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In the business climate an increasing number of people are expected to perform complex work-related tasks 
while on the move. In some of these systems, the movement of the mobile user to different physical 
locations results in the volatility of location-dependent information. For example the answer to the 
question, ‘where is the nearest train station?’ changes as a mobile user roams around its environment. 
Therefore, a key requirement of weakly connected mobile users (that is those dialling-in over a mobile 
network) is the availability of dynamically updated location-dependent information and the support for 
runtime adaptability to reflect the frequent changes in the physical environment.  
 
Therefore, the need for dedicated support for mobile applications has become important since working 
while travelling is becoming more commonplace. In order to meet the needs of this type of dynamic mobile 
application, a software component enabling dynamic runtime matching of services to requests is needed. 
That is, when a request is made for data or a service, a third party software component must match the 
request to the services. This software component is known as a Trader. The unique thing about a mobile 
system’s Trader is that it must monitor the environment to detect changes so that it can adapt the system 
accordingly.  
 
Only recently have improvements in hardware support for wireless computing enabled mobile application 
requirements to be fulfilled. Key advances in hardware technologies allowing the current boom in mobile 
computing include: improvements in reliability, speed and coverage of wireless communication, decreasing 
hardware size/weight, the invention of the colour LCD display, the track-ball and touch-pads, combined 
with rapid improvements in mobile telephony. The timely combination of these achievements has enabled 
the widespread use of PDAs – small lightweight transportable computers, designed for specific mobile 
applications running dedicated software.  
 
In this chapter, we focus on the problem of availability of dynamically updated location-aware information, 
rather than “classical” mobile problems dealing with the fluctuation in quality of a wireless communication 
network, or changing degree of connectivity. Therefore, we define a ‘mobile application’ as a distributed 
application run by mobile users (e.g., users with portables working while in transit, tourists while 
sightseeing, taxi-drivers etc.) processing location-dependent information (e.g., a local resource, local 'data', 
or location-based request) in a changing environment. 
 
This chapter addresses the design of an adaptive architecture facilitated by dynamic trading. This trading 
system is called MAGNET and is designed to fulfil the requirements of users in frequently-changing 
environments. In particular, we present a framework for user-customized dynamic trading of services 
supporting runtime adaptation, and quality of service-based resource description. MAGNET introduces a 
different approach to information storage and matching to better meet the demands of mobile applications’ 
adaptability. MAGNET is based on a shared information pool that stores application requests and available 
services. It permits operations to allow information insertion and their withdrawal which can be user-
customized and/or location-aware. This we call the matching function.  In addition, it supports the 



monitoring of information placed in the pool, and dynamic adaptation to changes detected in the 
environment. 
 
In the next section, we discuss our motivations, and define the requirements for a dynamic information-
sharing infrastructure. Section 2 presents a simple scenario to better illustrate the needs of mobile users. 
Also, here we provide an introduction into trading terminology and present existing commercial and 
academic architectures that support trading and adaptability.  In Section 3 we will introduce the MAGNET 
model. Section 4 describes the support for information monitoring in greater depth, while section 5 
demonstrates the support for adaptability in a mobile environment. Next, in section 6 we discuss the use of 
MAGNET on an example of adaptable resource allocation. Section  7 discusses the project’s current status 
and the final section, 8, contains concluding remarks. 
 

1 MOTIVATION 
In the last decade we have witnessed significant technological advances in the areas of wireless 
communication and hardware component design that have fundamentally changed the computing 
environment. New software engineering techniques such as object-orientation and component-based 
computing have resulted in more structurally diverse software architectures, where component and system 
characteristics are frequently changing. For example, the availability of resources can change as new 
software or hardware enters or leaves the system. Also, the degree of connectivity (to the network) is 
continuously fluctuating. Furthermore, as mobile computers and laptops can join and leave computing 
environments (e.g., the local workplace or a remote office that the person is visiting) the hardware 
configuration effectively changes. As a result of these changes, a new class of application has emerged 
requiring a support for dynamic information exchange, trading and runtime adaptability. 

1.1 Characteristics of Frequently-Changing Environments 
Traditionally, computers use rather simplistic resource allocation strategies as the amount of change in the 
environment is relatively little. That is, resources and their requests are bound for the duration of the 
processing and rarely un-bound and re-bound to new services. Further, resource allocation in mobile 
computing has to deal with restricted hard disk space and limited battery life, in addition to the fluctuation 
in availability and other characteristics of traditional system resources (such as length of printer queue, 
processor load, network throughput, disk usage). However, these environments are characterised by their 
course-grained frequency of environmental change, that is frequency of change is in terms of minutes and 
hours rather that seconds and milliseconds. 
 
Also, computing environments are no longer composed of monolithic code but are becoming finer-grained 
(for example, a word processor consists of independent components: editor, spell-checker, viewer, etc.). 
The structure of the computing environment, reflecting this trend toward ‘componentisation’ (Messer et. al. 
1996, Law et. al. 2000), enables applications to tailor the selection and configuration of components, thus 
allowing composition of customized computing environments. This is essentially what drives the 
adaptation. 
 

1.2 Characteristics of Dynamic Location-aware Applications 
Besides classical resource allocation requests, there are other applications requiring dynamic resource 
management which rely on the availability of dynamically-updated location and time-dependent 
information. They include, for example, tourists running guide-like sightseeing information software on 
PDAs (Distributed Multimedia Group), taxi-drivers using PDAs to navigate to the next destination, or 
portable mobile users requiring local resources while in transit and in different company offices  (e.g., a 
Web client running on a portable connected by a mobile phone while on the move needs to switch to the 
fast connection when the portable is plugged into the network in an office). Dynamic resource management 
also makes it feasible for mobile or non-mobile systems to provide continuous operation, which requires 
support for hardware upgrades and on-line software updates without the system shutting down. 
 



Owing to recent significant improvements in wireless communication, weakly-connected applications no 
longer suffer from unreliability in the communication infrastructure (e.g., higher error-rate, frequent 
disconnections, limited coverage) (Forman et. al. 1994). In addition, as mobile users require location-
dependent information it is essential that they be provided with local information (‘local’ meaning the 
user’s current location). The high volatility of the local information encountered by mobile users 
necessitates dedicated support tailored to their new requirements and needs.  
 
In addition, many Internet applications require type-free data exchange among different platforms via a 
common middleware infrastructure that cannot be satisfied by traditional database engines, as these offer 
data formats that are too restrictive. This is because they are typically based on relational (or object data 
modelling) and relational algebra-based query processing and typically do not provide any means for 
location and time awareness nor adaptation to changes in these characteristics. 
 

