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Abstract 
 

Humans exhibit surprising variability in behaviour, often making different 

choices under identical conditions. While the outcomes of these choices typically lead 

to explicit rewards that have been shown to influence subsequent affective states, less 

well understood is how the brain represents rewards that are intrinsically meaningful 

to an individual.  

The first part of this thesis examines the contributions of endogenous 

fluctuations in brain activity to behaviour. Resting-state studies suggest that ongoing 

endogenous fluctuations in brain activity can influence low-level perceptual and motor 

processes but it remains unknown whether such fluctuations also influence high-level 

cognitive processes including decision making. Using a novel application of real-time 

functional magnetic resonance imaging, I find that low pre-stimulus brain activity lead 

to increased occurrences of risky choice. Using computational modeling, I show that 

greater risk taking is explained by enhanced phasic responses to offers in a decision 

network. These findings demonstrate that endogenous brain activity provides a 

physiological basis for variability in complex behaviour. I then examine how the 

neuroanatomy of the brain in the form of tissue microstructure relates to risk 

preferences by leveraging on in vivo histology using magnetic resonance imaging. 

The second part of this thesis investigates how experienced events, such as 

rewards received following choice, are aggregated into affective states. Despite their 

relevance to ideas like goal-setting and well-being, little is known about the impact of 

intrinsic rewards on affective states and their representation in the brain. A 

reinforcement learning task incorporating a skilled performance component that did 

not influence payment was developed to examine this. Computational modeling 

revealed that momentary happiness depended on past extrinsic rewards and also 

intrinsic rewards related to the experience of successful skilled performance. 

Individuals for whom intrinsic rewards more strongly influence momentary happiness 

exhibit stronger ventromedial prefrontal cortex responses for successful skilled 

performance. These findings show that the ventromedial prefrontal cortex represents 

the subjective value of intrinsic rewards, and that computational models of mood 

dynamics provide a tool that can be used to measure implicit values of abstract goods 

and experiences. 
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Impact Statement 
  

The findings of this thesis provide further insight into the neural processes 

underpinning human decision making under risk. It details a brand new application of 

an existing technology that can be used to inform future work. It highlights an often 

overlooked role for endogenous brain activity when it comes to explaining why humans 

exhibit inconsistencies in their choice behaviour even when faced with identical 

options, underscoring the importance of taking time when making decisions as a 

different decision may be reached following a temporal delay. The findings 

demonstrate that higher-order cognition is influenced by fluctuations in internal brain 

states, providing a physiological basis for variability in complex human behaviour. 

Accounting for the influence of endogenous neural fluctuations on behaviour could be 

critical for future work looking to understand the neurobiological processes underlying 

cognition in health and disorder. Further, factoring the contribution of endogenous 

fluctuations in brain activity to cognition could be useful in the field of brain-machine 

interfaces to improve decodability of thoughts and actions.   

 Another avenue for impact based on the findings of this thesis is policy-making.  

High subjective well-being has been shown to convey many benefits to individuals and 

societies, yet it has been difficult to implement policies that reliably improve the well-

being of people. Part of the problem stems from inaccuracies and biases when people 

are asked to estimate the value of hypothetical goods or experiences, or when they 

have to judge the impact of future events on their affective states. For example, when 

people are asked about the value of public goods like parks, there may be 

discrepancies between what they ought to report and whether such goods actually 

maximise their subjective well-being. The findings in this thesis outline an approach to 

estimate the value of such items within a framework grounded in computational 

modeling and neuroscience, providing a more reliable method of measuring the 

hedonic benefits of experiences and abstract goods that could then be used to inform 

policies.  
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Chapter 1: Introduction 
 

 
This thesis addresses how the human brain supports value-based decision-making 

and moment-to-moment fluctuations in subjective well-being. It builds on a large body 

of work describing the functional neuroanatomy of choice under risk, and contributes 

to a growing field of research investigating the link between decision-making and 

changes in subjective feelings. In this chapter, I provide a conceptual overview of the 

work, define key terms that recur throughout the thesis, and present an outline of the 

thesis chapters. 

 
We think, each of us, that we’re much more rational than we are. And we think that we make our 

decisions because we have good reasons to make them. Even when it’s the other way around – 

We believe in the reasons, because we’ve already made the decision. 

Daniel Kahneman 

 

1.1 Conceptual Overview 
 

Decision-making is a pervasive part of everyday life, ranging from which 

breakfast item to have on any given day to more complicated decisions such as which 

cryptocurrency to invest in to increase one’s likelihood of turning a profit. To enhance 

survivability in the face of environmental demands, it is not sufficient for the human 

brain to simply make a random choice when faced with a decision but it should instead 

evaluate available options and choose the best course of action. When the outcome 

of such an action is subsequently revealed, it is often accompanied by subjective 

feelings such as happiness or regret depending on whether the outcome was good or 

bad.  

Many decisions contain elements of uncertainty that can be broadly attributed 

to the external world or internal states (D. Kahneman & Tversky, 1982), also known 

as external uncertainty and internal uncertainty respectively (Howell & Burnett, 1978).  

The former is associated with properties of the environment such as win-lose 

probabilities within a gamble, while the latter is associated with properties that reside 

with an agent such as a lack of knowledge (Volz, Schubotz, & von Cramon, 2004). 

While many studies have examined the contributions of external uncertainty to the 
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computation of subjective value in an agent’s choice processes (Christopoulos, Tobler, 

Bossaerts, Dolan, & Schultz, 2009; Klein-Flügge, Barron, Brodersen, Dolan, & 

Behrens, 2013), few have examined the role of internal states such as subjective 

feelings (Rutledge, Skandali, Dayan, & Dolan, 2014), contextual representation (Louie, 

Khaw, & Glimcher, 2013; Rigoli, Rutledge, Dayan, & Dolan, 2016), and intrinsic 

variability of neural activity (Garrett et al., 2013) in relation to choice behaviour.  

The experimental work in this thesis is concerned with how internal states either 

contribute to or arise as a result of decision-making processes. Through the use of 

human neuroimaging data, we will investigate a candidate mechanism that induce 

variability in economic choice when subjects have a probabilistic chance at obtaining 

rewards, look at the influence of brain microstructure on how risk is perceived, and 

finally examine how subjective well-being is altered as a function of implicit and explicit 

rewards. A common feature underlying the various analyses will be the use of 

computational modelling to provide mechanistic explanations for observed behaviour.  

 

1.2 Key Definitions 
 

We begin with some definitions of frequently encountered terms to reduce any 

uncertainty associated with them.  

 

1.2.1 Rewards, Values, Risk, and Decisions 

 

A central tenet of value-based decision-making is the concept of reward. 

Reward is an operational construct which refers to a something a subject finds 

desirable such as an item, action, or internal state (Schultz, Dayan, & Montague, 1997). 

A closely related term is value which refers to a scalar estimate or predictor of reward 

within frameworks like reinforcement learning, whereby an agent exclusively seeks to 

maximize long-run cumulative reward by seeking out states of highest value (Sutton 

& Barto, 2018). Ecologically, the reward signal is likely to be a vector rather than scalar 

and may be an abstract summary statistic derived from various brain circuits (Schultz 

et al., 1997; Sutton & Barto, 2018). In microeconomics and finance, value (or utility) 

can be further dissociated into objective value and subjective value. The former refers 

to an explicit measure of reward such as amount of cash or drops of juice, while the 
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latter refers to an internal valuation of the reward (Daniel Kahneman & Tversky, 1979; 

Rangel, Camerer, & Montague, 2008; von Neumann & Morgenstern, 1944). Subjective 

values cannot be measured directly but are instead revealed through choice behaviour 

as a proxy of “outward phenomena to which they [desires] give rise” (Marshall, 1920). 

Risk is present when a choice involves options associated with probabilistic outcomes, 

and can alter subjective values as a function of an individual’s risk attitude (Tobler, 

Christopoulos, O’Doherty, Dolan, & Schultz, 2009). For example, the subjective value 

of an option with an equal probability of receiving $10 or nothing will be higher than 

that of a certain gain of $5 for a risk-seeking compared to risk-averse individual, and 

identical for someone who is risk-neutral (Fig. 1). 

