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Abstract—In this paper, we propose an ultra-low-
resolution infrared (IR) images based activity recognition
method which is suitable for monitoring in elderly care-
house and modern smart home. The focus is on the analysis
of sequences of IR frames, including single subject doing
daily activities. The pixels are considered as independent
variables because of the lacking of spatial dependencies
between pixels in the ultra-low resolution image. There-
fore, our analysis is based on the temporal variation of
the pixels in vectorised sequences of several IR frames,
which results in a high dimensional feature space and an
’n<p” problem. Two different sparse analysis strategies
are used and compared: Sparse Discriminant Analysis
(SDA) and Sparse Principal Component Analysis (SPCA).
The extracted sparse features are tested with four widely
used classifiers: Support Vector Machines (SVM), Random
Forests (RF), K-Nearest Neighbours (KNN) and Logistic
Regression (LR). To prove the availability of the sparse
features, we also compare the classification results of the
noisy data based sparse features and non-sparse based
features respectively. The comparison shows the superiority
of sparse methods in terms of noise tolerance and accuracy.

I. INTRODUCTION

The impact of activity detection in health sector
such as elderly care homes is quite high. For example,
15.4 million people in England suffer from one or
more chronic medical conditions including dementia,
stroke, cardiovascular or musculoskeletal disease [1].
The current treatment cost is 70% of the UK National
Health Service (NHS) budget [2]. The cost of continuous
management and medical treatment for long term health
conditions in clinical and residential environments has
become an increasing economic pressure. Therefore,
novel solutions for out-patient long-term monitoring in
residential settings are urged [3].

Current popular activity monitoring solutions include
camera, wearable sensor, radio frequency (RF) sensors
[4]. The camera-based activity recognition systems allow
in-depth analysis and modeling of the activity due to
the high resolution images. However, the highly varied
types of activity in real world is a challenge for general-
isation of the predictive models. Furthermore, the used
of camera-based systems in home environments can be
intrusive due to the privacy concerns. The wearable sen-
sors offer low cost activity monitoring solutions while,
accompanying with low battery life and unwillingness-
to-wear problem [5]. Also, wearable sensors have diffi-

culty to differentiate between activities which are similar.
RF based sensors shows the advantage on non-intrusive,
but suffer from the interference, complicated signal
processing and geometry dependence. Thus, we intro-
duce ultra-low resolution infrared images which provide
non-intrusive and privacy preserving activity recognition
solution. For this aim, a single-sensors proof-of-concept
(PoC) system for real time human activity recognition
is designed and built. The ultra-low resolution images
are formed based on an infrared sensor array structure,
consisting of only 64 thermal pixels in 8 x8 two dimen-
sion layout (an example image can be seen in Figure (2).
This low-rate rich information data is specially suitable
for light weight on-device artificial intelligent (AI) with
great impact of activity monitoring in artificial intelligent
(AI) aided healthcare.

Compared to the RGB camera images, their spatial
resolution is much lower. This influences the analysis
strategies for activity detection. From a methodological
perspective, activity recognition techniques can be cat-
egorised into two main groups [6]; the manual (hand-
crafted) feature extraction followed by classification and
the Neural Networks (NN)-based techniques. A compre-
hensive review of these techniques are presented in II.
In these works, the analysis is based on the image arrays
and the spatial proximity of the neighbouring pixels are
considered [5], [7], [8]. Due to the characteristic of low
spatial dependency of the pixels in ultra-low-resolution
IR images, they are considered as independent variables
in this paper. This is similar to [9]. Therefore, the image
arrays are vectorised and the image vectors of video
streams for each activity are concatenated. This results
in high dimensional variable space. So that, compared
to the number of samples n, the number of variables
p are quite high "n<p”. Another characteristic of the
low resolution IR sensor is the thermal working range,
that is in the range 20~24°C and the rise in temperature
adds noise to the pixel values. These two characteristics
make sparse discrimination strategies ideal for activity
recognition.

In this paper, two sparse feature extraction techniques,
Sparse Discriminant Analysis (SDA) and Sparse Prin-
cipal Component Analysis (SPCA) are employed to
limit the variance of the classification models in high
dimensional feature space in high temperatures, also



transform the features into a low dimensional more
interpretable feature space. The sparse features of this
new type of sensor data are verified effectively using
four widely used classifiers: support-vector machines
(SVM), random forest (RF), k-nearest neighbors (KNN)
and logistic regression (LR). In addition, the sparse
features are analysed with noised data. A comparison of
the recognition accuracy is performed between each of
the SDA and SPCA techniques and their corresponding
non-sparse feature extraction methods, Reduced Rank
LDA (RRLDA) [10] and Principal Component Analysis
(PCA). Reviewing the existing pilot studies [9], [11],
[12] on low resolution images for activity monitoring
in healthcare projects however, no detailed analysis of
the features of this new type of data based on sparse
techniques and their tolerance to noise was found.

