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Uncertainty plays a critical role in reinforcement learning and de-
cision making. However, exactly how it influences behaviour re-
mains unclear. Multi-armed bandit tasks offer an ideal test-bed, since
computational tools such as approximate Kalman filters can closely
characterize the interplay between trial-by-trial values, uncertainty,
learning, and choice. To gain additional insight into learning and
choice processes we obtained data from subjects’ overt allocation of
gaze. The estimated value and estimation uncertainty of options in-
fluenced what subjects looked at before choosing; these same quan-
tities also influenced choice, as additionally did fixation itself. A mo-
mentary measure of uncertainty in the form of absolute prediction
errors determined how long participants looked at the obtained out-
comes. These findings affirm the importance of uncertainty in mul-
tiple facets of behaviour, and help delineate its effects on decision
making.
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We often need to decide between alternative courses of
action about whose outcome we are uncertain. Com-

mon examples include choosing a dish in a restaurant, a holi-
day trip, or financial investment. Uncertainty, which derives
from initial ignorance and sometimes ongoing change, has
two characteristic statistical and computational facets. One
is straightforward: if we try an option, then the amount of
learning, i.e., the extent to which we should update our beliefs,
depends on our current uncertainty relative to the noise in the
observation (1). The greater our uncertainty, the greater the
impact an observation inconsistent with our current beliefs
should have on our subsequent beliefs. There is good evidence
that humans and other animals adapt their rate of learning to
various factors in the environment which increase, or reduce,
uncertainty (2–6).

The second facet concerns choice. Here, it is the options
that we are uncertain about and that we need to learn about
through sampling. This is more complicated, as our igno-
rance about their beneficial or malign consequences implies
that we need to take a sampling risk. This is the notorious
exploration/exploitation dilemma. Although there are elegant
computational solutions for important special cases (Gittins
indices; 7), a general solution is intractable. There is evidence
that when choosing options, people explore in a directed man-
ner, by integrating values with uncertainty about these values
(8–12), particularly when these are carefully dissociated (9, 10).
However, there is also evidence for a simpler form of random,
undirected, exploration, which is sensitive to value but not
to its uncertainty (5, 13). Integration of value and the uncer-
tainty in its estimation is sensible. Estimation uncertainty
serves as a proxy for how informative a choice is, or what the
potential for improvement in value is (14, 15). The distinc-
tion from irreducible uncertainty is important. Irreducible

uncertainty stems from the inherent stochastic nature of the
environment that generates rewards and can not be reduced
through learning.

Most studies only admit indirect inferences about the pro-
cesses of learning and decision-making, exploiting the trajec-
tory of choices alone. However, when options are presented
visually and are spatially distinct, we have an opportunity
to gain a window onto these processes by examining what
people choose to look at, that is, their visual fixations (16–25).
In typical tasks, including the one we employ in our experi-
ment, we can expect two sorts of revealing fixation behaviour;
namely, the relative time spent on each option when deciding
(which bears on choice); and the absolute fixation time when
receiving feedback about the consequences of choices (which
bears on learning).

Fixation time might be correlated not only with subjects’
internal states relevant to learning and choice, but might
actually affect those states directly (18, 21). This also allows
factors other than value and estimation uncertainty, including
stimulus salience, momentary lapses of attention, or unrelated
cognitive processes to influence fixation (26–28), and exert
statistically untoward effects on behaviour.

In the case of choice, a prominent view is that the process
leading up to a decision involves accumulating information
about the options until one is judged to be sufficiently good
or sufficiently better than the alternatives (29, 30). Under
this framework, looking at an option facilitates accumulating
information specifically about that option (18, 21). This would
provide a mechanism through which relative fixation time
before making a choice can have a direct influence on the
decision itself. In this case, for choices to be approximately
optimal (7, 8, 10, 11), the relative fixation time before a choice
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would have to reflect the learning history, with respect to
both the value and estimation uncertainty. Our focus on
directed exploration and estimation uncertainty distinguishes
the present study from previous ones on reinforcement learning
and attention, which focused on effects of value (22) and
irreducible uncertainty (24), or did not in any case involve
exploration (25).

In the case of learning, absolute fixation time might have
a direct influence on the magnitude of belief change in re-
sponse to a prediction error, which amounts to the learning
rate. For instance, visual fixations facilitate working mem-
ory and memory retrieval operations (31–35). Based on this
evidence, fixation time might influence how well a newly ob-
served outcome is integrated with an old value retrieved from
memory. Thus, to follow the precepts of Bayesian statistical
learning, fixation should be related to an option’s estimation
uncertainty (3), allowing the latter to be observable from the
former. While this prediction was made almost two decades
ago, empirical evidence has been lacking (16).

To examine the role of estimation uncertainty and com-
plex interactions between visual fixation, learning, and choice,
we administered a multi-armed bandit task in which we also
tracked subjects’ gaze as they chose repeatedly between six,
initially unknown, options. We varied the mean and variance
of options’ outcomes to motivate exploration and to ensure
ample variability in value and estimation uncertainty. When
ignoring fixation behaviour, we found that both value and
estimation uncertainty play a role in learning and choice. As
predicted, we found that over the course of decision making,
estimation uncertainty and value jointly influenced relative
fixation times. During feedback, when subjects could update
their beliefs, uncertainty, in the form of the unsigned reward
prediction error, guided the total fixation time on the cho-
sen option. Even though relative fixation time during choice
carried information about value and estimation uncertainty,
fixation exerted a much stronger independent influence on
choices than was warranted by that information. This indi-
cates that an important fixation-specific component influenced
choice. Finally, we show that a model including value, estima-
tion uncertainty, and relative fixation time before choice, best
explained actual choices. This suggests that the influence of
the first two of these quantities is not completely mediated
by their effect on the third, and that capturing an internal
valuation process is therefore still important.

Results

Participants completed two games. In each game they re-
peatedly chose between six options, for a total of 60 trials
(Fig. 1A, Materials and Methods and SI Appendix, Methods).
Each game was a multi-armed bandit task in which rewards
for each option were drawn from different Gaussian distribu-
tions (Fig. 1C). Participants were instructed to maximize the
cumulative sum of rewards in each game. To attain this goal
they needed to explore the options in the choice set in order
to learn which option had the highest average reward, and
subsequently exploit this knowledge.

To facilitate detecting whether estimation uncertainty
guided participants’ exploration, the variances of the reward
distributions differed between each of the options. The ratio-
nale behind this manipulation is that choices that are guided
by value alone would be less directly affected by such differ-
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Fig. 1. Illustration of the six-armed bandit task. (A) Participants chose between
six options on each of 60 trials. Each option was represented by a letter from the
Gljagoljica alphabet. Options were displayed in a circle around the centre of the
screen, always at the same location. (B) Time course of a single trial. Each box
denotes a stage in a trial, with duration displayed above the boxes. For visual fixation
analyses the main stages of interest were Choice stage, where participants considered
which option to choose, and Outcome stage, where they observed a choice outcome
(the inset displays reward outcome overlaid over the option). Two stages were gaze
contingent (GC), where participants trigger an onset by fixating on a fixation cross. (C)
To facilitate detecting whether estimation uncertainty guided participants’ exploration,
the variances of the reward distributions differed between each of the options. In
Decreasing variances game distributions get narrower (more certain, easier to learn)
going from the best (rank 1) to the worst (rank 6) option, while for V-shaped variances
game they are the narrowest for the middle ranking and broader (more uncertain,
taking more trials to learn) for the better and worse ranking options respectively.

ences in variances. In a Decreasing variances game, variance
decreased as the mean reward of the option decreased, so that,
for instance, the option with the highest mean had the highest
variance (Fig. 1C, left). In a V-shaped variances game, the
variance was largest for the options with the highest and small-
est means, and smaller for the middle options (Fig. 1C, right).
Different games allow for better generalization of results and
can serve as a further check for directed exploration, as again
choices guided by value alone would be less sensitive to such
differences.

Options’ expected rewards were constant throughout the
bandit task. In such a task any reasonable reinforcement learn-
ing agent that maximizes cumulative rewards would gradually
allocate more and more choices to high value options as its
estimates of options’ rewards improve with experience. Indeed,
choices improved from the first to the last block of 15 trials
(Fig. 2A), as indicated by a clear negative block effect (mixed
effects regression estimates: intercept = 2.50, 95% credible in-
terval (CI) [2.25, 2.75]; block = −0.29, 95% CI [−0.37,−0.21];
game = 0.06, 95% CI [−0.04, 0.16]; block×game = 0, 95% CI
[−0.07, 0.08]; see “Mixed effect regressions” in Materials and
Methods). There was no strong difference in choice perfor-
mance between the games, indicating that low ranking options
did not attract more choices in the V-shaped game. While
this could be due to choices not being guided by estimation
uncertainty, an alternative explanation is that participants
learned to ignore the low ranking options very quickly. This
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would resulting in weak difference between the games since it
was mainly these that distinguished the distributions between
games. In most cases, choice performance did not reach ceil-
ing by the last block of 15 trials (mean of 2.08, SE = 0.10),
suggesting that the games were not trivial and participants
were still exploring by the end of the task.

In the following section, we outline a computational model
built to determine the extent to which estimation uncertainty
influenced choice. We then use this model to examine the
multi-way relationships between the visual fixation during the
period preceding each choice, the values and uncertainties
of all the options estimated by the model, and the actual
decision made by participants. We repeat this analysis for the
relationships among fixation statistics at the time of reward
feedback, the prediction error and estimation uncertainty that
the model estimated participants entertain about the chosen
option, and the ensuing learning.

Estimation uncertainty and choice. To identify learning and
choice processes underlying participants’ behaviour, we fitted
computational models to their decisions. These models con-
sisted of a learning component, in which participants learn
or estimate properties of each option, and a choice compo-
nent where they rely on these estimates to decide between the
options.

Along with four control models often used to capture learn-
ing and choice in these types of tasks (SI Appendix, “Modelling
learning and choices – control models” in Results), we consid-
ered two more sophisticated learning models, each coupled
with two forms of choice. The learning models were either a
Kalman filter (8, 13, 36), or a “lazy” Kalman filter, both of
which use a variant of the delta rule to update estimated values
from a reward prediction error (Materials and Methods, Eq. 1
and 2). The Kalman filter is a Bayesian model that tracks
the expected values of options, as well as the uncertainties in
those expectations (i.e. estimation uncertainty). Moreover, it
dynamically adjusts the learning rate according to its current
estimation uncertainty and the relative noise in the observed
rewards. At each point in time, the Kalman filter provides an
estimate of the value of an option as a Normal distribution,
whose mean reflects the expected value, and whose variance
reflects estimation uncertainty (in the remainder of the text
we will use the term uncertainty to refer to estimation uncer-
tainty). These means and variances are the key quantities we
subsequently use to examine the role of value and uncertainty
in visual fixations. The lazy Kalman filter is similar to the
regular Kalman filter but with one crucial difference: it uses a
learning rate which is a fraction of that of the regular Kalman
filter (hence its moniker). Both models take into account
differences in variances of options’ rewards in each game (i.e.
irreducible uncertainty), leading to different learning rates for
each option.

The choice component in the models consisted of either a
softmax (SM; Eq. 3; 37) or an upper confidence bound (UCB;
Eq. 4; 14) rule. The softmax choice rule only uses estimated
value to determine choice. As such, exploration is not guided
by uncertainty. By contrast, the UCB choice rule implements
a form of directed exploration. It uses the uncertainty to
approximate the information gained by choosing an option,
and adds this as an “uncertainty bonus” to the estimated value
(38), implying that exploration is driven by a form of expected
information gain.

We used a Bayesian hierarchical approach to estimate the
parameters of the models. This assumes the parameters at the
individual participant level are drawn from common group-
level distributions (39). Model evidence shows that models
with the UCB choice rule fit the data better than models using
the softmax choice rule that ignores uncertainty (Fig. 2B). The
lazy Kalman filter model with a UCB choice rule described
participants’ choices best (KFL-UCB), with a posterior prob-
ability of approximately 0.99. Lazy versions of Kalman filter
learning also outperformed the standard ones for the softmax
choice rule. The Kalman filter models with the UCB choice
rule convincingly outperformed all four control models (SI
Appendix, Results). The probability of accurately predict-
ing participants’ choices with the KFL-UCB model increased
steadily over the course of a game, reaching a mean of 0.46
(SE = 0.08) by trial 60 (Fig. 2C), well above the chance
level (1/6 = 0.17) and above a simple non-learning model in
which we estimate fixed probabilities of choosing each option
(mean choice probability of 0.21). The overwhelming evidence
in favour of the UCB choice rule shows that estimation un-
certainty plays a clear role in choice. This shows that our
model-based analysis is more sensitive than the model-free
analysis predicated on the different variance patterns. The
lack of a between-game effect in performance was likely due to
participants quickly learning to ignore the low value options.