 

 

 
Fig. 1. Relationship between risk and utility. Solid black line: As the objective value of a gain 

increases, the subjective value similarly increases but at a slower pace. This accounts for the 

observation that people are generally averse to risk. Solid grey line: Conversely, risk seeking 

behaviour can be observed when the subjective value of a gain increases at a faster pace than the 

objective value. Dashed grey line: When the objective and subjective values of a gain grow at the 

same rate, risk neutral behaviour is predicted. Adapted from (Glimcher & Rustichini, 2004). 

 

Finally, decisions refer to actions or choices selected by a subject when faced 

with options (Tobler et al., 2009). While actions can be sub-divided into categories 

such as Pavlovian, habitual, or goal-directed, these will be further touched on in 

chapter 2. 
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1.2.2 Subjective well-being 

   
A key index of quality of life is subjective well-being (Oswald & Wu, 2010) which 

“refers to how people experience and evaluate their lives and specific domains and 

activities in their lives” (National Research Council, 2013). In 2009, the Report by the 

Commission on the Measurement of Economic Performance and Social Progress 

concluded that economic indicators such as Gross Domestic Product (GDP) alone 

were inadequate for assessing societal progress, and recommended that measures 

of well-being also be included to capture an extensive spectrum of nonmarket 

phenomena such as social connections and insecurities (Stiglitz, Sen, & Fitoussi, 

2009). This makes intuitive sense for many of us, suggesting that the link between 

financial wealth and subjective well-being is a complex one (Easterlin, McVey, Switek, 

Sawangfa, & Zweig, 2010; Kahneman & Deaton, 2010) Recognizing the importance 

of well-being to public policies, an annual World Happiness Report has been published 

by the United Nations Sustainable Development Solutions Network since 2012 

(Helliwell, Layard, & Sachs, 2018).  

How can subjective well-being be measured? A popular method used in the 

fields of psychology and economics is the use of experience sampling whereby 

subjects are prompted to report their thoughts and feelings in real time, often over the 

course of several hours, days, or weeks (Kahneman & Krueger, 2006; Larson & 

Csikszentmihalyi, 1983). Similar to the United Nations report, the experiment 

described in chapter 6 will use the terms “subjective well-being” and “happiness” 

interchangeably and draw upon experience sampling to derive individual measures of 

subjective well-being. 

 

1.3 Thesis Outline 
 

In the next chapter, I will review the literature on value-based decision-making 

with an emphasis on the involvement of the dopaminergic system in the processing of 

reward. I will also briefly touch on the distinction between modular and distributed 

processes underlying choice behavior. Chapter 3 delves into the neuroimaging 

methods used in the empirical work of this thesis which is covered by chapters 4, 5, 

and 6. 
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Why are humans so often irrational? Economic theories struggle to account for 

the choice inconsistencies that humans exhibit. Recent advances in the study of the 

brain at rest suggest that spontaneous fluctuations are important for understanding 

the functional organization of the brain but the functional role of these fluctuations in 

behavior remains unknown. In chapter 4, I develop a novel real-time functional 

magnetic resonance imaging (rtfMRI) paradigm to examine the influence of such 

fluctuations in the substantia nigra and ventral tegmental areas on risk preferences, 

leading to some interesting findings. Drawing on recent technical developments that 

have enabled in vivo mapping of neuroimaging markers of biologically relevant 

quantities to be performed with high resolution, chapter 5 investigates the relationship 

between risk preferences and brain microstructure. Together, these chapters provide 

novel insight into how risk preferences are influenced by the neurophysiology of the 

brain. 

The neurotransmitter dopamine has been implicated in the processing of risk, 

rewards, and subjective-wellbeing. Recent animal studies have uncovered a 

dopaminergic signal in the ventral striatum that ramps up as animals approach a goal, 

yet the relationship between dopaminergic signals and subjective well-being are 

unknown when subjects are motivated by intrinsic as opposed to extrinsic rewards. 

With Chapter 6, I move on to the next part of the empirical work and ask how 

subjective well-being is influenced by rewards and the experience of skilled 

performance, providing an important contribution to the existing literature. 

Finally, I will discuss the general implications of these works in Chapter 7. 
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Chapter 2: Literature Review 
 

We are not living in a world where all roads are radii of a circle and where all, if followed long 

enough, will therefore draw gradually nearer and finally meet at the centre: rather in a world where 

every road, after a few miles, forks into two, and each of those into two again, and at each fork you 

must make a decision. 

C.S. Lewis, The Great Divorce 

  
  In the course of everyday life, individuals are often presented with a multitude of 

choices that they have to make. At the time of choosing, outcomes for those choices 

may be certain or uncertain, immediate, or temporally delayed. Economic models such 

as Rational Choice Theory (RCT) casts individuals as rational agents whose goal is to 

maximize gains and minimize losses when faced with choices, and one characteristic 

of such models is the assumption of transitivity inherent to choices made by the agent. 

An agent that prefers mangoes to grapefruit, and grapefruit to pomegranates, should 

also show a preference for mangoes to pomegranates if their preferences are internally 

consistent. Although preferences are intuitive to think about, it is often handier to assign 

numbers to options presented to an agent, and have the agent select the option with 

the highest number. These numbers are known as subjective values as they are 

subjective to the agent. While subjective values are unobservable, there are methods 

to estimate them and it is often thought that the goal of an agent is to make decisions 

that maximize their long-run rewards. Research on value-based decision-making 

suggests that neural correlates of reward value, reward-based learning, and selection 

of actions can be observed across a wide distribution of brain regions. 

2.1 Representation of Value  

 

  In the previous chapter, value has been defined as a scalar estimate or 

predictor of reward. The value of choosing an option thus involves an estimate of the 

reward obtained from making a decision. Many studies have used neuroimaging 

techniques like functional Magnetic Resonance Imaging (fMRI) to examine brain 

activity as people participated in a range of tasks involving either the presence or 

absence of choice. In a study investigating whether subjective values encoded in the 

brain correspond to individual preferences, participants were placed in an fMRI 

scanner and shown images of paintings and faces which they were asked to assign 
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pleasantness ratings to. Following that, they made pair-wise comparisons for the same 

set of images outside the scanner which allowed for their preferences to be 

established. It was observed that activity in parts of the ventromedial prefrontal cortex 

(vmPFC) and basal ganglia accurately reflected subjective values corresponding to 

individual preferences (Lebreton, Jorge, Michel, Thirion, & Pessiglione, 2009). 

Corroborating this finding, Levy, Lazzaro, Rutledge, and Glimcher (2011) found that 

despite the lack of choice while participants passively viewed consumer goods in the 

scanner, the magnitude of neural activity in the striatum and medial prefrontal cortex 

(mPFC) in response to the individual goods shown were predictive of subsequent 

choices, suggesting that the underlying mechanisms encoding subjective values were 

similar independent of whether an action was required. 

