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Sizing of district heating systems based on smart meter data: Quantifying 

the aggregated domestic energy demand and demand diversity in the UK 

Abstract  

The sizing of district energy systems involves a trade-off between reliability and continuity of 

service, and avoidance of capital and running costs associated with oversizing. Finding the 

most appropriate sizing requires a thorough understanding of energy demand. However, 

empirical data necessary to support such an understanding is scarce, and district energy systems 

are typically oversized. This study uses smart meter data from the largest field trial to analyse 

residential energy consumption in the UK. It presents graphically the seasonal and daily 

variations in energy consumption patterns, the weather dependence of energy loads, and peak 

hourly demand during particularly cold weather conditions. It also explores the diversity effect 

in residential energy consumption and computes the after diversity maximum demand at 

different levels of aggregations. Results show that, peak hourly gas consumption was nearly 

seven times higher than electricity consumption during the cold spells, while diversity reduced 

gas and electricity maximum demand per dwelling up to 33% and 47%, respectively. This 

empirical quantitative analysis of energy demand and diversity can support improved design 

and operation of district energy, and in particular, enable reduced capital and running costs, 

and an improved understanding of economies of scale for district heating networks. 

Keywords: district energy; load profile; smart meter; demand diversity. 

 

Highlights: 

• Smart meter data monitored in two unusually cold years were analysed. 

• Electricity, gas and temperature profiles over a whole year were constructed. 

• Power temperature gradients were demonstrated based on the external temperatures. 

• Winter peak hourly gas to electricity consumption ratio was around seven. 

• After diversity maximum demand for gas and electricity were illustrated. 
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1 Introduction 

Demand for heat makes up the largest proportion of both annual and peak hourly energy 

demands in the UK [1]. Due to well-developed natural gas networks and cheap natural gas, gas 

boilers are the main heating technology in more than 85% of British households [2]. In order 

to achieve net-zero greenhouse gas emissions by 2050, the Committee on Climate Change [3] 

suggested that near-full decarbonisation of heat for buildings would be one of the greatest 

challenges. [4, 5] proposed that district heating networks and electric heat pumps together with 

the decarbonised electricity grid could play a central role in the UK’s future approach to heating. 

In order to appropriately design and economically implement district heating networks and 

thereby replace the existing gas boilers, a thorough understanding of heat demand from 

dwellings based on empirically data is imperative.  

Quantifications of heat consumption and peak demand are the essential factors relating to the 

size of installed capacities of heat generation, transmission pipes and substations of district 

heating networks. They can be used to ensure that installed generation capacities are able to 

meet the maximum heat demand, as well as any unpredictable demand increases, alongside 

improved utilisation. Nevertheless, there is a lack of empirical investigations regarding the 

diversity effect of energy consumption at an aggregated level in the UK, and very few studies 

have investigated domestic heat load profiles or their aggregation.  

Energy load profiles can illustrate how energy is consumed over time, and can be aggregated 

according to different spatial and temporal scales as the results of interactions between various 

sub-systems. Individual households can, for a number of reasons, have very different energy 

demand patterns, and not all customers will likely demand their peak energy use at precisely 

the same time. Consequently, when individual households are combined into a group at an 

aggregated level, the maximum demand arising from a group of households is less than the 

sum of individual maximum demands due to diversity, the reason being that individual demand 

peaks are unlikely to occur simultaneously. Hence, the maximum demand per household 

declines when more households are added to a given system.  

The term ‘demand diversity’ is used to describe this phenomenon, which is a key determinant 

of capital costs and economies of scale for all energy vectors, and of distribution losses in heat 

networks. Also, demand diversity can be applied to evaluate investments, design contracts and 

tariffs, regulate energy generation and purchasing, and develop and validate energy models. 

For example, results from peak heat demand and diversity studies allow heat supplying utilities 

to prepare for peak loads and purchase equipment that has a rated generation capacity that is 

less than the sum of all the individual peak demands from all the individual consumers.  

In heat supply industries, the ‘rule of thumb’ approach is commonly used to assess heat loads 

and demand diversity, and often according to the number of customers, floor areas, and/or set 

temperatures [6]. Installers who are trained to design boiler-based systems often deliberately 

oversize heating systems and use this as an insurance against inadvertent under-sizing [6]. 

However, the heat network Code of Practice for the UK [7] specified that peak demand should 

be determined by monitoring the heat currently supplied to the building or its fuel use, using 

meters and recording data at hourly or half-hourly intervals. They also emphasised that a full 

year’s data would be very valuable and needs to include monitoring of external air temperatures. 

Nevertheless, [8] pointed out that the monitored hourly profile of single users’ heat demand is 

commonly unknown.  



3 

 

It is difficult to predict instantaneous heat demand, as it emerges from complex interactions 

between building envelopes, heating systems, weather conditions, and occupants’ behaviour. 

Fundamentally, the phenomenon is a sociotechnical one [9, 10]. Also, heat demand is rarely 

measured directly. Where it is available, gas consumption data can be used, with caveats, as a 

proxy for heat demand. Furthermore, monitored energy data are commonly kept confidential 

for commercial or privacy reasons, or are greatly aggregated at the level of national or regional 

statistics, with restricted metadata. Therefore, due to the lack of heat meters and the restricted 

availability of smart meter data from the UK’s domestic buildings on a large scale, there are 

gaps in previous studies related to empirical investigations of high-resolution heat load profiles, 

and regarding the phenomenon of diversity of heat demand in different types of dwellings 

across a large sample size.  