1.3 Requirements for an Adaptive Trading Architecture 
To reiterate, as a result of the combination of the above factors, a new type of application has emerged 
requiring adaptability to ever-changing conditions, which can be addressed at four key levels: dynamic 
trading, extensibility, dynamic information monitoring, mobile adaptability an scalability. These are 
discussed below in more detail. 
 
Dynamic Trading  
The primary role of the service manager for dynamic and mobile applications is to enable extensible 
dynamic service trading. In contrast to requesting services directly by name  (e.g., I want ‘printer P’), they 
should be allocated by the type of service they offer, such as a printer, a file system, an available taxi, etc. 
This implies communication between system components that did not know their identity a priori. 
Therefore, the system must provide a dedicated component, Trader, which collects information on services, 
and dynamically matches requests against demands. By doing this it can establish a communication 
between components, which it did not need to know their identity in advance. For example, a user in a 
mobile environment does not request a pre-configured printer P, rather it asks for a device that can offer 
printing functionality, and the Trader finds the most convenient match. At an application level, a customer 
calling for a taxi does not typically request a specific taxi by its number plate, rather they request the 
nearest available cab to their current location. 
 
Extensibility  
To achieve full generality, the Trader should not constrain the format or the semantics of information on 
services and should allow the user to customize the matching process. Therefore, applications can 
automatically adapt their behaviour to changes in the environment, and can therefore dynamically extend 
system functionality. This permits extensibility in two areas: firstly, existing services and data formats can 
be extended (new resources, services and user requests can be defined at run-time).  That is, a new type of 
hardware device could be dynamically added an existing system, or new types of applications could be 
implemented in the same trading framework.  
Secondly, the matching process, performed by the Trader, can also be dynamically redefined (that is, 
service allocation strategies can be user-customized). Therefore, users can dynamically define their 
preferences for matching, such as – the nearest colour printer, however if, when this request was issued, the 
colour  printer is currently busy, an available black and white printer would be accepted. This switch would 
have been predefined. 
 
In addition, the framework should be designed not only for computer system resource management 
purposes. It should enable potential utilization for any kind of application that requires dynamic trading of 
temporally important information, such as a tourist guide sightseeing system, dynamic taxi navigation 
system, etc. 
 
Dynamic Information Monitoring 
To provide up-to-date information on changing system components, a mechanism for the monitoring of 
selected services is required. This could be automated monitoring or manual update of information in the 



Trader. A manual alteration is a sequence of operations performed by the components themselves. 
Automated update is carried out by monitors, independent of the actual components. For example, in order 
to keep information on a printer’s availability in the Trader up to date, every time the printer’s queue is 
changed, the Trader is updated accordingly. This could be performed by the printer itself, or by a third-
party monitor.  
 
Mobile Adaptability 
Typical computing environments are open distributed systems consisting of communicating components – 
clients and servers that can join and leave without impairing system’s continuity. As the key role of the 
system is to fulfil requirements of mobile users accessing local resources in various offices, it must support 
resource configuration and reconfiguration as a result of the frequent arrival and departure of system 
components. That is, the Trader must allow a mobile user to automatically adapt their laptop configuration 
to the  hardware configuration of the office that they have just entered.  
 
To summarize, the primary role of such framework is to enable user-customized trading for services and 
allow adaptation to changing environments by supporting constant monitoring, mobile adaptability and 
scalability. 
 

2 TRADING AND ADAPTABILITY 
In this section we will illustrate a typical adaptation situation on a simple scenario. Then, we will define 
terms for trading in distributed systems and finally, we will briefly describe existing trading and adapting 
architectures and look closer at their support for runtime mobile adaptability and extensibility. 

2.1 Scenario 
The recent trend is that more and more employees have to perform work-related tasks while on the move 
(e.g., on plane, on train) and at home, in addition to working in their offices. Mobile computers (laptops, 
Palm pilots), allowing this everyday mobility, are often replacing traditional PCs and becoming the only 
computer many people tend to use.  
 
A typical everyday situation of such a particular salesperson is to work on train on the way to a client, then 
at the client’s office he may give a presentation or perform other business-related tasks, then he travels to 
his own office, and work the rest of a day there. Finally, in the evening, he may prepare for his next day 
duties at home. Each situation requires a dynamic adaptation to allow such user to perform all essential 
tasks at different environments and to reconfigure to the local hardware settings. 
 
Firstly, on train to a client, the user works disconnected from the network or can only rely on mobile 
wireless communication, then at a client office he needs to adapt to use local resources, e.g., printer, 
projector, etc. and utilize the local LAN or/and modem connection. At work, he can use all his local 
resources (e.g., file system, etc.) and can utilize full connectivity via the local LAN. At home, he needs to 
adapt to his home hardware configuration and can connect only via a modem link. 
  
For simplicity, we will illustrate adaptation of the system to changes in connectivity on two typical 
applications – a word-processor and a Web client. We will further elaborate on this example in section 6.  
 
In order to better illustrate the support for adaptability, the user needs to adapt to the following three 
configurations during the day:  

1. on train (disconnected from the network) –  he has  finished his presentation and needs to print out 
the handouts. Also, he needs to check up-to-date information on the Internet through WWW. 
Neither of the requests can be fulfilled, as the network is not available. 

2. preparing for a presentation at client’s office (weakly connected via modem) –  here the user can 
download the data over the Internet, however, printing handouts is not desirable. 



3. giving a presentation at client’s lecture theatre (fully connected via LAN adapter) – here he can 
plug his laptop in the network and take the advantage of the fast connection to download the data 
over the Internet and to print out the handouts.  

  

2.2 MAGNET: Trading Framework 
Here we briefly introduce the basic trading elements to clarify the concept undertaken in this work. The 
model is based on the RM-ODP architecture (ISO X.930 1998, ISO Ed 6.4.19 1998), which was tailored to 
our approach. 
 
Components  
Components are basic functional units of distributed systems. They could represent a wide range of system 
elements, such as hardware resources, abstraction servers (such as file systems), and user-level programs. 
They can also represent any objects in terms of object-oriented languages or any component existing in a 
applications’ architecture.  
 
Service Interface 
Components act as black boxes and their functional behaviour is fully described by a service interface that 
defines services provided to, and services required from other components. Components requiring a service 
are called clients; components offering a service are servers. There terms are defined for a particular 
service-interface pair, therefore, a particular component can concurrently play both roles in different 
interactions. Server-client interaction is defined as one-to-many, that is, one server can communicate with 
many clients over the same interface.  
 
