

MAGNET: An Architecture for Dynamic Resource Allocation

Patty Kostkova and Julie A. McCann

High-Performance Extensible Research Group (HiPeX)

City University, London, UK

{patty, jam}@soi.city.ac.uk

Abstract

Computer systems no longer operate in centralized isolated
static environments. Technological advances, such as smaller
and faster hardware, .and higher reliability of networks have
resulted in the growth of mobility of computing and the need for
run-time adaptability and reconfigurability.

However, mobile and roaming users need to dynamically
adapt to local system configurations to order to fully utilize
resources currently available, such as a fast network con­
nection, an available colour printer etc. In order to pro­ vide
support for this type of application, a dynamic resource
manager supporting indirect resource requests and runtime
reconfigurability is essential.

This paper proposes a new dynamic resource manage­ ment
architecture, MAGNET, to provide run-time adaptabil­ ity for
mobile applications. MAGNET enables the dynamic trading of
resources which can be requested indirectly by the type of
service they offer, rather than directly by their name. In
addition, MAGNET enables runtime user-customized adap­
tation to services.

1 Introduction

In order to meet the requirements of mobile and roaming
users, the role of resource management needs to be extended
to enable user customization of resource allocation policies
and to provide the support for runtime adaptation to chang­
ing conditions.

In open systems, there is a requirement to enable re­ quests
for services to be described by a type of service (e.g., a printer)
, rather than directly by its name. Without this, communication
between system components which did not know their identity
a priori, cannot happen. In addition, dy­ namic features such as
the monitoring of selected resource features, and the provision
of location and time-dependent information are also required.

Existing operating systems, and middleware platforms
dealing with dynamic resource allocation do not provide
sufficient support for mobile applications in terms of user­
customization of the allocation strategies and their runtime

Permission 1o make digilal or hard copies of all or part of this Y,-mk for

personal or classroom use is granted without fee rov1dcd that copies
are 1101 made or distributed for profit or commercia advantage and that

adjustment.
This paper addresses the design of a resource manager,

MAGNET, fulfilling the requirements of applications operat­
ing in frequently-changing environments. In particular, we
present a framework enabling user-customized dynamic re­
source allocation supporting runtime adaptation.

2 The MAGNET Architecture

A resource manager which can provide dynamic resource
allocation requires the following features: dynamic trading ,
extensibility, dynamic rebinding, resource monitoring and
reconfigurability. These features and the high-level design of
the MAGNET architecture are discussed in this section.

The key component of the framework is a Trader that
collects information on services, and dynamically matches
requests against demands (by type of service and not the

name given to the service, e.g., printer and not 'LPR2') . In
doing this, it can establish dynamic binding between compo­

nents which did not need to know their identity in advance.
The Trader must not constrain the format or the seman­ tics of
information on services and should allow the user to customize
the matching process between servers' offers and applications'

requests. This provides extensibility in terms of enabling
new requests and services to be dynamically gen­ erated but

also in terms of customizing the matching process
itself.

Further, to support runtime adaptation and system re­
configuration dynamic rebinding is required. That is, the old
binding is dropped and a new binding is established in order
to better meet application requirements. This may be as a
result of client, server or a third party initiation .

For example, a mobile client currently using its lor· .I disk
may wish to join a new, more stable environment in ii:, office
to upload data. Therefore it will unbind from its current disk
and rebind to the office disk. Information on client demands
and service capabilities is maintained either manually (i.e.,
carried out by the components themselves) or automatically
(by a monitoring process).

2.1 Using the Tuplespace Paradigm for the Trader

The Trader is the key component in the MAGNET architec­
ture. The Trader accesses a shared data repository available
to all components. We call this data structure an infor­

copies bear this notice and the full citation on the hrst_ page. To 1:
1PY

otherwise, 10 republish, to post on servers or to red1stnhutc to hsts.

requires prior specific permission andior a fee.

MobiDE Seattle WA USA
Copyright ACM 1999 l-58113-175-5/99/08...$5.00

mation pool, its structure is similar to the t uplespace 1 The
Trader consists of three distinctive elements:

1 T he information pool is actually a tuplespace. However, the term
'tuplespace' is often associated with the Linda distributed program-

For example, to describe a Pentium processor (A) which is
running at 200 MHz with 32 MB RAM memory we use the
following server tuple: '

A= (6, 5, CPU, Pentium, 200, memory,32, ref)
That is 6 tuple elements, 5 of which can be matched (CPU,

Pentium, 200, memory, 32). Ref is an interface refer­ enc: to
the service inter ace d scribed in the tuple. Naming for
mterface references 1s derived from the naming scheme used
in the computing environment.