Understanding energy demand heterogeneity arising from end-users and technical systems in 

buildings is fundamental for evaluating energy supplying technologies, and for designing cost-

effective strategies to meet demand. This study obtained monitored individual households’ 

electricity and gas consumption data with metadata from the larget smart meter field trial in 

the UK, and utilised gas consumption data as a proxy to offer insight into heat demand and 

diversity in residential buildings. This paper graphically quantifies and compares seasonal and 

daily variances in residential gas and electricity consumption patterns throughout a consecutive 

year, appraises the weather dependence of electricity and gas loads, and highlights peak hourly 

energy consumption on the coldest days. It is the first study to explore the diversity effect in 

residential energy consumption quantitatively based on real consumption data in one of the 

coldest winters in the UK over the last four decades. Results from this study offer a better 

understanding of economies of scale for district heating networks, and can be applied, with 

caution, to determine the size of district heating generation, transmission, and distribution 

systems, particularly in forecasting heat demand, designing economic grid operations, to ensure 

district heating infrastructure reliability while reducing capital costs and the risks of over- or 

under-sizing and interruptions to services. 

 

2 Literature review: Energy load profiles and energy demand diversity 

The diverse variations in energy consumption behaviours from individual residents will 

determine the aggregated energy demand characteristics, according to different seasons and 

times of day. Studies have demonstrated that aggregated electricity load profiles can provide 

seasonal and intra-daily characteristics of consumption patterns in different types of households 

[11, 12], and can be applied to load management based on different levels of temporal 

aggregation [13]. Load predictions have been recognised as crucial input parameters for 

planning mixed energy distribution systems [14].  

Annual load duration curves, daily or hourly peak- and off-peak load profiles are required for 

modern district energy transmission and distribution systems, particularly in load forecasting, 

to ensure reliability while reducing the risks of inappropriate sizing, and interruptions in 

services [15]. Multiple studies of energy supply security find strong surges in aggregated 

energy use and peak demand during certain parts of the year, in response to seasonal weather 

changes in different countries [16-19]. Recently, [20] studied Britain’s aggregated hourly gas 

demand and electricity supply during a cold weather event in March 2018, and indicated that 

from 5:00 to 8:00, the gas demand increased by 116 GW (from 89 GW to 205 GW). They 

highlighted that studying peak heat demand through empirical data could be critical to the 

security management of the energy system during extreme weather events. 
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There is ample literature on residential electricity load profile modelling in the UK [21, 22]. 

For example, [23] modelled the socioeconomic diversity and scaling effects on the UK’s 

domestic electricity load profiles, using differentiated dwelling archetypes for English and 

Welsh neighbourhoods. They found that temporal variations in electricity loads were 

considerably affected by household socioeconomic characteristics at the neighbourhood level. 

Moreover, [24] examined electricity demand models and time use data from a group of 

European countries, including the UK. These studies also emphasised the significance of future 

monitoring studies based on actual end-users’ smart metering data.  

Although much research has studied electricity load profiles for British residential buildings 

using empirical data [25-28], there have been few studies of heat load profiles using actual 

energy consumption data from large samples. Previously, [29] developed a simple method for 

simulating the daily heat load profile in the UK’s domestic buildings. Moreover, [30] analysed 

energy consumption data from smart meters and explored 24-hour delivered power profiles to 

categorise dwelling energy performance and quantify energy savings from retrofitting. 

Nevertheless, perhaps reflecting the historical dominance of gas and electric heating, there is 

little detailed published information on monitored hourly heat loads profiles for the UK’s 

individual dwellings. Such load profile studies that have been published have relied on 

theoretical modelling or small samples, which do not support a thorough understanding of the 

stochastic nature of demand and its aggregation on a large scale. 

Studies have been conducted to calculate and predict domestic electricity load diversity since 

the 1930s [31]. The diversity factor was introduced as an index that offers insight regarding the 

probability that one household will consume energy coincidentally to another. It is defined in 

Equation (1) as: “the ratio of the sum of the individual non-coincident maximum demands of 

various subdivisions of the system to the maximum demand of the complete system” [32]. It 

measures the extent to which load profiles for individual loads interleave, with the peak(s) in 

the nth load falling to a greater or lesser extent into the trough(s) in the aggregate of the 

preceding n-1 loads.  The diversity factor is never less than one. The higher the diversity factor, 

the lower the probability that the energy demands of households will peak simultaneously. 

Some studies use the term ‘coincident factor’ or ‘coincidence’, which is the reciprocal of the 

diversity factor, as shown in Equation (2), and it has a value between zero and one.  

 
𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =

∑𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚
 

(1) 

 
𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =

1

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟
 

(2) 

The after diversity maximum demand (ADMD) considers diversity between customers, and 

has been used to design electricity distribution systems where demand is aggregated across a 

group of customers [33-35]. It represents the diversified peak demand per customer with 

respect to the number of customers connected to the network. As shown in Equation (3), the 

ADMD is calculated as the simultaneous maximum demand within a group of dwellings (𝑀𝐷𝑖), 

divided by the number of dwellings (N). The ADMD per customer decreases due to the 

diversity effect when the number of customers connected to the network increases, and 

becomes stable when the number of customers approaches infinity. Nonetheless, the ADMD 

is not necessarily a monotonically decreasing function of the number of customers in the 

system [36]. 
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𝐴𝐷𝑀𝐷 = lim
𝑁→∞

1

𝑁
∑ 𝑀𝐷𝑖

𝑁

𝑖=1

 

(3) 

The ADMD can be used to determine the sizing of any energy supply or conversion system, 

including electrical wires or district heating pipes and substations. [37] suggested that a 

homogenous group of more than 100 customers to be sufficient for estimating an accurate 

ADMD value for electricity distribution. However, there is a lack of literature concerning the 

number of customers needed to accurately assess the ADMD for heat distribution based on 

empirical evidence. 

