the latter space is zero, then H (F(ppe),T) =
Np(T)¥=1.
We now consider the behaviour of these maps in unramified towers. Let Fi
be an infinite unramified p-adic Lie extension of F', so we may write Foo = J,, Fn
where Fy/F is a finite extension and F), is the unramified extension of Fy of degree
p". As we have seen above, Deyis(Fr, V) = Deyis(V) @ F,. Let us formally write
Dcris(Foou V) = Foo RF Dcris(F7 V)

7 'Np(T) =

= ]D)cris(Fu V)

Proposition 4.2. There is an ng (depending on V') such that
Dcris(Foo; V)S(;:l - Dcris(Fn; V)S(;:l'

Proof. Since the spaces Deis(Fy,, V)#=1 are an increasing sequence of finite-dimensional
Qp-vector spaces, it suffices to show that their union Deris(Foo, V)1 is finite-
dimensional over @@,. This follows from the fact that Fi is a field, and ¢ acts on
F as the arithmetic Frobenius o,, so (Fx)?=! = Q,. Thus

dimg, (Foo @5 Deris(V)) 797" < dimg, V,
by Propositions 1.4.2(i) and 1.6.1 of [Fon94al. 0

Proposition 4.3. Let De,is(T) be the Zy-lattice in Deys(V) which is the image
of Np(T). If m > n > ng, v € H,(Fn(pp=),T), and y = coresp, /p, (x) €
H} (Fn(pp),T), then we have

TFmV(y) € pmanFn ®(’)F Dcris(T)-

Proof. This follows from the fact that for any n > 0, we have a commutative
diagram

TFni1,V
—_—

Hllw(Fn+l(Mp°°)a T) Deris(Frt1, V)WZI

Corean+l/Fn Tan+1/Fn

TF,,V

Hllw(Fn(Mp*"")a T) Deris (£, V)g):l'
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If n > ng, then the trace map on the right-hand side is simply multiplication by
[Fri1: Fr] = p. O

Theorem 4.4. Let F, be an infinite unramified p-adic Lie extension of F, and let
x € H} (Foo(pip=),T). Then for any n > 0, the image y of x in HL (F(ppe),T) =
(w_lNF(T))v’b:l is contained in Np(T)¥=1.

Proof. This follows immediately from the preceding proposition, since rg, v(y)
must be divisible by arbitrarily large powers of p and hence is zero. (I

4.2. The regulator map. For the rest of Section 4] we assume that T' is a good
crystalline representation of G, for F' a finite unramified extension of Q,,, and we
let Fiy be any unramified p-adic Lie extension of F' with Galois group U as before.
We define Koo = Foo(ip=), and G = Gal(Ko/F) 2 U x T,

Proposition 4.5. We have a canonical isomorphism
H (Koo, T) = (7 'Np (T)) 7

If either Fo | F is infinite, or T has no quotient isomorphic to the trivial represen-
tation, then we have

Hy, (Koo, T) 2 Np, (T)"~.

Proof. If Fo/F is a finite extension, we may assume F, = F, and this is [Ber03|
Theorem A.1].

If F/F is an infinite extension, then we note that for each finite subextension
K/F contained in F,, we have an isomorphism

HE (K (). T) 2 (r'Ng(1) 7
and if L/K are two such fields, then the corestriction map
Hi\ (L), T) — Hi\ (K (1), T)
corresponds to the maps
7 INL(T) — 7 *Ng(T)
induced from the trace map Op — Ok. By Theorem 4.4 we have an isomorphism

H}, (Koo, T) = lim (77 "N (1)) ™" 2 Jim Nge ()= = N ()7,
K K

which finishes the proof. O
As shown in [LLZ11l Proposition 2.11], we have a Ao, (T')-equivariant embedding

(@*NF(T))w

which is continous with respect to the weak topology on ¢*Npg(T)¥=° and the usual
Fréchet topology on Hp(I"). Moreover, we have a continuous injection

SFOO/F — A@FOO (U) — Hﬁm(U)

=0 C HF(F) ®F Dcris(v)a

Tensoring these together we obtain a continuous, Ap,. (G)-linear map

(¢"Np(T))" ™" @op Sk p = Hp_(U) @0, Hp(T) ©F Deris(V)
=Hp_ (G) @F Deris(V).
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Definition 4.6. We define the p-adic requlator
E‘Cj : Hyy (Koo, T) — He, (G) @F Deris(V)
to be the composite map
Hllw(Koou T) — NFoo (T)w:1 = (NF(T) ®OF Soo)w
1— . =0 A
—% (90 NF(T))w ®op Soo
—_— 7‘[1300 (@) ®p Deyis(V).
Here, we use that p*Np_(T)¥=° = @*Np(T)¥=° &z, Se by Proposition [712

=1

By construction, £ is a morphism of Ao, (G)-modules. As suggested by the
notation, we will usually invert p and regard £$ as a map on H} (K, V), associat-
ing to each compatible system of cohomology classes in H (K, V) a distribution
on G with values in 130O ®F Deris(V).

We can summarise the properties of the map we have constructed by the following
theorem:

Theorem 4.7. Let F' be a finite unramified extension of Qp, and Ko a p-adic Lie
extension of F' with Galois group G such that
Fup=) C Koo C F - Q3.

Let T be a crystalline representation of Gr with non-negative Hodge—Tate weights,
and assume that either Koo [ F (ppe) is infinite, or T has no quotient isomorphic to
the trivial representation.

Then there exists a morphism of Ao, (G)-modules

LY Hy (Koo, T) —> Hp_(G) ®p Deris(V),
where Fy is the maximal unramified subfield of K, such that:

(1) for any finite unramified extension K/F contained in K., we have a com-
mutative diagram

Ly

Hllw (KOO/@Pu V) > Hﬁw (G) QF Dcris(v)

G/
Hllw(K(Npm)v V) s HK(G/) ®F Deris(V) — Hﬁ,o (G/) ®F Deris (V).
Here G' = Gal(K (up=)/Qp), the right-hand vertical arrow is the map on

distributions corresponding to the projection G — G’, and the map E‘Cj/ 18
defined by

i = Y lol Liyvlotoa),
c€Gal(K/F)
where E%V is the Perrin-Riou regulator map for K (ppe)/K.
(2) For any x € H{, (Fo(ip=)/Qp, V) and any character n of T, the distri-
bution pr"(La,v(x)) on U, which is defined by twisting by n and pushing
forward along the projection to U, is bounded.

Moreover, the conditions (1) and (2) above uniquely determine the morphism LS.
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Proof. Let us show first that the map £ defined above satisfies (1) and (2). Let
T be a choice of lattice in V.

Let K be any finite unramified extension of F contained in F,,. Then the
diagram

T _
Np (T)=' == o*Np_(T)*=0

oo

Nic(T)*=1 =5 "N (1)~

evidently commutes; and we also have a commutative diagram

. —0 A Ip_/F
o Np(T)Y=" S0, Sp.jr —L5 Hp (G) @F Derio(V)

(5923

¢*Ng(T)"=° @z, Sk/F Hp (G) @F Dexis(V),

where the arrows ip_/p and ik p are induced by the inclusions Sp_,p — H P )
and Sg/p — Ok([U'] — Fo[U'), where U’ = Gal(K/F), and the right vertical
arrow is the one arising from the projection G — G’. If we combine the two
diagrams using the identification Nx(7') = Np(T) @ Sk, and similarly for Fi,
the composite of the maps on the top row is the definition of L‘G,, and the composite
of the arrows on the bottom row is the map E‘G//. The commutativity of these
diagrams therefore proves (1).

Property (2) is clear, since the image of Az (U) in Hp (U) is exactly the
bounded distributions.

We now show that these properties characterise ﬁ‘Cj uniquely. It suffices to show
that (1) and (2) determine the value of £§(x) at any character of G. Such a
character has the form nw where 7 is a character of I' and w is a character of
U. Property (1) uniquely determines the value at 1 x @ if @ has finite order, and
property (2) implies that for each fixed 7, the function @ — L§(z)(n x w) is a
bounded analytic function on the rigid space parametrising characters of U, and
hence is determined uniquely by its values on finite-order w’s. O

: G
We now record some properties of the map Ly;.

Proposition 4.8. Let W C Dc.s(V) be a p-invariant F-subspace such that all
eigenvalues of ¢ on the quotient Q = Deyis(V)/W have p-adic valuation > —h
(where we normalise the p-adic valuation on Q,, such that vy(p) = 1).

Then for any x € H} (Koo, V), the image of x under

G
HY (Koo, V) = Hp (G) ©7 Denis(V) = Hp_(G) 9 Q

lies in D(OM(@, ﬁoo) ® Q, where DO (G, ﬁoo) is the space of Foo-valued distribu-
tions of order (0, h) with respect to the subgroups (U,T).

Proof. This is immediate from the definition of the 2-variable regulator map and
the corresponding statement for the 1-variable regulator, which is well known. [
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Proposition 4.9. Ifu € U and u is the unique lifting of u to G acting trivially on
F(ppe<), then for any z € H{, (Ko, V) we have

LY (2)" = [a] - LT (2).