Service Definitions 
In addition to the name of the service (called interface reference, e.g., port LPT 1), services may also 
describe a type of service they offer (e.g., printer) and additional characteristics (e.g., colour, HP deskjet 
940c, speed 20 pages per minute).  A combination of all these parameters is called a service definition. 
 
Component Binding 
In order to enable an interaction between distributed components, a binding between their interfaces has to 
be established. This establishes the connection between the client and server to allow an interaction 
between them. 
 
The Trader 
Communication between components in open systems (i.e., one whereby a component can dynamically join 
or leave the system) requires a third-party component to collect service definitions defined at runtime, 
perform a matching process and establish the resultant client-server binding. 
 
A Matching Process 
The process of finding corresponding requests (expressed in terms of service definitions) performed by the 
Trader is called a matching process. If service definitions are expressed exactly, the Trader finds an exact 
match. However, matching of server characteristics include additional constrains, such as quality of service 
definitions, then it requires parameterisation, defining preferences of particular user. As these are 
impossible to define for all users a priori, the Trader supports user-customisation of the matching process 
which allows system extensibility and dynamic adaptability. 
 
Example 
Figure 1 illustrates binding between three components – the Trader, Client and Server. Darwin, an 
architecture-description language (Magee et. al. 1995), provides a convenient formalism for defining 
bindings in distributed systems shown in the figure.  A rectangle represents a component, a circle stands for 
a service interface. A service that is provided is represented by a filled circle, a required service by an 
empty circle. A line between filled and empty circles represent the binding implemented by a particular 
communication channel. In Figure 1, Server and Client find corresponding interfaces for the resultant 
communication using the Trader. Numbers by the lines represent phases in which relevant bindings must be 



established. Firstly, Server and Client export their service definitions by binding to the Trader (phase 1). 
These two steps can be performed in any order. Secondly, when the matching process discovers the 
required interface reference, the resultant end-to-end binding between Client and Server can be established 
(phase 2). 
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Figure 1: Binding between Server and Client established by the Trader 

 
Federations 
In scalable distributed systems Traders must be networked in order to cooperate on providing remote 
information. The framework should enable a global trading system that any Trader may dynamically join or 
leave. As components often interact on a local scale (such as resource managers within a particular 
domain), the Trader should primarily support a local trading scheme. However, inter-Trader 
communication must be also enabled to allow service export for components beyond the current local 
domain. Trader domains with domain-specific security and propagation information, internetworking with 
other Trader domains are called federations.  Passing service definitions across the federation boundary, 
consequently, must be handled by appropriate communication channel reflecting the “beyond-federation” 
distribution and security issues (ISO X.930 1998). In Figure 2 a trading system consisting of two 
federations is illustrated. 
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Figure 2: A Trading system consisting of two Federations 

 

2.3 Existing Trading Architectures 
In recent years, dynamic issues such as providing greater flexibility, supporting dynamic runtime 
adaptation or designing loosely coupled communication schemes have been successfully addressed by 
many research projects and commercial technologies. However, these architectures, discussed above, 
typically target one issue, rather than providing a unified architecture and therefore are unable to support 
the set of requirements of mobile applications.  
 
There are many successful projects providing support for dynamic trading and adaptation: tuplespace-based 
architectures (such as Linda (Gerlernter 1985), Limbo (Blair et. al. 1997), Jini (Waldo 1998), FT-Linda 
(Guedes et. al. 1995), T Spaces (Web Technologies IBM), Osprey (Bolton et. al. 1993), etc.), and others 
(such as, Matchmaking (Raman et. al. 1998), Aster (Issarny et. al. 1998)) enable more flexible component 
coupling based on a parameter description.  
 
Recall that MAGNET consists of an information pool that allows requests and services to be advertised. 
This has been implemented using a data structure called a tuplespace. The original tuplespace was designed 
by D. Gelernter at Yale University, with a set of operations (called Linda) enabling tuple manipulation 
(Gerlernter 1985), Limbo (Blair et. al. 1997) is an example of a distributed system utilizing the tuplespace 
paradigm in a mobile environment. This framework extends the basic tuplespace architecture to express 
application-specific requirements, e.g., security. Further, JavaSpaces provide a base for Jini technology 



(Waldo 1998) enabling a configuration mechanism for devices to join and leave the network. However, a 
lookup service provides dynamic binding between clients and servers but is rather restrictive. That is, like 
Limbo, their types or characteristics cannot describe services and user-customisation is not supported. 
Consequently, this cannot be used for mobile computing, as the roaming device will not necessarily know 
the service names a priori. 
 
The communication framework FT-Linda (Guedes et. al. 1995) also uses tuplespace to provide fault 
tolerance; therefore it also does not support the customisation and dynamic flexibility required by mobile 
systems. Likewise, a Linda-based technology, called T Spaces (Web Technologies IBM), enables 
communication between applications and devices in a network of heterogeneous computers and operating 
systems. The architecture presents a rather universal high-level framework; it does not deal with support for 
particular requirements of applications in a mobile environment. Furthermore, Osprey (Bolton et. al. 1993) 
also based on the tuplespace paradigm, provides resource allocation. It enables more flexibility by adding 
semantics into the tuple format. However like most of the systems discussed above, it does not address 
issues of user-customized matching and extensibility. 
 
Architectures providing service matching based on a special ‘matching’ component, such as Matchmaking 
(Raman et. al. 1998) (the Matchmaker Component), or Aster (Issarny et. al. 1998) (the Aster Selector) also 
perform dynamic service coupling. In contrast to MAGNET, they rely on a ‘knowledgeable’ component 
that decides on component coupling, but can only perform non-customizable matching. In addition, Limbo 
and Osprey implement tuple-typing in contrast to the universality of our approach. 
 
In addition, similar trends towards a greater degree of flexibility, user customisation and runtime 
adaptability have been seen at the area of resource management, at operating systems level.  Although 
research results have proven that this is a step in the right direction, the majority of existing systems (except 
Kea (Veitch et. al. 1998) and DEIMOS (Clarke et. al. 1998)) still lack the support for dynamic 
reconfiguration, enabling adaptation to changing conditions. In addition, issues such as QoS-based resource 
allocation enabling application participation, parameterised resource selection (as opposed to name-based 
allocation) and issues of scalability are still to be addressed.  Therefore they are very limited in that they 
essentially do not provide a framework for an adaptable architecture. 
 