An equivalent client tuple matching the tuple A would
be:

B = (6, 5, CPU, Pentium,•, memory,16 - 128, ref B)

Figure 1: The Trader Structure

1. The information pool (a tuplespace-like data struc­
ture),

2. The Trader op rations on tuples for their manipula­
tion, and

3. The tuple matching function (an operation providing
the actual communication).

Figure 1 illustrates the structure of the Trader, and its three
components. Figures are drawn in the Darwin graph­ ical
representation [2]. Darwin views components in terms of
both services they provide (to allow other components to
interact with them) and services they require (to interact with
other components). A provided service is represented by a
filled circle and a required service by an empty circle.
Components are shown as rectangles, filleting differentiates
types from instan ces.

2.1.1 The Information Pool and the Matching Function

The information pool is a distributed data structure acces­
sible by all components using MAGNET. Tuples can be in­
serted in, or withdrawn from, the tuplespace by a set of clearly
defined operations. Tuples describing requirements and
provisions for resource management often contain addi­
tional information, such as interface references for accessing
offered services, or requirements on the establishment of the
communication channel. These are all expressed as tuple
elements.

Therefore, the tuple distinguishes between the number of
all tuple elements n and the number of matching elements
m. This extension, which we have incorporated into tradi­
tional tuple matching, enables the restriction of the match­
ing process to matching the first m elements. By matching
we mean an equality of tuple elements, or a user-defined
'match' enabling quality of service (QoS) to be taken into
account. (However, QoS is beyond the scope of this paper
further details can be found in [7].) We define a tuple
follows:

A tuple Tis anordered (n+2)-tuple T = (n, m , p1, p2, ... ,

Pn), n > m where n E N represents the number of tuple
elements and m E N is the number of matchable tuple el­ ements
. p; E P; are the values of tuple elements i.e., the actual
parameters.

ming language [5}; therefore, we decided to call our data structure
'information pool' to a,·oid con fusion .

. requesting a processor Pentium with any speed, equipped
with a memory of the size between 16 to 128 MB. This tuple
definition incorporates advanced operators, such as * and '-'.
These are defined in detail in [7].

2.1.2 The Trader Operations

The information pool has operations defined for tuple ma­
nipulation, such as insert and delete. MAGNET's Trader in­ c
udes the operations: BIND, ADVERT (implementing a ser­ 1ce
expor), an_d WITHDRAWC, WITHDRAWS (implement­ mg a
service withdrawal). These are described below in more detail.

Operation Bind (T), T is a client-tuple. The Trader
earches the information pool for a complementary match­ mg
tuple. If such a tuple is found, T is returned to the server
component (which inserted the matching tuple) without be­
ing withdrawn from the pool. If no such tuple exists, the
operation results in inserting tuple T into the information pool
until a match becomes available and the request is ful­ filled.

Operation Advert (T), T is a server-tuple, which is in­
serted into the information pool. The trader also searches the
pool for all complementary matching tuples . If such tu­ ples
are found , they are removed from the pool, and returned to
the calling server component .

Op ration ithdrawC (T), where Tis a client-tuple , results
m removing tuple T from the information pool· while opera
ion Wi hdrawS (T), where T is a server-tu;le, re­ sults m
removmg tuple T from the information pool.

2.1.3 Components for the MAGNET Architecture

MAGNET'S information pool has been designed to scale by
using federations . Figure 2 illustrates the structure of the
MAGNET architecture distributed within a single federation.
T_ he system consists of four classes of component: the Trader,
Client, Server and Tree (components performing the match­
ing process). There is only a single instance of the Trader
component per federation, in contrast to multiple instances of
Client, Server and Tree. The federation communication is
done through the federation 's Trader. In addition there are
two types of subcomponent performing dedicated func­ tions:
these are a pair of Binders (the Cli,;nt-Binder and the Server-
Binder) present in all Clients and Servers; and the
GlueFact_ory included in all Trees. The GlueFactory hands
over a client tuple to the Server to initialize the establish­ ment
of the binding carried out by the Binders. There fore , Binders
in cooperation with the GlueFactory , establish the resultant
client-server binding.