Proposition 4.10. If my,...,m4 are a Ao, (T)-basis of p*Ng(T)¥=Y, and w a
Ao (U)-basis of Seo, then the image of the p-adic regulator is contained in the
Ao, (G)-span of the vectors

(ioo(mj ®w))j:1)m)d.
Proposition 4.11. If F../F is infinite, the requlator map L is injective.

Proof. As before, let us identify Fo, with the unramified Z,-extension of a finite

extension Fy/F. Let pr,, : Np_(T) — Ng,(T) be the projection map; for = €

Np_(T), we have ¢(z) = z if and only if pr,,(z) € Ng, (T)¥=! for all n. However,
Ng, (T)?=! C Dp, (T)#=" = T,

As T is a finitely generated Z,-module, there must be some m such that THr =
THrm for all n > m. However, for n > m the projection map THFn1r — THry
is multiplication by p; so pr,,(z) is divisible by arbitrarily high powers of p and is
thus zero. Hence z = 0. ]

The next statement requires some extra notation. Let w be a continuous char-
acter U — Oj, where E is some finite extension of Q,. Then there is an obvious
isomorphism

(6) Hyy (Koo, T(w)) 2 Hyy (Koo, T)(w).
Moreover, via the isomorphism V ®q, Beris = Deris(V) @ p Beris, we can regard the
space
7w71
Dcris(v(w)) = (E ®Qp V ®Qp Bcris)ng_

as a subspace of £ ®q, Deris(V) @ Beris. Since the natural inclusion Foo o Beyis
induces an injection

(E ®Qp KOO)UZW71 — (E ®Qp Bcris)gQPZW7l

which must be an isomorphism (as the right-hand side must have E-dimension < 1),
we have a canonical isomorphism

U=w!

Dcris(v(w)) - Dcris(v) ®F (E ®Qp Koo)

In particular, there is a canonical isomorphism

Foo @F Deyis(V(w)) & E ©g, Fro @ Dexis(V).
We also have a canonical map
Twg-1: F R0, 'Hﬁm (G) — F ®qQ, 'Hﬁm (G)

which on group elements corresponds to the map g — w(g)~'g. Tensoring with the
canonical isomorphism above, we obtain a map (which we also denote by Tw,-1)

E ®(Q)p Hﬁm (G) ®F ]D)Cris(V) —_— Hﬁm (G) ®F Dcris(v(w))~
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Proposition 4.12. With the identifications described above, the regulator LG is
invariant under unramified twists: there is a commutative diagram

LG
OE 024 Hllw(Koo, T) v E ®Qp Hﬁm (G) QF Dcris(v)

(a2

Tww—l

G
LY ()

Hyy (Koo, T(w)) Hp, (G) OF Dexis(V(w))
Proof. By (@), we have canonical isomorphisms H{., (Koo, T)®z,0r = Np_(T)¥='®y,
Op, and Hi, (Ks,T(w)) = Np_(T(w))¥=!. We can therefore rewrite the above
diagram to obtain the following:

- 1- -
N, (T)*=! ©z, Op —% Np_(T)*=* @z, Op — Hp_(G) ®q, Dexis(V) ®q, E

oo
Tww—l

Np. (T(@))*=! — ¥

Np. (T(@))"™" —— Hp_(G) ®q, Dexis(V(w)).

Here the left and middle vertical maps are obtained by restriction from that of
Theorem B.15] taking 7 = w™'; as noted above, this isomorphism commutes with

o and .
The commutativity of the left square is clear. Moreover, the isomorphisms

~ U=w™!
Nr(T()) = Np(T) @z, (O @z, O, )
and

Deris (V(w))

1%

S
Deris(V) @z, (OE ®z, (51:00)

are compatible (since the first is given by multiplication in A, the second in Bey;s,
and the inclusion of @Fm in Bes factors through the natural maps At < A+ —
Agis). Hence the commutativity of the right square follows, as the twisting maps
As, U) — As, (U) and Hp _(U) = Hp_(U) are evidently compatible.

O

4.3. An explicit formula for the values of the regulator. In this section, we
use the results from the previous section to give a direct interpretation of the value
of the regulator map ﬁ‘Cj at any de Rham character of GG, relating these to the
values of the Bloch-Kato exponential maps for V' and its twists. In this section we
assume (for simplicity) that F = Q,.

As above, let @ be a continuous character of U with values in Og, for some finite
extension E/Q,. Combining Proposition with the defining property of L‘G/(w)
in Theorem [£.7] we have:
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Theorem 4.13. The following diagram commutes:

£G
Hllw(Koov V) L

Hﬁm (@)° ®q, Deis(V)

prgv PI“Zis
LF
H} (@ (p1p=), V() = Mo, (1) ©g, Deris(V ().

Here Hy (G)° denotes the subspace of Hy (&) satisfying the Galois-equivariance
property of Proposition91 The map prf, is the composite of the isomorphism (@)
with the corestriction map; the right-hand vertical map is the composite of Tw -1
with push-forward to I'. (Hence both vertical maps are U-equivariant, if we let U
act on the bottom row by w~1.)

We now apply the results of B to each unramified twist V(@) of V' to determine
exactly the values of E‘Cj at any character of G which is Hodge-Tate, in terms of
the dual exponential and logarithm maps (cf. §2-4 above).

Definition 4.14. Let w be any continuous character of G with values in some
finite extension E/Q,. For x € H}, (K, V), we write z., for the image of x in
HY(Qp, V(w™)).

We can now apply Theorem [B.5] to obtain the following formulae for the values
of £§:
Theorem 4.15. Let v € HL (K, V). Let j be the Hodge—Tate weight of w, and

1

n its conductor. If n =0, suppose that Deyis(V (w™1))?=P = 0. Then we have
3"P(w!, D)
Plw,p~'®1)
y exp*v(w,l)*(l)(xw,o) ®@tde; ifj>0,
IOngyv(w71)($w10) X tijej Zf] < —1,

LY (2)(w) =T*(1+4) - e(w™)-

where the notation is as follows:

o I'(1+47) is the leading term of the Taylor expansion of the Gamma function

at 1+ 7,
. : J! ifj =0,
N

e P, and £(w) are the L and e-factors of the Weil-Deligne representation
Dpst (w) (see 2.8 above).

e O denotes the operator on Deyis(V) ®q, ﬁoo which is obtained by extending
the Frobenius of Deis(V) to act trivially on ﬁoo (rather than as the usual
Frobenius on Fx, ).

Remark 4.16. To define E‘Cj we made a choice of compatible system of p-power roots
of unity ¢; but the dependence of L& on ( is clear from the formula of Theorem
415 If we temporarily write E‘Cj (z, () for the regulator using the roots of unity ¢,
then for any v € I' we have

LE (@, 7¢) (w) = w() T LT (2, ) (w),
where 4 is the unique lifting of v to the inertia subgroup of G.
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4.4. A local reciprocity formula. Our final local result will be an analogue of
Perrin-Riou’s local reciprocity formula, relating the maps L‘G, and L‘G/*(l). The
cyclotomic version of this formula, conjecture Rec(V) in [PR94], was originally
formulated in terms of Perrin-Riou’s exponential map {2y, and proved indepen-
dently by Colmez [Cz98] and Benois [Ben00]. In Appendix [Bl below we formulate
and prove a version using the map LI;, instead.

Here, as in Appendix [B], it will be convenient to us to extend the definition of the
regulator map to representations which are crystalline, but which may have some
negative Hodge—Tate weights. To do this, we note that if V' is good crystalline,
then for any k > 0 we have

Twy, (E‘C,;(l)(x ® 61)) =01 (LY (2)) @t ey

So for arbitrary V, and any j > 0 such that V(j) is good crystalline, we may define
E‘Cj by the formula

E‘G/(aj) =({_q0--0 éfj)fl (waj (L‘G/(j)(a: ® ej))) ® tje,j

and this does not depend on the choice of j; this then takes values in the fraction
field of Hp (G).

Theorem 4.17. For any crystalline representation V and any classes v € Hf, (Koo, V)
and y € Hi, (Ko, V*(1)), we have

(LG (@), LY 1y () eris,y = =01 Lo - (&, ) K0 v

where o_1 denotes the unique element of the inertia subgroup of G such that
x(o-1) = -1

Proof. Using Lemma 2.4 and Proposition [£12] for each unramified character 7 of
G reduces this immediately to the corresponding statement for the cyclotomic reg-
ulator maps E{,(T), which is Theorem [B.6l O

5. REGULATORS FOR EXTENSIONS OF NUMBER FIELDS

In this section, we show how to define an extension of the regulator map in the
context of certain p-adic Lie extensions of number fields. This section draws heavily
on the cyclotomic case studied by Perrin-Riou in [PR94]; see also [IP06] for the case
of more general Z,-extensions of number fields.

Let K be a number field, p a (rational) prime, and p a prime of K above p. We
choose a prime B of K above p.