Since the only difference between the best fitting KFL-
UCB model and its softmax counterpart (KFL-SM) is the β
parameter that acts as a weight on uncertainty in the UCB
choice rule, the strong evidence favouring the KFL-UCB model
over the KFL-SM model indicates that the β parameter is
reliably positive. Indeed, the posterior distribution of the β
parameter of the KFL-UCB model has a mean of 0.37, and the
95% credible interval (CI) is [0.16, 0.61] (Eq. 4; Fig. 2D). This
“inflation of value” is a sizeable uncertainty bonus, given that
the expected values of options ranged between 2.5 and 6 and
their variances between 0.75 and 2.75. As a final check, we
also fitted a variant of the KFL-UCB model where the β pa-
rameter is not constrained to be non-negative. The KFL-UCB
model with the non-negative β parameter outperformed the
unconstrained KFL-UCB model with a posterior probability of
approximately 0.99 (see “KFL-UCB model with unconstrained
β parameter” in SI Appendix, Results). This result further
affirms that the β parameter is positive and that uncertainty
guides choice together with value.

We can also examine the usefulness of the “laziness” pa-
rameter (η) that biases the learning rate in the KFL-UCB
model. A value of η = 1 would make the lazy Kalman filter
equivalent to the regular Kalman filter. The bias seems to be
rather small, as evidenced by the group-level posterior mean
(0.93, 95% CI [0.80, 0.99]; Eq. 1). However, the individual
variability is substantial: for a sizeable number of games (and
individuals) parameter values were much lower and closer to
0 (Fig. S5C). This suggests the laziness parameter captures
significant variation in behaviour. Values of the remaining
parameters are depicted in Fig. S5.

Interactions between choice and fixation process. We next
sought to assess three-way interactions between fixation during
the choice epoch, the choice itself, and the combination of
value and uncertainty. We first report basic properties of
fixation during the choice epoch. We then look at how value
and uncertainty influence fixation. Finally, we ask whether
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Fig. 2. (A) Proportions of choices allocated to options with
the highest expected value (i.e. options with a rank equal
to 1) increased from the first to the fourth block in a game.
Relative fixation in the choice stage tracked the expected
value of each option as well, but to a lesser extent, and
shows learning effects. Error bars are SEM. (B) Model evi-
dence (bars) and model comparison (numbers below bars)
show that lazy Kalman filter learning with an upper confi-
dence bound choice rule (KFL-UCB), captures participants’
choices best. Error bars are interquartile ranges of bridge
sampling repetitions (for some models too small to be vis-
ible; SI Appendix, Methods). (C) Mean probability with
which each model accurately predicts participants’ choices
are well above chance level (dashed black line) and above
a non-learning model that estimates fixed probabilities of
choosing each option (dotted black line). The probability
is highest for the KFL-UCB model (blue line). Means are
computed over a rolling window of five trials. (D) Posterior
of the group-level parameter for the KFL-UCB model that
acts as a weight on uncertainty in the UCB choice rule (β).
The posterior mean (vertical line) and 95% credible interval
(black bar on the x-axis) shows the magnitude of uncer-
tainty influence. Dots are posterior means of individual
game level parameters.

and how fixation influences choice.

Properties of the fixation process in the choice stage. To analyse
interactions between choice and fixation, we focus on the
choice stage of a trial (Fig. 1B). Here participants had five
seconds to consider which option to choose, before continuing
to the next stage where they had to execute their choice,
quickly. The fixation measure of interest in this section is the
proportion of time spent fixating on each of the options. We
computed the sum of the fixation durations received by each
option, and divided this quantity by the sum total of fixation
durations over all options. We refer to this measure of visual
fixation as relative fixation.

Relative fixation resembled the allocation of choice, with
increased allocation to high ranking options as learning pro-
gressed (Fig. 2A). This close correspondence to the choice
distribution, including the gradual shift of fixation distribu-
tion toward high value options over time, is a first indication
that relative fixation might be affected by the same learning
process that is guiding choices, as we originally hypothesized.
Importantly, relative fixation followed the expected value of
each option (i.e. option rank) to a lesser extent than choice
proportions (Fig. 2A). This could be due to a greater role of
uncertainty in the trial-by-trial fixation dynamics, but could
also be attributable to external, potentially independent, fac-
tors. Also as expected, and consistent with a reduction in
uncertainty, the total time spent fixating on any of the options
decreased over the course of learning (mixed effects regression
estimates: intercept = 3.82, 95% CI [3.62, 4.02]; block = −0.20,
95% CI [−0.28,−0.13]; game = −0.05, 95% CI [−0.25, 0.15];
block×game = 0, 95% CI [−0.07, 0.07]; Fig. 3A). As for choice
performance, there was no clear difference between the games.
For analysis of other measures of the depth and breadth of
the visual search process in the choice stage, see SI Appendix,
“Additional properties of visual fixation” in Results.

Visual fixations in the choice stage are guided by both value and
uncertainty. Given these suggestive results, we considered the
conjoint influence of value and uncertainty on fixation in
more detail. Previous studies that examined the relationship
between choice and fixation (18, 21, 40) could not do this,

since they used one-shot choices which precluded modelling
of learning and thereby examining the role of uncertainty. To
examine such influences, we regressed estimates of value and
uncertainty from the KFL-UCB model fitting choices best on
relative fixation in each trial (see “Modelling relative fixation
in the choice stage” in Materials and Methods). Importantly, it
was beliefs about values and uncertainty that were established
at the end of the one trial that were used to explain variation
in relative fixation in the next trial. We assumed that relative
fixation followed a Dirichlet distribution whose shape was
influenced by value, uncertainty and a game type indicator
as a control variable, and whose scale was set by a separate
parameter (Eq. 6 and 7).

As predicted, the results of Bayesian hierarchical estimation
show a clear positive contribution of both value and uncer-
tainty in explaining variability in relative fixation. The whole
of the measurable posterior distribution of the value parameter
(Val; Eq. 7) was on the positive side of zero (mean of 0.17, 95%
CI [0.12, 0.22]; Fig. 3B) and the same holds for the uncertainty
parameter (Unc; Eq. 7; mean of 0.12, 95% CI [0.06, 0.17];
Fig. 3C). Estimated game-type effects were negligible (mean
of −0.002, 95% CI [−9.66, 9.64]; Eq. 7), while the estimated
scale parameter mostly acted to flatten the predicted rela-
tive fixation further (mean κ parameter was 0.60, 95% CI
[0.50, 0.70]; Eq. 6). We verified these results by additionally
comparing the full model to two simpler models where we
either regressed uncertainty alone or value alone on relative
fixation, keeping the game type indicator as a control variable
(Fig. 3D). The results of model comparison show that the
model with both value and uncertainty clearly explains the
relative fixation best (posterior probability of approximately
1), with simpler models lagging far behind. Hence, options
with larger value and estimation uncertainty learned from pre-
vious trials attracted more relative fixation in the current trial.
Thus, the same value and estimation uncertainty quantities
that underlie block-wise changes in choice underlie block-wise
changes in fixation allocation.

Visual fixations in the choice stage influence choice. Having estab-
lished that value and uncertainty affect the fixation process

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Stojic et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


Choice

stage

Gaze

contingent

0.0

0.1

0.2

0.3

0.4

0.0 2.5 5.0 7.5 10.0

Fixation duration (s)

D
en

si
ty

A

0

Val

0

4

8

12

16

0 0.1 0.2 0.3 0.4

Parameter value

D
en

si
ty

Full model
B

0

Unc

0
3
6
9

12
15

0 0.06 0.12 0.18 0.24 0.3

Parameter value

D
en

si
ty

Full model
C

0 0 1

21950

22000

22050

22100

22150

Unc Val
Val,Unc

M
od

el
 e

vi
de

nc
e

D

0 0 0.23 0.77-3200

-2800

-2400

-2000

-1600

-1200

KFL-UCB

Rel Fixations

aKFL-aUCB

KFL-aUCB

M
od

el
 e

vi
de

nc
e

E

Rel Fixations

aKFL-aUCB

KFL-aUCB

KFL-UCB

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 15 30 45 60

Trial

C
ho

ic
e 

pr
ob

ab
ili

ty

F

0

ε

0

1

2

3

4

0 0.18 0.36 0.54 0.72 0.9

Parameter value

D
en

si
ty

KFL-aUCB
G

0

β

0
1
2
3
4
5

0 0.2 0.4 0.6 0.8 1

Parameter value

D
en

si
ty

KFL-aUCB
H

Fig. 3. Interactions between choice and relative fixation in the choice stage. (A) Density of total fixation duration for all games. Options disappear after 5 s, but participants
sometimes kept fixating on the same location before triggering the execution stage. (B) Posteriors of the group-level value (Val) and (C) uncertainty parameter (Unc) in the full
model regressing value and uncertainty on relative fixation. Both parameters are clearly positive, as evident from the mean (vertical line) and 95% credible intervals entirely
above zero (CI, black bar on the x-axis). Dots are posterior means of individual game level parameters. (D) Model evidence (bars) and model comparison (numbers above bars)
for the full model and simpler models that regressed either value or uncertainty alone. The full model fits the data best. Error bars are interquartile ranges of bridge sampling
repetitions (too small to be fully visible; SI Appendix, Methods). (E) Choice model modulated by relative fixation (KFL-aUCB) outperforms the model that regressed relative
fixation directly on choices. This indicates that modelling learning and the choice process is important even when relative fixation is taken into account. The KFL-aUCB model
also outperforms the model where learning process is modulated as well (aKFL-aUCB), the KFL-UCB model was included for comparison. (F) The KFL-aUCB model predicts
participants’ choices with the highest mean probability. All three are well above the chance level (dashed line) and a non-learning model that estimates fixed probabilities of
choosing options (dotted line). Means are computed in a rolling window of five trials. (G) The group-level ε parameter in the KFL-aUCB, which determines a pseudo relative
fixation for options that were not fixated, is small and closer to zero, indicating that relative fixation was useful as is. (H) The group-level β parameter from the UCB choice rule
in the KFL-aUCB model shows a decrease in the magnitude of the weight placed on uncertainty after accounting for relative fixation, but the weight is still substantial.

in the choice stage, we next examined whether visual fixation
influenced choices. Such an influence has been shown in one-
shot value-based choices (18, 40), but not yet for choices in a
learning setting.

We first examined the effect of visual fixations on choices
by regressing relative fixations in the choice stage directly on
choices, using a simple multinomial logistic regression model
(see “Modelling choices with visual fixations alone” inMaterials
and Methods). The results of Bayesian hierarchical estimation
show that this simple model has a posterior probability of
approximately 1 in comparison to the KFL-UCB model that
fit choices best previously. What is surprising is the margin
by which this simple model outperforms the KFL-UCB model,
as shown clearly when examining the probability of accurately
predicting participants’ choices (Fig. 3F). Here it is evident
that the ability of the simple regression model to predict
choice is almost twice that of KFL-UCB, reaching a mean of
0.63 (SE = 0.08) by trial 60. This result establishes a strong
effect of visual fixation on choice, suggesting the presence of a
large choice-related but value- and uncertainty-independent
component in visual fixations, which is not captured in our
KFL-UCB model.

Values and uncertainty are not completely reflected in visual fixa-
tions. The excellent fit of choice using purely visual fixations
prompts the question as to whether the effect of value and
uncertainty on choice (KFL-UCB model; Fig. 2B) is mediated
by their modest effect on fixation (Fig. 3D), or whether a part
of the valuation process that enters choice is not reflected in
visual fixation. To test this, we incorporated relative fixation

into the best fitting KFL-UCB model (KFL-aUCB model – “a”
prefix marks “attention-modulated”; see “Modelling learning
and choices modulated by visual fixations” in Materials and
Methods) and examined whether this variant describes choice
better than a simple model regressing relative fixation on
choice. There are various ways in which relative fixation might
be included; here, we assumed that values and uncertainty of
options are warped in proportion to the relative fixation that
options capture (Eq. 12).

Bayesian hierarchical estimation showed that the KFL-
aUCB model outperformed the simple regression model, de-
scribing participants’ choices best with a posterior probability
of approximately 0.77 (Fig. 3E; we included the KFL-UCB
base model as well for comparison). The aKFL-aUCB model,
in which learning process was modulated as well, followed suit
with a posterior probability of approximately 0.23. Examining
the models’ probability of accurately predicting participants’
choices again, we see a clear improvement over the simple
regression model, with a constant advantage for the KFL-
aUCB model throughout the game, reaching a mean of 0.73
(SE = 0.07) by trial 60 (Fig. 3F). This provides evidence that
value and uncertainty are not completely reflected in visual
fixation, and that explicitly modelling learning and choice pro-
cesses provides additional predictive power. As a robustness
check, we fitted additional attention-modulated models with a
Softmax choice rule instead of UCB and a Kalman filter lacking
the “laziness” parameter (SI Appendix, “Comparison of learn-
ing and choice models modulated by visual fixation”in Results
and Fig. S6). The results showed that the UCB component
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is important, as all models with it substantially outperform
Softmax based models. The laziness parameter is important
as well, but it has comparatively smaller impact.

We can compare the β parameter governing the strength
of uncertainty-guidance in the UCB choice rule between the
KFL-aUCB and KFL-UCB models. The posterior of β in
KFL-aUCB is still clearly positive, but its magnitude was less
once relative fixation is taken into account (posterior mean of
0.29, 95% CI [0.12, 0.49]; Eq. 4; Fig. 3H) – about 80% of the
value for β in the KFL-UCB model without fixation modula-
tion (Fig. 2D). Thus, some of the effect through which more
uncertain options are more likely to be selected is sublimated
when relative fixation is also taken into account.