The brain regions that encode subjective values vary to some extent with task 

measures as well as the types of goods presented. Activity in the medial orbitofrontal 

cortex (mOFC) appears to encode the value of appetitive reward as evident by a 

correlation with hungry participants’ willingness-to-pay for different food items 

(Plassmann, O’Doherty, & Rangel, 2007). Single cell recordings of individual neurons 

in the mOFC of monkeys showed that these neurons were encoding both the offer and 

chosen value of various juice types (Padoa-Schioppa, 2007), and both humans and 

monkeys with OFC lesions displayed aberrant choice behaviour with failures to update 

appropriate values to stimuli following reversals in stimulus-reward associations 

(Fellows & Farah, 2007; Izquierdo, Suda, & Murray, 2004). From an ecological 

standpoint, many real world choices involve fairly complicated combinations of 

rewards and their associated subjective values, and one solution for comparison 

between different reward types or attributes is the idea of a common currency. In a 

demonstration of this, Levy and Glimcher (2011) had food- and water-deprived 

participants make risky choices for money, food, and water both inside and outside 

the scanner. They found that subjective values of food items and monetary rewards 

had distinct representations in the hypothalamic areas and posterior cingulate cortex 

respectively. Perhaps more importantly for choice, they also found that neural 

activations in sub-regions of ventromedial prefrontal cortex which represented 

subjective values of both food and monetary rewards lie on a common scale that could 

account for observed behavioural choices. 
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The activations of multiple brain regions in response to the encoding of 

subjective values need not necessarily mean that they utilize subjective values in a 

similar fashion. Camille, Tsuchida, and Fellows (2011) tested patients with damage to 

either the orbitofrontal cortex or dorsal anterior cingulate cortex on a learning task. The 

task comprised of value being attached to either 2 different-coloured piles of cards or 

2 distinct hand actions. Reward contingencies were altered if patients chose the good 

deck for a certain amount of times, promoting reversal learning to occur. This paradigm 

demonstrated dissociation between the learning and acquisition of action- versus 

stimulus-value within the patient groups. Orbitofrontal cortex was implicated in value-

based choices between stimuli that did not involve any motor action (i.e. no supination 

or pronation of the wrist, while dorsal anterior cingulate cortex was implicated only in 

choices involving motor action. For both groups of patients, feedback was absolutely 

crucial to the process of value encoding as observed in a trial-by-trial examination of 

performance. Integrated as a whole, any compromise to ventromedial frontal regions, 

or dorsal anterior cingulate cortex results in a disruption of behaviour reflective of utility 

maximization, and illustrates a chain of causation between the representations of 

subjective values in the listed regions and decision-making. 

Up to this point, the computation and representation of subjective values have 

been shown to elicit activity in several brain regions. One way to systematically 

interpret these activity would be to group them according to function, and studies have 

found that those regions are separable into two functionally different groups. The first 

is involved in the computation of subjective values with areas implicated in this role 

being anterior ventral striatum, posterior cingulate cortex, and ventromedial prefrontal 

cortex. The second pertains to risk salience, and regions responding to this property 

include the insula, striatum, and dorsomedial prefrontal cortex (Bartra, McGuire, & 

Kable, 2013). In line with the encoding of subjective values, an intriguing question that 

might arise is whether the formation of subjective values is dependent on experience 

and retrieved from memory when needed, or dynamically computed. When rules learnt 

through experience result in expectations that change the subjective value of an item, 

conflicts may arise. For example, there is often a learnt association between the cost 

and quality of wine (i.e. more expensive wines tend to be higher in quality). Such 

associations have been found to interact with subjective pleasantness ratings, 

modulating activity in medial orbitofrontal cortex in a manner that was positively 
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correlated with pleasantness even though participants were tested on the exact same 

wine that bore different price tags (Plassmann, O’Doherty, Shiv, & Rangel, 2008). 

When students were shown objects like computer peripherals or candy and asked if 

any of them would buy one of those at a price randomly drawn from the digits of their 

social security number, Ariely, Loewenstein, and Prelec (2003) discovered that 

anchoring prices with any reference point – even an arbitrary one like a social security 

number – led to a deficit in value retrieval for common products. These studies suggest 

that in the absence of a readily-available reference point, people tend to fall back on 

values formed through experience and this could lead to sub-optimal decisions as 

bottlenecks in memory retrieval could introduce noise in decision-making processes 

(Giguère & Love, 2013). 

Subjective values can be influenced by several factors such as risk and 

uncertainty and temporal discounting. There are two distinct categories of choices 

within the risk domain – certain, or uncertain. Uncertain choices are termed “risky” 

when the probability distributions of outcomes are known, and “ambiguous” if the 

reward probability distributions are not completely known (Christopoulos, Tobler, 

Bossaerts, Dolan, & Schultz, 2009). As such, levels of risk presented in a choice tend 

to be linked with the variance of outcomes (O’Neill & Schultz, 2013; Weber, Shafir, & 

Blais, 2004). That being said, operational definitions of ‘risk’ might sometimes differ 

across the literature and interpreted as the chance of obtaining an aversive outcome 

rather than the variability of potential rewards. If presented with a choice between £5 

for sure and a 50% chance of obtaining either £0 and £10, someone who is risk-

seeking would choose the gamble more often while someone who is risk-averse would 

prefer the £5. Notice that the expected value is the same for both options, and 

therefore someone who is risk-neutral would be indifferent to either option. Using a 

paradigm where participants were trained to associate cues with probabilistic food 

rewards, Tricomi and Lempert (2015) discovered that subregions of striatum were 

involved in reward processing with ventral striatum tracking value and dorsolateral and 

dorsomedial striatum tracking trialwise probabilities of receiving a reward. Under risk, 

the manner that options are presented also leads to decision biases that violate 

economic rationality, and the finding that this “framing effect” was associated with 

activity in the amygdala suggests an important role for emotional processes in the 

modulation of decision biases (De Martino, Kumaran, Seymour, & Dolan, 2006). 



21 
 

Relatedly, other studies have also found that the information content of negative and 

positive events is often skewed by affective biases as frequently observed in healthy 

and clinical populations, and normalising such biases could lead to more optimal 

decision-making (Pulcu & Browning, n.d.; Sharot & Garrett, 2016).  

The magnitude of subjective values is also susceptible to temporal delays 

between the time of presentation and its receipt. For example, although a fixed 

monetary amount like £50 is objectively larger than £10, people might opt to receive 

£10 if it were offered immediately instead of £50 offered after 2 years. An individual 

discount function is able to capture this decrease in subjective value of a reward with 

respect to the increase in receipt delay, and this can be used in conjunction with 

neuroimaging to find brain regions that are positively correlated with objective value 

and negatively correlated with receipt delay. That is what Kable and Glimcher (2007) 

did and they found that medial prefrontal cortex, ventral striatum and posterior 

cingulate cortex displayed trade-offs between objective value and reward delay that 

mapped well onto the discount function, suggesting that subjective values of 

intertemporal choices were represented in those regions. One possible factor that 

could mediate this trade-off is the psychological construct of impulsivity, characterized 

by decreased levels of neural activity in nucleus accumbens to the magnitude of future 

rewards as well as greater deactivations in medial prefrontal cortex, dorsolateral 

prefrontal cortex, and posterior parietal cortex as delays of future rewards increased 

(Ballard & Knutson, 2009).  

 
2.2 Valuation 

 

Through a wealth of animal and human literature, there are thought to be 

several valuation systems in play such as the Pavlovian, habitual, and goal-directed 

systems (Daw & O’Doherty, 2014; Rangel, Camerer, & Montague, 2008). While it is 

likely that there are overlapping neural substrates between these systems (Doll, Simon, 

& Daw, 2012), they are nonetheless useful as frameworks within which valuation 

processes are carried out.  

Some of the general ideas behind these systems can be traced back to 

scientists such as Edward Thorndike, Ivan Pavlov, Burrhus Frederic Skinner, and 

Edward Tolman in the late 19th and early 20th centuries. The “Law of Effect” proposed 
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by Thorndike states that any behaviour followed by pleasant consequences is likely to 

be repeated and any behaviour followed by unpleasant consequences is likely to 

cease, suggesting a learnt association between an action and outcome in the 

presence of reward. Evidence for this came from experiments where he placed hungry 

animals – often cats – in a series of puzzle boxes (Fig. 2.1) that they had to escape 

from in order to attain food.  As the animals performed a repertoire of instinctive 

behaviours such as clawing, biting, or squeezing, they eventually chanced upon a 

specific action that released them from the box. Successive repetitions of this action 

and outcome pairing increased the strength of the association between them and 

decreased the time required by the animal to escape the box. Actions that were 

previously successful towards escape were repeated more often when animals were 

subsequently placed in a new box, and actions that were previously unsuccessful were 

reduced (Thorndike, 1898). This form of trial-and-error learning paved the way for 

Skinner’s work on Operant Conditioning which introduced reinforcers and punishers, 

referring to things in the environment that respectively increased or decreased the 

likelihood of a behaviour being repeated (Skinner, 1938).  