5.1. Semilocal cohomology. Let T be a finitely generated Z,-module with a
continuous action of G . For each finite extension L of K, the set of primes q of L
above p is finite, and for each ¢ we may define the semilocal cohomology group

Zy(L,T) =P H' (Lg, T).
qlp

If L/K is Galois, with Galois group G, then we have a canonical isomorphism

(7) Zy(L,T) = Zp|G) @z, 1G) H' (L, T),
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where Gy is the decomposition group of P in G. In particular, it has an action of
Zy[G], and it is easy to see that the localization map

locy = @ locg : H(L,T) — Zy(L,T)
alp
is G-equivariant.
If now K /K is a p-adic Lie extension of number fields with Galois group G,
we may define semilocal Iwasawa cohomology groups

Z%w,p(Kw= T) = @Z;(K/vT)v
K/

where the inverse limit is over finite Galois extensions K’/ K contained in K. The
isomorphisms (7)) for each finite subextension imply that

(8) Lty (Koo, T) = Az, (G) ©p, (o) Hive (Koo, T).

Theorem 5.1. Let Ko /K be any p-adic Lie extension of number fields with Galois
group G, v a prime of K above p, and B a prime of K above p, such that

o K, is unramified over Qp,
e the completion Ko sp is of the form Fuo(ppe), for Fao an infinite unramified
extension of K.

Then there is a unique homomorphism of Az, (G)-modules
LY 24y (Koo, V) = Hp (G) ©g, Deris(Kp, V),

where ﬁoo is the p-adic completion of the mazimal unramified subfield of Koo,
whose restriction to H} (Ks 5, V) is the local regulator map E‘ij.

Proof. Immediate by tensoring the local regulator E‘G/f” with Az, (G), using equation

@®). 0

Remark 5.2. Note that if p is finitely decomposed in K, so [G : Gsy] is finite, one
can describe L£§ as a direct sum of local regulators:

L) = @@ lo]- LY (locy o ().
oceG /Gy

However, the construction also applies when p is infinitely decomposed. Thus, for
instance, if d > 1 and K is a CM field of degree 2d in which p splits completely,
then one can take Ko, to be the (d + 1)-dimensional abelian p-adic Lie extension
given by the ray class field K (p>).

Remark 5.3. One can use the regulator maps to construct Coleman maps and
restricted Selmer groups of V over K, in the spirit of the constructions in [LLZ10]
for the cyclotomic extension.

5.2. The module of p-adic L-functions. We now assume that the number field
K is totally complex and Galois over Q, and that p splits completely in K, (p) =
p1...pe. For each of these primes, fix an embedding of Q into K,,. Let T be a
Zy-representation of G, and let V = T[p~1].

Assumption 5.4. For all1 <1 < e, the restriction of V to Gk, 1is good crystalline.
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Let S be the finite set of primes of K containing all the primes above p, all the
archimedean places and all the places whose inertia group acts non-trivially on T
Denote by K the maximal extension of K unramified outside S. Let K., be a
p-adic Lie extension of K contained in K which is Galois over Q and satisfies the
conditions of Theorem [B.1] for each of the primes p1, ..., pe.

Definition 5.5. Define Hy, (Koo, T) = @Hl(Gal(KS/Kn),T), where {K,} is
a sequence of finite extensions of K such that Koo = |J K. We also let

Hllw,S(Koov V) = Hllw,S(Koo; T) ®Zp Qp-
Assumption 5.6. The Galois group G = Gal(Ko/K) has no element of order p.

Remark 5.7. Examples of p-adic Lie extensions satisfying the above hypotheses
occur naturally in the context of class field theory; for instance, if K is a CM
field in which p splits, and K the ray class field K(p>°), all the conditions are
automatic except possibly [5.6] and this may be dealt with by replacing K., by a
finite subextension. We shall study extensions of this type in more detail in 6l
below, where we take K to be an imaginary quadratic field.

As K is a Galois extension of Q, the Galois groups Gal(K p, /Kp,), 1 < i <e,
are conjugate to each other in Gal(K./Q), as are their inertia subgroups. If
L; denotes the maximal unramified extension of K ; in Ko p,, we get canonical
identifications of Lo ; with Lo ; for all 1 < 4,5 < e. We can therefore drop the
index and denote this unramified extension of Q, by Fu.

As explained in Section ] for 1 <i < e, we have a regulator map

Eg,pi : lew,pi (KoovT) — Dcris,pi (V) ®Qp Hﬁoo (G)

Via the localisation map locy, : Hf, (Koo, T) — Z},

tw.p; (Koo, T), it induces a map

Hllw,S(va T) - Hﬁm (G) ®Qp Dcris,m(v)

which we also denote by L‘G/)pi. Let

D, (V) = Dcris((lndK V) |ng) =~ P Deriep, (V).
=1

Define
LG =@ Ly, : Hiy s(Keo, V) —> Hp_(G) ®g, Dy(V).
i=1
Denote by Kz (G) the fraction field of Hp (G). Assume that Conjecture
Leop(Ko, V) (as formulated in §A-3] below) olds, so Hf, (K /K, V) is Ag,(G)-

torsion. Let d = [K : Q] dimg, (V). As ranky, () H}y, §(Koo, T) = d by Theorem
[A4 the regulator £§ induces a maph

d
det £$ - Age(tc) Hllwﬁs(Koo,V) — Kz_(G) ®q, /\DP(V)'

2For the definition of the determinant of a finitely generated Az, (G)-module, see [KMT6]; c.f. also
[PR94] §3.1.5].
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Definition 5.8. Define Laritn,p(V) to be the Ag,(G)-submodule of ICF“OO (G) ®q,
d
N Dp(V)

]Iarith,p(v) = det LXG/ (HIIW(KOO, T)) & (det HIQW(KOO, T))_l .

In the spirit of Perrin-Riou (c.f. [PR03|, §3.1]), we can give an explicit description
of Layith,p(V) as follows. Let fo € AQP(G) be a generator of the characteristic ideal
of H2 (Ko, T), so det HZ (Koo, T) = f5 ' Ag, (G).

Proposition 5.9. Let ¢ = {c1,...,cq} C Hf, (Ko, V) be elements such that if
C denotes the Mg, (G)-submodule of Hllwys(Koo,V) spanned by the elements of «,
then the quotient Hy, ¢(Ko,V)/C is Ag,(G)-torsion. Denote by f. € Ag,(G) the
corresponding characteristic element. Then

Lasith p (V) = Aq, (G) fof et LT (c1) A+ A L (ca)-
Proof. Clear from the construction. O

Remark 5.10. If Hy, ¢(Ku,V) is free as a Ag, (G)-module, then Lt (V) must
be contained in Hp (G).

Remark 5.11. Via the isomorphism

d d
Kr_ (@) ® A\Dy(V) = Homg, (/\]D)p(V*(l)), K. (G)),
we can consider the Ag,(G)-module Iitn,,(V') as a submodule of

d
Homg, (A D,(V*(1)),Kz_(G)).

The following proposition implies that Layith,p(V) # 0:

Proposition 5.12. Assume that conjecture Leop(Ko, V*(1)) holds. Then the ker-
nel of the homomorphism

locy : Hiy §(Koo, T) —> @D Zy p, (Koo, T)
=1

is Az, (G)-torsion.

Proof. We adapt the arguments in [PR95, §A.2]. For 0 < j < 2, define the Az, (G)-
modules

Zi (Koo, T) = P H], (Koo, T)  and  Z)(Ku,T) = EB Tp, (Koo T).
veS

Also, define

S.5(Koo, T) = H' (Gs(Koo), V*(1)/T*(1)).
Taking the limit over the K, , of the Poitou-Tate exact sequence gives an exact
sequence of Az (G)-modules

locs

0 —> X2 (Koo, T)" —> Hpy (Koo, T) —> Z§(Koo, T)
— X §(Keo, 7)Y — H{, §(Koo, T) —> Z3(Koo, T)
— X% (Koo, T)Y — 0.



IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER Zi—EXTENSIONS 25

By Theorem[A4] since we are assuming Leop(K o, V*(1)), the module X2, (Koo, T)

is Az, (G)-cotorsion. Thus ker(locg) is Az, (G)-torsion. As

ranky, (c) 7Koo, T) = ranky, (c) Zy (Koo, T)
by Proposition [A.2] this implies the result. O
Corollary 5.13. If conjecture Leop(Koo, V') holds, the Az, (G)-module Tarith (V')

1S NON-2€ro.
Proof. Consequence of Propositions [5.12 and 111 O

As in the cyclotomic case, we conjecture that Lnyi¢h (V) should have a canonical
basis vector — a p-adic L-function for V' — whose image under evaluation at de
Rham characters of G is related to the critical L-values of V' and its twists. In the
above generality this is a somewhat vain exercise as even the analytic continuation
and algebraicity of the values of the complex L-function is conjectural. In the next
section, we shall make this philosophy precise in some special cases; we shall show
that it is consistent with known results regarding p-adic L-functions, but that it
also implies some new conjectures regarding p-adic L-functions of modular forms.

6. IMAGINARY QUADRATIC FIELDS

6.1. Setup. Throughout this section, let K be an imaginary quadratic field in
which p splits; write (p) = pp. We now introduce a specific class of extensions
Ko /K for which the hypotheses in Section are satisfied. Let f be an integral
ideal of K prime to p and p, and let K, be the ray class field K (fp°°). We assume
that f is stable under Gal(K/Q), which is equivalent to the assumption that K is
Galois over Q. It is well known that Ko D K(pp), and that the primes p and p
are finitely decomposed in K; so G = Gal(K/K) is an abelian p-adic Lie group
of dimension 2, and the decomposition groups G, and G are open subgroups.