The rest of the paper is organized by following: Sec-
tion II reviews the previous studies on activity recogni-
tion using camera images and low resolution IR sensors.
Section III explains the materials and methods which
includes a brief explanation of data acquisition, the
sparse feature extraction, model selection and classifica-
tion techniques as well as noise analysis are described.
The experimental results are presented in section IV and
a conclusion is provided in Section V.

II. RELATED WORK
A. Handcrafted Features

In this section the analysis strategies for vision-
based activity detection are reviewed. In the case of
camera images, one group of early methods for action
recognition was based on manual (handcrafted) action
representations [6]. Many of these types of methods were
developed before the emergence of deep learning.

1) Statistical Features: The common approach was
extraction of local statistics from both spatial saliences
and action motions and then combining them over se-
quence of frames (video) and finally applying discrimi-
native classifiers such as SVM [13]. For example, the
local image features or interest points over temporal
sequences of video frames were used to detect local
structures in space-time [14]. The Histogram of Oriented
Gradient (HOG) was used in [15], as appearance de-
scriptors for human detection in static images together
with motion features extracted by oriented histograms
of various kinds of local differences or differentials
of optical flow. A mixture of Gaussians together with
Kalman filters were used in [16], [17].

2) Use of Depth Information: The emergence and
popularization of depth cameras allowed the use of depth
images and added the pose information to the analysis.
Examples of such techniques are the use of single depth
images for recognition of human body pose [18] and
the use of RGBD images that provides both color and
depth information together with deep neural networks
for human motion recognition [19].

3) Trajectory Based Features: Trajectory based action
representation also proved great success using manual
shallow representations. The trajectories were obtained
by tracking densely sampled points using optical flow
and features such as HOG, Histogram of Optical Flow
(HOF) and motion boundary histogram (MBH) [20]
or multi-layer stacked Fisher vector (FV). [21] helped
improve the human action recognition. In contrast to the
above methods, global approaches consider the whole
action video as the framework input and perform pooling
or filtering on the video pixel level [22], [23].

The main limitation of the effective manual strategies
is the high computational complexity at both training
and test step due to the use of local features requiring
densely sample strategy which is an issue for real-time
applications [6].

B. Learning-Based Features

Another category of action recognition approach is
the Learning-based action recognition. In contrast to the
manual action features that normally operate at video
pixel levels and low-level statistics in spatial body shapes
or temporal motions, these advanced approaches work
on top of manual action features or establish end-to-end
action recognition frameworks from the pixel-level to
action categories.

1) Classic Learning Approaches: Some learning-
based approaches utilise advance modelling strategies
such as Genetic Programming (GP). For example in
[24], a population of primitive 3D operators, such as
3D-Gabor filter and wavelet coefficients were utilised to
evolve the motion features from both colors and optical
flow fields. Then, evolutions are performed over this
population using either crossover or mutation strategies
through reproduction with single or pair parents. Tex-
tonBoost is another strong object detection algorithm.
In this technique, joint models for texture, layout, and
context are used in a conditional random field framework
so that a strong classifier is formed using a group of weak
classifiers [25].

In Dictionary learning-based methods sparse represen-
tations of the input data is learned in the form of a linear
combination of basis dictionary atoms. The bag-of-words
(BoW) model which is a particular type of dictionary
learning uses a combination of basis dictionary atoms
instead so that, each input is assigned to a single basis
dictionary atom. In [26], using BoW with sparse repre-
sentation improved the discrimination power.

2) Neural Networks Approaches: A major group of
activity recognition strategies are based on Neural Net-
works (NN). Many of the early NN-based techniques
were formed at discrimination and modeling step and the
features were learned from manually extracted features
[27], [28]. On the other hand, Deep NN (DNN) strate-
gies perform convolution at spatio-temporal dimensions
at pixel level. Then unlike manual feature extraction,



DNN does intellectual leaning and contains hierarchi-
cal feature extraction layers that contain much more
trainable parameters than manual architectures. How-
ever, they require more training data. Some DNN based
strategies such as [29] were based on an unsupervised
approach for learning spatio-temporal features using
a Gate Restricted Boltzmann Machine (GRBM)-based
convolutional architecture. Other supervised strategies,
employed 3D Convolutional Neural Networks (CNN)
along spatio-temporal dimensions [30] or capture the
features’ temporal evolution over time by adapting CNN
to sequential data and form Recurrent NN (RNN) [31],
[32] with one hidden layers of Long Short-Term Memory
(LSTM) [33].