 

 

Fig. 2.1. An example of Thorndike’s puzzle boxes. These boxes were approximately 20 inches 

long, 15 inches wide, and 12 inches high. They often featured levers, latches, and strings attached 

to pulleys that were cleverly combined in a variety of ways so as to elicit different patterns of 

associations. Adapted from Thorndike (1898). 

 

In contrast to operant conditioning, work by Pavlov (1927) on classical 

conditioning asserts that neutral stimuli can acquire or lose value based on repeated 

associations with a reinforcer that naturally produces a behaviour, even in the absence 

of action on the part of an animal. He demonstrated this in a classic experiment where 

the sound of a bell (“conditioned stimulus) gained a positive value and induced 
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salivation in a dog (“unconditioned response”) after being repeatedly followed by food 

delivery (“unconditioned stimulus”) despite having elicited no salivation response prior 

to its association with food. The Pavlovian system is related to this idea that values 

are assigned to some behaviours that naturally occur in response to environmental 

stimuli, and these behaviours are sometimes thought to be innate leading to conflicts 

with instrumental learning on some occasions. For example, Hershberger (1986) 

placed food-deprived chickens on a straight runway with a chicken feeder. The chicken 

feeder was set up to retreat from the chickens at twice the speed at which they ran at 

it, and approach the chickens at twice the speed at which they ran away from it. Thus, 

instead of approaching the feeder to get a reward as would normally be the case, the 

chickens had to run away from the feeder in order to get fed which was a behaviour 

they were unable to acquire. Similarly in humans, participants were found to be better 

at taking an action in anticipation of reward and withholding an action in anticipation 

of punishment as opposed to withholding an action in anticipation of reward and taking 

an action in anticipation of punishment (Guitart-Masip et al., 2012).  

 

2.3 Learning 

 
In order to make good decisions, people need to have reliable estimates of the 

values associated with an option or action given the state they are currently in. Unlike 

controlled environments such as a laboratory where values of stimuli are often 

explicitly available to participants, estimating values of items in the real world typically 

involve some form of learning. A central idea in learning is that of surprise, which often 

occurs as a consequence of deviations between expectations and observed outcomes. 

Surprise can be useful as it provides information that expectations need to be updated 

in order for future predictions to be more accurate given a non-stochastic environment, 

and I will briefly return to this as part of the work done in Chapter 6. However, rewards 

are often delayed in the future and progress towards obtaining a desired reward can 

involve multiple actions, leading to the problem of credit assignment where it becomes 

particularly important to appropriately assign value to actions that are crucial for 

reward.  
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2.3.1 Habitual or Model-free Systems 

 

Habitual or model-free systems rely on past experience, using trial-and-error 

learning to estimate values of options across a wider range of actions compared to the 

Pavlovian system. As a consequence, learning the values of actions given the current 

state an agent is in takes place across a longer timescale. Over the course of 

experience, some goal-directed behaviours can also become habitual. One way of 

assessing whether behaviour is habitual or goal-directed involves reinforcer 

devaluation (Dickinson, 1985). In one such paradigm (Dickinson, Nicholas, & Adams, 

1983), rats are trained to press a lever to obtain sucrose, after which sucrose is 

devalued by being paired with lithium chloride injections. When placed back into the 

operant chamber in the absence of reinforcers, rats that were trained on a ratio 

schedule made fewer lever presses, demonstrating an association between 

instrumental performance and value of the reinforcer that has been interpreted as 

goal-directed behaviour. Importantly, rats that were more extensively trained on the 

interval schedule did not appear to be responding less on the lever press, suggesting 

that they were responding habitually and not based on knowledge about the 

consequences of their actions. A similar pattern of behaviour has also been observed 

in humans under conditions of reward devaluation with activation in dorsolateral 

posterior putamen thought to be involved in the habitual control of instrumental actions 

(Tricomi, Balleine, & O’Doherty, 2009; Valentin, Dickinson, & O’Doherty, 2007). 

 

2.3.2 Goal-directed or Model-based Systems 

 

Unlike the habitual or model-free systems which contains cached estimates of 

long-run rewards for actions at each state, a goal-directed or model-based system 

contains representations of the environment and incorporates knowledge of transitions 

between states, which is the likelihood of transitioning to a certain state given the 

selected action (Dayan & Berridge, 2014). Such systematic organization of information 

has more recently been termed a cognitive map and is thought to support flexible 

behaviour by incorporating relationships between elements in the environment 

(Behrens et al., 2018; O’Keefe & Nadel, 19978).  These relationships can be learnt 

even in the absence of reinforcers in what is known as latent learning. In a classic 

demonstration of this, rats that had been afforded an opportunity to explore a maze in 
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the absence of reward were quicker to navigate towards a subsequently rewarded 

goal state in the same maze compared to rats that had not been previously exposed 

to the maze (Tolman, 1948). In the earlier example where rats were trained to press a 

lever for sucrose, a reduction in lever presses after the sucrose was devalued has 

been interpreted as goal-directed behaviour because such a response requires 

knowledge about action-outcome and outcome-value contingencies (Rangel et al., 

2008). Puzzlingly, the neural substrates associated with model-based or goal-directed 

influences appear to overlap with regions also involved in model-free learning (Daw, 

Gershman, Seymour, Dayan, & Dolan, 2011; van der Meer, Johnson, Schmitzer-

Torbert, & Redish, 2010), which could be potentially related to how a goal-directed or 

model-based system is trained (Wang et al., 2018). One major drawback of the model-

based system is that it is computationally expensive as it draws on the model of the 

environment as it looks ahead at each step of the decision tree. 

 

2.3.3 Successor Representation 

 
A recently resurrected idea that forms a neat compromise between flexibility 

and computational efficiency is the successor representation (Dayan, 1993; 

Momennejad et al., 2017). The key idea behind this is that the successor 

representation contains a summary of state transition statistics separate from reward 

statistics, meaning that changes in rewards for a given state do not necessitate a full 

recalculation of the value function before state values are updated (Gershman, 2018).  

2.3.4 Dopamine: Learning and Decision-Making 

 

A neurotransmitter that has often been implicated in the human and animal 

decision-making literature is dopamine. This, together with its receptor types (D1, D2, 

D3), make up the dopaminergic neurotransmitter system and exerts influence on 

choice behaviour and other processes through neuronal activity along the mesolimbic, 

mesocortical and nigrostriatal pathways (Everitt & Robbins, 2005). Schultz, Dayan, 

and Montague, (1997) devised an influential model of reinforcement learning based 

on work done with monkeys. Using single-cell recording, they showed that 

dopaminergic neurons in the midbrain responded to incongruences between expected 

and received rewards such that a reward that was not predicted lead to a spike in 
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neuronal activity, a reward that was predicted elicited no change in activity, and an 

absence of an expected reward lead to a depression in activity. The discrepancies 

between expected and actual outcomes are known as reward prediction errors (RPE). 

A simple reinforcement learning model can be illustrated by the equation: 

Vt = Vt-1 + α (Rt - Vt-1) 

where V represents the value of an option, R represents the reward received, t refers 

to the current time point, and α represents an individual learning rate or extend to 

which previous values are updated by new information. The presence of reward 

prediction error signals in dopaminergic areas has also been observed in humans. 

Presenting deep-brain-surgery PD patients with separate decks of different-coloured 

cards, Zaghloul et al. (2009) informed them that one deck contained a greater chance 

of reward than the other and recorded neural activity during outcome presentation as 

patients selected cards from each deck. They discovered that activity in the 

dopaminergic midbrain resembled reward prediction errors, and suggested that 

damage to the dopaminergic system leads to abnormalities in the encoding of reward 

prediction errors resulting in PD patients displaying impaired decision-making as a 

function of incorrectly updated reward values. 

As previously mentioned, the model-free system learns about the course of 

action that best maximises reward by using reward prediction errors to update values 

at each new point in time. This means that any action that leads to a successful reward 

may be reinforced, regardless of whether that action is actually instrumental to the 

task at hand. In contrast, model-based learning involves an internal task 

representation that is dependent on past experience, and optimal actions can be 

arrived at by searching through these representations. Since the model-free system is 

updated through reward prediction errors, one might expect that altering dopamine 

levels would disrupt the system and bias control towards the model-based system. 