Lemma 6.1. If p is coprime to the order of the ray class group Cl;(K), then G
has no elements of order p.

Proof. By class field theory, we have an exact sequence
0 — U — (Ok ®Zp)* — Clp=(K) — Cli(K) — 0,

where Uj is the group of units of Ok that are 1 modulo f and Uj is the closure of
Uj in (Og ® Zy)*. So it suffices to show that the quotient

(OK @ Zp) *
U
is p-torsion-free. However, since K is imaginary quadratic, Uf = Uy is a finite group,

and as p is odd and split in K, we have p { |Uj|. Since (O ®Z,)* is p-torsion-free,
the result follows. O

Let us write I'y = Gal(K o /K (fp>°)) and I'; = Gal(K /K (fp>°)). Note that I',
and I'y are p-adic Lie groups of rank 1 whose intersection is trivial, and the open
subgroup Gal(Ko/K(f)) is isomorphic to Iy x T';.

Let T be a Z,-representation of Gk of rank d, and let V = T[p~!]. As in the
previous section, assume that for x € {p,p}, the restriction of V to G, is good
crystalline.
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Lemma 6.2. We have a canonical decomposition

d m n
AD(V)= P </\ Deris,p (V) ®q, /\Dcris,pa/)) :

m+n=d
Proof. Clear from the definition. O

To simplify the notation, let us write

DP(V)(m’n) = /\Dcris,p(v) ®Qp /\Dcris,ﬁ(v)'
6.2. Galois descent of the module of L-functions.

Definition 6.3. For m,n € N such that m +n = d, define Hgﬁt’ﬁ?p(V) to be the
image of Laritn p(V) in Kp_(G) @q, Dp(V)"™™ induced from the projection map

N Dy(V) — Dy(V) ).
The following theorem is the main result of this section:

Theorem 6.4. If d = 2n, then I (V) C KL(G) ®qg, Dp(V) ™™, where L is a

arith,p
finite unramified extension of Q.

The rest of this section is devoted to proving this theorem. As in Proposition[Z.9]
let 6, € G} be the unique element of G, which lifts the Frobenius automorphism
at p of K(fp>°) and which is trivial on K (ppe ), and similarly for p.

Lemma 6.5. The element 6,65 € G has finite order.

Proof. Let us consider the “semilocal Artin map”
0= (0p,05) : K x KﬁX - G.
Here 0, is the Artin map for K, normalised so that uniformisers map to geometric

Frobenius elements. The kernel of 6 is the image in K x Kf_X of the elements of

K* which are units outside p and congruent to 1 mod f.
By the functoriality of the global Artin map (cf. [Neu99l VI.5.2]), there is a

commutative diagram
0

KXx KX 2w
Nk/q
Q, I,

The bottom horizontal map is the local Artin map for Q(up~)/Q; if we identify T’
with Z,;, this map is the identity on Z) and sends p to 1.

Consider the element (p,1) of K x Kﬁx. The image of this in the group
Gal(K (fp>)/K) is the Frobenius o;,. Its image in Q) is p, which is mapped to
the identity in I'. Hence the image of (p,1) in G is 6,. Similarly, (1,p) is a lifting
of 5"3.

Hence 6,675 is the image of the element (p, p) of K x K. Thus if m is such that
p™ = 1modf, (p™,p™) € K x K is in the kernel of §, and hence (5,55)™ = 1
in G.
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Corollary 6.6. Let x1,...,x, be any elements of Z;(KOO,V), and similarly let
Yiy oy Yn € Z% (Koo, V). Then the element

(L\G/,p(xl) ARRRNA ‘CXG/,;:(IH)) ® (‘CXG/,ﬁ(yl) ARRRNA ‘CXG/,ﬁ(yn))

of Hp_(G)®q, D, (V)™ in fact lies in Hi(G) ®qg, Dp(V) ™™, where L is a finite
unramified extension of Q.

Proof. Clear, since the Frobenius automorphism of ﬁoo acts on this element as
multiplication by [6,65]™, which we have seen has finite order. O

Remark 6.7. As is clear from the proof of the lemma and its corollary, the degree
of L/Q, is bounded by the exponent of the ray class group of K modulo f, and in
particular is independent of V.

We deduce Theorem by combining Corollary with Proposition

6.3. Orders of distributions. Let us choose subspaces W, C /\m Deris(Kp, V)
and Ws C A" Deyis(Kp, V). Then the space

Q= (/\Dcris(K)ﬂvv)/WP> ®Q, </\DCFiS(KP7V)/WP>

is a quotient of D, (V)(™™) and hence of D,,(V). So, for any c1, ..., cq € Hi, s(Koo, V),
we may consider the projection of

LG (c1y. .. ca) = LS (1) A A LG (ca)
to Q.

Theorem 6.8. The distribution prq (L5 (c1) A -+ AL (cq)) is a distribution on
G of order (mhy,nhgs) with respect to the subgroups (I'y,T's), where hy, (resp. hg)
is the largest valuation of any eigenvalue of ¢ on AN™Deyis(Kp, V) /W,y (resp. on
A"Deris (Kﬁ, V)/Wﬁ)

Proof. Let us write c;, for the localisation of c¢; at p, and similarly for p. By
Proposition 4.8 for each subset {j1,...,j5m} C {1,...,d} of order m, the projection
of the element
E‘Cj,)l(cjlxp) ARENA E‘G/,p(cjm;p)

to A" Deris(Kp, V) /W, is a distribution of order (hy,0) with respect to the sub-
groups (I'p,U), where U = Gal(Ko /K (up~)). By the change-of-variable result
of Proposition in the appendix, it is also a distribution of order (hy,0) with
respect to the subgroups (I'p,I').

We have also a corresponding result for the projection to A" Deyis(Kp, V)/ W5
of the distribution obtained from any n-element subset of {1,...,d}: this gives
a distribution with order (0, hp) with respect to (I'y,I'5). Since the product of
distributions of order (a,0) and (0, b) is a distribution of order (a,b) by Proposition
[C3l the product of any two such subsets gives a distribution with values in @ of
order (hy, hg). Since prg (LG (c1) A--- AL (cq)) is a finite linear combination of
products of this form, the theorem follows. O

6.4. Example 1: Grossencharacters and Katz’s L-function.
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6.4.1. Kummer maps. We recall the well-known local theory of exponential maps
for the representation Zy,(1). For any finite extension L/Q,, there is a Kummer
map kp : OF — HY(L,Zy(1)), whose kernel is the Teichmiiller lifting of k. In
particular, the restriction to the kernel U'(L) of reduction modulo the maximal
ideal is an injection.

Moreover, after inverting p, we have a commutative diagram relating the Kum-
mer map to the exponential map of Bloch-Kato (see [BK90)]):

KL

Qy ®z, U'(L) H(L,Qy(1))

Dy, £(Qy (1)) 2220 (1, @, (1))

where the vertical map sends u to t~1log(u) ® e1, where e; is the basis vector of
Qp(1) corresponding to our compatible system of roots of unity.

The maps k1 are compatible with the norm and corestriction maps for finite
extensions L'/L, so for an infinite algebraic extension Ko,/Q, we can take the
inverse limit over the finite extensions of @@, contained in K, to define

KK * Ul(Koo) - Hllw(Kome(l))v

where U (K ) := W, UL K").

6.4.2. Coleman series. We recall the following basic result, due to Coleman. Let
F be any height 1 Lubin-Tate group over Q,, and F' an unramified extension of
Q,. Fix a generator v = (v,) of the Tate module of F (that is, a norm-compatible
sequence of p™-torsion points of F).

Theorem 6.9 ([Col79]). Let F be a finite unramified extension of Q,. Then for
each B = (B) € UN(F(Fp=)), there is a unique power series

gr7(8) € Op[[X]N==1

where Nx is Coleman’s norm operator, such that for all n > 1 we have

—n

Bn = lgrr(B)]”  (vn).

Here o is the arithmetic Frobenius automorphism of F//Q,, which we extend to
an automorphism of Op|[[X]] acting trivially on the variable X.

If F is the formal multiplicative group G, then we shall drop the suffix F; and
we take v, = (, — 1, where ((,,) is our chosen compatible sequence of p-power roots
of unity. In this case, if we identify X with the variable 7 in Fontaine’s rings, the
relation between the map gr and the Perrin-Riou regulator map is given by the
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following diagram:

K;F( p°°)
UM (F(ppe<)) —— Hyyo (F(ppe=), Zp(1))
gr
X, N=1 T
Orllrl] Lro,0)
(1-£)log
Op[x]]¥=" H(T') ®q, Deris(F, Qp(1))
If we identify Deyis(F,Qp(1)) with F via the basis vector 1 ® e;, then the
bottom map sends f € Op[[x]]¥=0 to £y - M~1(f), where £y = —252_ for any non-

log x(7)
identity element v € I'; and 99t is the Mellin transform as defined in Section

(See e.g. the proof of Proposition 1.5 of [LLZ11].) Thus the image of the bottom
map is precisely ¢ - Ao, (I') C Hp(T); and if we define

he(B) =l Lrg, 1y (kF. (8)) € Ao, (T),

then we have
M(hr(B)) = (1= £)log gr(B).