Next, we will present MAGNET dynamic trading architecture, which satisfies the needs for adaptability of 
applications in dynamic frequently changing environments.. As it has been designed as a dynamic resource 
architecture that is not restricted to resource allocation alone, it can be used for trading objects (such as 
CORBA objects (The Object Management Group), DCOM objects (Microsoft Corp.) JavaBeans etc). 
These platforms such as CORBA, DCOM, etc. would then be able to implement an adaptive architecture at 
an ‘object level’ 

3 THE MAGNET ARCHITECTURE 
MAGNET is a high-level framework enabling applications in mobile environments to match location-
dependent information on services to requests. The full description of the architecture and its usage in 
dynamic resource management and other application areas could be found in (Kostkova 1999). 
 
The key component of the framework is a Trader that collects information on services, records and all 
application data and dynamically matches requests against demands. It achieves this by essentially 
performing a user-customized match to couple service offers to user demands. The Trader is based on a 
modified tuplespace paradigm and the data are kept in a form of tuples. 
 
As one of the key features of the tuplespace is not to constrain the format or the semantics of stored 
information, but to allow type-free dynamically-defined data to be stored and searched by a user-
customized matching process. This provides extensibility in terms of enabling new records, service requests 
and actual services to be dynamically generated but also in terms of customizing the matching process 
itself. That is, different mobile applications, based on completely different data semantics, could share the 
same Trader to match their tuples. 
 



Further, to support runtime adaptation and system reconfiguration dynamic rebinding is required. That is, 
the old binding is dropped and a new binding is established in order to better meet application 
requirements. This may be as a result of client, server or a third party initiation. For example, a mobile 
client currently using its local disk may wish to join a new, more stable environment in an office to upload 
data. Therefore it will unbind from its current disk and rebind to the office disk file-system. Information on 
client demands and service capabilities is maintained either manually (i.e., carried out by the components 
themselves) or automatically  (by a monitoring process). 
 
The stateless nature of tuples saves the pool from having to provide a state-maintaining scheme, for 
example, check-pointing or recovery procedures. It is assumed that components are fully responsible to 
maintain its consistency and recover from possible failures which simplifies semantics of the Trader. In 
addition, stateless nature of tuples improves the generality and reliability of the system. If state is required, 
it can be incorporated as a parameter of the tuples. Decoupling the server from the client (servers produce 
tuples of interest to any client) permits communication to proceed anonymously. Consequently, this feature 
enables free-naming – communication can be established without previous knowledge of the other party’s 
identity. 

3.1 The Trader  
The Trader is the key component in the MAGNET architecture. The Trader accesses a shared data 
repository available to all applications and objects represented by components. We call this data structure 
an information pool, its structure is similar to the tuplespace (The information pool is actually a tuplespace. 
However, the term “tuplespace” is often associated with the Linda distributed programming language 
(Gerlernter 1985), therefore, we decided to call our data structure ‘information pool’ to avoid confusion as 
we do not limited ourselves only to Linda operations). 
 
 The Trader consists of three distinctive elements:  

1. The information pool (a tuplespace-like data structure),  
2. The Trader operations on tuples for their manipulation, and  
3. The tuple matching function (an operation providing the actual matching).  

 
Figure 3 illustrates the structure of the Trader, and its three components.  
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Figure 3: The Trader Structure 



 

3.2 The Information Pool and the Tuples 
 
The information pool is a distributed data structure accessible by all components using MAGNET. Tuples 
can be inserted into, or withdrawn from, the tuplespace by a set of clearly defined operations. Tuples 
describing data of mobile components often contain additional information, such as interface references for 
accessing the component. These are all expressed as tuple elements.  
 
Therefore, the tuple distinguishes between the number of all tuple elements n and the number of matching 
elements m. This extension, which we have incorporated into traditional tuple matching, enables the 
restriction of the matching process to matching the first m elements.  
 
A tuple T is a set of elements  T=(n, m, p1,  p2, …,p n), n represents the number of tuple elements and m is the 
number of “matchable” tuple elements pi are the values of tuple elements i.e., the actual parameters. 
 
For example, to describe a component book Romeo and Juliet by William Shakespeare we may use the 
following server tuple: 

A = (6, 5, 12345, William, Shakespeare, Romeo and Juliet, Penguin, ISBN 654321) 
 
That is 6 tuple elements, 5 of which can be matched: 12345 (Author ID), William, Shakespeare, Romeo and 
Juliet, Penguin ( publisher).  ISBN is a reference to the book (service) described by this tuple. Naming for 
interface references is derived from the naming scheme used in the computing or application environment, 
e.g., ISBN, library identification. 
 
An equivalent client tuple looking up Romeo and Juliet would be: 

B = (6, 5, *, William, Shakespeare, Romeo and Juliet, *, reader ID) 
 
requesting this book published by any publisher (* sign) and ignoring the Author ID. This tuple definition 
incorporates advanced operators, such as *. These are defined in details in (Kostkova 1999). 

3.3 The Matching Function 
By matching, we mean an equality of tuple “matching” elements, or a user-defined “match” enabling 
quality of service to be taken into account. (However, this is beyond the scope of this chapter, further 
details can be found in (Kostkova 1999). The remaining elements, “non-matching”, containing additional 
information about the service, such as an interface reference, are not part of the matching process. In this 
way we have extended the traditional matching, as defined for Linda operations (Gerlernter 1985). 
 
As incorporating non-matching values into tuples is optional, and may differ between a client and a server-
tuple, the equality of tuple size is not a required matching condition. Above all, the user-customized 
matching function, enabling extra flexibility and extensibility of the framework, is a powerful mechanism 
needed in dynamic frequently-changing environments. This is essentially providing the adaptability. 

3.4 The Trader Operations  
The information pool has defined operations for manipulation with tuples, such as insert and delete.  
MAGNET’s Trader includes the operations: Bind,  Advert, and WithdrawC, WithdrawS. These are 
described below in more detail. 
 
Operation Bind (T), T is a client-tuple. The Trader searches the information pool for a complementary 
matching tuple. If such a tuple is found, T is returned to the server component (which inserted the matching 
tuple) without being withdrawn from the pool. If no such tuple exists, the operation results in inserting 
tuple T into the information pool until a match becomes available and the request is fulfilled. 
 



Operation Advert (T), T is a server-tuple, which is inserted into the information pool. The trader also 
searches the pool for all complementary matching tuples. If such tuples are found, they are removed from 
the pool, and returned to the calling server component. 
 