Previously, different methods have been used to model electricity ADMD for forecasting 

maximum electricity demand on district energy networks, such as Monte Carlo simulations [38, 

39]. Some studies have had high resolutions to simulate multi-energy demand profiles in the 

UK [21, 40]. [22] and [41] developed models to compare synthesised electricity demand 

profiles and ADMD with measured data in dwellings and substations. Both studies 

demonstrated the value of studying electricity profiles and diversity for planning local 

electricity distribution networks, to forecast future demand, and integrate future technologies. 

Furthermore, [42] studied mixed modelled and monitored residential electricity load profiles 

in order to inspect ADMD variations, based on different sampling periods and aggregation 

scales of up to 60 homes. They concluded that the variance of electricity load decreased as the 

sampling resolution was reduced and aggregation level increased. Nevertheless, modelling 

studies face challenges in terms of capturing the stochastic nature of energy consumption across 

a large number of households.  

Some studies have attempted to measure and describe electricity demand diversity through 

empirical data, but more evidence-based studies are needed to assess diversity in domestic heat 

demand. [34] and [43] computed domestic electricity ADMD according to different 

demographic groups using smart meter data, and they proposed that the electricity ADMD per 

dwelling and the uncertainty decrease in general as the number of dwellings increases, with the 

final ADMD stabilising below 2 kW per dwelling. [34] also stated trivially that the electricity 

ADMD was higher in customer groups with higher incomes or electric vehicles. Similarly, [44] 

found higher energy use in larger dwellings with higher income through analysing monitored 

hourly temperature and energy consumption in gas centrally heated ‘low-energy’ dwellings in 

the UK.  Furthermore, [45] studied the ADMD for electric heat pumps using monitored 

electricity consumption data pertaining to roughly 700 heat pumps in the UK, and found that 

the ADMD per heat pump decreased by about 57% from 4 kW to 1.7 kW, and reached to its 

final value at 275 heat pumps. Nevertheless, the paper only dealt with the ADMD for electricity 

demand from electric heat pumps, as opposed to the ADMD for heat demand from households.  

Although there is no standard to quantify the diversity factor and ADMD for residential heat 

demand in the UK, several standards have been introduced to characterise the diversity effect 

in other countries for different purposes including sizing the heat exchanger capacities, hot 

water pipes and district heating hot water flow rates [46-49]. Different standards have applied 

various input factors or assumptions to calculate diversity factors, such as number of occupants, 

dwellings, or hot water flow rates. The MTA2016 is used in France and suggests that the 

coincident factor of domestic hot water demand drops from 1.0 to 0.125 when the number of 

apartments increases from one to 14 [46]. After adapting the Code of Practice for drinking 

water installations and assuming all residential units are standardised, the DIN 4708 and the 

DIN 1988-300 are used to calculate residential hot water demand, size district heating pipes 

and determine the peak flow rates for domestic hot water supplies in Germany [47].  
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Moreover, the Danish Standard DS439 [48] is the most commonly used standard in the district 

heating sector. It was introduced to size the heat exchanger for domestic hot water supplies 

based on ‘the number of normal apartments’, and it has been adopted as the standard diversity 

curve to design and develop district heating in the UK by the CIBSE’s heat network Code of 

Practice [7]. Meanwhile, the Swedish District Heating Association [49] suggested a heat power 

diversity curve (the DHA F:101 standard) based on the domestic hot water flow rates (litres 

per second) and the designed temperatures at the taps for different types of dwellings. 

Nevertheless, neither the DS439 nor the DHA F:101 considers residential space heating 

demand. 

Additionally, [6] argued that it is uncommon to use an instantaneous heat exchanger to serve a 

large number of dwellings with domestic hot water only in Denmark, and that the DS439 curve 

is old, predating the arrival of low-flow water fixtures. [6] also stated that “consultants specify 

large peak hot water loads for individual dwellings, scales these reference curves, and claim 

that the resulting designs are ‘designed in accordance DS439’ or similar. This is untrue – such 

calculations are their own work not a nationally accepted standard.” Furthermore, [50] pointed 

out that the DS439 has never been formally translated into English, and the diversity effect of 

heat demand in UK dwellings is not thoroughly understood. Therefore, a standard derived from 

primary data from a more relevant sample of dwellings is desirable to improve the 

understanding of the actual residential heat demand diversity in the UK.  

A recent updated version of the heat network Code of Practice [51] stated that “if time permits 

and it is appropriate, peak demands should be determined by monitoring the heat currently 

supplied to the building or its fuel use, under external design conditions using existing or 

temporary meters and recording data at hourly or half-hourly intervals.” Accurate heat 

measurements are essential for efficaciously assessing the performance of heating technologies. 

However, metered heat consumption data are scarcer than metered electricity data in the UK, 

and sometimes contradictory statistics are reported by different sources [52]. A comprehensive 

knowledge of actual energy load profiles and quantified demand diversity is essential for 

efficient and reliable heating system development. 

 

3 Data and methods 

Energy consumption data from the Energy Demand Research Project (EDRP) smart meter field 

trials are used in this study to analyse residential energy load profiles and energy demand 

diversity. The EDRP was a nationwide energy use study involved in 61,344 households, 

including 18,370 households with smart meters [53]. The EDRP was conducted by four major 

gas and electricity supply companies (EDF Energy Customers Plc, E.ON UK Plc, Scottish 

Power Energy Retail Ltd and SSE Energy Supply Ltd) across Britain between 2007 and 2010, 

and the datasets were made publicly available [53]. The first generation of smart meters (Smart 

Meter Equipment Technical Specification, also known as SMETS1) were installed at 

individual dwellings with real-time display devices which show energy consumption. Raw data 

were centrally collected from the four companies by the Centre for Sustainable Energy (CSE), 

and an independent review of the field trials were conducted by [53]. 