6.4.3. Two-variable Coleman series. Now let K, /Q, be an abelian p-adic Lie ex-
tension containing Q,(up=) such that G = Gal(K/Q),) is a p-adic Lie group of
dimension 2. Let ﬁoo be the completion of the maximal unramifed subextension of
K. We define

hoo : UN(Ko) — Ag, (G)

to be the unique map such that the composite

K LG
UH(Koo) =55 Hiy (Koo /Qp, Zyp (1)) =2 Hg (G)
is equal to £ - heo-
Proposition 6.10. The element hoo () is uniquely determined by the relation
heo(B) = Z hp(Br)°[o]  (mod Ir)
ocecUFr
for all unramified subextensions F C Ko, where Up = Gal(F/Q)y), Ir is the kernel
of the natural map A@Foo (G) — A@Foo (Up xT), and Br denotes the image of B in
UM (F (1p=))-

Proof. This follows from the compatibility of the maps £ and £& (TheoremE7(i)).
O

We would like to compare this result to Theorem 5 of [Yag82]. Our method differs
from that of Yager, as we build measures on G out of measures on the Galois groups
of extensions F'(pp)/F for unramified extensions F' C Ko, while Yager considers
instead the extensions F'(Fpe)/F where F is the Lubin-Tate group corresponding
to an elliptic curve with CM by O
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Let F be any Lubin-Tate formal group over Q, which becomes isomorphic to

G, over ﬁoo. If F'is any finite unramified extension of Q, contained in K, then
F(Fpx) C Koo. For any B € U (K), let Bp 7 be its image in U (F(Fp=)). Then
Coleman’s theorem (Theorem [B.9]) gives us an element

gr.F(Brr) € Op[[X]NF=1,
We write
hrr(BrF) =M {(1 - %) log (97.7(8) © )

where 6 is the unique power series in Op_[[X]] giving an isomorphism F = Gnm
such that v, maps to ¢, — 1.

Theorem 6.11 (de Shalit). We have

hoo(B) = Y hrr(Brr)’[0] (mod IrF),

ocUp

where I is the kernel of the natural map
A@Fm (G) — A@Fm (Gal(F (Fpe)/F)).

Proof. See [DS87, §1.3.8]. (Note that the theorem is stated there for Ko = Q&°,
the maximal abelian extension of Q,; but the theorem, and the proof given, are true
with K replaced by any smaller extension over which the formal groups concerned
become isomorphic.) O

It follows that the map ho, defined above coincides with the map constructed
(under more restrictive hypotheses) by Yager in [Yag82]. In particular, if ¢ denotes
the element of the global H}. obtained by applying the Kummer map to the elliptic
units, then ﬁﬁv(c) is equal to fou where p is Katz’s p-adic L-function.

6.5. Example 2: Two-variable L-functions of modular forms. We now con-
sider the restriction to Gk of the representation V of Gg attached to a modular
form f of weight 2, level N prime to pAg /g, and character 6. Let E C @p be
the completion of Q(f) € Q at our chosen prime of Q. We take V = Vi, so
V has Hodge-Tate weights {0,1} at each of p and p. Let {«, 8} be the roots of
X? —apX + pd(p), so the eigenvalues of ¢ on either Deyis(Kp, V) or Deyis(Kp, V)
are ! and 7L

Definition 6.12. A p-refinement of f is a pair u = (up,up) C {a, B}*%. We say
that w is non-critical if vy(uy), vp(up) < 1; otherwise u is critical.

Let K« be an extension of K with Galois group G, satisfying the hypotheses
specified in Section For a finite-order character w of G, let Ly, 53(f/K,w™!,s)
denote the twisted L-function of f with the Euler factors at p and p removed.
Let Q}' and QJT be the real and complex periods of f (which are defined up to
multiplication by an element of Q(f)*).

Conjecture 6.13 (Existence of L-functions). Let (up,u5) be a p-refinement which
is non-critical. Then there exists a distribution ps(uy, ugs) on G, of order (vp(uyp), vp(up))
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with respect to the subgroups (I'y,T'5), such that for all finite-order characters w we
have

[ o -
G

Pyw ™ usY)\ Ly (f/K, w1 1)
9 T L PO Al » Yq {p,p} ’ ity
Y L et G 29

q€{p.p}

Remark 6.14. The definition of the order of a distribution on Zf) is given in Section
The hypothesis that the p-refinement be non-critical implies that the distribu-
tion ff(up,up) is unique if it exists, since a distribution of order (r,s) with r,s <1
is uniquely determined by its values at finite-order characters.

Two approaches are known to the construction of such L-functions: either via
p-adic interpolation of Rankin—Selberg convolutions, as in [Hid88| [PRSS| [Kim11],
or via the combinatorics of modular symbols on symmetric spaces attached to
GL(2,Ak), as in [Har87]. The details have not been written down in the full
generality described above (although M. Emerton and B. Zhang have announced
results of this kind in a paper which is currently in preparation). The literature to
date contains constructions of u¢(up,us) in the following cases:

e if f is ordinary, § = 1, and u is the “ordinary refinement” (a, ) where «
is the unit root [Har87]

e if f is ordinary, u is the ordinary refinement, and G decomposes as a direct
product of eigenspaces for complex conjugation [PRS§]

e if f is non-ordinary, u, = up, [K(fp) : K] is prime to p, 6> = 1, and we con-
sider only the restriction of the distribution to the set of characters whose
restriction to Gal(K (fp)/K) does not factor through a Dirichlet character
via the norm map [Kim11].

Remark 6.15. (i) We have chosen to write the interpolating formula (@) in a way
that emphasises the similarity with that of [CFKT05]. The cited references use a
range of different formulations, and the distributions they construct differ from ours
by various correction factors; but in each case the existence of a measure satisfying
their conditions is equivalent to the conjecture above.

(ii) If f is ordinary and u is the ordinary refinement, the condition that g (u)
has order (0, 0) is simply that it be a measure. In the non-ordinary case considered
by Kim, the condition that zf(u) has order (v,(up),vp(ug)) is more delicate, and
depends crucially on the decomposition of Gal(K./K (f)) as the direct product of
the distinguished subgroups I', and I's corresponding to the two primes above p.

We now give a conjectural interpretation of these p-adic L-functions in terms of
our regulator map E‘C,;. Let us write

lew,p(V) = lew,p(v) & lew,ﬁ(v)

We write expj, for the map expj; @ expy, v Zty »(V) = Dp(V), and similarly
L for the map L5}, © LSy, Z4, (V) = Hp_(G) @ Dp(V). Both of these induce
maps on the wedge square, which we denote by the same symbols.

The following conjecture can be seen as a special case of the very general “(-
isomorphism conjecture” of Fukaya and Kato (Conjecture 2.3.2 of [FK06]), applied
to the module Az, (G) ® T for T a Zy-lattice in V.
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Conjecture 6.16. Choose a basis v of Fil° Deris(Kp, V) ®q, Fil° Devis (K5, V) C
D, (V)Y Then there is a distinguished element ¢ € A’ H}, §(Koo, Vi) such that
for all finite-order characters w, we have
. L(f/K,w'1)
XPY (1) (1) () = =g o=V
Q;Q;

Moreover, ¢ is a Az, (G)-basis of Laritnp(V).

We choose a basis vy q,vp 3 of p-eigenvectors in Deyis(Kp, V'), and similarly for
Deris(K5,V); and for a p-refinement u = (up,up), we let vy, = vpu, ® Vpu, €
D,(V)®D. We may normalise such that v, = vy o4y, 5 is a basis of Fil° Dy (K, V)
(and respectively for p); then v = v, ® vg is a basis of Fil’ D, (V).

Proposition 6.17. Letc € \° H}y, §(Koo, V). Then for each p-refinement u (crit-
ical or otherwise), the projection of L (c) to the subspace E - v, C D,(V)11) s
a distribution of order (vp(up),vp(up)). If ¢ satisfies the condition of Conjecture
[610, then the projection of LS (c) satisfies the interpolating property ([@).

Proof. The values of £ (c) at w can be expressed in terms of those of the dual
exponential map using Proposition 15, which clearly gives the formula of (@]).

The statement regarding the orders of the projections is an instance of Theorem
Concretely, suppose we choose elements ¢, ¢o such that ¢; A ¢ = ¢. Then we
have

LG (¢) = (vp,aLvp(ct)a +vp sLyp(c1)s + V5,0 Lv5(c1)a + v5.8Lv,5(c1)5)
A (Vp,aLv,p(e2)a +vp,sLv,p(c2)5 + V5,aLv,(c2)a + v 8Lv,5(c2)8),

so the projection of £{(c) to the line spanned by v, is

Uy Lg’*’(cl)"" Lg’p(Q)U” .
Ev@(cl)uﬁ Lv)ﬁ(@)uﬁ
Since L ,(¢2)u, (for 7 € {1,2}) is a distribution of order (v, (uy),0), and L‘G/)f_(c?)uﬁ
is a distribution of order (0,vp(up)), the determinant gives a distribution of order
(vp(up), vp(up) as claimed. O

In particular, when the refinement wu is non-critical, we conclude that Conjecture
[6.16 implies Conjecture [6.13] and the projection of E‘Cj(c) to v, must be equal to
the uniquely determined distribution g (u).