In the KFL-aUCB model, the attention distribution over
options was generated by squashing the relative fixation statis-
tics according to a parameter ε (Eq. 11). The inferred value of
this parameter can inform us about the importance of relative
fixation. If ε is near 1, the distribution would be near uniform,
independent of the relative fixation. If ε is near 0, then the
distribution is dominated by the allocation of looking time.
Consistent with the other analyses, the posterior distribution
of ε parameter was small, with a mean value of 0.18 and 95%
CI [0.01, 0.35] (Fig. 3G).

Interactions between learning and fixation process. For
analysing interactions between learning and fixation process
we focus on the outcome stage of a trial (Fig. 1B), the three-
second period during which participants could observe the
reward outcome of their choice. The fixation measure of in-
terest in this section is the total time fixating on the reward
feedback in each trial. We will refer to this measure as absolute
fixation. As for choice, we first examine the statistics of this
measure, and then consider successively the effect of value and
uncertainty on it and finally its potentially additional effect
on learning.

Properties of the fixation process in the outcome stage. We first
considered trial-by-trial variability in absolute fixation. Mean
absolute fixation decreased over the course of learning and
there are some, albeit weak, differences between the games
(mixed effects regression estimates: intercept = 2.36, 95%
CI [2.20, 2.52]; block = −0.10, 95% CI [−0.14,−0.05]; game
= −0.06, 95% CI [−0.22, 0.10]; block×game = 0.06, 95% CI
[0.01, 0.11]). The negative effect of the block is circumstan-
tial evidence that uncertainty, which also decreases over the
course of learning, is related to absolute fixation (Fig. 4B).
There was a ceiling effect due to the three-second outcome
presentation time and this led to a left skewed distribution
of absolute fixation (Fig. 4A), but a mean of 2.36 s indicates
that the effect was not particularly strong. Participants often
continued looking at the feedback location for a few seconds
more during the inter-trial interval (Fig. 4A). We assumed that
these fixations were also associated with processing the reward
feedback and included last fixations that ended within two
seconds of the inter-trial interval. Most importantly for our
subsequent considerations, when we repeat the same analysis
on the standard deviations of absolute fixation, we observe
considerable variability in absolute fixation (mixed effects re-
gression estimates: intercept = 0.85, 95% CI [0.74, 0.96]; block
= 0.07, 95% CI [0.02, 0.07]; game = 0.03, 95% CI [−0.08, 0.14];
block×game = −0.02, 95% CI [−0.06, 0.03]), as evidenced by
the intercept estimate. For analysis of other measures of the

visual search process, see SI Appendix, “Additional properties
of visual fixation” in Results.

Unsigned reward prediction error guides fixation in the outcome
stage. We next examined interactions between learning and
fixation, focusing first on the theory-driven expectation that
time spent looking at the reward feedback is guided by uncer-
tainty, as is the case for the learning rate (3). There are two
measures of uncertainty of interest here. One is the estimation
uncertainty derived from the Kalman filter learning model (S
variable, Eq. 2), the same quantity used in the UCB choice
rule. The other is based on the prediction error and reflects
both estimation and irreducible uncertainty (41). As predic-
tions improve and estimation uncertainty decreases, unsigned
(i.e. absolute) prediction error should generally decrease as
well. However, because unsigned prediction error contains
irreducible uncertainty (i.e. the variance of options’ reward
distributions), it will have continuing fluctuations as well, giv-
ing it a momentary character. Prediction errors play no role
in uncertainty computations in the Kalman filter (Eq. 2), so
these two measures should be largely decoupled. Indeed, the
correlation between the two measures is negligible, with an
average correlation across participants of 0.02 (SE = 0.11).

We regressed trial-by-trial uncertainty, prediction error,
unsigned prediction error and value obtained from the KFL-
UCB model on absolute fixation (see “Modelling absolute
fixation in the outcome stage” in Materials and Methods, Eq. 8
and 9). We assumed absolute fixation follows a skew normal
distribution constrained to the (0, 5) interval (Fig. 4A) and we
included a game type indicator as a control variable (Eq. 9).
We compared the full model with all four predictors to simpler
models that excluded particular predictors (Materials and
Methods). The results of these model comparisons (Fig. S7),
which naturally take into account model complexity, show
that a model including only unsigned prediction error (uPE
model) explained absolute fixation best (P = 0.58), with a
model including unsigned prediction error and value (uPE,
Unc model) following suit (P = 0.28). In the uPE model,
the effect of unsigned prediction error was clearly positive
(Fig. 4C), with almost the entire posterior distribution on
the positive side (mean of 0.05; 95% CI [0.02, 0.07]). This
means that reward outcomes accompanied with large unsigned
prediction error tended to attract longer absolute fixation.

These results suggest that unsigned prediction error could
in principle be a more important form of uncertainty, than
estimation uncertainty, for guiding choice. On this basis we
re-examined whether a class of models that uses unsigned
prediction error, instead of estimation uncertainty, in the UCB
choice rule might explain choices better than the KFL-UCB
model. We implemented two models. The KFL-UPE model
used a simple delta-rule to learn slow-moving estimates of
unsigned prediction errors coming from the lazy Kalman fil-
ter learning model. These estimates were then used in the
UCB rule. The K2-UPE model uses instead the K2 learning
model which computes estimates of unsigned prediction errors
in a more principled manner, following (41). However, the
KFL-UCB model outperformed both models with a posterior
probability of approximately 1 (SI Appendix, “Choice mod-
els with unsigned prediction errors” in Results and Fig. S4).
Evidently estimation uncertainty is more relevant for guiding
choice than unsigned prediction errors.
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Fig. 4. Interactions between learning and fixation processes at outcome stage. (A)
Density of absolute fixation in the outcome stage. Even though the option and
feedback disappear after 3 s participants often kept fixating on the same location
during the inter-trial interval (ITI). Fixations that extended 2 s into the ITI (i.e. 5 s
in total) were also used in the analysis. (B) Like uncertainty and unsigned reward
prediction errors, absolute fixation decreased over the course of learning. (C) Posterior
of the group-level slope parameter in the model regressing unsigned reward prediction
error (βuPE) on absolute fixations in the outcome stage. Almost complete posterior is
positive, including the 95% credible interval (CI, black bar on the x-axis), indicating a
clearly positive relationship. (D) The group-level slope parameter (η1) that biases the
learning rate in the aKFL-UCB model has a positive mean, suggesting a reduced bias
for longer fixation on the feedback; however, the CI includes zero.

Fixation in the outcome stage influences the learning rate. Given
our finding that learning influences visual fixations in the
outcome stage we next considered whether there was a relation
in the other direction, i.e., whether fixations affected the course
of learning. As for choice, we tested this by comparing the
KFL-UCB model that fitted choices best to a similar model
in which we allowed absolute fixation at the outcome stage
to modulate the learning rate, now referred to as aKFL-UCB
(Materials and Methods, Eq. 13, 2 and 4). We decomposed the
laziness parameter η of the lazy Kalman filter into an intercept
η0 and a slope η1 that multiplies the absolute fixation in the
outcome stage.

The slope η1 is the main parameter of interest in the aKFL-
UCB model. While the larger portion of its posterior is posi-
tive, with a mean of 0.03, the 95% CI [−0.17, 0.33] includes
zero, suggesting the overall effect is weak (Eq. 13; Fig. 4E).
To further assess its significance, we compared the aKFL-
UCB model to the KFL-UCB model where learning is not
modulated by absolute fixation. The KFL-UCB model out-
performed the aKFL-UCB model, with a posterior probability
of approximately 0.98, suggesting that absolute fixation does
not modulate the learning rate.

Discussion

This study enriches our understanding of human reinforcement
learning behaviour by looking at the four-way interaction be-
tween uncertainty, choice, learning and visual fixation. Our
results offer evidence that people learn and choose in par-
tial accordance with normative models, leveraging estimation

uncertainty for both choice and learning. We show novel in-
fluences of fixation in reinforcement learning. Signatures of
directed exploration can be seen in relative fixation at choice,
which goes beyond previous findings on the effects of value and
irreducible uncertainty on fixation at choice. Lastly, we pro-
vide novel evidence for the theoretical prediction that fixation
at outcome is modulated by estimation uncertainty.

Examining choices alone supports a model where explo-
ration is guided by both value and estimation uncertainty. The
winning KFL-UCB model adds an “exploration bonus” to op-
tions’ expected rewards (14, 38). This model can be viewed as
an approximation to the optimal solution for multi-armed ban-
dit problems (7, 42) and adds to a growing body of evidence
that people use uncertainty-guided choice strategies (8–12).
The KFL-UCB also includes a Bayesian learning component
(Kalman filter) which adapts its learning rate according to
uncertainty. This dovetails with previous studies demonstrat-
ing a dynamic modulation of learning rate by uncertainty
(4, 6). Our results imply that people track uncertainty about
estimated value and incorporate it in their choices. This aligns
with evidence from perceptual decision making that people
have well-calibrated confidence in their choices (43), and from
bandit tasks that they have accurate sense of confidence in
their value estimates (10, 44). Indeed, neuroimaging studies
show that the brain tracks both mean and variance (45, 46),
while studies of neuronal population activity support a cod-
ing scheme where both mean and variance are represented
(47, 48).

Our analyses of visual fixation during choice provide novel
evidence on the role of estimation uncertainty in choice. During
the choice stage where participants considered which option to
choose, we found that both value and estimation uncertainty,
derived from estimation based on all previous trials, guided
visual fixation in the current trial. Hence, directed exploration
principles guide both choice and fixation. Examining choices
alone do not always reveal the role of estimation uncertainty
in exploration (5, 13), but including fixation may provide
a more reliable method to decode its role. Previous studies
(18, 21, 40) mostly focused on one-shot choices and hence could
not examine whether and how visual fixation during choice
is influenced by learning history, neither value nor estimation
uncertainty. There are several exceptions. Perhaps the closest
to the present study is recent work by Leong and colleagues
(22), who show that fixation during choice is influenced by
value learned from previous trials. However, the authors did
not consider models that track uncertainty about value. An-
other recent study by Walker and colleagues (24) showed that
irreducible uncertainty increases exploration in both choice
and attention, i.e. less focus on best options. However, their
study used a between-subjects design and cannot explain what
components of learning drive fixation on a trial-by-trial basis.
Consequently, their results are inconclusive about the role of
estimation uncertainty. Several other studies that examined
relation between choice and attention in reinforcement learn-
ing eliminated the exploration aspect of the task and hence
did not examine the role of estimation uncertainty (25, 49).

We found that unsigned prediction errors guide visual fixa-
tion on the reward feedback during learning. Because estima-
tion uncertainty modulates the learning rate, we expected it
would guide fixation (3). Our additional prediction was that
reward prediction errors might also influence fixation, as these
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indirectly incorporate both estimation and irreducible uncer-
tainty. As learning progresses, estimated value becomes more
accurate and prediction errors correspondingly decrease, thus
mimicking the decrease in estimation uncertainty over time.
Because prediction errors are influenced by irreducible uncer-
tainty, they track both fast-moving momentary uncertainty
and slow-moving estimation uncertainty. Looking at relative
fixations to aversive stimuli in a conditioning task, (16) also
found evidence for the influence of momentary uncertainty
during the outcome stage. Results of both studies jointly
provide supportive evidence for a prediction based on (3) that
fixation should be related to option uncertainty, following the
precepts of Bayesian statistical learning. Interestingly, we did
not find that performance of a model where we allowed abso-
lute fixation at the outcome stage to modulate the learning
process (aKFL-UCB) improved over a model without fixation
modulation (KFL-UCB). This result suggests fixation reflects
the update process rather than having an influence on it. By
contrast, (16) and (22) found evidence for such modulation. In
(16) learning process was directly observed and in (22) fixation
measure was more detailed, tracking various features of op-
tions. These differences likely resulted in a greater sensitivity
for detecting the fixation modulation in these studies.

Relative fixation in the choice stage exerted a stronger influ-
ence on choice than warranted by the information about value
and estimation uncertainty contained in it. In fact, choices
were better predicted from relative fixation alone than by the
KFL-UCB model. This suggests that fixation carries addi-
tional choice relevant factors which are potentially unrelated
to value and estimation uncertainty. For example, low level
features of the symbols denoting individual options may have
attracted gaze and biased choice toward those options (28).
Such effects are anticipated by an attention modulated sequen-
tial sampling model (18). Here, we identify the magnitude of
this modulation in a learning setting: our ability to predict
choice nearly doubles, even for early trials that are usually
difficult to predict by reinforcement learning models (Fig. 3F).
This indicates that much can be gained by taking into account
the visual search process in modelling learning and choices.
The KFL-aUCB model, an example of how fixations can be
incorporated into reinforcement learning models, explained
choice better than relative fixation alone. This suggests that
value and estimation uncertainty influenced choices both di-
rectly, through an internal valuation process, and indirectly,
via fixation. This result invites an interesting conjecture about
directed and random exploration (9). The source of directed
exploration might be an internal choice process, while that
of random exploration might lie in fixation specific factors
unrelated to decision variables.