Operation WithdrawC (T), where T is a client-tuple, results in removing tuple T from the information 
pool; while operation WithdrawS (T), where T is a server-tuple, results in removing tuple T from the 
information pool.  
 

3.5 Components for the MAGNET Architecture 
Figure 4 illustrates the low-level structure of the MAGNET architecture, including components 
implementing the trading functionality. The system consists of four classes of component: the Trader, 
Client, Server and Tree (specific components implementing the matching process.) There is only a single 
instance of the Trader component per federation in contrast to multiple instances of Client, Server and Tree. 
In addition there are two types of subcomponent performing dedicated functions: these are a pair of Binders 
(the Client-Binder and the Server-Binder) present in all Clients and Servers; and the GlueFactory included 
in all Trees. The GlueFactory hands over a client tuple to the Server to initialise the establishment of the 
binding carried out by the Binders. Therefore, Binders in cooperation with the GlueFactory establish the 
resultant client-server binding.  
 
In order to allow the framework to scale, the trader information pool is distributed into federations. Full 
details of the architecture can be found in (Kostkova 1999, Kostkova et. al. 1999, Kostkova et. al. 2000). 
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Figure 4: MAGNET’s architecture 

 



4 DYNAMIC INFORMATION MONITORING 
In order to enable adaptation to changes in system characteristics, service definitions, which are placed in 
the Trader, must be kept up-to-date. Therefore, MAGNET must monitor resource characteristics.  In this 
section, we will describe the semantics of these two components and the actual monitoring process. 

4.1 Components for Monitoring 
As the MAGNET framework distinguishes between the roles of the client and server, it is necessary to 
approach their monitoring differently. Therefore, MAGNET has two monitoring components providing this 
functionality – the Monitor and the Updater – both application-level components are attached to server or 
client respectively.  They are created together with the components they serve, and are instructed by them 
to provide component-tailored functionality.  A system administrator, not using MAGNET, establishes 
server-Monitor and client-Updater interactions statically in advance. Here we discuss their interface to 
MAGNET and expected functionality. The components are illustrated in Figure 5. 

4.1.1 The Monitor 
 
The task of the Monitor component is to observe the changing characteristics of the server it is attached to, 
and keep the server tuple data up-to-date. Tight cooperation with the server enables the Monitor to be 
informed about current service characteristics, so that it can periodically update relevant tuples in the pool 
(by removing them and replacing with updated ones).  
 
The granularity of this operation (how often it is performed) depends on the server strategy, in particular on 
the actual feature being updated, and on the overall character of an application (for example, real-time 
applications rely on finer-grained updates).  Also, it depends on the ‘out-of-dateness’ accepted (how much 
can a tuple in the pool differ from current characteristics).  However, in accordance with our assumptions, 
we expect the monitoring to be performed with frequency of minutes, rather than seconds and milliseconds.  
 
An example update would be the printer tuple that represents a printer that was moderately used and which 
becomes heavily used. This is useful for a client that requires a printout rather soon. 
 
Technically, the Monitor supervising service provision, keeps performing a sequence of operations; 
WithdrawS and Advert respectively. From the Trader’s point of view, monitoring is performed 
transparently, indistinguishable from a sequence of operations WithdrawS  and Advert performed by the 
server itself. 

4.1.2 The Updater 
 
As there are not many clients requiring rebinding after having found a requested service, the monitoring of 
client requirements is less crucial. Also, client-tuples do not reside in the pool (if a match was found), and 
therefore there is no need to keep them up-to-date. However, clients in systems with frequently changing 
characteristics may rely on a guaranteed level of service (e.g., network throughput). For those, adaptation to 
change in conditions is unavoidable (e.g., switching to lower-quality audio and video, etc.) For these 
reasons, the framework must also provide equivalent support for monitoring clients. 
 
The Updater is a dedicated component instructed by the client it is attached to. It searches the pool for a 
tuple meeting the client’s current requirements more precisely, or looks for a different tuple if the client’s 
requirements have changed (e.g., mobile users on the move need to update a requirement for the nearest 
server, etc.) In this case, the initiative is on the Updater component, in contrast to the Monitor that acts only 
when invoked by the server. 
 
The monitoring of the information pool is not the only function of the Updater. As changes might result in 
rebinding the client to a new server, the primary functionality of the Updater is to assist in this third party 



rebinding. For example a client might want access to the nearest network cell, but as the cell’s bandwidth 
lowers the client may wish to unbind from that cell and move to a less congested one. 
 
Technically, the Updater calls the operation Bind on a tuple with higher requirements or performs 
WithdrawC and Bind operations when the requirements of the client have changed. The bind-tuple, inserted 
by the Updater, waits in the pool until it finds a match. 
 
According to the Updater protocol and the ‘stage’ of client interaction, the Updater decides if rebinding is 
beneficial (rebinding of a client close to finishing might not be beneficial, taking the overhead of the 
rebinding process into account). Therefore, the new server tuple can be ignored, or client rebinding can be 
performed.  Details of the rebinding issues are beyond the scope of this chapter but can be found in 
(Kostkova 1999). 
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Figure 5: The architecture with the Monitor and the Updater 

 

5  MOBILE ADAPTABILITY  
The majority of computing systems are based on scalable, connected ‘domain-size’ units – such as the 
Internet with its domains, cellular phone network divided into cells, etc. Likewise MAGNET, designed to 
support the topology of existing computing systems, consists of connected domain-like units – federations, 
discussed in section  2.2 
 



In this section, we describe dynamic reconfiguration enabling computers to join and leave the system at 
runtime and will discuss adaptability to changes in system configuration. Adapting federations to new 
configurations, such as when a mobile client with a laptop connects to office resources, requires a join of  
the mobile federation and the office-based one. Also, MAGNET must support the interconnection of 
Traders that can enable inter-federation communication – that is the laptop applications can user the 
resources in the office-based federation. 
 

5.1 Dynamic Adaptation  
 
This section describes how clients temporarily join a local federation where they arrive. This operation 
needs a special type of support, as users need not know the identity of the Trader they want to connect to. 
MAGNET provides this support by operations Join and Leave. The semantics of these operations is 
targeted to users joining a local site temporarily (e.g., mobile users) in order to use its services (such as 
printer, scanner, file system, etc.). This presumption leads into three design decisions 

• operations Join and Leave cannot be transparent (therefore, each portable client waiting for a 
resource has got the right to decide whether it is able to accept a resource from an office-based  
site. This is necessary to avoid mis-allocations; such as a disk space allocated in the office-based 
computer will be useless when the portable is disconnected). 