2.1.4 Information Monitoring

Service definitions placed in the Trader must be kept up-to­
date by monitoring the resources. Consequently two addi-

.,., .,::\:

glueC

dataM dataS glue •

Server-Binder

Monitor :•:• :,: :,: ,:. Server

Clieol

::
··•·.·•·

.::·:•:•:, .;.: :::: ,:,: ,:,::-:-:=:=:-::::::::::::::::::::::;::::::::::::::::::::: ,:,:,:,: ,;,: :;:::::::::::::::::::=:=::;:::;:;::::::,:,:;:,:;:,:;:,: :::: :::: :::: ,:,:=:=::: ;::;;:::,:;:;::::;::;:,::,,: ;::::;,:;;::;::: :,: ,;.

,.,. ,,,,,,,.,,,,.,:,,,,,:,.,,,.,.,,,.,.:,:.-,-,.,.,,.,,. ,,,,,,..,,.,,:,;::v: ,:,,,::,::,:,::,::,::::::::,,:,:::::::::,;:;:::::,:,,,:,,,,::,::::::,,,:::,,::,:::::,:::,,,,,::,::,,,,,::,:,:,, ,:,: :-,- ,,,.,,,:,,,,,,,, ,,,.,,",,',;,,,

Figure 2: The MAGNET's Architecture

tional components provide monitoring : the Monitor (moni­
toring server provisions), and the Updater (monitoring chang­
ing client requirements).

3 Support for Adaptation

In order to present the support for adaptation provided by
MAGNET, we illustrate relevant operations with an example.
In this example we have a mobile client which has MAGNET
on it allocating its local resources. Likewise, there is an office
system which also runs MAGN ET. Essentia lly, there are two
federations : the mobile and the office-b ased. To allow the
mobile client to use the office-based system resources, the
mobile client's Trader must communicate with the office­
based Trader. This is illustrated in more detail below.

3.1 Dynamically Reconfigurable Federations

When a mobile user wishes to dock into a particular environ­
ment, the local and office-based federations must communi­
cate to enable the user to access remote resources. MAGNET
provides this support by the operations JOIN and LEAVE.
\Ve assume the mobile user is only accessing those resources
temporarily thus:

• operations JOIN and LEA\'E cannot be transparent. That
is, the mobile client can decide whether it is able to ac­
cept a resource from an office-based site. (This avoids
situations such as disk space being allocated in the
office-based computer which is useless when the client
is disconnected).

• consequently, clients and servers do not act symmet­
rically - mobile clients might take advantage of the office-
based services but will not offer their provisions to the
office-based clients.

• as client components are responsible for deciding on the
usage of office-based resources, they are also re­ sponsible
for maintaining a consistent state when the mobile is
disconnected from the office-based site . Con­ sequently,
every mobile client component using the office-based
Trader, is responsible for withdrawing all inserted tuples
in order to leave the office-based infor­ mation pool in a
consistent state .

Now we define operations JOIN and LEAVE - we assume
two local trading systems, a portable and an office-based
domain , each consisting of one trader, as was described at the
beginning of this section.

Trader Connection In order to perform the operation JOIN,

the office-based Trader offers its information pool to the
portable Trader by calling the operation ADVERT inserting
a tuple Tl= (2, 1,join,bglue) into the mobile client's infor­
mation pool.

JOIN A mobile client requesting a service which can be
fulfilled by the office-based site servers, inserts three bind
tuples into the mobile client's pool - the classical bind tu­
ple Cl defining the request, the second tuple of the form: C2
= (n, 1, join, Cl) encapsulating the actual Cl tuple , and the
third C3 = (n , 1, le ave ,Cl) which will be used for dis­
connection .

The mobile client is connected to the office-based federa­
tion by inserting the office-based Trader tuple Tl = (2, 1, join,

bglue) into the mobile client's information pool where a
matching between Tl and C2 can be achieved. That is, the
GlueFactory binds to the office-based Trader and passes the
C2 tuple to the office-based Trader-Binder. This then re­
trieves the tuple Cl from the received tuple C2 and reinserts
it into its information pool by calling operation BIND. If a
matching server-tuple is available inter-federation binding is
established.

Figure 3 illustrates operation JOIN, for reasons of sim­
plicity, we omit the Tree components.

Trader Disconnection Disconnecting the mobile client from
the office-based site must return the system to a consis­ tent
state. Firstly, the office-based Trader's tuple Tl is withdrawn
from the client's information pool by the opera­ tion
WITHDRAWS. Client tuples waiting to be served in the
office-based information pool must be also removed. The
client components themselves must perform the withdrawal
as Traders cannot distinguish between the office-based client­
tuples and mobile cl nt-tuples. This is done by inserting a
local Trader advert-tuple into the mobile client's informa­

tion pool: T2 = (2, 1, leave,bglue2).