Remark 6.18. If Conjecture[616 holds, then one can also project the element £ (c)
into D, (V)29 (or into D,(V)(®2)). The resulting distributions are of a rather
simpler type: if ¢ = ¢; A ¢g as before, then

Prao LXG/(C> = Ef,v(cl) A LE,V(CQ)'
This is a distribution on G with values in the 1-dimensional space D, (V)20 =
detg, Deris(Kyp, V) of order (1,0), divisible by the image in Hz (G) of the distribu-
tion £y € Hq, (I'y), so dividing by this factor gives a bounded measure on G with

values in Fi,. Note that acting by the arithmetic Frobenius of F on this measure
corresponds to multiplication by [o,]2, so it never descends to a finite extension of

Qp.
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It is natural to conjecture (and would follow from Conjecture 2.3.2 of [FKO06])
that if 7 is a character of G whose Hodge-Tate weights at p and p are (r,s) with
r>1ands < —1,50 Fil’ A> D, (V (77 1)) = Dp(V) 29, then the value of pry o L (¢)
at 7 should (after dividing by an appropriate period) correspond to the value at 1 of
the L-function of the automorphic representation BC(my)®7 of GL(2, Ax). Up to a
shift by the cyclotomic character, this corresponds to the set of characters denoted
by £®)(f) in [BDP13], while the finite-order characters covered by the interpolating
property in Conjecture correspond to the set denoted there by L) (f).

If this conjecture holds, the image of pr, E‘Cj(c)/fo in the Galois group of the
anticyclotomic Z,-extension of K should be related to the L-functions of [BDP13]
Proposition 6.10] and [Brall], which interpolate the L-values of twists of f by
anticyclotomic characters in (2 (§). We intend to study this question further in a
future paper.

APPENDIX A. LOCAL AND GLOBAL IWASAWA COHOMOLOGY

In this section, we shall recall some results on the structure of Iwasawa cohomol-
ogy groups of p-adic Galois representations over towers of representations of local
and global fields. These are generalizations of well-known results for cyclotomic
towers due to Perrin-Riou (cf. [PR92, §2]); much more general results have since
been obtained by Nekovar [Nek06] and we briefly indicate how to derive the results
we need from those of op.cit..

A.1. Conventions. We shall work with extensions of (local or global) fields Firo / F'
whose Galois group is of the form G = A x Z7, where e > 1 and A is a finite abelian
group of order prime to p. The Iwasawa algebra Az, (G) is a reduced ring, but it
is not in general an integral domain; rather, it is isomorphic to the direct product
of the subrings e,Az,(G), where 7 ranges over the @p/@p—conjugacy classes of
characters of A. For each such 7, e; Az, (G) is a local integral domain.

In order to greatly simplify the presentation of our results, we shall adopt a
minor abuse of notation, following the conventions of [PR95].

Definition A.1. We shall say that a Az, (G)-module has rank r if M, has rank r
over eyAz, (G) for all .
When using this notation it is important to bear in mind that when A is not

trivial, most finitely generated Az, (G) modules will not have a rank.

A.2. The local case. Let F be a finite extension of Qg, for some prime ¢. Let V'
a Qp-representation of Gr of dimension d, and choose a Galois invariant Z,-lattice
T. For F/F an abelian extension satisfying the conditions above, we define

Hi, (Foo, T) = lim H'(K,T)
K
where the limit is over all finite extensions K/F contained in F,, with respect to
the corestriction maps; and Hyf,(Fso, V) = Q, @z, Hiy,(Fo, T).
Theorem A.2. The groups H{,(Fs,T) are finitely-generated Az, (G)-modules,
zero if i # {0,1}. We have an isomorphism
H},(Foo, T) = H°(Fs, T (1)),
where (—)¥ denotes the Pontryagin dual; in particular HE (Fs,T) is Az, (G)-
torsion.
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The group H} (Fs,T) has well-defined rank given by

0 if £F p,
[F:Qpld if¢=p.

Proof. We have assumed that G has a subgroup isomorphic to Z;, with e > 1; thus
the profinite degree of F../F is divisible by p™, so H}, (Fs,T) = 0 by [Nek06|
8.3.5 Proposition].

For the finiteness statements for ¢ > 0, we note that

H{(Fs,T) 2 H'(F,Az,(G) ®z, T)

by [Nek06, 8.4.4.2 Proposition], where the action of G on Az, (G) is via the inverse
of the canonical character Gr — G — Az, (G)*. This implies the finite generation
of the groups H} (Fs,T), and their vanishing for ¢ > 3, by Proposition 4.2.2 of
op.cit..

The isomorphism HZ, (Fuo,T)V & H(Fy,TV(1)) follows by applying local Tate
duality to each finite extension K/F contained in F.,. Finally, the formula for the
rank of Hf, (Fo,T) follows from Tate’s local Euler characteristic formula for finite

modules and Corollary 4.6.10 of op.cit.. O

rkAZp (@) Hllw(Foov T) = {

A.3. The global case. We now let K be a number field. Let V' be a Q,-representation
of G of dimension d, and choose a Gi-invariant Z,-lattice T'. Let S be a finite set

of places of K containing all the primes above p, all infinite places and all the places
whose inertia group acts non-trivially on V, and let K be the maximal extension
of K unramified outside S.

Theorem A.3 (Tate’s global Euler characteristic formula). If M is a Z,-module of
finite length with a continuous action of Gal(K*®/K), then the modules H (K*® /K, M)
are finite groups, zero for i > 3. If K is totally complex, then we have
2
i (=1 Lk

[I (S5 M) = ()~ 2150,

i=0
Proof. See [NSW00, 8.3.17, 8.6.14]. O

We now consider a Galois extension K., /K, contained in K*, whose Galois
group G is of the form A x Z7, where e > 1 and A is abelian of order prime to p,
as above. For ¢ > 0, we define

HIiw,S(KoovT) = lngl(KS/LvT)
L

where the limit is taken over number fields L satisfying K C L C K, with respect
to the corestriction maps.

Theorem A.4. The groups H{,, (Koo, T) are finitely-generated Az, (G)-modules,
zero if it = 0 ori > 3. If K is totally complex, then for each character n of A we
have

ranke, A, (@) enHIle(KOO7 T)=3[K:Qld+ ranke, A, (G) eanw)S(Koo, T).
Proof. This follows exactly as in Theorem [A22] using Tate’s global Euler character-

istic formula in place of the local one. (There are no issues with real embeddings,
thanks to our running assumption that p be odd.) ([
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Proposition A.5. The following statements are equivalent:
(i) Hfy 5(Koo,T) is Az, (G)-torsion.
(i) For each character n of A, there is a character T of G such that T|ao =1 and
H?(KS/K,V(7)) = 0.
(iti) H*(K® /Koo, T ® Qu/Zy) is a cotorsion Az, (G)-module.
(iv) H*(K®/Kx, T ® Qp,/Z,) = 0.

Proof. Since A has order prime to p, we may assume A = 1, so G = Zg and
A = Az, (G) is a local integral domain.
We first show (i) < (ii). By [Nek06l 8.4.8.2 Corollary, (ii)] we have an isomor-
phism
Hfy (Koo, T) @ Zp(7) = H* (K /K, T(r™1)).

If Hf, ¢(Ks,T) is torsion, then it is annihilated by some non-zero f € A. Since
f # 0, there exists a character 7 such that f(7) # 0; but by the above formula
f(7) annihilates H?(K®/K,T(t71)), so H}(K®/K,V(r~')) = 0. Conversely, if
H*(KS/K,V(r~1)) = 0 for some 7, then H*(K*/K,T(r~1)) is Z,-torsion, so by
a form of Nakayama’s lemma — see [BH97, Theorem 2] — we can conclude that
HZ, §(Koo, T) is a torsion A-module.

We now show (i) < (iii). We know that H*(K*°/K,T (1) ® Q,/Z,) is finite if
and only if H?(K®/K,V(r)) = 0. From the Hochschild-Serre spectral sequence
and Poincaré duality for G-cohomology we have an isomorphism

HQ(KS/KomT ® QP/ZP)V @A ZP(T) = H2(KS/K7 T(r)® @p/Zp)v

and we conclude by the same argument as before.

To finish the proof, it suffices to show that (iii) = (iv). We claim that the
module H*(K® /Ko, T ® Q,/7Z,) is co-free over A, i.e. its Pontryagin dual X =
H*(K®/Koo, T ® Qu/Zp)V is a free A-module; thus if it is cotorsion, it must be
zero. For e = 1 this is a theorem of Greenberg, cf. [PR95, Proposition 1.3.2], so we
shall reduce to this case by induction on e.

Let us choose topological generators 71,...,7 of Gal(K./K) = Zg, and set
u; = [vi] —1 € A. Then A = Zy[[u1,...,u]] and in particular (p,uq,...,u.) is a
regular sequence for A; so in order to show that X is free, it suffices to show that
X[ue) =0 and X/u.X is free as a module over A/ucA.