• Consequently, clients and servers do not act symmetrically – portable clients might take advantage 
of the portable being temporarily on-line by using the office-based services (this is the main goal 
of the operation), while portable servers will not offer their services to an office-based clients for 
two reasons.  Firstly, the connection is assumed to be temporary, and secondly, the portable 
computer resources are typically very limited to be offered to other clients. Therefore, the 
operation Join is designed as ‘one-way’ – the office-based resources are offered to the portable 
clients, but not vice-versa. 

• As client components are responsible for deciding on the usage of office-based resources, they are 
also responsible for a maintaining consistent state when the portable is disconnected from the 
office-based site. Consequently, every portable component using the office-based Trader is 
responsible for withdrawing all inserted tuples in order to leave the office-based information pool 
up-to-date and consistent. 

 
We assume that the communication channel can be established between the portable computer and the 
office-based domain in the same way as within a single federation. It is the responsibility of the portable 
applications and the office-based site administrator to ensure that the inter-federation interconnections can 
be physically achieved. As the join is only temporary, full Trader connection necessitating the merging of 
information pools is not required. 
 
Now we define operations Join and Leave – we assume two local trading systems, a portable and an office-
based domain, each consisting of one Trader. 
 

5.1.1 Trader Connection 
In order to perform the operation Join, an identification of the local Trader is not necessary as it is not 
known in advance which site the portable will be plugged into. 
 
The Trader component can also participate in resource management provided by MAGNET. In order to be 
able to take part in dynamic binding, it must contain the Trader-Binder subcomponent (although, its 
functionality slightly differs from traditional Binders). To perform the Join operation, the office-based 
Trader offers its information pool to the portable Trader by calling an operation Advert inserting a tuple 
T1=(2,1,join,bglue)  into the portable information pool. The only matching element in this specific tuple is 
the third element, “join” (according to the definition of the matching process). As Traders are being 
connected, this primary binding is established statically by a system administrator (human or automated, 
such as support for plug&play Ethernet cards). This does not use MAGNET as the Traders cannot be used 
for connecting themselves together.  



 

5.1.2 Operation Join 
A portable client requesting a service that might be fulfilled by office-based site servers when the portable 
is temporarily connected inserts three bind tuples into the portable pool. These are: the classical bind tuple 
C1 defining the request (such as a printer request), the second tuple of the form: C2=(n,1,join,C1) 
encapsulating the actual tuple C1  tuple and having one matching element, keyword “join”, and the third 
tuple C3=(n,1,leave,C1)  which will be used for disconnection, again, this one has only one matching 
element, the keyword “leave”. 
 
When the portable is connected to an office-based domain by inserting the office-based Trader tuple 
T1=(2,1,join,bglue)  into the portable information pool by the system administrator, and a matching 
between T1  and C2  can be achieved. Bglue, the office-based Trader’s interface reference, is used to 
connect to the Trader-Binder as illustrated in Figure 6. 
 
As tuple matching between T1 and C2 does not differ from any other client-server tuple matching, the 
operation is performed as usual (the particular GlueFactory binds to the office-based Trader and passes C2 
tuple to the office-based Trader-Binder). Nevertheless, the operational semantics of the Trade-Binder 
differs: instead of establishing a binding between the office-based Trader and the client, it retrieves the 
tuple C1 (the actual client request) from the received tuple C2 and reinserts it into its information pool by 
calling operation Bind. This operation features a recursion. The client tuple is handled as an ordinary local 
tuple in the office-based information pool – if a matching server-tuple is available, an inter-federation 
binding is established.  

 

Figure 6 illustrates operation Join, for reasons of simplicity, we omit the Tree components.  
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Figure 6: Operation Join 

 

5.1.3 Trader Disconnection 
Disconnecting the portable from the office-based site must return the system to a consistent state. Firstly, 
the ‘connecting’ office-based Trader’s tuple T1 is withdrawn from the portable’s information pool by 
operation WithdrawS called by the administrator. Client tuples waiting to be served in the office-based 
information pool must be also removed. As the local Trader cannot distinguish between an office-based 
client-tuple and a portable client-tuple, the client components themselves must perform the withdrawal. In 
order to inform them that their tuples should be removed from the office-based pool, another local Trader 
advert-tuple is inserted into the portable information pool: T2=(2,1,leave,bglue2). 

5.1.4 Operation Leave 
Inserted T2 tuple matches with waiting client tuple C3=(n,1,leave,C1) which is passed to the office-based 
Trader-Binder over an binding established between particular Glue Factory and bglue2 service interface, 
tuple C1  is extracted from C3, and operation WithdrawC on C1 is performed does not succeed – it means 
an office-based server is already serving the client. However, all clients must be informed. If it about the 
disconnection, therefore the office-based Trader-Binder establishes a binding with them (between bs and bc 
obtained from the tuple C1) and notifies them. Client-Binders participating in inter-federation binding (in 
particular, the service interface bc) must handle this additional functionality. That is the ‘notification’ about 
disconnection results in: the termination of the client-server binding (if the client was bound to an office-
based server), or the reinsertion of tuples C2 and C3  into the portable information pool (if the client was 
still waiting to be served).Portable client components having finished their communication with local 
servers have already removed all their tuples, therefore no tuples can be left behind.  



 
Figure 7 illustrates this operation. There are two clients (Client1 and Client2) using the option of the 
portable being temporarily connected to an office-based site. Client1 (described by tuples C1, C2 and C3) is 
being served by an office-based server (Server), while Client2 (described by tuples X1, X2 and X3) is still 
waiting. The notification about disconnection from the office-based Trader results in different actions: 
Client1 must terminate its binding with Server, while Client2 just reinserts its ‘connecting’ tuples X2  and 
X3. 
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Figure 7: Operation Leave 

 
 

 



6 CASE STUDY: NETWORK CONNECTIVITY 
ADAPTATION  

 
In this example, which we outlined in our scenario (section 2.1), we demonstrate the dynamic capabilities 
of the MAGNET architecture in terms of adaptability, dynamic rebinding and monitoring, as discussed in 
previous sections.  Dynamic network connectivity is a good example of an application requiring adaptation. 
To summarize, the system must be able to adapt its network connection from disconnected operation (on 
train), through weakly connected (at clients’ office), to fully connected (at client’s lecture theatre). Again, 
we will illustrate how the system adapts to changes in connectivity on two typical applications – a word-
processor requiring a printer and a Web client requiring a Web server. We can see how MAGNET 
populates its information pool in the three cases (disconnected, weakly connected and fully connected) and 
illustrate the support for adaptability to changes in configuration. 