In tasks where people learn about options’ values from
reward feedback, looking at the options in the choice stage
does not convey new information per se. In learning tasks,
quantities such as estimated value and associated uncertainty
must be represented in memory rather than externally. This
raises the question of why participants’ fixations in the choice
stage were informative of their choices. To make an informed
choice between the options, participants will likely retrieve
experienced rewards or other indicators of options’ value from
memory. Looking at the stimuli, even though not informative
per se, can facilitate memory retrieval and working memory
operations (31, 32, 50, 51). This is akin to the rationale behind

sequential sampling mechanisms in one-shot value based de-
cision making. (18) hypothesized that the brain accumulates
evidence by extracting the features of choice options, retriev-
ing their learned values from the memory, and integrating
these for each option. Similar assumptions underlie integrated
reinforcement learning and sequential sampling models (20, 52–
54). A negative side effect is that fixations can introduce bias,
as suggested by (18). Our findings provide insight into the
nature of this bias. Being shaped by the learning history the
bias is partly adaptive, as a subset of fixations reflect cognitive
processes behind directed exploration.

The attentional drift diffusion model by Krajbich and col-
leagues (18) is an appealing account of the within-trial choice
process and how this may be influenced by fixation. Recent
models combining reinforcement learning and sequential sam-
pling have added across-trial learning dynamics (52–54). These
models are not applicable in our task as the choice stage was
fixed to 5 seconds and separated from the execution (Fig. 1B).
Therefore, response times are not informative about the evi-
dence accumulation process. When we allowed for self-selected
choice times in pilot experiments, we discovered that partici-
pants plan their next choice immediately after the feedback
and during the inter-trial interval, making the collection of
useful eye-movement data difficult. While such separation
seems artificial in a laboratory task, it arguably brings the
task closer to real-world situations. For instance, purchasing a
certain type of product in a supermarket might happen every
few days, effectively separating the choice opportunities and
forcing the consumer to make a final choice once they are in
front of the shelf. Applying sequential sampling models would
require experimental designs that solve the issue of deciding
in non-choice time in a different way. One potential solution
would be to use several bandit problems simultaneously and
on each trial randomly assign one of these, thereby reducing
the usefulness of planning a choice before choice options are
presented. Another is to use a contextual bandit problem,
where new options can be presented on every trial, while learn-
ing would allow making useful predictions about the value of
these new options (10, 22, 55).

One pertinent question is how our results regarding vi-
sual fixations relate to the role of attention in reinforcement
learning. In theoretical work on associative learning in nonhu-
man animals, the Mackintosh model (56) predicts that stimuli
with high predictive value should attract attention, while the
Pearce-Hall model (2) predicts that uncertainty has a primary
role. These seemingly contradictory accounts of attention have
both received empirical support (57). (3) reconciled the two
accounts, proposing that both are correct, but at different
stages: during choice, attention is guided by predictive value,
whilst during learning it is guided by uncertainty. Our re-
sults are consistent with this latter account. Fixations during
the outcome stage were mainly driven by unsigned prediction
errors, the measure of surprise in the Pearce-Hall model (2).
Our results for relative fixations in the choice stage support an
extension of the (56) account based on approximately optimal
solutions to the exploration-exploitation trade-off (14, 38). In
this extension, both value and estimation uncertainty play a
role in the choice stage.

Although imperfect, eye movements provide trial-by-trial
empirical measures of attention. By recording fixations, atten-
tion need not be inferred solely from a computational model
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(58–60). But there is scope for further integrating measured
attention into our models. Rather than using fixations as
exogenous modulators of learning and choice, as we have done
here (see also 22), a more satisfying treatment would endo-
genise fixations in a model that learns to direct attention
and choose both within and across trials. Research in vision
science has suggested that in tasks such as scene viewing
(61) and visual search (62), eye movements are guided by vi-
sual information gain. Sprague and Ballard (63) proposed a
reinforcement learning model of eye movements where uncer-
tainty guides eye movements. In their model, eye movements
to visually uncertain stimuli are reinforced because learning
about the identity or state of the stimuli result in decisions
that maximize the amount of reward. Previous studies have
provided qualitative support for the model, albeit not in a
reinforcement learning context (64). Manohar and Husain
(65) modelled fixations in one-shot choices between monetary
gambles where the authors argued that visual attention aims
to minimize uncertainty about the expected value of gambles.
In the latter study, as well as those concerning visual scene
detection, fixation directly provides novel information. This
contrasts with our study, where fixating on an option can
benefit memory retrieval, which in turn may serve a similar
aim of information gain. This then paves the way to extending
previous efforts to endogenise fixations to the current setting,
a focus of future research that we plan.

In summary, we provide a detailed window on the interplay
between learning, choice, and visual fixation, that allow us to
trace the path through which uncertainty affects behaviour.
Our study has theoretical and practical implications. First,
it shows that attention and reinforcement learning processes
might be more intertwined than previously thought, prompting
a need for closer integration of the two in the future studies.
It also raises new questions, such as whether the source of
random exploration can be traced to the learning-independent
properties of the fixation process. Second, it illustrates the
utility of monitoring eye movements during learning and choice.
The ability of reinforcement learning models to predict indi-
vidual choice substantially improves when fixations are taken
into account. Third, since fixations are shaped by learned
values and associated uncertainties the potential for fixation
to bias choice is smaller. Finally, the same result could explain
everyday phenomena such as what shelf space in supermarkets
people pay attention to and how companies can leverage this
to induce exploration of new products.

Materials and Methods

Participants. We recruited 34 participants (18 female, Mage = 26.8
and SDage = 8.1) from the Aarhus University subject pool. After
applying a priori exclusion criteria separately to each game played
by each participant, 23 participants remained (12 female, Mage =
26.9 and SDage = 8.4), 36 games in total, 19 Decreasing variances
and 17 V-shaped variances game (see SI Appendix, Methods for
details). The experimental sessions were conducted individually
in the COBE laboratory at Aarhus University and lasted for 75
minutes on average. Participants had normal or corrected to normal
vision. The study was approved by the Aarhus University Research
Ethics Committee and all participants provided written informed
consent. Participants received a show-up fee of 100 Danish krone
and an additional performance-contingent bonus (100 Danish krone
on average).

Task. The experiment was comprised of two separate multi-armed
bandit (MAB) tasks (games) with 60 trials each. In each task,
participants made repeated choices between the same six options,
represented by different symbols (Fig. 1A) and shown in the same
location on each trial. Key stages of a trial were the choice stage
and outcome stage. In the choice stage options were presented for a
fixed duration of 5 s, during which participants considered which
option to choose. They registered their choice in the execution stage
that followed the choice stage. In the outcome stage participants
were shown reward feedback overlaid over the chosen option for 3
s. Participants were instructed to maximize the cumulative sum of
the rewards during each task.

The main difference between the games was in the variance of
the rewards. In the Decreasing variances game, the variance of each
option decreased from the best option to the worst (according to
expected reward). In the V-shaped variances game the variance
decreased from the best option to the third best, and then increased
again from the fourth best to the worst option. To minimize carry-
over effects between the games, we used a different set of letters
from Gljagolica alphabet (Fig. 1A) and rescaled rewards differently
for each game. The alphabet letters, options’ locations, the order of
the games, and the currencies and scaling factors associated with
each game were randomized. At the end of each game participants
received feedback about the experimental points they accumulated
and corresponding earnings. After participants finished both games,
we informed them which game was randomly selected for the payout,
debriefed them, and paid their earnings. A detailed description of
the time course of each trial, stimuli construction in each game and
procedure is provided in SI Appendix, Methods.

Eye tracking. Participants sat in front of a screen with resolution of
1650× 1050 pixels and physical size of 475× 297 mm (widths and
heights, respectively). They used a chinrest at approximately 60 cm
distance from the screen. We recorded eye movements and pupillary
responses using a desk-mounted EyeLink 1000 eye tracker (SR
Research, https://www.sr-research.com/) with a monocular sampling
rate of 500 Hz. We performed a 13-point calibration with the
dominant eye, followed by a 13-point drift validation test. We
accepted calibrations with offset less than 1°of visual angle. In gaze
contingent stages of the trial – triggering the onset of the choice and
execution stage – 90% of gaze locations within a 1 s window needed
to be in a circular area with a 3 cm radius around the fixation
cross. To make a response in the execution stage participants had
to press a key and an eye data sample had to be recorded at the
same time within a circle representing an option. We used the
default algorithm provided by SR Research to detect fixations. In
data analysis we drew an area of interest (AOI) with radius of 3 cm
around the centre of every option and assigned all fixations falling
into these AOI to the corresponding options. See SI Appendix,
Methods for further details on the eye-tracking setup.

Data analysis. We present here an abbreviated overview of analyses
and models. More detailed descriptions, together with model fitting
and comparison procedures, are given in SI Appendix, Methods.

Mixed effect regressions. We examined learning effects in games
and differences between game types using Bayesian mixed effect
regressions. We computed averages across blocks and regressed an
intercept, a block indicator (coded as [−1.5,−0.5, 0.5, 1.5] for blocks
1 to 4) and a game type indicator (coded as −1 for Decreasing
variances and 1 for V-shaped variances game), as well as their
interaction on choice performance (chosen option rank) and fixation
measures in the choice and outcome stage (total fixation duration,
number fixations and number of options fixated). Intercept and
blocks were entered as game-specific random effects while game
type was entered as a fixed effect. Credible intervals were computed
as highest posterior density intervals.

Modelling learning and choices. We fitted four main computational
models to participants’ choices. Each model consists of a learning
and a choice component. The learning component is either a Kalman
filter (KF) (8, 13, 36) or a “lazy” Kalman filter (KFL) model. For
the choice component the models used either a softmax (SM; 37),
or an upper confidence bound choice rule (UCB; 14).

The Kalman filter model assumes participants update their
estimates Ej(t+ 1) of the expected reward of choosing option j on
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trial t+ 1 from the observed reward Rj(t) on trial t as
Ej(t+ 1) = Ej(t) + Ij(t)Kj(t)[Rj(t)− Ej(t)]. [1]

where the so-called “Kalman gain” term Kj(t) acts as a learning
rate. Term Ij(t) is a simple indicator variable, with value of 1 if
option j is chosen on trial t and 0 otherwise. The Kalman gain is
updated on every trial and depends on current level of uncertainty

Kj(t) = η
Sj(t) + σ2

ζ

Sj(t) + σ2
ζ

+ σ2
ε,j

, [2]

where Sj(t) is the variance of the posterior distribution of the mean
reward, updated in every trial as Sj(t+ 1) = [1− Ij(t)Kj(t)][Sj(t) +
σ2
ζ ]; σ2

ζ is the innovation variance and σ2
ε,j the reward variance

parameter which modulate the learning rate. Parameter η ∈ (0, 1)
determines a bias in the Kalman gain, allowing the filter to learn
at slower pace (hence the term “lazy”). In the standard Kalman
filter we fixed this parameter to η = 1, while in lazy versions it
is an estimated parameter. In both variants we initialized esti-
mate of the expected value to Ej(0) = 0. Initial variance was a
free parameter σ2

i such that Sj(0) = σ2
i . We take into account

differences between variances of options by setting the σ2
ε,j param-

eter to option’s objective variance that we used to draw rewards
from: [2.75, 2.35, 1.95, 1.55, 1.15, 0.75] in Decreasing variances and
[2.75, 2.35, 1.95, 1.95, 2.35, 2.75] in V-shaped variances game.

In the softmax choice rule participants choose probabilistically
according to relative estimated value

P (C(t) = j) =
exp[θEj(t)]∑6
k=1 exp[θEk(t)]

, [3]

where P (C(t) = j) is probability of choosing option j at trial
t and the inverse temperature parameter θ > 0 determines the
sensitivity to differences in estimated values, and with it the amount
of exploration.

The upper confidence bound choice rule combines estimated
value and estimation uncertainty

P (C(t) = j) =
exp{θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{θ(Ek(t) + β
√
Sk(t))}

, [4]

where β > 0 is the weight a participant places on estimation un-
certainty. While the original UCB rule chooses the option with
the highest resulting value deterministically, we implemented a
stochastic version by using a softmax transformation.

Modelling relative fixation in the choice stage. We used trial-by-trial
subjective estimates of value and uncertainty from the KFL-UCB
model fitting choices best, and regressed them on relative fixations
in the choice stage. We controlled for potential differences between
games by including a game-type indicator. Relative fixations were
operationalised as the summed duration of fixations on each of the
options divided by the sum of these quantities across all options.

We assume that relative fixations in the choice stage (RF) follow
a Dirichlet distribution

RF(t) ∼ D(α(t), κ), [5]
with the probability density function defined as

1
B(α(t)κ)

6∏
j=1

RFαj (t)κ−1
j , [6]

where B(α(t)κ) is a multinomial beta function that acts as a nor-
malising constant. The vector of concentration parameters α(t)
for each trial is obtained by passing values (Ej(t)) and estimation
uncertainty (Sj(t)) of each option j obtained from the KFL-UCB
model, as well as game type indicator as a control variable (G),
through a softmax function

α(t) =
exp{βvEj(t) + βu logSj(t) + βgtG}∑6
k=1 exp{βvEk(t) + βu logSk(t) + βgtG}

, [7]

where βv and βu are weights on value and uncertainty, while βgt is
the effect of game type. We log-transformed estimation uncertainty

to linearise it. Games were coded asG = −1 for Decreasing variances
and G = 1 for V-shaped variances game and this effect was included
at a group level only. We assumed an additional precision parameter
κ that multiplies the concentration parameters, governing how much
probability mass is near the expected value.