If we let U be the subgroup of G generated by 7., then

Xue] = H' (U, H* (Koo, T ® Qp/Zy))",
and by the Hochschild-Serre exact sequence, H' (U, H?((K)Y, T®Q,/Z,)) injects
into H3(KY, T ® Qp/Zy), which is 0 (since p is odd); and we have
X/ueX = H(Koo)”, T ® Qp/Zy)"

which (by the induction hypothesis) is free over Zp[[u1, .. ., ue—1]], so we are done.
(]

To define our module of p-adic L-functions we will need to assume the following
conjecture, which corresponds to the “conjecture de Leopoldt faible” of [PR95,
§1.3]:

Conjecture A.6 (Conjecture Leop(K,V)). The equivalent conditions of Propo-
sition hold, for some (and hence every) Z,-lattice T in V.
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Note that if K, Lo are two extensions of K satisfying our conditions, with
Ko C Ly, and Gal(Loo/K ) is torsion-free (hence isomorphic to a product of
copies of Z,), then conjecture Leop(K , V') implies conjecture Leop(Leo, V), since
Gal(K/K) and Gal(Ls/K) have the same torsion subgroup and thus condition
(ii) of Proposition [A5] for K., implies the corresponding condition for L. It is
conjectured that Leop(K (tp), V) should hold for any V, and this is known in
many cases; see [PR95, Appendix B].

Ezample A.7. Let V be the 2-dimensional p-adic representation of Gg associated
to a modular form, K/Q an imaginary quadratic field, and K, the unique Zg—
extension of K. Then Leop(K, V) holds.

To see this, we use the fact that Leop(K.o, V) is implied by Leop(K <<, V),
where K% is the cyclotomic Z,-extension of K. However, by Shapiro’s lemma
the conjecture Leop(K ¢ V) is equivalent to Leop(Q%¥°,V & V(ek)), where Q¢
is the cyclotomic Zy-extension of Q and ex is the quadratic Dirichlet character
associated to K. The conjectures and Leop(Q%°, V') and Leop(Q%¥°, V(ek)) follow
from [Kat04, Theorem 12.4] applied to f and its twist by ex.

Corollary A.8. If K is totally complex and Conjecture Leop(K o, V') holds, then
the module Hy,, (Koo, T) has well-defined Az, (G)-rank, equal to 5[K : Qld, where
d =rankz, T

APPENDIX B. EXPLICIT FORMULAE FOR PERRIN-RIOU’S P-ADIC REGULATOR

In this section, we give the proof of the formulae for the cyclotomic regulator
used in the proof of Proposition .18 As we work only over Q, here, we shall write
D(—) and N(—) for Dg,(—) and Ng, (—) respectively.

Let V be a good crystalline representation of Gg,, and = € H(F)@AZP O H, (Qpoo, V).
We write z; for the image of z in H} (Qp.c0, V(—3)), and z;, for the image of z; in
HY(Qp.n, V(—34)). If we identify  with its image in D(V)¥=1, then x; corresponds
to the element * ® e_; € D(V)¥=! @ e_; = D(V(—j))¥L.

Since V' has non-negative Hodge-Tate weights, we may interpret x as an element

+ 1 v=t
of the module (Brig@p [1] ® Dcris(v))
We shall assume:

Pp=1 P=1
(T) S (B:gg,(@p ®B$p N(V)) < (B:qg,(@p [%} ®Qp DCfiS(V)) '

This condition is satisfied in the following two situations:

e if V has no quotient isomorphic to Q,, by [Ber03, Theorem A.3];
e or if = is in the image of the Iwasawa cohomology over Fu,(ppe ), by The-

orem (A4 above.

We will base our proofs on the work of Berger [Ber03|, so we recall the notation
of that reference. Let 0 denote the differential operator (1 + w)% on IB%I&QP. We
also use Berger’s notation dy o ¢~" for the map
BI&Qp [%} ®Qp Dcris(v) — Qp,n ®Qp Dcris(v)

which sends 7 ® v to the constant coefficient of ({, exp(t/p") — 1)*F @ p~"(v) €
qun((t)) ®Qp Dcris(v)-
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For m € Z, define I'*(m) to be the leading term of the Taylor series expansion
of I'(z) at z = m (cf. [FK06, §3.3.6]); thus

J) = IR e B .
o i<t

Proposition B.1. For x satisfying (1), let us define
L {p_nawa')(@_"(ajw ®tej)) ifn>1,

Rjn(x) = =—/——= . .
7 (I) F*(l'i‘]) (1 —pilgpfl)av(,j)(ﬁﬂx®tﬂe_j) ifn=0.

Then we have
. eprfl,p n,V(—j)*(l)(Ijan) fO’I’j 2 O,
() =9, .
080, .. v(~j) (Zin) forj < —1.

Proof. This result is essentially a minor variation on [Ber(3, Theorem I1.10]. The
case j > 0 is immediate from Theorem I1.6 of op.cit. applied with V replaced by
V(—j) and = by z ® e_;, using the formula

. 1 o
Iy—ple "z®e;)) = ﬁ(?\/(fj)(s@ (z@t’e;)).

For the formula when j < —1, we choose an auxilliary integer h > 1 such that
Fil™" Deris(V) = Deyis(V). The element 87 z@t/e_; lies in (Big@p ®qQ, Dcris(V(—j))> - )
by (). Applying Theorem I1.3 of op.cit. with V| h and z replaced by V(—j), h— j,
and &’z ® t~Je;, we see that

T*(j + 1)Rjn(w) = T°(j — h+ 1) logg, . v(_s) [(eo . Kh_lx)jﬂn} .
For x € H(T) ® Az, (T) H} (Qp., V), we have

(ﬂTx)j,n =(J —r)zjn,
so (since j < —1) we have

rG+1)

(4o - . -fh—liﬂ)j,n =0 -1...0—h+tDzjn= m%n

as required. ([

Proposition B.2. If z is as above, and L}, (x) is the unique element of H(I') ®q,
Deris (V) such that L3, (z) - (1 +7) = (1 — )z, then for any j € Z we have

(1—@) Oyl (@@ tle ;) =L (2)(X)) ® e,

while for any finite-order character w of T of conductor n > 1, we have

S wlo) o | vyl @ e e )

ocel’ /T,
=7(w)e " (Er(x)(xjw) ® tje,j) .
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Proof. We note that
ﬁl‘;(_j)(ajl' ® tje_j) = TWJ(ACI;/(JJ)) & tje_j,
so it suffices to prove the result for j = 0. Suppose we have
T = kawk, Vg € Deris(V).
k>0

Then

Zcp (vk) n—l)k.

k>0
On the other hand

Ov(p~ Zcp (vk) n—l Zcp (k) 71—1)16.
£>0 k>0

Applying the operator e,, = ZUGF/Fn w(o)~to, we have for n > 1
ew - Ov (™" (x)) = e - Ov (™" ((1 — ¢)x)),

since e, is zero on Qp »—1((t)).

However, since the map dy o ="

is a homomorphism of I'-modules, we have
ew Oy (™" ((1 = 9)2)) = € - v (LT (x) - (1 + 1))
— (LT (@) - eudy, (" (L +1)
= r(w)p " (L7 (@) ()
This completes the proof of the proposition for j = 0. O
Definition B.3. Let z € H} (Qp.0, V). If 1 is any continuous character of T,

denote by x,, the image of x in H} (Qpoo, V(n™1)). If n > 0, denote by w,, the
image of x, in H*(Qp.n, V(n™1)).
Thus z,;, = Zjn. in the previous notation. The next lemma is valid for

arbitrary de Rham representations of Gg, (with no restriction on the Hodge-Tate
weights):

Lemma B.4. For any finite-order character w factoring through T'/T,,, with values
in a finite extension E/Q,, we have

> wlo) ey, vea)(@om)” = €XPY, vy (1) (Twr0)
cel/Ty,

and

Z w(o)™? long’n_’V(xom)U = ].Ong_’V(w—l)(xwyo)
cel/Ty,

where we make the identification
Dar(V(w™)) = (E ®q, Qp.n ®q, Deris(V))

Proof. This follows from the compatibility of the maps exp* and log with the core-
striction maps (cf [Ber03l §811.2 & I1.3)). O

I'=w

Combining the three results above, we obtain:

Theorem B.5. Let j € Z and let x satisfy (T). Let n be a continuous character of
' of the form x’w, where w is a finite-order character of conductor n.
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(a) If j > 0, we have

Ly (x)(n) = j!x
(1=po)1—p e )t (exp&p,v(nﬂ)*(l)(mn,o) ® t—jej) ifn=0,
T(W)_lpn(l+j)()0n (expapyv(n—l)*(l) (lvn,o) & t_jej) ifn>1.

(b) If 5 < —1, we have

_1)—j—1

LY (z)(n) = (

o) = (=
1 =ple)I—p o)~} (long,V(nfl)(ﬂﬂn,O) ®fj6j) if n =0,
(w) "t en (10g<@p,v(n71)($n,o) ® t_jej) ifn>1.

(In both cases, we assume that (1 — p~ 177071 s invertible on Deyis(V) when n =
x’-)

From this theorem it is straightforward to deduce a version of Perrin-Riou’s
explicit reciprocity formula, relating the regulator for V' and for V*(1). We recall
from the definition of the Perrin-Riou pairing

(= =)0 Hiw(Qpo0, V) X Hiy (Qp,o0, VF (1)) = Ag, (T).