Wunderlich, Smittenaar, and Dolan (2012) tested this hypothesis by administering L-

DOPA to participants who played a two-stage Markov decision task and found that 

boosting dopamine biased behavioural control towards the model-based system. 

 A recent alternative to explain the role of dopamine comes from the concept of 

active inference (Friston et al., 2012). Active inference makes use of prior beliefs about 
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the world to guide behaviour, and the idea behind it is not unlike the model-based 

system. In fact, the very nature of active inference makes it model-based. Within active 

inference, the role of dopamine is thought to attenuate the precision or uncertainty 

regarding various Bayes-optimal representations of the world, and modelling changes 

to the postsynaptic gain of the same neurons that dopamine acts on appear to lead to 

similar deficits and pathologies observed in people with compromised dopaminergic 

neurotransmitter systems.  

Several approaches can be adopted to understand the involvement of 

dopamine in reward (Berridge, 2007). First, one could examine what reward functions 

are lost when dopaminergic systems are compromised, for example in PD patients 

(Steeves et al., 2009; Voon et al., 2009; Weintraub et al., 2006; Zaghloul et al., 2009). 

Secondly, one could examine what reward functions are elevated by an increase in 

dopamine (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Sharot, Guitart-Masip, 

Korn, Chowdhury, & Dolan, 2012; Sharot, Shiner, Brown, Fan, & Dolan, 2009). Third, 

one could examine the coding of reward by dopaminergic neurons in the presence of 

stimulus values or outcome values (Rangel & Clithero, 2012). Using a combination of 

the first two approaches, Rutledge et al. (2009) tested PD patients with a foraging task 

where the distribution of reward probabilities and action values had to be learnt in the 

presence of feedback. They observed that the rates of learning were negatively 

correlated with the progression of the disease, meaning that patients that were more 

severely affected by PD displayed lower learning rates than patients that were less 

severely affected. This suggests that dopamine plays an active role in reinforcement 

learning, consistent with the idea that reward prediction errors are encoded by 

dopaminergic neurons. Apart from this, Rutledge et al. (2009) also found that PD 

patients demonstrated a perseveration of choice that did not depend on the history of 

rewards. One possible explanation for this could be that deficits in the updating of 

value by dopaminergic neurons interfere with the consolidation of past rewards, or 

perhaps dopamine is involved in the rate of reward decay with more weight placed on 

recent outcomes. Both learning rates and choice perseveration were improved 

following pharmacological administration of dopamine, reinforcing its role in the 

encoding and updating of value. Such impairments to dopaminergic neurons could 

also lead to abnormal activity in areas innervated by dopaminergic pathways such as 

the nucleus accumbens, leading to an increase in suboptimal choices in the presence 
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of risky options (Samanez-Larkin, Kuhnen, Yoo, & Knutson, 2010).  

Administering dopamine to PD patients to treat their symptoms does not come 

without side effects, and observations that some PD patients on dopaminergic 

medication started to develop pathological gambling led to the investigation of 

dopamine on the distinct types of dopamine receptors. One potential explanation for 

this is that increased dopamine released through the use of dopamine agonists 

preferentially bind to D3-receptors littered throughout the limbic system – an area often 

associated with reward and hedonia (Dodd et al., 2005). Dopamine has often been 

implicated in hedonistic tendencies and rewards in part due to the propensity for 

addictive drugs and gambling behaviour to exert their influence on dopaminergic 

midbrain circuits, leading to the stipulation of dopamine as a ‘pleasure 

neurotransmitter’ (Clark, 2010; Everitt & Robbins, 2005). One major criticism of 

dopamine’s involvement in pleasure and hedonism – specifically the ‘high’ or 

pleasantness associated with rewarding items like drugs or food – is the fact many 

studies do not distinguish between ‘wanting’ and ‘liking’ (Berridge & Robinson, 2016). 

Excessive release of dopamine in the ventral striatum has been shown to be highly 

correlated with subjecting ratings of ‘wanting’ and not ‘liking’ even for drugs like L-

DOPA that do not induce euphoria (Evans et al., 2006). In response to this, Berridge 

(2007) proposed the incentive salience hypothesis, postulating that the notion of 

reward consists of attributes such as liking, learning, and wanting. The involvement of 

dopamine is restricted to the ‘wanting’ attribute, mediating the motivational aspect of 

attaining a reward by increasing or decreasing its incentive salience. Furthermore, the 

hypothesis also adds on to neural representations of learning signals by viewing 

incentive salience as a value that transforms predictions into the ‘wanting’ associated 

with reward stimuli. Manipulation of dopamine leads to behavioural changes by 

attaching ‘wanting’ to a conditioned stimulus predictive of rewards.  

Role of Distinct Dopamine Receptors  

To better inform us about the roles of dopamine and allow more detailed insight 

into processes underlying reward-related behavioural changes, it is important to 

examine the receptor sub-types that mediate effects of dopamine (Rogers, 2011). 

Glickstein, Desteno, Hof, and Schmauss (2005) used a visual discrimination task 

involving two-choices to test mice lacking in either D2- or D3-receptors and observed 
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that the former was impaired in the acquisition of task rules while the latter did not 

show such impairment. Both groups did not exhibit any compromise in ability to set-

shift or attend to stimuli. Applying neuroimaging techniques to patients with 

Huntington’s disease (HD) who displayed deficits in cognitive abilities like planning 

and attention, Lawrence et al. (1998) observed a robust correlation between 

performance on cognitive tasks and the levels of dopamine that were binding to striatal 

D1- and D2-receptors. In addition to this, Norbury, Manohar, Rogers, and Husain 

(2013) administered a D2- and D3- receptor agonist to healthy controls and observed 

an increase in sensitivity to information about positive reward probabilities and a 

decrease in sensitivity to the magnitude of potential losses. Furthermore, they found 

that the magnitude of the effect was dependent on a trait known as sensation-seeking. 

In some instances, dopamine elicits similar behavioural changes regardless of 

receptor-types while at other times, differential effects of dopamine on reward-related 

behavioural changes are observed to be dependent on receptor-types. Incorporating 

the contributions of dopamine to action selection in humans, Frank and Hutchison 

(2009) described a model comprising of a direct and indirect pathway leading from the 

striatum up to cortex. The former was thought to facilitate a response appraised in the 

cortex (‘Go signal’) through the excitatory responses of D1-receptors while the latter 

kept a rein on competing responses (‘No-Go signal’) through inhibitory actions incited 

by D2-receptors. These results suggest that the action of dopamine is multi-faceted 

with complex interactions between receptor-types.  

 

2.4 Intrinsic Variability of Neural Signals and Behaviour 

 

Perhaps evident from previous sections, while a large portion of neuroscience 

studies have been dedicated to understanding neural responses to a task or stimulus, 

an often overlooked fact is that spontaneous fluctuations of Blood-Oxygen-Level-

Dependent (BOLD) activity paint a picture of an active brain at rest despite the 

absence of external stimuli (Fox & Raichle, 2007). A key question of interest is whether 

such activity represent something meaningful rather than noise.  

Mounting evidence from animal and human research suggest that BOLD 

activity at rest, known more commonly as resting-state BOLD, can be used to study 
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the functional organization of the brain by grouping brain regions with similar patterns 

of spontaneous activation, forming clusters that are spatially distributed but temporally 

correlated (Belloy et al., 2018; Damoiseaux et al., 2006; Power et al., 2011). These 

“intrinsic connectivity networks” are often functionally rather than structurally 

integrated (Yeo et al., 2011) and regional correlations in resting-state BOLD activity 

have been found to be fairly stable across short timescales, distinguishing them from 

momentary activations that can be attributed to cognitive processing (Laumann et al., 

2017). By training a model to find relations between task-independent BOLD features 

during rest and subsequent activations in response to a task, Tavor et al. (2016) further 

demonstrated that differences in functional connectivity at rest was predictive of 

individual differences in task-evoked brain activity, suggesting that stable patterns 

within individuals could explain variability in activation patterns across individuals. 