The above explained activity detection methods are
based on camera systems and streams of 2D or 3D
images in higher resolution than IR images used in this
paper. The ultra low-resolution IR images were used in
some works. Researchers have applied SVM, RF and
KNN on low-resolution raw pixels data and achieved
84.2% overall accuracy [12]. In [34], a Y/N fall detection
strategy was developed based on a KNN framework
using spatio-temporal pixel level statistics. A Bayesian
framework was developed for multi-body tracking in
[35]. In another recent contribution, DNN was applied
on raw vectorised pixels [9].

III. MATERIALS AND METHODS

The methodology process as seen in figure 1 starts
with data acquisition from the IR sensor. Then, data
preparation is performed in regards to frames equalisa-
tion. The next step is to select the number of SPCA and
SDA components based on a 10-fold cross-validation.
Finally, sparse feature extraction and classification with
four methods are performed.

Data acquisition from the sensor

v

Preprocessing

COMPONENT SELECTION
with 10-fold cross-validation

FEATURE EXTRACTION

SPCA SDA

I

CLASSIFICATION
Y N KNN |
\ RF | LR |

Fig. 1: Methodology flowchart
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sponding an activity

Fig. 2: Example of one snapshot of IR image (a) and
low rate IR stream

A. Data Acquisition

The low-resolution IR array used in this paper was
acquired from Panasonic Grid-EYE(AMGS8832) [36]
which comprises 64 IR sensors with 8 X8 two dimension
square layout. Each IR sensor in Grid-EYE can sense
temperature from 0~80°C with 0.25°C resolution and
42.5°C deviation. The claimed maximum detection dis-
tance is 5 meters. Each detected thermal information is
presented as a pixel in the 8§ x8 matrix, and each matrix
can be considered as a frame as shown in Figure 2a.
The system can output 10 frames per second (fps) as a
stream shown in Figure2b.

Regarding the spatial location of the sensor field of
view, a large view setting was considered so that, one
sensor was positioned upright 2.5 meters away from the
observation area assigned for activities. Moreover, the
sensor was elevated roughly 1 meter from the ground.
The geometry layout and real experiment venue can be
seen in Figure 3.

The IR sensor is thermal sensitive. The background
temperature is generally less than human body. In image
profiles, the higher pixel values correspond to higher
temperature. Then, a lower environmental temperature
will lead to a better human body profile imaging, which
is often around 36°C. In our case, the ambient tem-
perature of the surrounding room was measured to be
18°C at the beginning, and rose to 21°C during the time
taken to perform the experiment. Clothing is another
uncertainty that impacts the result. In this experiment,
our participants were dressed with normal household
clothes like cotton shirt, knits and jackets as shown in
Figure 3 to make the data more realistic.

B. Data Preparation

The data set is composed of 8 single-subject activities
from three participants. Details are shown in Table I.
The segmentation of individual activities frames from
total streams can be performed in different ways such
as background subtraction. However, in this paper the
focus is on recognition of individual activities rather than
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analysis of continuous video streams. Therefore, each
activity is recorded separately. It is performed 10 times
by each participant. The number of files captured using
the sensor is 240 in total. Each recorded frames’ timing
is relatively within the range of 3~20 seconds. In order
to equalise the number of frames for all activities and
subjects, 4 seconds or 40 frames are considered as a
base; if the data is more than 4 seconds, extrapolation
is used for equalization while in cases where the data
is less, interpolation is applied. Then, the final data
set is a cube of size (240x40x64), where 240 is the
number of observations and 40x64 shows the number
of total recorded frames by the number of pixels of
the vectorised IR image (8x8). For the analysis, further
concatenation of all frames pixels is performed yielding
a 2D matrix data of size 240%x2560. Then, having only

TABLE I: Investigated Activities

[ Activities Activities ]
Al Sit Down A5 Move Left, Right
A2 Stand Still A6  Move Forward, Backward
A3 Sit Down; Stand Up A7 Walking Diagonally 1
A4 Stand Up A8 Walking Diagonally 2

n = 240 samples compared to p = 2560 variables
makes an ill-posed problem that might lead to overfitting
issue. Therefore, sparse feature extraction strategies are
considered to reduce the variance of the model and
transform the features into a lower dimensional feature
space.