Furthermore, during the EDRP field trials, the UK experienced two remarkably cold winters. 

According to meteorological records, winter 2008/2009 was the coldest winter since 1996/1997 

[54], and the widespread and prolonged cold spells made winter 2009/2010 the coldest winter 

since 1978/1979 [55], and the seventh coldest winter since 1910 in the UK [56]. This provides 
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opportunities to study energy load profiles and peak demand during particularly cold weather 

events. 

This study gathered monitored half-hourly gas and electricity consumption data from 18,370 

dwellings, plus a subset from one of the four participating companies, EDF Energy, which 

offers detailed household metadata from 1,879 dwellings in England. For the absence of heat 

meters, and where gas boilers were the most popular heating measures in the UK [57], this 

study uses natural gas consumption data as a proxy for representing heat demand. Energy 

consumption data were extracted, resampled, and analysed to explore energy load profiles, as 

well as to study winter peak hourly demand and ADMD in 2009. The whole EDRP dataset was 

used to investigate the aggregated loads based on different temporal sampling intervals, and 

time series energy consumption data from individual dwellings with detailed metadata were 

averaged according to five types and age groups of dwellings to calculate the aggregated 

dwelling loads and annual consumption per dwelling. Furthermore, half-hourly smart meter 

data were resampled into hourly data in order to link with the hourly external temperature data 

for the studied dwellings. Figure 1 provides an overview of the datasets used for this study and 

a summary of data selection and analysis procedures.  

 

Figure 1. An overview of data selection and analysis stages. 

This study aims to study not only energy consumption, but also the causal drivers and 

mechanisms behind the differences in aggregated peak energy demand when the number of 

dwelling increases. The whole EDRP dataset with 18,370 dwellings was used to calculate the 

peak and average annual electricity and gas consumption per dwelling. Because households 

have different heating measures and monitoring periods, this study focuses on the EDF 

Energy’s subset of dwellings for which high quality monitored energy consumption data and 

metadata was available on dwelling types, ages and main heating technologies. Following data 

selection and extraction processes under four conditions, smart meter data from 304 out of 591 

households were obtained. First, there were metadata related to the types and ages of dwellings; 

second, the selected dwellings’ monitoring periods included the entire year of 2009; third, both 

The whole EDRP dataset

• 18370 electricity sites

• 8466 gas sites

• Half-hourly data

• January 2008 to September 
2010

Sampling intervals

• From half-hourly to 48-hourly 

• Peaks and variances

• All monitored dwellings

• June 2009 to May 2010

The EDF’s subset

• 1879 dwellings

• Half-hourly

• 957 electricity sites

• 591 gas sites 

Average annual consumption

• Gas heated dwellings 

• Half-hourly electricity and 
gas data

• 5 dwelling types

• 5 dwelling ages

Hourly load profiles in 2009 
after aggregation

• Electricity and gas loads

• External temperatures

• Load duration curves

Aggregated daily loads

• Power temperature gradients

• Gas, electricity and total loads 

24-hour load profiles

• On the two coldest days in 
2009: one weekday and one 
weekend

• Annual average

ADMD

• On the two coldest days

• Quantified from 1 to 304 
dwellings

ADMD 

• Extrapolated asymptotic 
ADMDs 

• Number of dwellings 
approaches infinity
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electricity and gas were monitored on a half-hourly basis; finally, selected households used gas 

boilers as the main heating systems to meet their domestic heat demands.  

After energy consumption data from 304 dwellings were extracted, hourly external temperature 

data from [58] were assembled for the sampled individual dwellings, based on their postcodes, 

and at a resolution of approximately 4 km (0.04 degrees). Energy consumption throughout 

2009 was calculated according to the different types and ages of dwellings. Then, the selected 

electricity and gas consumption data were resampled and aggregated across all dwellings to 

construct the hourly electricity and gas load profiles, in order to match hourly external 

temperatures. The two coldest days (one weekday, and one weekend) were identified based on 

both daily average and hourly minimum external temperatures; 24-hour load profiles were 

constructed to study the shapes of hourly load profiles on the two coldest days. Meanwhile, the 

aggregated daily electricity and gas consumptions were plotted against the aggregated daily 

external temperatures to study changes in energy demand in response to changes in external 

temperatures.  

The diversified hourly maximum electricity and gas demand (ADMD) per dwelling and how 

they changed when the number of households increased in one network, was further analysed 

for the two coldest days in 2009, according to Equation (3). A random sampling approach was 

applied to selected dwellings, with ADMD re-calculated after addition of each dwelling, from 

one to 304 (293 for gas ADMD on Saturday due to missing data from 11 dwellings). This 

process was repeated for 50 trials on each day to examine the mean of ADMD. Then, the results 

from 304 dwellings were extrapolated to estimate electricity and gas ADMDs per dwelling 

when the number of dwellings approaches infinity.  

 

4 Results and discussion 

To understand how much and when energy is consumed is fundamental to evaluating supplying 

technologies and designing cost-effective strategies to meet energy demand. This section 

illustrates and discusses the results of smart meter data analyses and their applications on 

district heating designing. It first quantifies and compares annual energy consumption in typical 

types of dwellings in the UK through monitored smart meter data. It investigates seasonal and 

daily variances in residential gas and electricity consumption patterns throughout a consecutive 

year, appraises the weather dependence of electricity and gas loads, and highlights peak hourly 

energy consumption under rare cold weather conditions. It then explores the diversity effect in 

residential energy consumption and computes the ADMD, to support the improved design of 

district heating systems. 