Modelling absolute fixation in the outcome stage. We used trial-by-
trial uncertainty, reward prediction errors, and value from the
KFL-UCB model that fitted the choices the best and regressed
them on absolute fixations in the outcome stage. We controlled
for potential differences between games by including a game type
variable. Absolute fixation measure was operationalised as a sum
of durations of all fixations on the reward feedback.

We assumed fixation durations during outcome stage (F ) follow
a Skew Normal distribution

F (t) ∼ N(ξ(t), ω, α), [8]
truncated to interval F (t) ∈ [0, 5]. In the full model the location
parameter ξ(t) for each trial is a linear combination of intercept,
uncertainty (Sj(t)), prediction error (PE), unsigned prediction error
(uPE), and value (Ej(t)) of chosen option j obtained from the
KFL-UCB model and game type indicator variable (G)
ξ(t) = βi+βu logSj(t)+βPEPEj(t)+βuPE|PE|j(t)+βvEj(t)+βgtG,

[9]
where βu, βPE, βuPE and βv are weights on uncertainty, signed
prediction errors, unsigned prediction errors and value, βi is the
intercept, and βgt the effect of game type. We computed unsigned
prediction errors as absolute value of the prediction error and we
log-transformed estimation uncertainty to linearise it. Games were
coded as G = −1 for Decreasing variances and G = 1 for V-shaped
variances game and this effect was included at a group level only.
We assumed an additional scale parameter ω and shape parameter
α, modelled at an individual game level, without a group-wise
parameter.

Modelling choices with visual fixations alone. We also regressed rel-
ative fixation in the choice stage alone on choices, without explicitly
modelling the learning and choice process. We used a simple multi-
nomial logistic regression model where relative fixation for option j
in trial t, RFj(t), is passed through a softmax function to obtain
the probability P (C(t) = j) of choosing option j at trial t

P (C(t) = j) =
exp[τRFj(t)]∑6
k=1 exp[τRFk(t)]

, [10]

where the inverse temperature parameter τ > 0 determines the
sensitivity to differences in relative fixations.

To avoid the measure of relative fixation taking the value of
zero for options that were not fixated on at all in certain trials, we
assigned each option a minimum value of ε which was treated as a
free parameter:

RFj(t) = ε/6 + (1− ε)
Fj(t)∑6
k=1 Fk(t)

. [11]

Modelling learning and choices modulated by visual fixations. We
assumed visual fixations can modulate the choice or learning com-
ponent of the KFL-UCB model. We mark the learning and choice
component with an “a” prefix to indicate which aspect is modu-
lated by fixations. For example, in the aKFL-UCB model, visual
fixations modulate the learning process, while in the KFL-aUCB
they modulate the choice process.

We assumed visual fixations in the choice stage enter the choice
process by re-weighting the choice probabilities produced by the
models based on options’ estimated values and estimation uncer-
tainty (Eq. 4). The relative fixation measure defined in Eq. 11
enters the UCB rule in an additive way:

P (C(t) = j) =
exp{τRFj(t) + θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{τRFk(t) + θ(Ek(t) + β
√
Sk(t))}

.

[12]
We assumed visual fixations in the outcome stage influence the

learning process by making the bias in the Kalman gain update
dependent on how long the reward feedback was fixated on in total
in the outcome stage of the trial. We implemented this by replacing
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the η parameter in Eq. 2 with a baseline parameter η0 and a slope
parameter η1 that depends on F , the absolute fixation duration in
outcome stage:

η(t) = Φ(η0 + η1F (t)), [13]
where Φ is the standard normal cumulative distribution function,
used to constrain the resulting η parameter to the (0, 1) range.

Data and code availability. The data, code used for our analyses, as
well as other project-related files are publicly available at the Open
Science Framework website: https://osf.io/539ps/ (66).
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Supporting Information Text

SI Methods

Exclusions. We recruited 34 participants (18 female, Mage = 26.8 and SDage = 8.1) in total. We removed data from two
participants before processing, one due to problems with eye tracker calibration throughout the experiment, and one due
to constant movement during the experiment. We applied two a priori exclusion criteria separately to each game played
by each participant. The first criterion was failing to respond in time in more than 10 trials in a game. We excluded one
participant who had more than 10 such trials in both games, most likely due to issues with calibration, as the choices were
gaze contingent. The second criterion was failing to exceed chance performance (mean choice rank of 3.5) in the last 15 trials
of a game. Specifically, we excluded games in which there was not at least weak evidence of above chance performance, as
evidenced by the Bayes factor. In particular, we excluded games for which BF01 > 1 (more evidence for the null hypothesis of
chance performance). Based on these two criteria we excluded 28 games, 13 Decreasing variances games and 15 V-shaped
variances games. After these exclusions, we were left with 23 participants (12 female, Mage = 26.9 and SDage = 8.4), 36 games
in total, 19 Decreasing variances and 17 V-shaped variances games.

Trial time course. The trial structure was as follows. The inter-trial interval (ITI), indicated by a fixation cross, was randomly
drawn from a uniform distribution, U(5, 5.5). After this interval, the fixation cross would rotate, indicating to participants that
they should fixate on the cross in order to trigger the presentation of the stimuli. They had to maintain their fixation on the
cross for 1 s for this to happen. Six options faded in over the course of 0.5 s and were presented for a total of 5 s fixed time,
during which participants would consider which option to choose. Stimuli would then smoothly fade away over the course of
0.5 s, and the fixation cross would reappear, this time with a normal (unrotated) orientation. Participants would again have to
fixate on the cross for 1 s to trigger the onset of the execution stage, in which they would make their choice. All six options
appeared at their own location, smoothly fading in over 0.5 s. To register their choice, participants had to fixate on the option
they wanted to choose and simultaneously press the SPACE key on the keyboard. They had at most 1.5 s to make a choice.
Unchosen options would smoothly fade away over 0.5 s while the chosen option would remain on screen for a random duration
drawn from a uniform distribution, U(2, 2.5). In the following outcome stage, the chosen option was made slightly transparent
and reward feedback was overlaid on top of it for a fixed duration of 3 s. This was followed by the random inter-trial interval,
and then the start of the next trial.

Stimuli construction in games. Rewards were drawn from a Gaussian distribution with an option specific mean and variance,
µk and σ2

k. Means and variances differed between the options in each game. The best option in both games had a mean reward
of 6. The main difference between the games was in the variance of the rewards. In both games the variance of the best option
was set to 2.75. In the Decreasing variances game, the variance of each option decreased from the best option to the worst
(according to the mean value) by 0.4. In the V-shaped variances game the variance decreased from the best option to the third
best by 0.4, and then increased again from the fourth best to the worst option by 0.4. To make the difficulty of both games
approximately equal, we set d′ = 0.4 between option pairs adjacent in their rank, and then determined exact means of the
second best to the worst option according to µj = µj−1 − 0.4×

√
(σ2
j−1 + σj)/2, where j is the rank of the option starting

from 1.
To minimize carry-over effects between the games, we used a different set of letters from Gljagolica alphabet (1, letter area

and color was adapted) and presented rewards using two different currencies (kuna and lek), with exchange rates of either 10 or
40, determined so that average earnings in both games are approximately equal. Rewards were scaled through multiplication
with these exchange rates. Before each game began we informed participants about the exchange rate that would be used in
the game and according to which we converted the points earned to money at the end of the experiment. The letters used in
the games, options’ locations, the order of the games, and the currencies and scaling factors associated with each game were
fully randomized.

Procedure. Upon entering the laboratory, participants completed an informed consent form and provided basic sociodemographic
data. Next we tested participants for eye dominance and seated them in front of the eye tracker. We then presented them with
instructions about the task and earnings on-screen. We explained they would play two games and in each game they had to
repeatedly (60 times) choose between six options, receiving a reward after each choice, with the goal to maximise the sum of
rewards earned. We also explained that while the rewards were noisy, the average reward of the options would not change over
time. We also indicated that the locations were chosen randomly and that nothing in the spatial arrangement was predictive of
the options’ values. Finally, we explained in detail how their earnings in the experiment were related to their choices in the
games.

Participants completed seven practice trials before starting the games, in order to familiarise themselves with the interface,
timings, and how to make gaze contingent transitions between the stages and choices. In the first two trials we showed brief
instructions at the different stages, explaining what to do and how to perform actions. We increased the duration of each
stage in these trials, to allow for sufficient time for reading the instructions. We used a different set Gljagolica letters in these
practice trials.

Throughout the games, including the practice trials as well, if participants failed to respond in time (1.5 s), the trial was
repeated. To provide an incentive to respond in time we deducted a significant number of experimental points when they failed
to respond in time, in the amount of the expected value of the highest ranking option.
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On finishing each game we provided feedback to participants how many experimental points they accumulated and to what
earnings would that correspond if the game were to be selected to be paid out. After participants finished both games, we
informed them about the game randomly selected for the payout and their final earnings, debriefed them, and paid out their
earnings.

For the sake of full transparency, we recorded the following variables in our experiment: participants’ choices, response
times, eye gaze locations, and pupillary responses in the MAB tasks, and basic socio-demographic data (age and gender).

Eye tracking. Eye movements and pupillary responses were recorded using a desk-mounted EyeLink 1000 eye tracker (SR
Research, https://www.sr-research.com/) with a monocular sampling rate of 500 Hz, a screen resolution of 1650× 1050 pixels and
physical size of 475× 297 mm (widths and heights, respectively). We recorded pupil area using the centroid fit algorithm and
CR tracking mode. The screen subtended a visual angle of 46.5°horizontally and 30.1°vertically. Participants used a chin-rest
at approximately 60 cm viewing distance from the screen. We recorded exact physical layout of the equipment following (2).

Before beginning with the practice trials and each of the games, we performed calibration with the dominant eye using a
13-point calibration procedure, followed by a 13-point drift validation test. Background colour and calibration point colours
were adjusted according to the rest of the experiment. We considered acceptable a calibration offset less than 1.0°of visual angle.
Pupil tracking parameters were determined through EyeLink’s automatic method. We repeated the calibration procedure
within the game if participants reported difficulties in gaze contingent stages of the trial.

We presented the experimental stimuli using the PsychoPy library (3). In the MAB task each option was represented by a
circle with a radius of 3 cm and a letter with 2× 2 cm size centred in it. To prevent participants from foveating more than one
option at a time, they were placed in a circle separated horizontally and vertically by at least 3°of visual angle, 9 cm from the
centre of the screen. In gaze contingent stages of the trial – triggering the onset of the choice and execution stage – participants
had to have 90% of gaze locations within a 1 s window in a circle area with a 3 cm radius around the fixation cross. To make a
response in the execution stage participants had to press a key and an eye data sample had to be recorded at the same time
within a circle representing an option. Reward feedback was presented overlaid over the chosen option as text, with letters of 1
cm in height.

Several aspects of the task implementation were concerned with collecting good quality pupillary data. We presented
everything on the screen using two isoluminant colours – #457CA9 as a background colour and #A4694F for text and stimuli
(HTML colour code). We chose letters from the alphabet that have approximately the same area. We used a longer inter-trial
interval (5.25 s on average) to allow for pupil size to return to the baseline. Before each game we collected the game pupil
baseline in a 40 s long stage with a fixation cross only where we instructed participants to look at the fixation cross during
that time. They had another 40 s long stage where they looked directly at a camera, to be able to compute the pupil area in
non-arbitrary physical units (2). Finally, the experiment was conducted in a darkly lit room, with constant lighting conditions
across participants.

We used the default velocity, acceleration and motion-based algorithm provided by SR Research to detect fixations (4).
In data analysis we drew an area of interest (AOI) with a radius of 3cm around the centre of every option and assigned all
fixations falling into these AOIs to the corresponding option.

Data analysis.

Mixed effect regressions. We examined learning effects within games and differences between game types using Bayesian mixed
effect regressions, implemented in the brms package in R (5, 6). We computed averages across blocks and regressed the intercept,
a block indicator variable (coded as [−1.5,−0.5, 0.5, 1.5] for blocks 1 to 4) and a game type indicator variable (coded as −1 for
Decreasing variances game and 1 for V-shaped variances game), as well as their interaction, on choice performance (chosen
option rank) and various fixation statistics in the choice and outcome stage (total fixation duration, number fixations and
number of options fixated). We modelled choice ranks as a normal distribution truncated to the [1, 6] interval. The total
number of fixations and the number of options fixated on were also modelled as normal distributions, truncated to the [0,∞)
interval. Total fixation duration was modelled as a skew normal distribution, truncated to the [0,∞) interval. Intercept and
blocks were entered as game-specific random effects, while game type was entered as a fixed effect. brms package uses the
No-U-Turn-Sampling MCMC algorithm implemented in Stan (7) to fit the models (see “Fitting using MCMC” in SI Methods).
We used default brms (version 2.8.0) priors and a centred parametrization of group-level parameters.