C. Sparse Feature Transformation Techniques

1) Sparse Principal Components Analysis (SPCA):
PCA is one of the most commonly used data-processing
and dimensionality reduction techniques. It reduces the
dimensionality of data by aiming to retain most of the
variance. It transforms interrelated variables to uncorre-
lated principal components so that, the first component
retains the highest variance of the original variables [37].

The main drawback of PCA is that it represents linear
combinations of the p variables and the loading are
usually nonzero. SPCA takes advantage of the fact that
PCA can be written as a regression-type optimization
problem, with a quadratic penalty (see equation (1)).

Thus, by applying both L1 (Manhattan distance) and
L2 (Euclidean distance) elastic-net constraints, sparse
loading can be achieved. This improves the interpretation
of the PCs and solves the overfitting issues. In other
words, the remaining non-zero coefficients of the Eigen
vectors correspond to the important variables, having
more contribution in data variation.

Let the size of X be n x p, where p and n are the num-
bers of observations and variables, respectively. Given
¥ as the covariance matrix of X, A = [a1, o, ..., 0p),
Y** = Xza; and X** = X2, the SPCA objective
function can be written as:

Vi = argmin [V = XVIPX VP AV, (1)

where A and \; are the L1 and L2 regularization param-
eters and V; is the jth estimated sparse Eigen vector,
7 = 1,...,p. This is a bi-convex objective function on
A and V that can be solved iteratively. For more infor-
mation about the method, refer to [38]. Once the sparse
Eigen vectors are computed, an appropriate number of
them needs to be chosen to achieve the best accuracy.
K-fold CV is used as a model selection [39] strategy to
find the optimum number of SPCA PCs in this paper.
2) Sparse Discriminant Analysis (SDA): Linear Dis-
criminant Analysis (LDA) is one of the important super-
vised linear classification and dimensionality reduction
techniques. Considering a classification problem with
Q@ classes, LDA assumes a Gaussian distribution for
the samples of each class to find () — 1 discriminative
linear hyperplanes. Using the RRLDA framework, it is
also possible to transform data into a lower dimensional
feature space of size (Q — 1. This can be achieved based
on the Fisher’s discriminant analysis using Rayleigh
quotient criteria as shown in equation 2. The Fisher’s
canonical variables or discriminant coordinates are
used to transform the feature into a lower dimensional
feature space [10]. Fisher’s problem maximizes the
Rayleigh quotient:
a” Ba
e aTWa
where W is the within-class co-variance matrix and B
is the co-variance matrix of the class centroid matrix
M, also referred as Between-class co-variance matrix. a
is the canonical variable. The aim of this method is to
increase the distances between the class means as much
as possible in order to improve the separability.
However, in n < p condition, LDA cannot be
applied directly because the within-class co-variance
matrix W of the features is singular. The SDA algorithm
uses an L1 norm constraint similar to lasso objective
function to compute sparse transformation factors [,
qg=1,2,...,Q — 1 to transform the original data X to
a new low dimensional space X (1., m < @ — 1. The
notation 1 : m shows selection of the first m vectors.
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Fig. 4: Visualization of the original data matrix and the transformed samples using SPCA and SDA
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Each 3, vector length is 2560. The objective function is
based on optimal scoring as shown below:

. 1
Irﬁun {n 1Yo, — XﬁqHQ +76qTQﬂq +A ||5q1} 3)

where, Y denotes an nxQ matrix of dummy variables
for the Q classes; Yj, is an indicator variable showing
whether the i*" observation belongs to the ¢ class.
04 is a Q-vector of scores. This sparse matrix is used
for transformation of the data matrix into the lower
dimensional space Z = XfBim, m < Q — 1. Q
is a positive definite matrix added to compensate for
singularity of the with-in class covariance W. X\ and ~
are non-negative tuning parameters. More information
about the algorithm can be found in [40].

D. Classification

In order to test the quality of SPCA and SDA features
of low-resolution IR image stream, four commonly used
classifiers are applied to conduct the recognition task; i)
SVM trained using Stochastic Gradient Descent (SGD);
ii) LR; iii) KNN based on 4 neighbours; and iv) 80 36-
depth trees RF.

IV. EXPERIMENTAL RESULTS

The data was randomly divided into training (75%)
and testing (25%) for experiments; X, 180x2560 and
Xis 60x2560- That ensures that the population samples
are split fairly in terms of their variation between training

and testing sets. The number of components selected for
SPCA based on K-fold CV is 25. In regards to SDA,
the maximum number of components K — 1 where K
is the number of classes, is retained. The four machine
learning methods SVM, RF, k-NN and LR are used on
the transformed matrices extracted from the two feature
extraction methods. Next, they are tested again on the
data with added noise in order to evaluate the noise
tolerance of sparse techniques.