4.1 Sampling intervals and their impact on peak energy loads 

Because temporal sampling frequency is an important feature which could affect the peak 

energy demand [13], a series of sampling time intervals, from half-hourly to 48-hourly, were 

applied to quantify the peak gas and electricity loads per dwelling. Half-hourly gas and 

electricity data from 1st June 2009 to 31st May 2010 were analysed to calculate the peak and 

average gas and electricity consumption per dwelling. The results found that the average annual 

gas consumption was 17,880 kWh per dwelling (from 8,466 monitored dwellings), which was 

almost four times higher than the average annual electricity consumption, accounting for 4,490 
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kWh per dwelling (from 18,370 monitored dwellings). Meanwhile, Figure 2 and 3 demonstrate 

different load profiles over a year and the changes in peak energy loads and the sample 

variances at an aggregated level when the temporal sampling frequency was changed from half-

hourly to longer time intervals. These figures show that the peak energy loads did not change 

expressively when the sampling time interval increased from half-hourly to hourly. In contrast, 

when the sampling time interval increased from hourly to 48-hourly, the peak loads dropped 

considerably.  

  

Figure 2. Electricity and gas load profiles based on different temporal sampling frequencies between 1st June 

2009 and 31st May 2010. 

 

  

Figure 3. Impact of temporal sampling frequencies on the aggregated peak gas and electricity loads and variances. 

As shown in Figure 2 and 3, the monitored half-hourly gas and electricity loads peaked at 

approximately 8.0 kW and 1.2 kW per dwelling in the winter. The peak gas and electricity 

loads only decreased by 0.4% and 1.2% respectively when the sampling time interval increased 

from half-hourly to hourly. However, the winter peak gas and electricity loads dropped by more 

than 33% and 37% when the sampling interval became longer than 24 hours, and the peak gas 

and electricity loads reached around 5.3 kW and 0.8 kW per dwelling when the sampling time 

interval was 48-hourly. Furthermore, Figure 3 shows that averaging of energy consumption 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

k
W

Gas

Half-hourly Hourly 2-hourly
4-hourly 8-hourly 12-hourly
24-hourly 48-hourly

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k
W

Electricty

Half-hourly Hourly 2-hourly
4-hourly 8-hourly 12-hourly
24-hourly 48-hourly

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

E
le

ct
ri

ci
ty

 p
ea

k
 (

k
W

)

G
as

 p
ea

k
 (

k
W

)

Sampling intervals
Gas peak (kW) Electricity peak (kW)

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

E
le

ct
ri

ci
ty

 v
ar

ia
n

ce
 (

k
W

2
)

G
as

 v
ar

ia
n

ce
 (

k
W

2
)

Sampling intervals

Gas variance Electricity variance



10 

 

over progressively longer intervals of time progressively reduces the variance. The sample 

variance decreased by over 47% (gas) and 74% (electricity) when the sampling time interval 

increased from half an hourly to more than 24 hours. Therefore, half-hourly and hourly data 

are more suitable than data with longer sampling time intervals to study peak energy loads. 

This study utilises hourly energy consumption data, due to the availability of external 

temperature data. 

 

4.2 Annual consumption in different ages and types of dwellings 

Table 1 illustrates the monitored electricity and gas consumption for different ages and types 

of dwellings in 2009 based on smart meter data and metadata. As expected, the newer the 

dwelling, the lower the annual gas consumption tends to be, with below 15,000 kWh of gas 

required in dwellings built after 1980, whereas the annual gas consumption for dwellings built 

before 1919 was about 23,800 kWh. The annual electricity and gas consumption for a detached 

house was the highest of all dwelling types, accounting for over 5,300 kWh of electricity and 

23,000 kWh of gas. This is because of the five main dwelling types in the UK, detached houses 

lack shared elements such as party walls and tend to be larger. In contrast, a flat consumed only 

around 3,000 kWh of electricity and less than 13,000 kWh of gas on average.  

Dwelling age Before1919 1919-1944 1945-1964 1965-1980 After1980 

Gas (kWh) 23764 21699 18745 16278 14937 

Electricity (kWh) 4821 5294 4933 4199 4417 

Dwelling type Detached Semi-detached Terraced Bungalow Flat 

Gas (kWh) 23142 18859 16909 17804 12938 

Electricity (kWh) 5306 5283 4089 4304 3019 

Table 1. Annual gas and electricity consumption in different types and ages of dwellings. 

 

4.3 Hourly load profiles 

Figure 4 demonstrates the average hourly electricity and gas consumption profiles per dwelling 

versus the external temperature for the year 2009. The diagram shows that the monitored gas 

and electricity consumption had clear ties to the changes in the external temperature. It shows 

the volatile seasonal changes in domestic gas consumption, with most of the demand occurring 

between November and May. At the aggregated scale, the maximum hourly gas consumption 

reached more than 9.2 kW per dwelling during the coldest periods in the year, which is about 

seven times higher than the winter peak hourly electricity demand (over 1.3 kW). In contrast 

to high winter energy consumption due to high heat demand, the maximum hourly gas 

consumption was less than 1.5 kW per dwelling in the summer, and this dropped to below 0.2 

kW per dwelling during summer nights, lower than the electricity consumption for the same 

period.  
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Furthermore, as the diagram shows, the hourly electricity consumption per dwelling in 2009 

was steadier than the gas consumption, with evening peaks fluctuating from more than 1.3 kW 

in the winter to below 0.7 kW per dwelling in the summer. Unlike gas consumption peaks 

during the winter which were mostly triggered by demands for space heating, the electricity 

consumption peaks during the winter were most likely caused by additional lighting and the 

use of home appliances. Additionally, Figure 4 does not display apparent increases in electricity 

consumption caused by the use of electric air conditioning when the external temperature was 

higher. Unlike countries such as the US with high deployment rate of domestic air conditioning 

units, and electricity consumed to meet cooling demand could become a significant component 

of residential energy consumption [59], the market size of electric air conditioning units in the 

UK is very low [4, 60]. According to [2], less than 1% of final energy is consumed to supply 

space cooling in British buildings, due to the temperate oceanic climate and rare hot weather 

conditions in the summer. Therefore, at an aggregated scale, the impact of cooling demand and 

electricity consumed by air conditioning on the overall electricity consumption is small. 