Operation LEAVE The inserted T2 tuple matches with a

waiting client tuple C3 = (n, 1, leave,Cl) which is passed to
the office-based Trader-Binder over an binding established
between a particular Glue Factory and the bglue2 service
interface. Tuple Cl is extracted from C3, and operation
WITHDRAWC on Cl is performed. If it does not succeed
- it means the client is already being served by an office­
based server. However, all clients must be informed about the
disconnection, therefore the office-based Trader-Binder
establishes a binding with them (between bs and be obtained
from the tuple Cl) and notifies them. Incidently, bs and be are
service interfaces to Client Binder (be) and Server Binder (bs)
see Figure 4. Full descriptions of service interfaces be, bs,
glues etc. are beyond the scope of this paper, it can be
found in [7].

Figure 4 illustrates this operation. There are two clients
(Client! and Client2) temporarily connected to an office­ based
site. Client! (described by tuples Cl, C2 and C3) is being served
by an office-based server (Server), while Client2 (described by
tuples Xl, X2 and X3) is still waiting. The no­ tification about
disconnection from the office-based Trader results in different
actions: Clientl must terminate its bind­ ing with Server, while
Client2 just reinserts its 'connecting' tuples X2 and X3.

4 Implementation

MAGNET, has been implemented in Regis [2], an environ­
ment for constructing distributed systems. The tuple is im­
plemented in C++ as a high-level base-class (Tuple) com­
prising the tuple size, the tuple matching size, and encap­
sulating the tuple-elements. All standard and user-defined
tuple-element classes are inherited from a base tuple-element
class TElm.

Trees contain tree data structures supporting the search
(and matching) for non-parametrized requests. The com­
plexity of the Trader operations was calculated and was
found to be linear to the number of tuple matching elements.
The Trader is responsible for the efficient distribution of tree
data structures over Tree components.

The matching function is implemented as an overloaded
member function of tuple-element classes inherited from the
base class TElm. A tuple-element type matches only the same
type, and the 'equality' of values can be re-defined according
to the type.

As the focus of the architecture is to provide dynamic fea­
tures, such as runtime adaptability, user-customization and
flexibility, the implementation results cannot be described in
terms of performance. However, critical analysis of various
features of the framework can be found in [7].

5 Related Work

In recent years, dynamic issues such as providing greater
flexibility, supporting dynamic runtime adaptations or de­
signing loosely coupled communication schemes have been
successfully addressed by many research projects and com­
mercial technologies.

Dynamic service coupling is implemented in other archi­
tectures (such as the Matchmaker Component in Match­ making
[10] and the Aster Selector in Aster [6]) and in tuplespace-based
systems. These include: Limbo [3] based on notion of multiple
tuplespaces and an explicit tuple-type hierarchy, Jini [12]
providing binding between clients and servers by a lookup
service. However, these systems do not provide customization of
the matching function. Further, Limbo and Cardelli's Ambient
Calculus model [1] reference systems components by type and
not service characteristics which was our goal. These
architectures typically target one mobile issue, rather than
providing a unified architecture. Nevertheless, MAGNET can be
used with other component­ based systems like Exokernel [4]

and Nemesis [11]. It can also trade objects in user-level
applications, for example Jav­ aBeans, CORBA objects [9), and
DCOM objects [8].

6 Implications of our Assumption and Future Work

The architecture described in this paper is a general frame­
work which provides more functionality (such as Quality of
Service definition and matching) than described here. Full
description of the architecture can be found in [7]. The ar­
chitecture was originally designed for operating system like
resource allocation, therefore a number of assumptions were
made:

1. Consistency. Applications are assumed to be well
behaved and fully responsible for maintaining system
consistency that includes keeping the tuples in the pool
up-to-date and withdrawing all tuples when the com­
ponent is finished. MAGNET does not maintain consis­
tency nor does it carry out garbage collection. This is a
feature which would aid both consistency and pro­
tection and may be added later.

2. Protection. Validity of tuples within the informa­ tion
pool is the responsibility of the components and not
MAGNET. To prevent actions like binding be­ tween
non-exiting components, the framework can be
extended to authorize components to call the Trader
functions, or introduce capabilities (as tuple elements)
to improve component protection.