Interestingly, the strength of intrinsic amygdala-cortical functional connectivity has 

even been found to be predictive of the size of one’s social network (Bickart, 

Hollenbeck, Barrett, & Dickerson, 2012). While stability represents a useful framework 

for understanding spontaneous fluctuations at the network level, nonetheless 

functional connectivity metrics have also been found to vary on some timescales under 

conditions such as sleep (Horovitz et al., 2009), learning (Bassett et al., 2011), and 

task demands (Fornito, Harrison, Zalesky, & Simons, 2012), leading to increased 

interest in dynamic functional connectivity (Hutchison et al., 2013). Such temporal 

fluctuations in functional connectivity are thought to reflect dynamic changes in brain 

organization and shifts of brain states (Liégeois, Laumann, Snyder, Zhou, & Yeo, 

2017).  

  Many studies of spontaneous fluctuations have investigated regional 

relationships of infra-slow brain activity with respect to function, leaving a lacuna for 

the functional role of intrinsic activity within specific brain regions. At the neuronal level, 

intrinsic activity resembles distinct rather than stochastic patterns of firing (Ikegaya et 

al., 2004; Mao, Hamzei-Sichani, Aronov, Froemke, & Yuste, 2001; Tsodyks, Kenet, 

Grinvald, & Arieli, 1999), not unlike those elicited by electrophysiological stimulation 

or task events. In a fMRI study where human subjects pressed a button each time a 

stimulus changed colour on a monitor, Fox, Snyder, Vincent, and Raichle (2007) 

observed that intrinsic BOLD activity within the left somatomotor cortex was linked with 

changes of button press force from one trial to the next, establishing an association 
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between intrinsic brain activity and motor output. At the level of sensory perception, 

pre-stimulus fluctuations in medial thalamic BOLD activity have been found to 

influence conscious perception of a laser-induced somatosensory stimulus, and 

similar baseline fluctuations in the anterior cingulate cortex have been related to 

subsequent ratings of pain intensity when the stimulus was increased to nociceptive 

levels (Boly et al., 2007). In a similar vein of study, Hesselmann, Kell, & Kleinschmidt, 

2008 presented subjects with visual stimuli featuring either coherent or random motion 

for extremely brief periods of time and asked them to report which of the two they had 

perceived. They found that intrinsic fluctuations in the right occipito-temporal cortex 

during baseline biased coherent percepts, suggesting a role for intrinsic fluctuations in 

perceptual performance that is also supported by studies conducted on other areas of 

the visual cortex (Schölvinck, Friston, & Rees, 2012). Within the context of perceptual 

decision-making, prescient activity has been thought to bias action selection through 

the use of outcome history (Hwang, Dahlen, Mukundan, & Komiyama, 2017), reflect 

the precision of prediction errors within a predictive coding framework (Hesselmann, 

Sadaghiani, Friston, & Kleinschmidt, 2010), or shift the initial starting point towards a 

decision boundary in an evidence accumulation model (Summerfield & de Lange, 

2014). 

 In the domain of value-based decision-making, Maoz et al., 2013 recorded 

spiking activity from neurons in the striatum and dorsolateral prefrontal cortex of 

monkeys as they deliberated between receiving a small reward immediately and a 

larger reward later in time. Even before the options were presented, spiking activities 

of some neurons in the ventral striatum and dorsolateral prefrontal cortex were 

predictive of choice based on spatial location or reward magnitude respectively, 

constituting a form of pre-deliberation bias. A third group of neurons, found in the 

dorsolateral prefrontal cortex and caudate nucleus by Maoz et al., 2013 and in 

orbitofrontal cortex by Padoa-Schioppa (2013), had firing patterns that were 

modulated by choice. Fluctuations in pre-stimulus activity within this group of neurons 

were also predictive of forthcoming choice, especially when values of the options were 

close. Missing from the picture thus far is an important modulator of value – risk. In the 

real world, many decisions involve options with probabilistic outcomes such as 

purchasing a lottery ticket or placing a bet on a favourite sports team. Risk preferences 

have been associated with the dopaminergic system, and boosting dopamine levels 
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pharmacologically have been shown to increase the propensity to take risks (Rigoli et 

al., 2016), a phenomena also observed in some Parkinson’s Disease patients treated 

with dopamine agonists (Driver-Dunckley, Samanta, & Stacy, 2003; Voon et al., 2007) . 

More recently, a large-scale study using a smartphone app found that older adults 

were less willing to take risks in order to win more points, a result consistent with age-

related decline in dopamine levels (Rutledge, Skandali, Dayan, & Dolan, 2015). 

 To address the gap between intrinsic fluctuations of brain activity and risk 

preferences, I leverage on the observed relationship between dopamine and risk and 

hypothesized that spontaneous BOLD activity in the dopaminergic midbrain would 

exert an influence on risk preferences with higher activity leading to increased risk-

taking. In Chapter 3, I describe a novel real-time fMRI method used to test this 

hypothesis. Briefly, resting BOLD activity was detected in real time and choice trials 

were presented to participants depending on whether this activity was lower or higher 

than the average. Full details and results of the experiment are presented in Chapter 

4. 
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Chapter 3: Non-invasive Methods for Investigating Activity 

and Tissue Microstructure in the Human Brain 

 
The subject to be observed lay on a delicately balanced table which could tip downwards either at 

the head or at the foot if the weight of either end were increased. The moment emotional or 

intellectual activity began in the subject, down went the balance at the head-end, in consequence 

of the redistribution of blood in his system. 

William James, The Principles of Psychology 

 

William James’s (James, 1890) account of an experimental setup by Italian 

scientist Angelo Mosso at the turn of the 19th century described an extraordinary 

endeavour. In patients with skull defects through which cerebral pulsations could be 

recorded, Mosso observed that cerebral blood flow appeared to increase at times of 

enhanced mental activity and with heightened emotional and sensory perceptions 

(Raichle & Shepherd, 2014). To test the relationship between cerebral circulation and 

mental activity in healthy people, Mosso built a “human circulation balance” which 

consisted of a wooden table rested on a fulcrum upon which a subject would be 

perfectly balanced (Fig. 3.1, Left). The theory was simple: If mental activity was 

accompanied by increased blood flow to the brain, the weight of the head would 

increase relative to the rest of the body resulting in a tilt of the balance. During sessions 

that spanned at least an hour, Mosso exposed subjects to a range of cognitive stimuli 

modulated by different difficulty levels, such as having them read a newspaper, novel, 

or mathematics manual. They were also presented with emotional stimuli, such as 

letters from a spouse or an agitated creditor. In these experiments, Mosso claimed 

that the balance tilted faster towards the head side as the stimuli increased in difficulty 

or emotional content (Sandrone et al., 2014). In a remarkable display of insight that 

would resonate with neuroscientists today, Mosso noted that the validity of blood flow 

analyses could be potentially confounded by physiological artefacts, leading him to 

include an array of sphygmographs and other measuring devices to record head 

movements, respiration, and pulse in a bid to differentiate between signal and noise 

(Sandrone et al., 2014); Fig. 3.1, Right).  
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Fig. 3.1. The “human circulation balance”. (Left) Angelo Mosso’s “human circulation balance” 

consisted of a wooden table rested upon a fulcrum, resembling a seesaw. (Right) Paper tracings 

of balance movements and physiological artefacts such as respiration and pulse. Adapted from 

Sandrone et al., 2014. 

  

While the findings by Mosso remain debatable, the suggestion put forth that cerebral 

circulation was coupled to mental activity proved astute, and work by (Roy & 

Sherrington, 1890) and Kety and Schmidt (1948) went on to show that changes in 

cerebral blood flow not only occurred at the local level, but also that these changes 

were modulated by the brain itself due to increased oxygen consumption by neurons 

leading to changes in vascular volume and blood flow.  