Let h be sufficiently large that V*(1 + h) has Hodge-Tate weights > 0. Recall
that we write y_j, for the image of y in H{ (Qpn, V*(1 + h)). Define ﬁg*(l) by
(10) ‘CV *(1) ( ) (f_lf_g 'f_h)_l TW_h (CV*(1+h) (y—h)) X the_h

€ FracHo, (I') ® Deris(V*(1));

note that this definition is independent of the choice of h > 0. Write (-, )eris,v
for the natural pairing Deis(V) X Derig(V*(1)) = Deris(Qp(1)) =2 Q,. We extend
the crystalline pairing Az, (I')-linearly in the first argument and antilinearly in the
second argument.

Theorem B.6. For all z € HL, (Qp 0, V) and y € HL,,(Qp,00, V*(1)), we have
<£V(x)7 EV*(l)(y)>Cris,V = —0-1" fo : <$7 y>@p,oo,V7
where o_1 is the unique element of T such that x(c-1) = —1.

Proof. By Theorem [B. (a), for 7 > 1+ h we have

Ly (@) () = M1 = p) (1= p ™) (exDf (14 (w10) @7 )
and

(c1p!

(1—p7e)1—p e H)" (long,V*(lnLj)(y*ij) ® tje*J) .

Ly any y-n) (X" ) @ the_) =
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Hence we have

(Lv(@)(X), Ly amy y—n) (X" ) @ th€*h>cris,v
(Crg
- m(expo)v*(l_,_j)(fvj,o), 108, v+ (144) (Y=3,0))eris,v ()
(1
= m@j,my*g}@Qp,V(—j)

= (1" o1 (Lo ) - (2, 9)0, v ] (X))

Using the definition of ﬁ{,*(l) as in ([I0), this relation takes the more pleasing
form

<£v($)7ﬁv*(1)(y)>cris7v =014 (T,9)q, .V

APPENDIX C. FUNCTIONS OF TWO P-ADIC VARIABLES

Let p be a prime. We let L be a complete discretely valued subfield of C,,, and let
vp denote the p-adic valuation on L, normalised in the usual fashion, so v,(p) = 1.

C.1. Functions and distributions of one variable. We recall the theory in the
one-variable case, as presented in [Cz10]. Let h € R, h > 0.

Let f be a function Z, — L. We say f has order h if, informally, it may be
approximated by a Taylor series of degree [h] at every point with an error term of
order h. More precisely, f has order h if there exist functions ), 0 < j < [A], such
that the quantity

] £ G) ()9
er(z,y) = fla+y) - ey j(iv)y
=0 F

satisfies
sup  vp (ef(x,y)) —hn — o0
TELp,YyEP" Ly
as n — oo. (Tt is clear that this determines the functions £ ... fU) uniquely.)

We write C"(Z,, L) for the space of such functions, with a Banach space structure
given by the valuation

vm(f)—inf< inf  0,(f9)(2)). inf vp@f(x,y))—hvp(y)).

0<j<[h],x€Zy z,YELp

We define the space D"(Z,, L) of distributions of order h to be the continuous dual
of C"(Zy, L).

Then we have the following celebrated theorem, due to Mahler [Mah58] for h = 0
and to Amice [Ami64] for h > 0:

(1) The space C"(Z,, L) has a Banach space basis given by the functions

& s plht] (33)
n

for n > 0, where £(n) is, as in §1.3.1 of [Cz10], the smallest integer m such
that p™ > n.



IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER Zi—EXTENSIONS 41

(2) The space LPY(Z,, L) of L-valued locally polynomial functions of degree
N is dense in C"(Z,, L) for any N > [h], and a linear functional

w: LPN(Z,, L) — L

extends continuously to a distribution of order h if and only there is a
constant C such that we have

k
vp</ (I_na> du)ZC—hn
rz€a+p"ZLyp p

foralla € Z,, ne Nand 0 <k < N.
A modern account of this theorem is given in [Cz10l §§1.3, 1.5].

C.2. The two-variable case. We now consider functions of two variables. For
a,b > 0, we define the space

(72, L) = C*(Zy, L) &1 C*(Zy, L),

with its natural completed tensor product topology. We regard this as a space of
functions on Zf) in the obvious way, and refer to these as the L-valued functions on
72 of order (a,b). It is clear that C(®0)(Z2 L) is simply the space of continuous
L-valued functions on Z2, and that if ' > a and &’ > b, then O(a,*b,)(Zf), L) is dense
in (@) (Z2,L). Moreover, for any (a,b) the space LA(Z2, L) of locally analytic
functions on Z2 is a dense subspace of C(*)(Z2, L).

Note that any choice of Banach space bases for the two factors in the tensor

product gives a Banach space basis for C'(®:) (Zg, L). In particular, from (1) above
we have a Banach basis given by the functions

Cnyons ¢ (X1, 22) — p[af(nl)H[b@(nz)] (zl) (m)
i1 no

The following technical proposition will be useful to us in the main text:

Proposition C.1. For any h > 0, the space C'(O") (Zf,, L) is invariant under pull-
back via the map ® : (x,y) — (x,ax +y), for any a € Z,.

Proof. Tt suffices to show that ®*(cp, n,) can be written as a convergent series in
terms of the functions ¢;,, m, with uniformly bounded coefficients. We find that

) n z ary +x
@ (Cnl,n2)($1,$2) :p[he( 2)]< 1)( 1 2>

ni n2

- i plheta)] (1) (4T (T2
=0 n1 Ng — ) ) '
axry

The functions z; — (Zi) (m_i) are continuous Z,-valued functions on Z,, and hence
the coefficients of their Mahler expansions are integral; and since the function ¢(n)
is increasing, we see that the coefficients of ®*(cp, n,) in this basis are in fact

bounded by 1. (I

Dually, we define a distribution of order (a,b) to be an element of the dual of
C(ah) (Zi, L); the space D(®:) (Zg, L) of such distributions is canonically isomorphic
to the completed tensor product D*(Z,, L) @1, D*(Z,, L).

An analogue of (2) above is also true for these spaces. Let us write LP(N1:N2) (Z2,L)
for the space of functions on Zf) which are locally polynomial of degree < Nj in a3
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and of degree < Ny in zo; that is, the algebraic tensor product LPM (Z,, L) ®y,
LPN2(z,, L).

Proposition C.2. Suppose N1 > [a] and Ny > [b]. Then the subspace LP(N17N2)(Z127,L)

is dense in C(*?) (Z2,L), and a linear functional on LP(NI*N2)(ZZQ),L) extends to
an element of D@ (Zp, L) if and only if there is a constant C' such that

(11) v / (l‘l—al)kl ($2_ag)k2 du
(z1,z2)E(a1+p"1Zp) X (a2+p™2Zyp) pnl pn2

>C —any —bny
or all (a1,a2) €72, (n1,m2) €N2, 0 < ki1 < Ny and 0 < ky < Ns.
p

The proof of this result is virtually identical to the 1-variable case, so we shall
not give the full details here.

In particular, if a,b < 1, we may take N; = Ny = 0, and a distribution of order
(a,b) is uniquely determined by its values on locally constant functions, or equiv-
alently, by its values on the indicator functions of open subsets of ZZ. Conversely,
a finitely-additive function p on open subsets of Zf, defines a distribution of order
(a,b) if and only if there is C such that

vpt (a1 +p™ Zp) x (ag +p"*Zp)) > C — anqy — bno.
The following is easily verified:

Proposition C.3. The convolution of distributions of order (a,b) and (a’,b'") has
order (a +ad’,b+1?).

It is important to note that the spaces of functions and of distributions of order
(a,b) depend on a choice of coordinates; they are not invariant under automor-
phisms of ZZ, even if a = b. However, dualising Proposition above, the space
of distributions of order (0,h) is invariant under automorphisms preserving the
subgroup (0, Zp).

Remark C.4. One can also define a function f : Zf) — L to be of order h, for a
single non-negative real h, if f has a Taylor expansion of degree [h] at every point,
with the error term e(z,y) (defined as above) satisfying
inf vpe(x,y) — hn — oo.
r€Z2,yEpnL2 P ( y)

This definition s invariant under automorphisms of Z, (and indeed under arbitrary
morphisms of locally Q,-analytic manifolds). However it is not so convenient for
us, since locally constant functions are only dense for h < 1, and a finitely-additive
function on open subsets extends to a linear functional on this space if we can find
a C such that

(12) vpp (a+ p"Zf)) > C —nh.
The requirement that this be satisfied, for some h < 1, is much stronger than the

requirement that (II) is satisfied for some a,b < 1.

We shall also use the concept of distributions of order (a,b) on a slightly larger
class of group: if we have an abelian p-adic Lie group G, and an open subgroup H
with distinguished subgroups H1, Hy such that H = Hy x Hy and Hy = Hy = Z,,
then we may define a distribution on G to have order (a, b) if its restriction to every
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coset of H has order (a,b) in the above sense. Note that this does not depend on
a choice of generators of the groups H;, but it does depend on the choice of the
subgroups H;, Hs; so when there is a possibility of ambiguity we shall write “order
(a,b) with respect to the subgroups Hy, Hy”.

Note that an application of Proposition [C.1] shows that a distribution has order
(0, h) with respect to the subgroups (Hi, Hs) if and only if it has order (0, h) with
respect to (Hj, Hs) for any other subgroup H] complementary to Ho; that is, in
this special case the definition of “order (0,h)” depends only on the choice of Ha.
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