Modelling learning and choices. We fitted four main computational models to participants’ choices. All four consisted of a learning
component and a choice component. The learning component was either a Kalman filter (KF) (8–10) or a “lazy” Kalman filter
(KFL) model. Both use a form of the delta rule (11) to update estimated value based on a reward prediction error. What
makes Kalman filter models different is that they track the (posterior) variance of the estimated value of each option (i.e.
estimation uncertainty) and use this to dynamically adjust the learning rate. The lazy Kalman filter introduces a bias to the
learning rate, allowing for slower learning. For the choice component the models used either a Softmax (SM; 12), or an upper
confidence bound choice rule (UCB; 13). In the Softmax model exploration happens randomly – participants choose options
with probability roughly proportional to the differences in estimated value between the options. By contrast, the UCB choice
rule uses estimation uncertainty to approximate the information gained by choosing an option, and adds this as an “uncertainty
bonus” to the estimated values (14), making exploration driven by information gain. We use a probabilistic form of the UCB
rule where values are passed through a Softmax function, in contrast to the original deterministic form (13).
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In the Kalman filter model we assumed participants update their estimates Ej(t+ 1) of the expected reward of choosing
option j on trial t+ 1 from the observed reward Rj(t) on trial t as

Ej(t+ 1) = Ej(t) + Ij(t)Kj(t)[Rj(t)− Ej(t)]. [1]

where the so-called “Kalman gain” term Kj(t) acts as a learning rate. Term Ij(t) is a simple indicator variable, with a value of
1 if option j is chosen on trial t and 0 otherwise. The Kalman gain is updated on every trial and depends on current level of
uncertainty. This makes it a dynamic learning rate

Kj(t) = η
Sj(t) + σ2

ζ

Sj(t) + σ2
ζ + σ2

ε,j

, [2]

where Sj(t) is the variance of the posterior distribution of the mean reward, updated in every trial as Sj(t + 1) = [1 −
Ij(t)Kj(t)][Sj(t) + σ2

ζ ]. Parameters σ2
ζ and σ2

ε,j are the innovation variance and option’s reward variance respectively, which
modulate the learning rate. Parameter η ∈ (0, 1) determines the bias in updates of the Kalman gain, causing it to potentially
learn at slower pace (hence the term “lazy”). In the standard Kalman filter we fixed this parameter to η = 1, while in
lazy versions it is a free parameter, thus allowing for imperfect updates. In both variants we initialized estimate of the
expected value to Ej(0) = 0. Initial variance was a free parameter σ2

i such that Sj(0) = σ2
i . We take into account differences

between variances of options by setting the σ2
ε,j parameter to option’s objective variance that we used to draw rewards from:

[2.75, 2.35, 1.95, 1.55, 1.15, 0.75] in Decreasing variances and [2.75, 2.35, 1.95, 1.95, 2.35, 2.75] in V-shaped variances game. This
imposes different learning rates for each option, influenced by its objective reward distribution variance. To estimate the
Kalman filter learning model one of the three parameters (σ2

ζ , σ2
ε and σ2

i ) needs to be fixed and we found that fixing σ2
ε

results in more stable estimations with better convergence properties (see “Hierarchical Bayesian parameter estimation” in SI
Methods).

We consider two choice rules that describe how the estimated values are used to make a choice C(t) between the options. In
the Softmax choice rule (12) exploration occurs by chance – participants choose probabilistically according to relative estimated
value

P (C(t) = j) = exp[θEj(t)]∑6
k=1 exp[θEk(t)]

, [3]

where P (C(t) = j) is the probability of choosing option j on trial t and the inverse temperature parameter θ > 0 determines
the sensitivity to differences in estimated values, and with it the amount of exploration.

The upper confidence bound choice rule (13) uses estimation uncertainty to approximate an option’s informativeness, or
how much value estimates can be improved by trying an option. A multiple of the estimation uncertainty, defined as the
standard deviation of the posterior distribution of the mean reward, is added to the posterior mean reward as an “exploration
bonus”. While the original UCB rule chooses the option with the highest resulting value deterministically, we implemented
a stochastic version of the UCB rule by using a softmax transformation. In the Kalman filter the estimation uncertainty is
explicitly modelled (posterior variance S in Eq. 2), resulting in the following form of the UCB choice rule

P (C(t) = j) =
exp{θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{θ(Ek(t) + β
√
Sk(t))}

, [4]

where β > 0 is the weight a participant places on estimation uncertainty. We fitted all models using hierarchical Bayesian
parameter estimation (see “Hierarchical Bayesian parameter estimation” in SI Methods).

Modelling visual fixation in the choice stage. We used trial-by-trial subjective estimates of value and uncertainty from the KFL-UCB
model fitting choices best and regressed them on relative fixations in the choice stage. We controlled for potential differences
between the games by including a game type indicator. Relative fixations were operationalised as a sum of durations of fixations
on each of the options in the choice stage, normalized by dividing by the sum of these quantities across all options.

We assume that relative fixations in the choice stage (RF) follow a Dirichlet distribution

RF(t) ∼ D(α(t), κ), [5]

with the probability density function defined as

1
B(α(t)κ)

6∏
j=1

RFαj(t)κ−1
j , [6]

where B(α(t)κ) is a multinomial beta function that acts as a normalising constant. The vector of concentration parameters
α(t) for each trial is obtained by passing values (Ej(t)) and estimation uncertainty (Sj(t)) of each option j obtained from the
KFL-UCB model, as well as the game-type indicator (G) as a control variable, through a Softmax function

α(t) = exp{βvEj(t) + βu logSj(t) + βgG}∑6
k=1 exp{βvEk(t) + βu logSk(t) + βgtG}

, [7]
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where βv and βu are weights on value and uncertainty, while βgt is the effect of game type. We log-transformed estimation
uncertainty to linearise it. Games were coded as G = −1 for the Decreasing variances and G = 1 for the V-shaped variances
game and this effect was included at a group level only. We assumed an additional precision parameter κ that multiplies the
concentration parameters, governing how much probability mass is near the expected value. We tested also several reduced
models where either uncertainty or value was left out. We fitted all models using hierarchical Bayesian parameter estimation
(see “Hierarchical Bayesian parameter estimation” in SI Methods).

Modelling visual fixation in the outcome stage. We used trial-by-trial uncertainty, reward prediction errors, and value from the
KFL-UCB model fitting choices best and regressed them on absolute fixations in the outcome stage. We controlled for potential
differences between games by including a game-type indicator. Absolute fixation was operationalised as the sum of durations of
all fixations on the reward feedback.

We assumed fixation durations during outcome stage (F ) follow a Skew Normal distribution

F (t) ∼ N(ξ(t), ω, α), [8]

truncated to the interval F (t) ∈ [0, 5]. In the full model the location parameter ξ(t) for each trial is a linear combination of
intercept, uncertainty (Sj(t)), reward prediction error (PE), unsigned reward prediction error (uPE), and value (Ej(t)) of
chosen option j obtained from the KFL-UCB model and the game-type indicator variable (G)

ξ(t) = βi + βu logSj(t) + βPEPEj(t) + βuPE|PE|j(t) + βvEj(t) + βgtG, [9]

where βu, βPE, βuPE and βv are weights on uncertainty, prediction errors, unsigned prediction errors and value, while βi is the
intercept parameter and βgt the game-type effect. The intercept parameter is the baseline or mean absolute fixation across the
whole experiment, while other parameters act as deviations from the baseline. We computed unsigned prediction errors as
absolute value of prediction errors (this worked better than squaring the prediction error) and log-transformed estimation
uncertainty to linearise it. Games were coded as G = −1 for the Decreasing variances and G = 1 for the V-shaped variances
game and this effect was included at a group level only. We assumed an additional scale parameter ω and shape parameter α,
modelled at an individual game level, without a group-wise parameter. We tested several reduced models where uncertainty,
one of the reward prediction errors, or value are left out. We fitted all models using hierarchical Bayesian parameter estimation
(see “Hierarchical Bayesian parameter estimation” in SI Methods).

Modelling choices with visual fixations alone. We can model choices by relative fixations in the choice stage alone by regressing the
latter onto the former, without explicitly modelling the learning and choice process. We used a simple multinomial logistic
regression model where relative fixation for option j in trial t, RFj(t), is passed through a Softmax function to obtain the
probability P (C(t) = j) of choosing option j at trial t

P (C(t) = j) = exp[τRFj(t)]∑6
k=1 exp[τRFk(t)]

, [10]

where the inverse temperature parameter τ > 0 determines the sensitivity to differences in relative fixations.
To avoid our relative fixation measure taking the value 0 for options that were not fixated on at all in certain trials, we

assigned each option a minimum value ε which was treated as a free parameter:

RFj(t) = ε/6 + (1− ε) Fj(t)∑6
k=1 Fk(t)

. [11]

Estimating the ε parameter can tell us how useful the fixation data is. Overall, this regression model has two parameters: θ
and ε. We fitted the model using hierarchical Bayesian parameter estimation (see “Hierarchical bayesian parameter estimation”
in SI Methods).

Modelling learning and choices modulated by visual fixations. We assumed visual fixations can modulate the choice or learning
component of the KFL-UCB model. We mark the learning and choice component with an “a” prefix to indicate which aspect is
modulated by fixations. For example, in the aKFL-UCB model, visual fixations modulate the learning process, while in the
KFL-aUCB they modulate the choice process.

We assumed visual fixations in the choice stage enter the choice process by re-weighting the choice probabilities produced by
the models based on options’ estimated values and estimation uncertainty (Eq. 4). The relative fixation measure defined in
Eq. 11 enters the UCB rule in an additive way:

P (C(t) = j) =
exp{τRFj(t) + θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{τRFk(t) + θ(Ek(t) + β
√
Sk(t))}

. [12]

This has the effect of increasing the choice probabilities for options that received relatively more fixation time and diminishing
them for the options that received relatively little fixation time.

We assumed visual fixations in the outcome stage influence the learning process by making the bias in the Kalman gain
update dependent on how long the reward feedback was fixated on during the outcome stage of a trial. We implemented this
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by replacing the η parameter in Eq. 2 with a baseline parameter η0 and a slope parameter η1 that depends on F , the absolute
fixation duration in outcome stage:

η(t) = Φ(η0 + η1F (t)), [13]

where Φ is the standard normal cumulative distribution function, which we use to constrain the resulting η parameter to the
(0, 1) range.

Overall, there are three model variants with attention modulation: The aKFL-UCB model has all the parameters that
the KFL-UCB model has and an additional η1 parameter. The KFL-aUCB model instead has additional ε parameter, while
the aKFL-aUCB has both additional parameters. We fitted all models using hierarchical Bayesian parameter estimation (see
“Hierarchical bayesian parameter estimation” in SI Methods).

Hierarchical bayesian parameter estimation. We used a Bayesian hierarchical estimation procedure to estimate the parameters of
each model (15). The unit of analysis was a game, rather than a participant, as games differed in their design and some
participants had only one game left in the dataset after exclusions were performed. We used hierarchical models which treat
each game as drawn from a common group-level distribution, where parameters at the game level are assumed to be generated
by the same group-level prior distribution. We used this approach for all parameters in our models unless explicitly stated
otherwise (e.g. game type variable). Parameters at the game level and so-called hyperparameters at the group level mutually
constrain each other and we estimate them jointly using a Markov Chain Monte Carlo (MCMC) sampling procedure. We
formulated all game-level parameters using a non-centred (probit) parametrization which facilitates MCMC sampling with
hierarchical models (16).

We sample hyperparameters from hyperprior distributions, for which we used moderately informative distributions but
broad enough to allow data to shift them. We show priors and hyperpriors for each parameter in Table S1 and Table S2. We
use superscript g on each parameter to refer to the dependence of parameters on game. For example, we assume that the
uncertainty guidance parameter from UCB choice rule, βg, is sampled from a prior which is a linear combination of three
hyperparameters: µβ determines the mean of the prior, while ζβ and νβ together determine deviations from the mean (this is
the non-centered parametrization). This particular parameter should be non-negative and we use an exponential transformation
to ensure that. The hyperparameters are in turn sampled from their hyperpriors: µβ from a Normal distribution with mean 0
and standard deviation 1, ζβ from a Half-Normal distribution with mean 0 and standard deviation 1 (half refers to truncation
to the [0,∞) interval), and νβ from a Normal distribution with mean 0 and standard deviation 1. Credible intervals were
computed as highest posterior density intervals.

Fitting using MCMC. We fitted the models to the data using the No-U-Turn-Sampling MCMC algorithm implemented in Stan (7).
This algorithm approximates the posterior distribution of parameters by generating samples from this posterior distribution
given the observed behavioural data. We initialized five independent chains with randomly generated starting values and
collected 5000 samples of each chain at a thin rate of 1, after discarding the first 5000 of burn-in samples of each chain. We
confirmed that all chains successfully converged by visually inspecting the traceplots of the chains and examining the number
of efficient samples and R̂ statistic.

Model comparison with bridge sampling. We performed model comparison by estimating the model evidence through bridge
sampling (17, 18), using the bridgesampling package in R (19). Bridge sampling uses samples from MCMC chains to estimate
the log marginal likelihood of a model, which can then be used to compute posterior probabilities of a model being the true
one among a set of models (18). Following recommendations in (19) we used the “warp3” method and repeated the estimation
multiple times (N = 50) to obtain an empirical estimate of error in estimated model evidence (the interquartile range of the
estimates). In the figures that illustrate model evidence we report median log marginal likelihoods and posterior probabilities
across the repetitions for each model.