6.1 Disconnected Case 
As was discussed in our scenario, the user is on train, disconnected from the network, working on his 
presentation that needs to be printed out. Also, he needs to look up information on the Internet. On train, 
neither of the requests could be satisfied, as the network is not available. 
 
In this disconnected situation there are two applications running on a disconnected portable computer – a 
word-processor and a Web client. As there is a MAGNET system installed, both applications are 
represented as components. In this instance, the word-processor requests a printer and the Web Client 
requests a Web Server. Therefore, the client-tuples (PRINT, and WebClient) are inserted into the Trader to 
represent these requests: 
 
Printer a request for a laser printer with resolution of 600dpi, any speed, attached to any 

processor serving as print server:  
 PRINT =   (8, 7, CPU, *, *, printer ,  laser, 600, *,  ref)  
 

WebClient Web client requests a Web server, as this is an abstraction server, specification of 
hardware (such as a processor), are not necessary.  

 
WebServer = (3, 2, WebS, modem, ref) . 
 
The fourth element, modem, represents the required hardware device connecting the Web 
client with the Web server. This feature will be discussed in detail bellow. 

 
At this point, their requirements cannot be fulfilled, as there is no printer component or Web server 
connected to the system to match the client tuples. 
 
Table 1 illustrates the information pool for the described system configuration. Again, the table is 
schematic; implementation issues are omitted. Also, for reasons of simplicity, only components featuring in 
this example are illustrated. 
 

Server-Tuples Client-Tuples 
 PRINT =   (8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
 WebClient = (3, 2, WebS, modem, ref) 

 

Table 1: The Portable Information Pool - the disconnected case 

6.2 Weakly Connected Case 
In this next example, the user has arrived to the client’s office and is working his portable, which is weakly 
connected by a modem. Here, the WebClient could match WebServer and the user could download up-to-



date data form the Internet.  Below, we describe the establishment of a binding between the Web Client and 
the Web Server. As he is not interested in printing the handouts over the slow modem connection, the 
PRINT tuple keep waiting. 
 
The word-processor wants to take the advantage of the portable being connected to the Internet later on, 
therefore, it inserts the ‘joining’ and ‘leaving’ tuples to the portable Trader: 
 

PRINT2 = (12,  2,  join,  network,  8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
PRINT3=(12, 2, leave, network,  8, 7, CPU, *, *, printer  , laser, 600, *, ref) 

 
To distinguish the hardware device and consequently the type of link connecting the computers, the fourth 
tuple element (network) expresses this information (other option would be modem, etc.)Similarly, the Web 
Client also wants to take advantage of the portable being connected to the network, but it can also operate 
over modem, therefore it inserts following two tuples: 
 

WebClient2 = (7, 2, join, modem, 3, 2, WebS, modem, ref) 
WebClient3 =(7, 2, leave, modem, 3, 2, WebS, modem, ref) 

 
Unlike the word-processor, in this example the Web Client can be connected to the server by any network 
hardware. In this example, transmitting Web pages over a mobile line is feasible, however, printing a job at 
a printer in a remote office is not desired. Hence, the printer tuple does not require the network option. 
 

6.2.1 Trader Connection 
The portable, being equipped with a mobile phone and a modem, can be weakly connected to an office-
based server. In order to enable portable applications to use resources from the office-based server, the 
operation Join must be performed. Therefore, a ‘joining’ tuple T1=(3, 2, join, modem, bglue) representing a 
reference to the office-based Trader is inserted into the portable Trader. Table 2 illustrates the information 
pool with all the client tuples and the ‘joining’ tuple T1 inserted. Again, the table is schematic; 
implementation issues are omitted. 
 

Server-Tuples Client-Tuples 
T1=(3, 2, join, modem, bglue)   PRINT  =   (8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
 WebClient  = (3, 2, WebS, modem, ref) 
 PRINT2 = (12, 2, join, network,  8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
 PRINT3  = (12, 2, leave, network,  8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
 WebClient2 =(7, 2, join, modem, 3, 2, WebS, modem, ref)   
 WebClient3=(7, 2, leave, modem, 3, 2, WebS, modem, ref) 

 

Table 2: The Portable Information Pool – the weakly connected case 

Before we describe the remaining steps of the operation Join, we have to define resources available in the 
office-based information pool. For reasons of clarity, we consider only the resource requested in our 
example: a laser printer and a Web server.  
 
That is, the laser printer component with resolution 600dpi and speed of printing 40 pages per minute is 
described by the server-tuple: 
 

PRINTER= (8, 7, CPU, Pentium, 300, printer , laser, 600, 40, ref) 
 
Recall that the processor running the Web Server can communicate via two network links – it can use a 
modem port or a LAN adaptor connected to the Internet. Therefore, the Web Server component offers two 
service interfaces according to the network medium. They are described by server-tuples, WebServer1 and 
WebServer2: 
 



WebServer1 = (3, 2, WebS, network, ref) 
WebServer2=(3, 2, WebS, modem, ref) 

 
Table 3 illustrates the configuration of the office-based information pool before the portable computer 
dialled in. 
 

Server-Tuples Client-Tuples 
PRINTER = (8, 7, CPU, Pentium, 300,  printer , laser, 600, 40, ref)  
WebServer1 = (3, 2, WebS, network, ref)    
WebServer2 = (3, 2, WebS, modem, ref)  

 

Table 3: The Office-Based Information Pool 

6.2.2 Operation JOIN 
Next, we can return to the remaining steps of the Join operation – in the portable information pool, the 
sever-tuple  T1  matches with a client-tuple WebClient2 , the office-based Trader-Binder obtains the client-
tuple, removes the encapsulated tuple  WebClient=(3, 2, WebS, modem, ref)  and reinserts it into the office-
based information pool. It matches with the Web server tuple WebServer2 = (3, 2, WebS, modem ,ref)  and 
a resultant binding between the Web Client and Web Server over a modem can be established. However, 
the second application, the word processor, remains waiting due to no match being available. 

6.3 Fully Connected Case 
In the final stage of our scenario, the user is giving a presentation at client’s lecture theatre. Here, his laptop 
is fully connected via a LAN adapter, so the WebClient can adapt the current binding to the WebServer to 
utilize the faster connection and the handouts could be print out on the available laser printer. 
 
