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Abstract 

Computer systems no longer operate in centralized isolated 
static environments. Technological advances, such as smaller 
and faster hardware, .and higher reliability of networks have 
resulted in the growth of mobility of computing and the need for 
run-time adaptability and reconfigurability. 

However, mobile and roaming users need to dynamically 
adapt to local system configurations to order to fully utilize 
resources currently available, such as a fast network con­ 
nection, an available colour printer  etc. In  order  to  pro­ vide 
support for this type of application, a dynamic resource 
manager supporting indirect resource requests and runtime 
reconfigurability is essential. 

This paper proposes a new dynamic resource manage­ ment 
architecture, MAGNET, to  provide  run-time  adaptabil­ ity for 
mobile applications. MAGNET enables the dynamic trading of 
resources which can be requested indirectly by the type of 
service they offer, rather than directly by their name.  In 
addition, MAGNET enables runtime user-customized adap­ 
tation to services. 

 
1 Introduction 

In order to meet the requirements of mobile and roaming 
users, the role of resource management needs to be extended 
to enable user customization of resource allocation policies 
and to provide the support for runtime adaptation to chang­ 
ing conditions. 

In open systems, there is a requirement to enable re­ quests 
for services to  be described  by a  type of service (e.g., a printer) 
, rather than directly by its name. Without this, communication 
between system components which did not know their identity 
a priori, cannot happen. In addition, dy­ namic features such as 
the monitoring of selected resource features, and the provision 
of location and time-dependent information are also required. 

Existing operating systems, and middleware platforms 
dealing with dynamic resource allocation do not provide 
sufficient support for mobile applications in terms of user­ 
customization of the allocation strategies and their runtime 
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adjustment. 
This paper addresses the design of a resource manager, 

MAGNET, fulfilling the requirements of applications operat­ 
ing in frequently-changing environments. In particular, we 
present a framework enabling user-customized dynamic re­ 
source allocation supporting runtime adaptation. 

 
2 The MAGNET Architecture 

A resource manager which can provide dynamic resource 
allocation requires the following features: dynamic trading , 
extensibility, dynamic rebinding, resource monitoring and 
reconfigurability. These features and the high-level design of 
the MAGNET architecture are discussed in this section. 

The key component of the framework is a Trader that 
collects information on services, and dynamically matches 
requests against demands (by type of service and  not  the 

name given to the service, e.g., printer and not 'LPR2') . In 
doing this, it can establish dynamic binding between compo­ 

nents which did not need to know their identity in advance. 
The Trader must not constrain the format  or the seman­ tics of 
information on services and should allow the user to customize 
the matching process between servers' offers and applications' 

requests.  This  provides   extensibility in terms of enabling 
new requests and services to be dynamically gen­ erated but 

also in terms of customizing the matching process 
itself. 

Further, to support runtime adaptation and system re­ 
configuration dynamic rebinding is required. That is,  the old 
binding is dropped and a new binding is established in order 
to better meet application requirements. This may be as a 
result of client, server or a third party initiation . 

For example, a mobile client currently using its lor· .I disk 
may wish to join a new, more stable environment in ii:, office 
to upload data. Therefore it will unbind from its current disk 
and rebind to the office disk. Information on client demands 
and service capabilities is maintained either manually (i.e., 
carried out by the components themselves) or automatically 
(by a monitoring process). 

 

2.1 Using the Tuplespace Paradigm for the Trader 

The Trader is the key component in the MAGNET architec­ 
ture. The Trader accesses a shared data repository available 
to all components. We call this data structure an infor­ 
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mation pool, its structure is similar to the t uplespace 1 The 
Trader consists of three distinctive elements: 

 
 

1 T he information pool is actually a tuplespace. However, the term 
'tuplespace' is often associated with the Linda distributed program- 



 
 

 

 

 

 
 

For example, to describe a Pentium processor  (A)  which is 
running at 200 MHz with 32 MB RAM memory  we  use the  
following server tuple: ' 

A= (6, 5, CPU, Pentium, 200, memory,32, ref) 
That is 6 tuple elements, 5 of which can be matched (CPU, 

Pentium, 200, memory, 32). Ref is an interface refer­ enc: to 
the service inter ace d scribed in the tuple. Naming for 
mterface references 1s derived from the naming scheme used 
in the computing environment. 

An equivalent client tuple matching the tuple A would 
be: 

B = (6, 5, CPU, Pentium,•, memory,16 - 128, ref B) 

 

 

 

Figure 1: The Trader Structure 

 

1. The information pool (a tuplespace-like data struc­ 
ture), 

2. The Trader op rations on tuples for their manipula­ 
tion, and 

3. The tuple matching function (an operation providing 
the actual communication). 

Figure 1 illustrates the structure of the Trader, and its three 
components. Figures are drawn in the Darwin graph­ ical 
representation [2]. Darwin views components in terms of 
both services they provide (to allow other components to 
interact with them) and services they require (to interact with 
other components). A provided service is represented by a 
filled circle and a required service by an empty circle. 
Components are shown as rectangles, filleting differentiates 
types from instan ces. 