SI Results

Additional properties of visual fixation.

In the choice stage, we examined several other measures of visual fixation: number of fixations made across all options and
number of distinct options that were fixated. Mean number of fixations decreased over time and there was no difference
between games (mixed effects regression estimates: intercept = 9.26, 95% CI [8.57, 9.95]; block = −0.52, 95% CI [−0.78,−0.26];
game = 0.10, 95% CI [−0.60, 0.80]; block×game = −0.24, 95% CI [−0.51, 0.02]). Mean number of unique option fixations
decreased over time and there was a weak difference between games (mixed effects regression estimates: intercept = 2.99,
95% CI [2.67, 3.31]; block = −0.15, 95% CI [−0.25,−0.04]; game = 0.06, 95% CI [−0.26, 0.38]; block×game = −0.14, 95% CI
[−0.25,−0.04]), as evidenced by block and block-game interaction estimates.

In the outcome stage, besides assessing trial-by-trial variability in absolute fixation we also examined variability in the
number of fixations. The mean number of fixations decreased over time, same as for absolute fixation, but here there was
no difference between games (mixed effects regression estimates: intercept = 4.76, 95% CI [4.40, 5.11]; block = −0.17, 95%
CI [−0.30,−0.05]; game = −0.12, 95% CI [−0.49, 0.23]; block×game = 0.08, 95% CI [−0.05, 0.20]). The negative effect of
block suggests that the decrease in number of fixations, but not fixation durations, is likely driving the decrease in absolute
fixation. The standard deviation of number of fixations is sizeable (mixed effects regression estimates: intercept = 1.97, 95% CI
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[1.87, 2.08]; block = 0.04, 95% CI [−0.02, 0.10]; game = 0, 95% CI [−0.10, 0.10]; block×game = −0.01, 95% CI [−0.07, 0.05]),
as evidenced by intercept estimate.

As an additional check of differences between games in terms of visual fixations, we regressed out expected values of options
in each game from relative fixation time in the choice stage using Dirichlet regressions. Residuals from such regressions should
reveal potential differences between games due to differences in the pattern of variances. The results however show no difference
between standardised residuals of the two games (Fig. S1). This provides additional evidence that the differences between the
games, relating to the variance of the lower ranking options only, were too subtle to result in large differences.

Finally, we investigated some relations between aspects of the fixation process and choices. In particular, we were interested
in checking the predictions of how visual fixations influence choice made by (20), based on their attentional drift diffusion
modelling approach. Even though we could not directly apply this approach to our paradigm because we fixed the duration of
the choice stage, we examined to what extent their predictions are born out by our data. First, one assumption (20) made was
that first fixation is unbiased by options’ values. In our learning task, participants learn the value of options over time and
since the locations of options do not change across the trials we expected this assumption to be violated. Indeed, we found a
larger probability of first fixating the best option than expected by chance (mean of 0.31, SE = 0.04; Fig. S2B). Another of
(20) predictions was that final fixations would be shorter than middle fixations, as fixations are interrupted when the evidence
accumulation process hits the bound. In our task there was no free response and we did not expect to see that pattern. Indeed,
examining fixation duration by fixation type – first, one of the middle, or last fixation – shows the opposite pattern, where the
last fixation duration is longer than the middle ones (Fig. S2A). A final prediction made by (20) which we assessed is that
participants should choose the option they looked at last, unless the option is much worse. This prediction did hold in our data
as well. Participants indeed increasingly chose the option fixated the last, unless the option was low ranking one (Fig. S3).

Modelling learning and choices – control models.

Rescorla-Wagner and Choice kernel based models. We fitted four additional control models to the choices. These models also
consisted of a learning component and a choice component. We used three types of learning models: a Choice kernel (CK)
model (21), a Rescorla-Wagner (RW) model (11), and a combination of both (21). These models do not explicitly track
estimation uncertainty, but have been often successfully used to model learning in tasks like ours. With these learning models
we used two choice models: a Softmax choice model (SM; 12) that we used with all three types of the learning models, and a
nonparametric version of an upper confidence bound choice model (UCB; 13) that we used only with the RW model.

The CK model assumes that participants estimate a so-called choice kernel, CKj(t), which keeps track of how frequently
they have chosen option j in the recent past. This choice kernel is updated as

CKj(t+ 1) = CKj(t) + γ[Ij(t)− CKj(t)], [14]

where γ ∈ (0, 1) is a fixed learning rate parameter and Ij(t) = 1 if option j was chosen on trial t, and 0 otherwise. We initialized
estimates of the choice kernel to CKj(0) = 0.

The RW model assumes participants update their estimates Ej(t+ 1) of the expected value of choosing option j on trial
t+ 1 from the reward Rj(t) on trial t

Ej(t+ 1) = Ej(t) + Ij(t)α[Rj(t)− Ej(t)], [15]

where α ∈ (0, 1) is a fixed learning rate parameter. We initialized estimates of mean values to Ej(0) = 0.
The Softmax choice rule uses the estimated kernels or values to make a choice C(t) between the options. In this choice

rule exploration occurs by chance – participants choose probabilistically according to relative estimated kernel or value. The
CK-SM model used

P (C(t) = j) = exp[τCKj(t)]∑6
k=1 exp[τCKk(t)]

, [16]

where the parameter τ > 0 determines the sensitivity to differences in estimated kernels, and with it amount of exploration.
The model thus had two parameters: τ and γ. The RW-SM model used

P (C(t) = j) = exp[θEj(t)]∑6
k=1 exp[θEk(t)]

, [17]

with an inverse temperature parameter θ > 0 in addition to α. Finally, the RWCK-SM model used

P (C(t) = j) = exp[θEj(t) + τCKj(t)]∑6
k=1 exp[θEk(t) + τCKj(t)]

, [18]

with all four parameters from CK-SM and RW-SM model.
The last model was the RW-UCB model. The UCB choice rule uses estimation uncertainty to approximate an option’s

informativeness, or how much value estimates can be improved by trying an option. While Kalman filter models explicitly
track estimation uncertainty, the RW model does not. Therefore we use a nonparametric form of the UCB, using current trial t
and number of times the options were chosen Nj as proxies

P (C(t) = j) =
exp{θ(Ej(t) + β

√
log(t)/Nj)}∑6

k=1 exp{θ(Ek(t) + β
√

log(t)/Nj)}
, [19]
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where β > 0 is the weight a participant places on estimation uncertainty.
We fitted these models to the choice data using hierarchical Bayesian model estimation (see “Modelling choices with visual

fixations alone” in SI Methods). Model evidence shows that the models consisting of Kalman filter learning and UCB choice
rule fit the data better than those based on Rescorla-Wagner, choice kernel learning, or both (Fig. S4). The lazy Kalman filter
model with a UCB choice rule described participants’ choices best (KFL-UCB), with a posterior probability of approximately
0.99. All other models have a posterior probability of approximately zero. The Rescorla-Wagner UCB model (RW-UCB)
performed particularly poorly, indicating that a nonparametric form of the UCB choice rule based on the number of times an
option has been chosen does not describe behaviour well.

KFL-UCB model with unconstrained β parameter. The only difference between the KFL-UCB model that fitted the choices the best
and its Softmax counterpart, KFL-SM, is the β parameter, that acts as a weight on uncertainty in the UCB choice rule. The
strong evidence favouring the KFL-UCB model over the KFL-SM model indicates that the β parameter is reliably different from
zero. In estimating the β parameter in the KFL-UCB model, we assumed that it can not be negative. As an additional check,
we here also estimate an unconstrained model where β can be positive or negative. While the notion of directed exploration
rests on a positive value of β, it is possible that participants are averse to irreducible uncertainty and negative values of the β
parameter can capture such uncertainty or risk aversion (22). This makes interpretation of a negative value of β complicated,
as the parameter may be negative when there is both directed exploration and risk aversion.

We fitted the unconstrained KFL-UCB model using hierarchical Bayesian parameter estimation (see “Hierarchical bayesian
parameter estimation” in SI Methods). Comparing only the two models of interest, the KFL-UCB model with the non-negative
β parameter outperformed the unconstrained KFL-UCB model with a posterior probability of approximately 0.99. Moreover,
the β parameter of the unconstrained model was overwhelmingly positive (posterior mean of 0.48, 95% CI [0.21, 0.76]). This
result further affirms that the β parameter is positive. In addition, we also compared the model to all other choice models
(KFL-UCB unc; Fig. S4). The unconstrained KFL-UCB model is a second best model, after the constrained KFL-UCB model.
These two models, together with KF-UCB, outperformed all others by a large margin.

Choice models with unsigned prediction errors. The analyses of interactions between the learning and fixation process showed that
unsigned prediction error was the strongest predictor of absolute fixations in the outcome stage of the trial. This provided
evidence for a theory-driven expectation that time spent looking at the reward feedback is guided by uncertainty (23). This
result also suggests that unsigned prediction errors could reflect a more important form of uncertainty for guiding choices than
estimation uncertainty. Hence, a model that uses unsigned prediction errors instead of estimation uncertainty in the UCB
choice rule could potentially explain choices better than the currently best-fitting KFL-UCB model. Here we investigate this
further.

In the analysis of fixation data we regressed unsigned prediction error from the current trial on the total fixation duration in
the outcome stage of the trial. For predicting choices, the prediction error from the previous trial would not be sensible as
uncertainty would not be defined for those options which were not chosen on the previous trial. Instead, it is reasonable to
maintain estimates of uncertainty based on unsigned prediction errors that are updated from trial to trial.

Based on this idea we implemented two models. The first model is a KFL-UPE model that uses a simple delta-rule to learn
slow-moving estimates of unsigned prediction errors coming from the lazy Kalman filter learning model. Hence, besides the
usual lazy Kalman filter learning (Eq. 1 and 2), the KFL-UPE model assumes participants update their estimates of unsigned
prediction errors Uj(t+ 1) based on chosen option j on trial t+ 1 from the reward Rj(t) on trial t and estimated value Ej(t)
(from Eq. 1)

Uj(t+ 1) = Uj(t) + Ij(t)ζ|Rj(t)− Ej(t)|, [20]
where ζ ∈ (0, 1) is a fixed learning rate parameter. We initialized estimates to Uj(0) = 100. Term Ij(t) is an indicator variable,
with value of 1 if option j is chosen on trial t and 0 otherwise.

These estimates were then used in a UCB-like choice rule where instead of estimation uncertainty we used estimates of
unsigned prediction errors, Uj(t). The probability of choosing option j at trial t is given by

P (C(t) = j) =
exp{θ(Ej(t) + β

√
Uj(t))}∑6

k=1 exp{θ(Ek(t) + β
√
Uk(t))}

, [21]

where β > 0 is the weight a participant places on uncertainty and the inverse temperature parameter θ > 0 determines the
sensitivity to differences in the values.

The second model is a K2-UPE model that uses the K2 learning model which computes estimates of unsigned prediction
errors in a more principled manner, following (24). In the K2 model these uncertainty estimates are used to dynamically
modulate the learning rate, making the K2 model an alternative to the Kalman learning. The K2 model assumes participants
update their estimates Ej(t+ 1) of the expected reward of choosing option j on trial t+ 1 from the observed reward Rj(t) on
trial t as

Ej(t+ 1) = Ej(t) + Ij(t)Kj(t)[Rj(t)− Ej(t)]. [22]
where term Kj(t) is a dynamic learning rate, similar to the Kalman filter learning model. Term Ij(t) is an indicator variable,
with value of 1 if option j is chosen on trial t and 0 otherwise. The learning rate is updated on each trial as

Kj(t) = Sj(t)
Sj(t) + R̂j

, [23]
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where Sj(t) is the uncertainty estimate. The K2 algorithm adapts S(t) by performing gradient descent in a corresponding set
of parameters b(t), where the two are related by

Sj(t) = exp{bj(t+ 1)}. [24]

The parameters b(t) are updated as

bj(t+ 1) = bj(t) + νIj(t)[(Rj(t)− Ej(t))2 − R̂j −
6∑
k=1

Sk(t)], [25]

where ν > 0 is a step-size parameter and b(t) parameters are initialized as

bj(0) = log R̂j . [26]

Finally, R̂ is an estimate of irreducible uncertainty. Here we used the objective reward variances, [2.75, 2.35, 1.95, 1.55, 1.15, 0.75]
in the Decreasing variances and [2.75, 2.35, 1.95, 1.95, 2.35, 2.75] in the V-shaped variances game, rescaled by a free parameter
σ2
ε .
We combined the K2 learning model with a UCB-like choice rule where instead of estimation uncertainty we used uncertainty

estimates (Sj(t)) from the K2 learning model. The probability of choosing option j at trial t is given by

P (C(t) = j) =
exp{θ(Ej(t) + β

√
Sj(t))}∑6

k=1 exp{θ(Ek(t) + β
√
Sk(t))}

, [27]

where β > 0 is the weight a participant places on uncertainty and the inverse temperature parameter θ > 0 determines the
sensitivity to differences in the values.