 

Figure 4. Hourly electricity and gas load profiles versus the external temperature in 2009. 

 

4.4 Hourly load duration curves 

As energy consumption fluctuates according to seasonal changes in weather conditions, load 

duration curves across an entire year are commonly applied in industries for energy generation 

capacity sizing and cost optimising for multi-source energy co-generations such as combined 

heat and power plants. The electricity and gas load duration curves were constructed on an 

hourly basis over 8,760 hours in 2009 from the highest hourly energy consumption to the 

lowest, as shown in Figure 5. Both electricity and gas load duration curves dropped from their 

maxima to under 60% of their peak demands after around 1,000 hours. The aggregated gas load 

duration curve declined continuously over the year and reached below 50% (4.6 kW) of its 

winter peak after about 1,400 hours, then reached a minimum of 1% (0.1 kW). The electricity 

load duration curve reached below 50% (0.7 kW) of its winter peak after about 2,100 hours 
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and terminated at 17% (0.2 kW). Moreover, the load factors for electricity and gas demands 

were 0.40 and 0.23 respectively across all sampled dwellings. 

 

Figure 5. Hourly electricity and gas load duration curves over 8760 hours. 

 

4.5 Energy consumption and the external temperature correlations 

The energy consumption and external temperature data from the sampled dwellings were 

averaged into daily values to show the weather dependence of electricity and gas loads as seen 

in Figure 6, using the same research method applied by [30] which is a useful approach to 

calculate the linear response in energy demand with respect to external temperature. The slopes 

in electricity and gas consumption relating to the changes in external temperature (power 

temperature gradient or power signature) were estimated through linear regression analysis 

with an upper boundary temperature of 15 ℃, accounting for approximately 320 W/℃ for gas 

and 15 W/℃ for electricity. The diagram provides an empirical indication of domestic energy 

consumption responding to the external temperatures, and it demonstrates that there are linear 

interdependencies between energy consumption and the external temperatures up to around 

15 ℃. Electricity and gas loads were noticeably higher when the external temperature was 

lower in the range from -3 ℃ to 15 ℃. This figure also indicates that electricity consumption 

was less sensitive to external temperature changes than gas consumption.  
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Figure 6. Daily delivered gas and electricity in response to external temperatures. 

 

4.6 24-hour load profiles on the two coldest days 

After Figures 4 and 6 illustrate that both electricity and gas consumption is higher when the 

external temperature is lower. In order to investigate the peak energy demand on extremely 

cold weather conditions, the two coldest days in 2009 were identified as Tuesday 6th January 

and Saturday 10th January according to the weather records [58]. The aggregated 24-hour 

hourly energy load profiles were constructed for the two coldest days and compared with the 

average 24-hour load profiles over a year as shown in Figures 7 and 8.  

 

Figure 7. 24-hour gas load profiles on the two coldest 

days compared to the annual average. 

 

Figure 8. 24-hour electricity load profiles on the two 

coldest days compared to the annual average. 

According to the annual average load profiles, both electricity and gas consumption was very 

low at night after midnight until around 5:00 and then increased sharply until 8:00, accounting 

for just below 4.0 kW per dwelling for gas and 0.6 kW per dwelling for electricity. Unlike gas 

load profiles which have two pronounced peaks (around 7:00 and 17:00) and a shallower trough 

around noon, electricity load profiles show steady consumption until around noon and one 

distinct peak around 17:00 at about 0.9 kW per dwelling.  
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On the two coldest days, both electricity and gas peaks occurred around 17:00-18:00, but with 

much higher magnitudes compared to the annual average 24-hour load profiles. On the coldest 

day of the year, the peak gas and electricity consumption reached more than 9.2 kW and 1.3 

kW per dwelling, due to higher heat loss from buildings and increased usage of lighting and 

home appliances. Figures 7 and 8 also show that there was more gas consumption overnight 

on the two coldest days, while there was no substantial change in electricity consumption. 

Furthermore, both electricity and gas consumption around noon are higher at weekends than 

on weekdays, possibly because more dwellings tend to be occupied then, which leads to higher 

demand for electricity and gas. Additionally, the gas to electricity evening peak ratios were 6.8 

and 7.0 respectively on the coldest weekdays and weekends, compared to an annual average of 

4.4. In contrast, the morning peak ratios at 7:00 were much higher due to relatively low 

electricity demand in the morning, accounting for 11.2 (Tuesday), 14.7 (Saturday) and 6.6 

(annual average). 

 

4.7 ADMD on the two coldest days 

The diversity effect and its impacts on the aggregated peak loads were explored for the two 

coldest days in 2009. The gas and electricity ADMD diagrams in Figure 9 illustrate the changes 

in peak hourly energy demand per dwelling due to diversity when the number of dwellings in 

one system increased from one to more than 300 on the two coldest days. Figure 9 indicates 

that both diversified gas and electricity peak loads per dwelling decreased rapidly first and then 

stabilised to approach to asymptotes when the number of aggregated dwellings increased. 