 
2.1.1 The Information Pool and the Matching Function 

The information pool is a distributed data structure acces­ 
sible by all components using MAGNET. Tuples can be in­ 
serted in, or withdrawn from, the tuplespace by a set of clearly 
defined operations. Tuples describing requirements and 
provisions for resource management often contain addi­ 
tional information, such as interface references for accessing 
offered services, or requirements on the establishment of the 
communication channel. These are all expressed as tuple 
elements. 

Therefore, the tuple distinguishes between the number of 
all tuple elements n and the number of matching elements 
m. This extension, which we have incorporated into tradi­ 
tional tuple matching, enables the restriction  of  the match­ 
ing process to matching the  first m  elements.  By  matching 
we mean an equality of tuple elements, or a user-defined 
'match' enabling quality of service (QoS) to be taken into 
account. (However, QoS is beyond the scope of this paper 
further details can be found in [7]. ) We define  a  tuple 
follows: 

A tuple Tis anordered (n+2)-tuple T = (n,  m , p1,  p2,  ... , 

Pn), n  > m  where  n  E  N  represents  the  number  of tuple 
elements and m E N is the number of matchable tuple el­ ements 
. p; E P; are the values of tuple elements i.e., the  actual 
parameters. 

 
 

ming language [5}; therefore, we decided to call our data structure 
'information pool' to a,·oid con fusion . 

. requesting a processor Pentium with any speed, equipped 
with a memory of the size between 16 to 128 MB. This tuple 
definition incorporates advanced operators, such as * and '-'. 
These are defined in detail in [7]. 

 
2.1.2 The Trader Operations 

The information pool has operations defined for tuple ma­ 
nipulation, such as insert and  delete.  MAGNET's  Trader  in­ c 
udes the operations: BIND, ADVERT (implementing a ser­ 1ce  
expor ),  an_d   WITHDRAWC,  WITHDRAWS  (implement­ mg a 
service withdrawal). These are  described  below  in more detail. 

Operation Bind (T), T is a client-tuple. The Trader 
earches the information pool for a complementary match­ mg 
tuple. If such a tuple is found, T is returned to the server 
component (which inserted the matching tuple) without be­ 
ing withdrawn from the pool. If no such tuple exists, the 
operation results in inserting tuple T into the information pool 
until a match becomes available and the request is ful­ filled. 

Operation Advert (T), T is a server-tuple, which is in­ 
serted into the information pool. The trader  also searches the 
pool for all complementary matching tuples . If such tu­ ples 
are found , they are removed from the pool, and returned to 
the calling server component . 

Op ration ithdrawC (T), where Tis a client-tuple , results 
m removing tuple T from the information pool· while opera 
ion Wi hdrawS (T), where T is a server-tu;le, re­ sults m 
removmg tuple T from the information pool. 

 
2.1.3 Components for the MAGNET Architecture 

MAGNET'S information pool has been designed to scale by 
using federations . Figure 2 illustrates the structure of the 
MAGNET architecture distributed within a single federation. 
T_ he system consists of four classes of component:  the Trader, 
Client, Server and Tree (components performing the match­ 
ing process). There is only a single instance of the Trader 
component per federation, in contrast to multiple  instances of 
Client, Server and Tree.  The federation  communication is 
done through the federation 's Trader. In addition  there are 
two types of subcomponent performing dedicated func­ tions: 
these are a pair of Binders (the Cli,;nt-Binder and the Server-
Binder) present in all Clients and Servers; and the 
GlueFact_ory included in all Trees. The GlueFactory hands 
over a client tuple to the Server to initialize the establish­ ment 
of the binding carried out by the Binders. There fore , Binders 
in cooperation with the GlueFactory , establish the resultant 
client-server binding. 

 
2.1.4 Information Monitoring 

Service definitions placed in the Trader must be kept up-to­ 
date by monitoring the resources. Consequently two addi- 
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Figure 2: The MAGNET's Architecture 

 

tional components provide monitoring : the Monitor (moni­ 
toring server provisions), and the Updater (monitoring chang­ 
ing client requirements). 

 
3 Support for Adaptation 

 

In order to present the support for adaptation provided by 
MAGNET, we illustrate relevant operations with an example. 
In this example we have a mobile client which has MAGNET 
on it allocating its local resources. Likewise, there is an office 
system which also runs MAGN ET. Essentia lly, there are two 
federations : the mobile and the office-b ased. To allow the 
mobile client to use the office-based system resources, the 
mobile client's Trader must communicate with the office­ 
based Trader. This is illustrated in more detail below. 