We fitted the new model using hierarchical Bayesian parameter estimation (see “Hierarchical Bayesian parameter estimation”
in SI Methods). The KFL-UCB model outperformed both the K2-UPE and KFL-UPE model with a posterior probability
of approximately 1. This result affirms that for explaining choices it is estimation uncertainty that matters the most, not
unsigned prediction error. In addition, we also compared the new models to all other choice models (Fig. S4). Even though in
simulations the K2 algorithm seems like a good competitor to the Kalman filter algorithm (24), the K2-UPE model does not fit
the behaviour of our participants well. It outperforms only the RW-UCB and CK-SM model by a convincing margin, and fits
choices similar to the KF-SM model. The KFL-UCb model fits the behaviour somewhat better than the K2-UPE, but is still
substantially worse than Kalman filter models combined with the UCB choice rule, as well as RWCK-SM model.

Comparison of learning and choice models modulated by visual fixation. In our original analysis we assumed visual fixations can
modulate the choice or learning component of the KFL-UCB model that best fitted the behaviour (see “Modelling learning
and choices modulated by visual fixations” in SI Methods). However, it is possible that certain components of the winning
KFL-UCB model may become unnecessary once fixation information is taken into account. For example, the Softmax choice
rule might outperform the UCB rule or the “laziness” parameter in the Kalman filter may become unnecessary once we include
the fixation information. Hence, as a robustness check, we fitted additional attention-modulated models.

To assess the robustness of our finding that the UCB choice rule is relevant, we considered the Softmax choice rule combined
with the same KFL learning component. As in the attention-modulated UCB rule, we here use the relative fixation measure
defined in Eq. 11 to re-weight the values in the Softmax (Eq. 3)

P (C(t) = j) = exp{τRFj(t) + θEj(t)}∑6
k=1 exp{τRFk(t) + θEk(t)}

. [28]

This re-weighting again has the effect of increasing the choice probabilities for options that received relatively more fixation time
and diminishing them for the options that received relatively little fixation time. The learning process in the KFL component
is modulated in the same way as in Eq. 13. Overall, we have three additional KFL-SM model variants where either learning
(aKFL-SM), the choice process (KFL-aSM), or both (aKFL-aSM) are modulated by attention.

To confirm the usefulness of the laziness parameter we also considered the non-lazy Kalman filter model (KF), combined
with either an attention-modulated Softmax choice rule (KF-aSM; as in Eq. 28) or an attention-modulated UCB choice rule
(KF-aUCB; as in Eq. 12). As we could not modulate the learning process of the KF component without effectively making it a
“lazy” version, we only modulate the choice process.

We fitted all five models using hierarchical Bayesian parameter estimation (see “Hierarchical Bayesian parameter estimation”
in SI Methods). The results of all five models, together with the three original models (aKFL-UCB, KFL-aUCB and aKFL-
aUCB), are illustrated in Fig. S6. The results show that the KFL-aUCB is still the best fitting model, with a posterior
probability of approximately 0.77. The aKFL-aUCB model, in which learning is also modulated by fixation at the outcome
stage, obtained the remaining posterior probability of approximately 0.23. All other attention modulated models received
negligible evidence. What is clearly visible from the ordering of the model performances is that the UCB component is
needed (Fig. S6). All models with the UCB component clearly outperformed models with the SM component. Next, attention
modulation of the choice process has a large impact on explaining choices. The aKFL-SM and aKFL-UCB model without it
performed poorly, coming last in the ordering. The “laziness” parameter is important as well, all models with the “laziness”
parameter outperform models without it.
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Table S1. Parameters, priors and hyperpriors for choice models. Each panel denotes parameters for a group of models as described in
Materials and Methods and SI Methods.

Parameter Prior Hyperpriors
Modelling learning and choices

Initial variance, σ2,g
i exp(µσ2

i
+ ζσ2

i
νσ2
i
) µσ2

i
∼ Normal(2, 1), ζσ2

i
∼ Half-Normal(0, 1), νσ2

i
∼ Normal(0, 1)

Innovation variance, σ2,g
ζ exp(µσ2

ζ
+ ζσ2

ζ
νσ2
ζ
) µσ2

ζ
∼ Normal(0, 1), ζσ2

ζ
∼ Half-Normal(0, 1), νσ2

ζ
∼ Normal(0, 1)

Inverse temperature, θg exp(µθ + ζθνθ) µθ ∼ Normal(0, 1), ζθ ∼ Half-Normal(0, 1), νθ ∼ Normal(0, 1)
Uncertainty guidance, βg exp(µβ + ζβνβ) µβ ∼ Normal(0, 1), ζβ ∼ Half-Normal(0, 1), νβ ∼ Normal(0, 1)
Laziness, ηg Φ(µη + ζηνη) µη ∼ Normal(1, 1), ζη ∼ Half-Normal(0, 1), νη ∼ Normal(0, 1)

Modelling learning and choices modulated by visual fixation
RF sensitivity, τg exp(µτ + ζτντ ) µτ ∼ Normal(0, 2), ζτ ∼ Half-Normal(0, 1), ντ ∼ Normal(0, 1)
RF min attention, εg Φ(µε + ζενε) µε ∼ Normal(−1, 1), ζε ∼ Half-Normal(0, 1), νε ∼ Normal(0, 1)
Laziness intercept, ηg0 µη0 + ζη0νη0 µη0 ∼ Normal(1, 1), ζη0 ∼ Half-Normal(0, 1), νη0 ∼ Normal(0, 1)
Laziness slope, ηg0 µη0 + ζη0νη0 µη0 ∼ Normal(0, 1), ζη0 ∼ Half-Normal(0, 1), νη0 ∼ Normal(0, 1)

Modelling choices with visual fixation alone
RF min attention, εg Φ(µε + ζενε) µε ∼ Normal(−1, 1), ζε ∼ Half-Normal(0, 1), νε ∼ Normal(0, 1)
RF sensitivity, τg exp(µτ + ζτντ ) µτ ∼ Normal(0, 2), ζτ ∼ Half-Normal(0, 1), ντ ∼ Normal(0, 1)

Modelling learning and choices – Control models
CK learning rate, γg Φ(µγ + ζγνγ) µγ ∼ Normal(−1, 1), ζγ ∼ Half-Normal(0, 1), νγ ∼ Normal(0, 1)
RW learning rate, αg Φ(µα + ζανα) µα ∼ Normal(−1, 1), ζα ∼ Half-Normal(0, 1), να ∼ Normal(0, 1)
K2 learning rate, νg exp(µν + ζννν) µν ∼ Normal(−1, 1), ζν ∼ Half-Normal(0, 1), νν ∼ Normal(0, 1)
K2 reward variance, σ2,g

ε exp(µσ2
ε

+ ζσ2
ε
νσ2
ε
) µσ2

ε
∼ Normal(0, 1), ζσ2

ε
∼ Half-Normal(0, 1), νσ2

ε
∼ Normal(0, 1)

UPE learning rate, ζg Φ(µζ + ζζνζ) µζ ∼ Normal(0, 1), ζζ ∼ Half-Normal(0, 1), νζ ∼ Normal(0, 1)
CK sensitivity, τg exp(µτ + ζτντ ) µτ ∼ Normal(0, 1), ζτ ∼ Half-Normal(0, 1), ντ ∼ Normal(0, 1)
Inverse temperature, θg exp(µθ + ζθνθ) µθ ∼ Normal(0, 1), ζθ ∼ Half-Normal(0, 1), νθ ∼ Normal(0, 1)
Uncertainty guidance, βg exp(µβ + ζβνβ) µβ ∼ Normal(0, 3), ζβ ∼ Half-Normal(0, 1), νβ ∼ Normal(0, 1)
Note. All models use non-centered reparametrization as indicated in Prior column, often transformed to constrain the
parameters to be non-negative (exp) or to a certain range (Probit function, Φ). In addition to the parameter specification
listed in Modelling learning and choices modulated by visual fixations panel, these models have the same parameters and
associated priors as models in Modelling learning and choices panel. RF = relative fixation, CK = Choice kernel model,
RW = Rescorla-Wagner model, UPE = unsigned prediction error, K2 = learning model from (24).
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Table S2. Parameters, priors and hyperpriors for modelling relative fixation in the choice stage and for modelling absolute fixation in the
outcome stage. Each panel denotes parameters for a group of models as described in Materials and Methods and SI Methods.

Parameter Prior Hyperpriors
Modelling relative fixation in the choice stage

Value, βgv µβv + ζβvνβv µβv ∼ Normal(0, 2), ζβv ∼ Half-Normal(0, 1), νβv ∼ Normal(0, 1)
Uncertainty, βgu µβu + ζβuνβu µβu ∼ Normal(0, 2), ζβu ∼ Half-Normal(0, 1), νβu ∼ Normal(0, 1)
Game type, βgt Normal(0, 5) –
Precision, κg exp(µκ + ζκνκ) µκ ∼ Normal(0, 1), ζκ ∼ Half-Normal(0, 1), νκ ∼ Normal(0, 1)

Modelling absolute fixation in the outcome stage
Intercept, βgi µβi + ζβiνβi µβi ∼ Normal(2, 0.5), ζβi ∼ Half-Normal(0, 0.5), νβi ∼ Normal(0, 0.5)
Value, βgv µβv + ζβvνβv µβv ∼ Normal(0, 0.2), ζβv ∼ Half-Normal(0, 0.2), νβv ∼ Normal(0, 0.2)
Uncertainty, βgu µβu + ζβuνβu µβu ∼ Normal(0, 0.2), ζβu ∼ Half-Normal(0, 0.2), νβu ∼ Normal(0, 0.2)
PE, βgPE µβPE + ζβPEνβPE µβPE ∼ Normal(0, 0.2), ζβPE ∼ Half-Normal(0, 0.2), νβPE ∼ Normal(0, 0.2)
uPE, βguPE µβuPE + ζβuPEνβuPE µβuPE ∼ Normal(0, 0.2), ζβuPE ∼ Half-Normal(0, 0.2), νβuPE ∼ Normal(0, 0.2)
Game type, βgt Normal(0, 0.2) –
Scale, ωg Half-Normal(0, 1) –
Shape, αg Normal(−2, 1) –
Note. All models use non-centered reparametrization as indicated in Prior column, often transformed to constrain the
parameters to be non-negative (exp). Game type parameter in both groups of models was assumed to be fixed effect and
hence only prior was necessary. We used same assumption for scale and shape parameter in models of absolute fixation
in the outcome stage. PE = Prediction error parameter, uPE = unsigned prediction error parameter.
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Fig. S1. Standardised residuals after regressing out expected values of options from relative fixations in choice stage do not differ between the games. We fitted a Dirichlet
regression model to each game, similar to models of relative fixation in choice stage (see “Modelling choices with visual fixations alone” in SI Methods). Expected values were
passed through a softmax function to produce concentration parameters in Dirichlet distributed relative fixation data. We fitted the models to the first block of 15 trials where we
expected the differences between the games to be the strongest.
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Fig. S2. (A) Last fixation duration in the choice stage of the trial is longer than the duration of middle fixations, contrary to the predictions of evidence accumulation process
biased by what is looked at. (B) Probability of first fixating the best option in the choice stage is larger than chance level (0.17). Same holds for middle and last fixation as well.
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Fig. S3. Participants increasingly chose the option fixated the last, unless the option was low ranking one, as learning went by. This is evidenced by increase in probability that
last fixation is to the chosen option for higher ranking options and decrease for lower ranking options, from first block of 15 trials to fourth block of 15 trials in the game.
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Fig. S4. Model evidence for all choice models. Bars show the median log marginal likelihoods and numbers below the bars show the median posterior probabilities from model
comparisons. The lazy Kalman filter learning component combined with the upper confidence bound choice rule (KFL-UCB) describes the participants’ choices best. Error bars
reflect interquartile ranges of values across repetitions; for most models, these are too small to be visible.
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Fig. S5. Posterior distributions of the estimated group-level parameters for the KFL-UCB model not illustrated in the main text. (A) Innovation variance parameter in the Kalman
filter learning model (σ2

ζ ). The posterior mean (vertical line) and 95% credible interval (black bar on the x-axis) illustrate the magnitude of the effect. Dots are means of
posteriors of individual game level parameters; the vertical jitter is arbitrary. (B) Initial variance parameter in the Kalman filter learning model (σ2

i ). (C) Laziness parameter in the
Kalman filter learning model (η). (D) Temperature parameter in the Upper confidence bound rule (θ).
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Fig. S6. Model evidence for all attention modulated models. Bars show the median log marginal likelihoods and numbers below the bars show the median posterior probabilities
from model comparisons. The lazy Kalman filter learning component combined with the attention-modulated upper confidence bound choice rule (KFL-aUCB) describes the
participants’ choices best. Error bars reflect interquartile ranges of values across repetitions; for most models, these are too small to be visible.
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Fig. S7. Interactions between learning and fixation processes at outcome stage. Model evidence (bars) and model comparison (numbers below bars) for the full model –
regressing uncertainty (Unc), reward prediction error (PE), unsigned reward prediction error (uPE) and value (Val) on absolute fixations in the outcome stage, and simpler
model variants where we excluded some of the predictors. The model with unsigned prediction errors alone explains absolute fixations the best among the compared models.
Error bars are interquartile ranges of bridge sampling repetitions (modelling details in SI Methods).
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