Furthermore, Figure 10 reveals the estimated gas and electricity ADMD per dwelling when the 

ADMD curves approach to asymptotes. As shown in Figures 9 and 10 and summarised in Table 

2, both final gas and electricity ADMDs were lower on Saturday 10th January than on Tuesday 

6th January. With higher diversity factors, the final ADMDs dropped by up to about 33% for 

gas and 47% for electricity from their initial values on Saturday 10th January, whereas the final 

gas and electricity ADMDs decreased less than 30% on Tuesday 6th January.  
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Tuesday 6th January Saturday 10th January 

 
Average ADMD 

per dwelling for a 

single dwelling 

Asymptotic 

ADMD per 

dwelling  

Diversity 

factor 

Average ADMD 

per dwelling for a 

single dwelling 

Asymptotic 

ADMD per 

dwelling  

Diversity 

factor 

Gas 12.4 kW 9.20 kW 1.49 13.0 kW 8.65 kW 1.57 

Electricity 1.9 kW 1.35 kW 1.48 2.3 kW 1.22 kW 1.65 

Table 2. A summary of ADMD and the diversity factors for gas and electricity on the two coldest days in 2009. 

 

Figure 9. Gas and electricity ADMDs per dwelling on the two coldest days in 2009. 

On the coldest weekday in 2009, Figure 9 shows that the gas ADMD stood at just below 12.4 

kW regarding at the first dwelling; then the value dropped rapidly to below 10.0 kW (80% of 

the initial gas ADMD) per dwelling after aggregating load profiles together for less than 20 

dwellings. This continued decreasing to 9.4 kW (76%) after aggregating to 100 dwellings and 

reached to its final value, to three significant figures, of 9.20 kW (74%) after 190 dwellings. In 

terms of electricity ADMD, the curves dropped sharply and became relatively flat when only 

a few dwellings were aggregated together. As indicated on the secondary vertical axis in Figure 

9, the electricity ADMD started from about 1.9 kW at the first dwelling, and then quickly 

declined to 1.4 kW (74% of the initial electricity ADMD) per dwelling after only ten dwellings 

were aggregated. It only took approximately 20 aggregated dwellings for electricity ADMD 

per dwelling to reach to a final value, with a value of approximately 1.35 kW (71%) per 

dwelling. 

Likewise, the ADMD curves on the coldest weekend had similar shapes to those on the coldest 

weekday, but with higher starting values and lower final values. In the meantime, more 

dwellings are needed to estimate the stabilised ADMD on the weekend than on the weekdays. 

This implies that occupants may have more flexibility to consume energy at weekends. As 
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together for 18 dwellings, and then, stayed below 9.0 kW (70%) after 80 aggregated dwellings. 

The gas ADMD reached to its final value, accounting for below 8.70 kW (67%) per dwelling 

after 230 dwellings. Meanwhile, the electricity ADMD per dwelling dropped from around 2.3 

kW to 1.3 kW when the number of aggregated dwellings increased from one to ten. The 

electricity ADMD per dwelling remained at 1.22 kW (53% of the initial value) from 38 

aggregated dwellings.  

Figure 9 provides quantitative and empirical evidence that the maximum energy demand of 

both gas and electricity networks is less than the sum of individual peak demands, and that the 

maximum demand per dwelling decreases towards an asymptote as more dwellings are added 

to the network due to the diversity effect. Previous studies [37] suggest that an accurate 

electricity ADMD could be estimated within a group of 100 homogenous dwellings, and this 

study found that the electricity ADMD per dwelling remains the same to three significant 

figures after around 30 dwellings. Nevertheless, this study reveals more than 100 dwellings are 

needed to estimate the final gas ADMD. Although the rate at which the ADMD per dwelling 

decreases becomes low after 100 dwellings, it required over 230 dwellings for gas ADMD to 

remain the same to three significant figures.  

Additionally, graphs in Figure 10 illustrate gas and electricity ADMDs per dwelling against 

1/number of dwellings (excluding the first 10 dwellings). Linear trendlines are applied in order 

to extrapolate the number of aggregated dwellings to infinity based on the 304 sampled 

dwellings, hence to estimate the asymptotic ADMDs per dwelling. As the results show, the 

final gas and electricity ADMDs on the coldest weekday are estimated as 9.20 kW and 1.35 

kW per dwelling when the number of dwellings approaches to infinity, and the values drop to 

8.65 kW and 1.22 kW per dwelling on the coldest weekend due to higher diversity factors. 

  

Figure 10. Gas and electricity asymptotic ADMDs per dwelling through extrapolation.  

 

4.8 Applications of empirical load profiles and demand diversity for 

designing and sizing energy infrastructures 

Energy consumption correspondingly changes according to the external temperature as Figures 
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terms of power temperature gradients and annual energy consumption in British dwellings [2, 

30, 61]. Although it is challenging to predict future peak energy demand, studying energy 

consumption during cold weather conditions from empirical data could offer support for the 

development of energy infrastructures which can ensure energy security in case of future 

extreme weather events.  

The diversity curve from the Danish standard DS439 has been widely used for domestic hot 

water supply for different numbers of dwellings in district heating networks [7, 51]. However, 

the DS439 [48] calculated only domestic hot water heating rates based on assumed usage 

patterns for a normative household, and it admitted that measured energy consumption could 

help to enable effective and energy-efficient operations. Hence, the DS439 may not be suitable 

for developing space heating only district heating networks. Furthermore, there is no standard 

based on empirical diversity studies in the UK which considers both space heating and 

domestic hot water consumption. Therefore, engineering design becomes defensive to ensure 

reliability and continuity of service, and common practices tend to oversize the heating system 

[62]. 

The consequences of oversizing depend on the technologies involved. Where heating is 

provided by electricity, resistive losses vary inversely with the capacity of the distribution 

system, while oversizing reduces distribution losses. Where heating is provided by natural gas, 

distribution losses are very low, and the oversizing of the gas distribution system is likely to 

have a minimal effect. In the case of heat networks, heat losses from distribution are roughly 

proportional to the capacity of the heat distribution system, and the impacts of oversizing may 

be significant because larger pipes are more expensive and have relatively higher heat loss. 