1) SPCA: Using the model selection strategy ex-
plained before, the optimum number of PCs ¢ is found
based on 10 fold CV. The candidate sets of number
of components is [10,15, 20,25, 30, 35,40, 45]. One-
dimensional training and validation accuracy maps are
computed. They are shown in Figures (5a) and (5b)
for the four classification methods. Then, based on the
validation results, 25 PCs are selected for transforming
data, since the first prominent peak corresponds to 25
components in the validation map. Then, the transfor-
mation to the reduced space is performed based on
Zir = X¢pVi.e, ¢ = 25, The 1 : ¢ notation shows the
first 25 Eigen vectors. This is a significant reduction
in the dimensionality of data. The testing data is also
transformed similarly.

2) SDA: Using SDA a sparse B2560x7 is obtained and
used for transforming data Z;, = X4,.5.

3) Classification Analysis: To explore the effective-
ness of the feature transformation strategies, first, the
original data of the 8 different classes and their cor-



responding transformed samples using SPCA and SDA
are visualised in Figure 4. The general variation range of
the samples as well as the variations between different
classes has increased by transformation (please note
the z axis range). This helps improve the classification
accuracy. The comparison of the classification accuracy
shown in Figure 5c confirms this. As shown, using the
sparse feature extraction methods, the accuracy improves
considerably.

The four classification techniques have been applied
on the training and testing sets. In regards to the training
set, the model’s accuracy is 100% for all methods, and
then it is compared to the results on the unseen data.
The accuracy on both training and testing sets can be
observed in figure 6. As SDA is a supervised feature
extraction method, it shows better accuracy than the
unsupervised SPCA with the exception of RF classifier
only.

Accuracy on training and testing set for SPCA and SDA

100%

100% 100% 1000 100%
95%
9% 93% 93%
85
80%
75%
R

Methods tested on training and testing set

Accuracy
E

H Training SPCA W Testing SPCA Training SDA Testing SDA

Fig. 6: Accuracy of SVM, RF, KNN and LR on both
training and testing sets for SPCA and SDA

4) Noise Analysis: In order to evaluate the tolerance
of the trained models to noise, randomly distributed
positive noise with ¢ = 0 and o = 0.1,0.5,1 is added
to the testing data and the classification performance
for the testing data is computed. The performance is
compared for the sparse feature extraction methods and
their corresponding non-sparse techniques. So that, test-
ing data classification using RRLDA and SDA as well
as PCA and SPCA are compared. As shown in figure
7, the RRLDA performance degrades more considerably
compared to SDA for higher values of noise. That is also
the case when comparing PCA and SPCA. It also shows
that unsupervised PCA strategy is more tolerant to noise
compared to the supervised strategy based on RRLDA.

A. Discussion

Figure 8 shows the absolute values of the first SDA
sparse component [3; and first SPCA Eigen vector V;.
While the level of sparsity is not the same for the
two vectors, the achieved training and testing accuracies
shown in figure 6 are mostly in the same range for
the two techniques. Furthermore, the largest non-zero

100
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20

Fisher RRLDA SDA PCA SPCA

Fig. 7: Comparison of the clean and noisy test data
classification performances for RRLDA and SDA as well
as PCA and SPCA

coefficients over the 40 frames or 4 seconds of activity,
are mainly distributed in the central frames, showing in
most activities, middle frames contribute in classification
more significantly compared to the two extremes. This
matches to the fact that in most early and last frames,
the subjects are less active.

In regards to the limitations of the work, a more larger
set of subjects can be further included in the dataset.
This will ensure that the model can generalise between
a diverse population of people.
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Fig. 8: Visualization of the first sparse component of

SDA 37 and first sparse Eigen vector of SPCA V;

V. CONCLUSION

In this paper, activity detection for ultra-low-resolution
IR images of 8x8 is performed using sparse fea-
ture extraction techniques, SDA and SPCA. Such low-
resolution images are suitable for human activity moni-
toring when the privacy-preserving and the non-intrusive
features are concerned. The results demonstrated that us-
ing the sparse feature transformation techniques achieved
higher classification accuracy and better tolerance to
noise compared to non-sparse strategies. To further prove



the applicability of the low-resolution IR image in
healthcare applications, the factors like multiple targets,
multiple perceiving angles will be considered with larger
subjects size in our future work.
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