The Web Client is currently communicating with the Web Server through a modem. If a LAN adapter 
connects the portable to a network, the Client requires to be rebound in order to take advantage of the faster 
connection. A dedicated Updater component instructed by the Web Client is inserted into the system to 
perform this task – to monitor the pool and perform the adaptation. The Updater inserts following two 
tuples into the portable’s information pool: 
 

WebClient4 = (7, 2, join, network, 3, 2, WebS, network ,refU) 
WebClient5 = (7, 2, leave, network, 3, 2, WebS, network, refU) 

 
These tuples refer to an service interface of the Updater component (refU), in contrast to the original Web 
Client reference (ref), as it acts as a third-party in the rebinding process. 

6.3.1 Trader Connection 
When the portable is plugged into the network by its Ethernet card. A connecting tuple T2=(3, 2, join, 
network, bglue)  is inserted into the portable information pool to enable portable applications to use all 
available office-based resources. At this stage, the portable information pool (illustrated in  Table 4) 
contains two joining server-tuples (T1 and T2), all previous client-tuples (PRINT, WebClient, PRINT2, 
PRINT3, WebClient3), except the tuple WebClient2 which has been removed when the WebClient was 
weakly connected to the WebServer. In addition, two tuples from the Updater WebClient4 and WebClient5  
for ‘join’ and ‘leave’ have been inserted. 
 
 

Server-Tuples Client-Tuples 
T1 = (3, 2, join, modem, bglue)   PRINT  =   (8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
T2 = (3, 2, join, network, bglue) WebClient  = (3, 2, WebS, modem, ref) 
 PRINT2 = (12, 2, join, network,  8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
 PRINT3  = (12, 2, leave, network,  8, 7, CPU, *, *, printer  , laser, 600, *, ref) 
 WebClient3 = (7, 2, leave, modem, 3, 2, WebS, modem, ref) 



 WebClient4 = (7, 2, join, network, 3, 2, WebS, network, refU)   
 WebClient5=(7, 2, leave, network, 3, 2, WebS, network, refU) 

 

Table 4: The Portable Information Pool – the fully connected case 

6.3.2 Operation JOIN 
The server-tuple T2  matches two client-tuples:  PRINT2  and WebClient4 . Both tuples are sent to the 
office-based Trader-Binder which retrieves the original printer tuple:  PRINT=  (8, 7, CPU, *, *, printer , 
laser, 600, *, ref)  and the Updater tuple  (3, 2, WebS, network, refU)  which does not represent a request, as 
it is used for searching for better service for rebinding. Both tuples are reinserted into the office-based 
information pool (see Table 3) by the operation Bind. 
 
The printer tuple is matched against the waiting server-tuple PRINTER, so it is not inserted into the pool, 
but an inter-federation binding is established between the word-processor and the printer. As a result of 
this, the word-processor job can be printed.  
 
The Updater tuple case is more complex: the extracted tuple (3,2,WebS,network,refU)  matches the waiting 
server-tuple  WebServer1 (see Table 3). However, when the binding between the Web Server (by the 
network port) and the Updater is established, the Updater performs all the steps necessary for the third-
party rebinding to adapt the WebClient to the faster connection. Finally, the resultant binding between the 
WebClient and WebServer takes place using the network. 
 

7 ASSUMPTIONS AND PROJECT STATUS  
In designing MAGNET we assume all system components maintain their own consistency. That is, we 
assume that rebinding can be performed only when the system is in a safe state and that when a component 
has finished its operation it must leave MAGNET in a consistent state. Similarly, components are 
responsible for the validity of their tuples.  
 
Further, user defined functions are assumed to be secure in that they return control back to the Trader. To 
overcome this we would have to extend the trader’s functionality to finish any matching function by force 
after a timeout period. Also, we assume that unambiguous naming schemes are used. However, this can be 
derived from common naming schemes, such as IP addresses. 
 
As for performance, the estimated numbers of components in are in the region of tens and they have the 
potential to generate  tens to hundreds tuples placed in the Trader. Likewise, the number of concurrent 
components accessing the Trader at one time are estimated to be in the region of tens. A higher number of 
components can result   in the Trader becoming a bottleneck. A possible solution would be to implement 
the information pool in distributed shared memory.  

7.1 Implementation 
MAGNET has been implemented in Regis (Crane 1997), an environment for constructing distributed 
systems. The tuple is implemented in C++ as a high-level base-class (Tuple) comprising the tuple size, the 
tuple matching size, and encapsulating the tuple-elements. All standard and user-defined tuple-element 
classes are inherited from a base tuple-element class. Trees contain tree data structures supporting the 
search (and matching) for non-parameterised requests. The complexity of the Trader operations was 
calculated and was found to be linear to the number of tuple matching elements. The Trader is responsible 
for the efficient distribution of tree data structures over Tree components. 
 
The matching function is implemented as an overloaded member function of tuple-element classes 
inherited from the base class. A tuple-element type matches only the same type, and the “equality” of 
values can be re-defined according to the type.  
 



As the focus of the architecture is to provide dynamic features, such as runtime adaptability, user-
customisation and flexibility, the implementation results cannot be described in terms of performance. 
However, critical analysis of various features of the framework can be found in (Kostkova 1999)  
 
In addition, the MAGNET architecture also supports advanced QoS support. The extensibility of the 
framework allows applications to define and negotiate services using QoS characteristics. However, 
support for QoS is beyond the scope of this chapter. Further details of our QoS model, its design and 
implementation can be found in (Kostkova 1999). 

8 CONCLUSION 
This chapter has targeted a fundamental problem of mobile users requiring their computer systems to adapt 
to them moving to various locations and wishing to access various services at those locations on demand. 
This requires that the system is aware of dynamically-updated location-aware information. We have argued 
that the problem has become crucial, owing to a combination of recent improvements in wireless 
communication, and advances in hardware technology. As a result of these fundamental changes, there is a 
new class of application requiring type-free data storage, and dynamic user-customized matching of service 
offers and client requests. These applications need extensibility, and support for runtime monitoring, and 
adaptability to ever-changing system conditions. 
 
As traditional resource management and trading systems do not provide support for all aspects of this type 
of mobile application, we have designed and implemented a novel tuplespace-based framework, 
MAGNET, allowing dynamic user-customized trading of service information and user requests in 
frequently changing mobile environments. This extends the notion of the tuplespace paradigm to provide a 
universal solution, which is not tied to a specific application domain. In addition to user-customized trading 
for services, MAGNET enables adaptation by supporting constant monitoring of computing environment, 
mobile adaptability and is able to scale to mobile computers dynamically joining and leaving the system. 
We illustrated how MAGNET meets the specified requirements by a case study – switching network 
connectivity. 
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