 
3.1 Dynamically Reconfigurable Federations 

When a mobile user wishes to dock into a particular environ­ 
ment, the local and office-based federations must communi­ 
cate to enable the user to access remote resources. MAGNET 
provides this support by the operations JOIN and LEAVE. 
\Ve assume the mobile user is only accessing those resources 
temporarily thus: 

 

• operations JOIN and LEA\'E cannot be transparent. That 
is, the mobile client can decide whether it is able to ac­ 
cept a resource from an office-based site. (This avoids 
situations such as disk space being allocated in the 
office-based computer which is useless when the client 
is disconnected). 

• consequently, clients and servers do not act symmet­ 
rically - mobile clients might take advantage of the office-
based services but will not offer their provisions to the 
office-based clients. 

• as client components are responsible  for  deciding  on the 
usage of office-based resources, they are also re­ sponsible 
for maintaining a consistent state when the mobile is 
disconnected from the office-based site . Con­ sequently, 
every mobile client component using the office-based 
Trader, is responsible for withdrawing all inserted tuples 
in order to leave the office-based infor­ mation pool in a 
consistent state . 

 

Now we define operations JOIN and LEAVE - we assume 
two local trading systems, a portable and an office-based 
domain , each consisting of one trader, as was  described  at the 
beginning of this section. 

 
Trader Connection In order to perform the operation JOIN, 

the office-based Trader offers its information pool to the 
portable Trader by calling the operation ADVERT inserting 
a tuple Tl= (2, 1,join,bglue) into the mobile client's infor­ 
mation pool. 

 
JOIN A mobile client requesting a service which can be 
fulfilled by the office-based site servers, inserts three bind 
tuples into the mobile client's pool -    the  classical  bind tu­ 
ple Cl defining the request, the  second  tuple of  the  form:  C2 
= (n, 1, join, Cl) encapsulating the actual Cl  tuple , and the  
third C3 = (n , 1, le ave ,Cl)  which  will  be used for dis­ 
connection . 



 
 

  

 

 

 

 

The mobile client is connected to the office-based federa­ 
tion by inserting the office-based Trader tuple Tl = (2, 1, join, 

bglue) into the mobile client's information pool where a 
matching between Tl and  C2  can  be achieved.  That  is, the 
GlueFactory binds to the office-based Trader and passes the 
C2 tuple to the office-based Trader-Binder. This then re­ 
trieves the tuple Cl from the received tuple C2 and reinserts 
it into its information pool by calling operation BIND. If a 
matching server-tuple is available inter-federation binding is 
established. 

Figure 3 illustrates operation JOIN, for reasons of sim­ 
plicity, we omit the Tree components. 

 
Trader Disconnection Disconnecting the mobile client from 
the office-based site must return the system to  a  consis­ tent 
state. Firstly, the office-based Trader's tuple Tl is withdrawn 
from the client's information pool by the opera­ tion 
WITHDRAWS. Client tuples waiting to be served in the 
office-based information pool must be also removed. The 
client components themselves must perform the withdrawal 
as Traders cannot distinguish between the office-based client­ 
tuples and mobile cl nt-tuples. This is done by inserting a 
local Trader advert-tuple into the mobile client's informa­ 

tion pool: T2 = (2, 1, leave,bglue2). 

 
Operation LEAVE The inserted T2 tuple matches with a 

waiting client  tuple C3 = (n,  1, leave,Cl)  which is passed to 
the office-based Trader-Binder over an binding established 
between a particular Glue Factory and the bglue2 service 
interface. Tuple Cl is extracted from C3, and operation 
WITHDRAWC  on Cl  is performed.  If  it does not succeed 
- it means the client is already being served by an office­ 
based server. However, all clients must be informed about the 
disconnection, therefore the office-based Trader-Binder 
establishes a binding with them (between bs and be obtained 
from the tuple Cl) and notifies them. Incidently, bs and be are 
service interfaces to Client Binder (be) and Server Binder (bs) 
see Figure 4. Full descriptions of service interfaces be, bs, 
glues etc. are beyond  the  scope of  this  paper,  it  can be 
found in [7]. 

Figure 4 illustrates this operation. There are two clients 
(Client! and Client2) temporarily connected to an office­ based 
site. Client! (described by tuples Cl, C2 and C3)  is being served 
by an office-based server (Server), while Client2 (described by 
tuples Xl, X2 and X3) is still waiting. The no­ tification about 
disconnection from the office-based Trader results in different 
actions: Clientl must terminate its  bind­  ing with Server, while 
Client2 just reinserts its 'connecting' tuples X2 and X3. 

 
4 Implementation 

 

MAGNET, has been implemented in Regis [2], an environ­ 
ment for constructing distributed systems. The tuple is im­ 
plemented in C++ as a high-level base-class (Tuple) com­ 
prising the tuple size, the tuple matching size, and encap­ 
sulating the tuple-elements. All standard and user-defined 
tuple-element classes are inherited from a base tuple-element 
class TElm. 