 

3.1 Blood Oxygen Level Dependent (BOLD) functional Magnetic 

Resonance Imaging (fMRI) 

 

In the early 1990s, independent groups from the AT&T Laboratories in New 

Jersey (Ogawa, Lee, Kay, & Tank, 1990) and Massachusetts General Hospital (Kwong 

et al., 1992) discovered that MRI was sensitive to changes in blood oxygenation with 

paramagnetic deoxyhemoglobin acting as an endogenous contrast agent. These 

findings were significant as they allowed for dynamic measurement of regional 

cerebral blood volume during resting and active cognitive states without the need for 

subjects to be injected with external contrast agents, paving the way for non-invasive 

BOLD fMRI used today. 

 

3.1.1 MR Physics 

 

 Spin or spin angular momentum is a quantum property possessed by 

elementary particles such as protons. The method used to generate MR signals in 

BOLD fMRI is based on magnetization associated with nuclear spins of hydrogen 
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nuclei or protons found largely in water molecules in the brain. The spin of protons are 

randomly oriented in the absence of a magnetic field. The combination of spin and 

positive charge produces an electric current that also generates a small magnetic field. 

When these protons are placed in a magnetic field B0 like that provided by an fMRI 

scanner, the magnetic moments of protons with positive spin tend to align in a parallel 

and antiparallel fashion with B0 to create a net magnetization M0.  

On top of aligning with B0, protons also precess or ‘wobble’ around the axis in 

a manner often likened to a spinning top with a rate ω termed the Larmor frequency.  

The relationship between B0 and ω can be described with the equation:  

 

ω = 
ɣ

2𝜋
B0 

 

where ɣ refers to a gyromagnetic ratio that is constant for a given nuclei taking into 

consideration their size, mass, and spin. When protons precess together, they are said 

to be in phase and when they precess separately, they are said to be out of phase. ɣ 

for a proton is 2.675 x 108 rad∙s-1T-1, so ω at a field strength of 3 Tesla used in this 

thesis results in a Larmor frequency of 128 MHz. Strength of the net magnetization M0 

along B0, typically parallel to the bore of the scanner or z-axis in three-dimensional 

Cartesian space, is largely dependent on the averaged sum of magnetic properties 

over individual protons that are aligned parallel rather than antiparallel to B0.  

 Experimental manipulation of the net magnetization vector involves the 

application of a radio frequency (RF) pulse B1 perpendicular to the B0 longitudinal field 

at the Larmor or resonant frequency. This serves to bring the protons in phase and tip 

the magnetization away from the z-axis through a transfer of energy. The extent of 

tipping relies on both the magnitude and duration of the RF pulse applied, and is 

described as the flip angle. For example, a flip angle of 90° means that magnetization 

was completely knocked from the longitudinal or z-axis onto the x-y plane which 

creates a transverse magnetization component. This excitation creates an oscillating 

net magnetic flux that generates an electric current in receiver coils, essentially a sine 

wave signal at the Larmor frequency ω. Due to atomic properties such as de-

coherence of transverse spin magnetization, the precessing protons rapidly de-phase 

resulting in a loss of the transverse magnetization component in a process termed 

transverse relaxation. This signal loss can be described by an exponential decay 

function with time constant T2: 
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Mxy = M0 𝑒−𝑡/𝑇2 

 
where Mxy refers to magnetization along the transverse x-y plane and t refers to time. 

Due to inhomogeneities in the main magnetic field such as field distortions produced 

by tissue, this decay occurs quicker than would be theoretically expected and the 

empirical decay is denoted with a time constant T2* where T2* is always less than or 

equal to T2. Since T2* depends on the de-phasing of precessing protons, its value can 

change with factors that influence the duration of de-phasing such as changes in 

concentration of paramagnetic deoxyhaemoglobin. 

 

 

Fig. 3.2. General physics principles of fMRI. A, Net magnetization M0 forms along B0 due to the 

proportion of spin-up protons being larger than spin-down protons. B, Application of a 

radiofrequency (RF) pulse knocks M0 over onto the transverse x-y plane, creating a transverse 

magnetization component termed MT or Mxy. C, The protons precess in-phase around B0, 

generating a MR signal. D, The excited protons gradually lose their phase with MT decaying back 

to zero with time constant T2 and net magnetization ML or Mz recovering to M0 with time constant 

T1 (Buxton, 2009). 

 

In contrast, longitudinal relaxation refers to the process by which net magnetization Mz 

returns to its initial value M0 aligned with B0 with time constant T1: 

 

Mz = M0 (1 - 𝑒−𝑡/𝑇1) 
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Since M0 depends on the proportion of protons aligned parallel to B0 in a lower energy 

spin-up state rather than higher energy spin-down state, regrowth of Mz partially 

depends on the transfer of energy from spins to the surrounding environment which 

can consist of neighbouring atoms and molecules. The value of T1 differs depending 

on the location of hydrogen nuclei in the brain, and can thus be used to distinguish 

between grey and white matter for example. These principles are summarized in Fig. 

3.2. 

 

3.1.2 Image Construction 

 

A magnetic field gradient is an alteration of the magnetic field such that it varies 

linearly along a Cartesian axis, allowing the resonant frequency to also change linearly 

along that particular axis. These gradients are produced by orthogonal sets of gradient 

coils in the MRI scanner. MRI images typically consist of a series of sequentially-

acquired two dimensional images, or slices, stitched together to form a three 

dimensional image or volume. The initial step of image acquisition leverages on 

gradients to restricted the range of on-resonance locations along B0 or the z-axis when 

a RF pulse is applied at the Larmor frequency, allowing ω to be centred in the slice of 

interest. The thickness of these slices can be determined by changing the slope of the 

gradient or the bandwidth of the RF pulse. Essentially, the spatial distribution of 

transverse magnetization on the x-y plane at each point in time needs to be resolved 

for a MR image to be produced. 

 On the x-axis, a frequency encoding gradient provides a means to distinguish 

between signals on that axis as they would be spread across different frequencies 

depending on their positions along the gradient. On the y-axis, a phase encoding 

gradient allows protons to be differentiated based on the magnitude of phase shift (i.e. 

the gain or loss of phase) relative to a reference state. When gradient pulses are 

turned on followed by a data sample, a data matrix of spatial frequencies known as k-

space (kx,ky) is incrementally produced. The direction of sampling in k-space depends 

on the repetition of a gradient echo pulse sequence, with a full distribution in the x-axis 

and a single sample along the y-axis obtained following each RF pulse. The MR image 

can then be constructed by conducting a Fourier transformation on k-space, and vice 

versa. 



47 
 

 

3.1.3 What does the BOLD response reflect? 

 

The BOLD response is an indirect measure of neuronal activity that is 

contingent upon the variable ratio of deoxygenated to oxygenated blood (Huettel, Song, 

& McCarthy, 2009). Changes to this ratio are driven by neuronal dynamics occurring 

at the cellular and micro-circuitry level that involve synaptic or spiking activity (Friston, 

2008). To resolve which of the two better accounts for the BOLD response, Logothetis 

et. al (2001) co-recorded local field potentials (LFP), multi-unit activity (MUA), and 

fMRI signals from monkeys. LFPs are made up of a weighted average of slow 

waveforms (< 200 Hz) such as post-synaptic voltage-gated membrane oscillations and 

somato-dendritic integrative processes, reflecting contributions from neuronal inputs 

into a regions and local intra-cortical processing respectively (Logothetis & Wandell, 

2004). On the other hand, MUA consists of higher frequency waveforms (> 300-400 

Hz) and represents the spiking of neuronal populations within a few hundred 

micrometres from the placement of the electrode (Viswanathan & Freeman, 2007). 

Logothetis et. al (2001) found that the BOLD response correlated with LFPs, 

suggesting that BOLD signals primarily reflect pre-synaptic firing rather than post-

synaptic spikes. Further evidence for this comes from the finding that a similar 

correlation can also be observed in the absence of spiking, despite LFPs and spiking 

often being correlated (Logothetis & Wandell, 2004).  