3. Synchronization. Components are responsible for
synchronization. The architecture can provide an ad­
ditional function for client components (e.g., operation
BINDRET) which would perform the same matching
process as operation BIND, and return 'no' instead of

Figure 3: Operation JOIN

blocking the component if the requested service has
not been found in the pool.

4. Scale and Performance. The estimated numbers of
components in a federation are in the region of tens and
they have the potential to generate tens to hun­ dreds
tuples placed in the Trader. Likewise, the num­ ber of
concurrent components accessing the Trader at one time
are estimated to be in the region of tens. A higher
number of components can result in the Trader
becoming a bottleneck. A possible solution would be to
implement the information pool in distributed shared
memory.

5. Change Frequency. The framework is designed for
components that will change their features with a fre­
quency of minutes and hours, rather than seconds and
milliseconds. Therefore the proposed support for mon­
itoring and rebinding as a result of a change is ad­
equate. The support for applications requiring finer
grained updates (with a frequency of seconds and mil­
liseconds) would not be viable. This can be improved
by enabling direct access to the Tree components for
trusted Monitors and Updaters.

7 Conclusion

New resource managers are required to allow dynamic re­
source allocation for mobile systems. The tuplespace-based
MAGNET architecture, described in this paper, provides this

kind of support. In particular, we focussed on MAGNET's
support for dynamic trading, extensibility, dynamic rebind­
ing, resource monitoring and reconfigurability. Our research
on MAGNET has demonstrated the feasibility of dynamic re­
source management which further provides negotiation of
services, user-customization of allocation strategies, and run­
time adaptation to changes in the computing environment.

References

[1] L. Cardelli. Foundations for Wide-Area Systems. Paolo
Ciancarini, Alessandro Fantechi and Roberto Gorrieri,
Editors. Formal Methods for Open Object-Based Dis­
tributed Systems, IFIP TC6/WG6.l Third International
Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), February 15-18, 1999,
Florence, Italy. pages 349-349, Kluwer Academic Publish­
ers, 1999.

[2] J. S. Crane. Dynamic Binding for Distributed Systems.
PhD thesis, University of London, Department of Com­
puting, Imperial College of Science, Technology and
Medicine, 180 Queen's Gate, London SW7 2BZ, UK,
1997.

[3) G. S. Blair, G. Coulson, N. Davies, P. Robin, T. Fitz­ patrick.
Adaptive Middleware for Mobile Multimedia Ap­ plications.
In Proceedings of the 7th International Work­ shop on
Network and Operating System Support for Digi-

Figure 4: Operation LEAVE

ta! Audio and Video (NOSSDAV '97), St. Louis, Ml, USA,
May 1997.

[4) D. R. Engler, M. F. Kaashoek, J. W. O'Toole Jr. Exok­ emel:
An Operating System Architecture for Application­ Level
Resource Management. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, pages 251-
266, Colorado, USA, December 1995.

[5) D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Sys­ tems,
7(1), pages 80-112, January 1985.

[6] V. Issarny, C. Bidan, T. Saridakis. Achieving Middleware
Customization in a Configuration-Based Development. In
Proceedings of the 4th International Conference on Con­
figurable Distributed Systems, pages 207-214, Annapolis,
Maryland, USA, May 1998.

[7) P. Kostkova. MAGNET: Dynamic Resource Manage­ ment
Architecture. PhD Thesis. Department of Comput­ ing, City
University, London. March 1999.

[8) Microsoft Corporation.
DCOM Technical Overview. Electronic document avail­
able at http://www.microsoft.com/com/dcom.asp

[9) The Object Management Group, OMG Headquarters, 492
Old Connecticut Path, Framington, MA 01701, USA. The
Common Object Request Broker: Architecture and
Specification, July 1995. Version 2.0.

[10) R. Raman, M. Livny, M. Solomon. Matchmaking: Dis­
tributed Resource Management for High Throughput Com­
puting. In Proceedings of the 7th IEEE International
Symposium on High Performance Distributed Comput­ ing,
Chicago, IL, USA, July 1998.

[11) D. Reed, R. Fairbairns. Nemesis: the kernel. Overview.
University of Cambridge, Computer Laboratory. Cam­
bridge, UK, May 1997.

[12) J. Waldo. Jini Architecture Overview. Electronic docu­
ment avail­
able at http://www.javasoft.com/products/jini/ whitepa­
pers/architectureoverview.pdf, Sun Microsystems, Inc.,
1998.

http://www.microsoft.com/com/dcom.asp
http://www.javasoft.com/products/jini/