Trees contain tree data structures supporting the search 
(and matching) for non-parametrized requests. The com­ 
plexity of the Trader operations was calculated and was 
found to be linear to the number of tuple matching elements. 
The Trader is responsible for the efficient distribution of tree 
data structures over Tree components. 

The matching function is implemented as an overloaded 
member function of tuple-element classes inherited from the 
base class TElm. A tuple-element type matches only the same 
type, and the 'equality' of values can be re-defined according 
to the type. 

As the focus of the architecture is to provide dynamic fea­ 
tures, such as runtime adaptability, user-customization and 
flexibility, the implementation results cannot be described in 
terms of performance. However, critical analysis of various 
features of the framework can be found in [7]. 

 
5 Related Work 

 

In recent years, dynamic issues such as providing greater 
flexibility, supporting dynamic runtime adaptations or de­ 
signing loosely coupled communication schemes have been 
successfully addressed by many research projects and com­ 
mercial technologies. 

Dynamic service coupling is implemented in other archi­ 
tectures (such as the Matchmaker Component in Match­ making 
[10] and the Aster Selector in Aster [6]) and in tuplespace-based 
systems. These include:  Limbo  [3]  based on notion of multiple 
tuplespaces and an explicit tuple-type hierarchy, Jini [12] 
providing binding between clients and servers by a lookup 
service. However, these systems do not provide customization of 
the matching function. Further, Limbo and Cardelli's Ambient 
Calculus model [1] reference systems components by type and 
not service characteristics which was our goal. These 
architectures typically target one mobile issue, rather than 
providing a unified architecture. Nevertheless, MAGNET can be 
used with other component­ based systems like Exokernel [4] 

and Nemesis [11]. It  can also trade objects in user-level 
applications, for example Jav­ aBeans, CORBA objects [9), and 
DCOM objects [8]. 

 
6 Implications of our Assumption and Future Work 

 

The architecture described in this paper is a general frame­ 
work which provides more functionality (such as Quality of 
Service definition and matching) than described here. Full 
description of the architecture can be found in [7]. The ar­ 
chitecture was originally designed for operating system like 
resource allocation, therefore a number of assumptions were 
made: 

1. Consistency. Applications are assumed to be well 
behaved and fully responsible for maintaining system 
consistency that includes keeping the tuples in the pool 
up-to-date and withdrawing all tuples when the com­ 
ponent is finished. MAGNET does not maintain consis­ 
tency nor does it carry out garbage collection. This is  a 
feature which would aid both consistency and pro­ 
tection and may be added later. 

2. Protection. Validity of tuples within  the  informa­ tion 
pool is the responsibility of the components and not 
MAGNET. To prevent actions like binding be­ tween 
non-exiting components, the framework can be 
extended to authorize components to call the Trader 
functions, or introduce capabilities (as tuple elements) 
to improve component protection. 

3. Synchronization. Components are responsible for 
synchronization. The architecture can provide an ad­ 
ditional function for client components (e.g., operation 
BINDRET) which would perform the same matching 
process as operation BIND, and return 'no' instead of 



  

   

 

 

 

 

 

Figure 3:  Operation JOIN 

 

blocking the component if the requested service has 
not been found in the pool. 

4. Scale and Performance. The estimated numbers of 
components in a federation are in the region of tens and 
they have the potential to generate tens to hun­ dreds 
tuples placed in the Trader. Likewise, the num­ ber of 
concurrent components accessing the Trader at one time 
are estimated to be in the region of tens. A higher 
number of components can result in the Trader 
becoming a bottleneck. A possible solution would be to 
implement the information pool in distributed shared 
memory. 

5. Change Frequency. The framework is designed for 
components that will change their features with a fre­ 
quency of minutes and hours, rather than seconds and 
milliseconds. Therefore the proposed support for mon­ 
itoring and rebinding as a result of a change is ad­ 
equate. The support for applications requiring finer 
grained updates (with a frequency of seconds and mil­ 
liseconds) would not be viable. This can be improved 
by enabling direct access to the Tree components for 
trusted Monitors and Updaters. 

 
7 Conclusion 

 

New resource managers are required to allow dynamic re­ 
source allocation for mobile systems. The tuplespace-based 
MAGNET architecture, described in this paper, provides this 

kind of support. In particular, we focussed on MAGNET's 
support for dynamic trading, extensibility, dynamic rebind­ 
ing, resource monitoring and reconfigurability. Our research 
on MAGNET has demonstrated the feasibility of dynamic re­ 
source management which further provides negotiation of 
services, user-customization of allocation strategies, and run­ 
time adaptation to changes in the computing environment. 
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Figure  4:  Operation LEAVE 
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