Moreover, oversized pipes may contain extra air and debris, which could accelerate the rates 

of corrosion in pipes.  

This study explored the diversified maximum hourly energy demand in 2009, which is one of 

recent coldest years in the UK. The findings could be advantageous for optimising long-term 

energy generation as well as managing short-term peak supply and demand and for designing 

and implementing energy facilities such as district heating networks. For example, although 

service pipes (tertiary pipes) must be designed based on non-diverse individual maximum heat 

loads for individual dwellings, distribution and transmission pipes (primary and secondary 

pipes) could benefit from the diversity effect to forecast maximum heat loads and mitigate the 

risk of oversizing substations and transport pipes. As ADMD per dwelling decreases when the 

size of the heat network increases, economies of scale occur to reduce the peak generation and 

transmission capacities, and therefore, leads to reductions in costs.  

In addition, the costs of electricity and gas could affect dwellings’ energy consumption and 

load profiles directly. Due to an abundant natural gas supply and technical developments in gas 

boilers throughout the 1980s and 1990s, natural gas became the principal fuel source for 

domestic heating systems in the UK [63]. Under current liberated energy market conditions, 

typical retail electricity prices are more expensive than retail gas prices, with a common price 

ratio of approximately 3:1 or higher depending on specific tariffs and regions [64]. This study 

found that the average annual gas consumption per dwelling was considerably higher than the 

average electricity consumption. Although it is difficult to forecast future energy prices, it is 

anticipated that with future projected increase in renewable electricity generation and cross-

border market integrations [65, 66], the volatility in energy prices could be intensified and this 

might lead to variations in individuals’ energy consumption patterns and their overall energy 

demand. 
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The UK’s industrial strategies have set plans to phase out fossil fuel heating and develop low-

carbon heating technologies such as electric heat pumps and expanded heat networks [4, 57]. 

This could transform both gas and electricity load profiles at all levels of aggregation. This 

study shows that domestic gas consumption is much higher than domestic electricity 

consumption both in terms of annual demand and hourly peaks, and therefore that if heat 

demand were solely switched from gas to electricity, the peak electricity loads would be greatly 

increased [67, 68]. Moreover, the expected future growth of electric vehicles and domestic air 

conditioning units could further affect domestic electricity load profiles, with consequent need 

for planning and capacity upgrading, together with demand management and storage to cope 

with peaks in demand.  

This study utilises domestic gas consumption as a proxy for representing heat demand. It does 

not distinguish demands for space heating and domestic hot water, and this study does not 

examine heat storages due to the lack of metadata. It is not possible to cleanly separate out 

cooking loads from space and water heating. The technical characteristics (including non-

linearity) of gas boilers, and the fact that occupants adapt their behaviours to the specific 

technical characteristics of heating systems and to energy tariffs, mean that patterns of heat 

demand for gas heated homes, inferred from metered gas data, may differ from patterns of heat 

demand for homes connected to heat networks, measured with heat meters. This is not ideal, 

but in the judgement of the authors, is justifiable in the absence of access to heat data for large 

numbers of dwellings. Previous large field trials and modelling research have revealed that 

both gas boiler profiles and heat pump load profiles are characterised by a morning and evening 

peak, however, the profiles differ in detail. Moreover, different types of heat pumps could result 

in different ADMDs [45, 69, 70]. Future studies could gather metered data from operating heat 

networks to test the differences between aggregated gas boiler load profiles and district heating 

load profiles, and the impacts of utilising heat stores on the load profiles. 

 

5 Conclusions 

Individuals’ peak demands and how they are aggregated are crucial factors for determining the 

size of energy generation, transmission, and distribution systems. Studying end-use energy load 

profiles and diversity at high temporal resolutions are advantageous when designing load 

control mechanisms, peak demand management strategies and economic grid operations, as 

energy supplying and distributing systems can benefit from economies of scale, and reduce 

capital investment. Nevertheless, there have been fewer empirical studies than modelling 

studies, because empirical domestic energy consumption data at high temporal resolutions on 

the large scales can be difficult to access due to technical, ownership and private concerns.  

This paper presents an empirical analysis of energy demand using actual end-users’ energy 

consumption data collected from the largest smart meter field trial which included one of the 

recent coldest years in the UK. Half-hourly smart meter data were employed to explore peak 

gas and electricity loads based on a range of temporal sampling frequencies. This study 

summarised annual electricity and gas consumption in different types and ages of dwellings in 

the UK and investigated the aggregated hourly energy loads versus the external temperatures, 

together with a further analysis of winter peak energy demand under unusually cold weather 

conditions.  

Results revealed that annual gas consumption for the dwellings in this dataset was about four 

times higher than electricity consumption, while the peak hourly gas to electricity consumption 
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ratio was around seven on the coldest days. A correlation between domestic energy 

consumption in response to changes in external temperatures was quantified through linear 

regression analysis. Furthermore, the diversity effect in energy consumption among dwellings 

is discussed with quantitative illustrations regarding how the diversified peak energy demand 

changes and stabilises when the number of dwellings changes. ADMD curves for both gas and 

electricity show qualitatively similar asymptotic behaviour, but with significant quantitative 

differences. The evidence suggests that electricity peak consumption is more diverse than gas 

peak consumption.  

This empirical quantitative analysis of energy loads and demand diversity utilises a large 

sample of smart meter data from the UK. Methods used in this study are also useful for 

countries or areas that have cold winters, in order to quantify energy consumption, better 

understand energy load profiles, and manage peak demand. Analysis of energy demand 

diversity offers insight to improve energy networks operations, to appropriately size energy 

generation and distribution infrastructures and capacities, and to reduce costs through 

economies of scale.   
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