Associated with the BOLD response is the haemodynamic response, which 

refers to the idealised time course of the BOLD response and is modelled using a 

haemodynamic response function (HRF) in software packages such as Statistical 

Parametric Mapping. Often, this response encompasses elements such as blood 

volume and blood flow in addition to blood oxygenation (Heeger & Ress, 2002; 

Weiskopf, Hutton, Josephs, & Deichmann, 2006; Weiskopf et al., 2004). While there 

are several ways of modelling the HRF, the canonical HRF typically reaches peak 

intensity around 4 to 6 seconds following onset of neuronal activity, after which it 

gradually returns to baseline over the course of 10 to 20 seconds with a slight 

undershoot at around the 15-second mark (Lindquist, Loh, Atlas, & Wager, 2009).  

fMRI relies on the tight coupling between neural activity and increases in blood 

flow which in turn changes T2* and the resulting signals. The neuroimaging studies 
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described later in chapters 4 and 6 involve fMRI, with the former using a variant of 

fMRI termed real-time fMRI which can be defined as “any process that uses functional 

information from a MRI scanner where the analysis and display of the fMRI keep pace 

with data acquisition” that is described in the next section (Sulzer et al., 2013).  

  

3.2 Real-time fMRI (rtfMRI) - Setup, Software, and Implementation 

 

3.2.1 Setup and Software 

 

One of the most widely used software packages for rtfMRI experiments is 

Turbo-Brainvoyager (TBV) (Brain Innovation, Maastricht, The Netherlands). This 

software is used to export functional images in real-time as Digital Imaging and 

Communications in Medicine (DICOM) mosaic images from the MRI console computer 

to a shared folder provided by the TBV computer (Fig. 3.3), resulting in a single file for 

each functional volume. This helps to avoid a scenario where multiple network queries 

are required to read the MRI images leading to a deceleration of real-time image export 

both from the MRI and TBV computers. 
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Fig. 3.3. General schematic for Real-Time pipeline. fMRI data is first acquired and exported in 

real time to a PC that is dedicated to the pre-processing of images using TBV. Note a non-

dedicated PC might incur processing delays. The output from TBV is written to a shared folder 

accessible by the Stimulus PC, which computes changes in the BOLD signal and presents the 

signal for neurofeedback in a typical experiment.     

 

3.2.2 Pre-processing of Images 

 

Prior to analysis, functional data has to be pre-processed to ensure that certain 

statistical assumptions are met, such as timecourses coming from a single location 

and being uniformly spaced in time. Real-time pre-processing of the functional data 

was performed by TBV, which included realignment and spatial smoothing [6 mm Full 

Width at Half Maximum (FWHM)]. In the experiment presented in chapter 4, I was 

predominantly interested in the substantia nigra / ventral tegmental area (SN/VTA) 

complex as my main region-of-interest (ROI). Consequently, time courses for every 

voxel within this ROI were extracted, averaged, and exported by TBV.  
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3.2.3 Dealing with Additional Nuisance Regressors 

 
To remove physiological noise arising from respiratory phasicity and cardiac 

pulsatility, participants were fitted with a pneumatic respiratory belt and a pulse 

oximeter. Physiological measurements from these devices are modelled using a 

Fourier expansion of physiological phases based on the RETROICOR model (Glover, 

Li, & Ress, 2000), and the subsequent regressors can be categorised into ‘phase’ 

regressors and ‘rate’ regressors. The former set of regressors are used to model cyclic 

fluctuations in the respiratory and cardiac cycles, while the latter are used to account 

for dependency of the signal on the rate of physiological processes. These were 

incrementally regressed out in real time from the exported time courses (Fig. 3.4) using 

a custom-made MATLAB (MathWorks, Natick, USA) toolbox. Essentially, this amounts 

to removal of lower frequency drifts through the use of a high-pass filter. Linear 

detrending of the signal was also performed to correct for signal drift caused by 

fluctuations in the superconducting magnetic field over time. A failure to correct for this 

can lead to errors when it comes to the estimation of quantitative or diffusion 

parameters in neuroimaging. The ensuing ‘cleaned’ time courses were then used in 

the main experiment.  
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Fig. 3.4. Cartoon example of an exported TBV signal with a General Linear Model (GLM) 

containing motion and physiological regressors. (Top) The raw BOLD signal is represented 

here in yellow, while the filtered BOLD signal is coloured blue. (Bottom) Design Matrix containing 

movement and physiological regressors. Using an incremental GLM approach, these regressors 

are removed from the raw BOLD signal and the cleaned signal is calculated from the residuals. 

 

3.2.4 Computation of Blood Oxygenation Level Dependent (BOLD) Signal and 

Level of Activity  

 

From a methodological standpoint, any rtfMRI experiment necessitates that 

brain states are detectable and can be reliably transformed into a signal used either 

for neurofeedback or in a novel manner described with more detail in chapter 4. rtfMRI 

approaches are to some degree constrained by the spatial and temporal resolution at 

which the BOLD response can be measured. Nevertheless, the exact limits are flexible 

and some studies report early signal changes less than 2 seconds following neuronal 

activity (Yacoub & Hu, 1999), although a caveat here is that this early component 

scales with magnetic field strength. This could have implications for rtfMRI as it 

suggests that the resolution afforded by higher magnetic field strengths (e.g. 7 Tesla) 
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may be advantageous when it comes to improving not only the spatial resolution of 

the ROIs, but also the temporal resolution of the BOLD signal exploited in 

neurofeedback. 

In typical rtfMRI studies involving neurofeedback, the presence of 

haemodynamic delay may not be as crucial since there is evidence demonstrating that 

delayed feedback as long as 60 seconds can still be used for learning, as long as this 

delay is consistent and predictable (Miall, Weir, Wolpert, & Stein, 1993). However, this 

delay was an important consideration for me and advancement in computing power, 

network speed, and the relative efficiency of TBV have enabled delays associated with 

acquisition and pre-processing of functional images to be reduced to approximately 1 

second, as was achieved in my main experiment.  

There are a variety of methods used to derive the BOLD signal for use in rtfMRI 

experiments, and they are often based either on the General Linear Model (GLM) or 

multivariate pattern analysis (MVPA). GLM methods typically involve defining a ROI 

through the use of a functional localizer, such as for primary motor cortex (M1) (Chiew, 

LaConte, & Graham, 2012; Yoo & Jolesz, 2002), but can also be defined anatomically 

with the aid of anatomical landmarks or brain atlases. The choice of whether to define 

a ROI functionally or anatomically depends on 1) the availability of a reliable functional 

localizer and 2) whether the target area is anatomically well demarcated (Sulzer et al., 

2013). While the target signal is usually the average BOLD response from a single 

ROI, differential activity between two ROIs can also be used in certain cases, adding 

on another layer of complexity (Chiew et al., 2012). By applying an incremental GLM 

to the time series from each ROI as a new measurement becomes available, the fit of 

the model is updated and nuisance variables are regressed out. The residual of the 

GLM is scaled by the standard deviation of the fit to derive activation estimates for 

each voxel, which can then be averaged across the ROI for use in the rtfMRI 

experiment (Hinds et al., 2011). An alternative to the incremental GLM method is the 

use of functional connectivity measures over a short sliding window of a few seconds 

(Zilverstand, Sorger, Zimmermann, Kaas, & Goebel, 2014). This approach helps 

increase temporal resolution while limiting spatial coverage (Posse et al., 2003), and 

the computed signal derived from this method is based on functional correlations from 

one time point to the next rather than the level of activation in voxels. 
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When network activity is anticipated over the whole brain, or a pre-selected set 

of regions, rather than specific ROIs, or when participants are afforded some degree 

of freedom regarding cognitive strategies for the same task, MVPA might be more 

advantageous than a GLM. MVPA can be construed as a supervised machine learning 

problem which means that techniques such as support vector machines (LaConte, 

2011), neural networks (Eklund et al., 2009), logistic regressions (deBettencourt, 

Cohen, Lee, Norman, & Turk-Browne, 2015), and many others can be used to derive 

optimal weights for the combination of BOLD signal across voxels. MVPA has the 

capability to adapt to the individual or task, and is often used to predict brain states – 

physiological/behavioural events, or mental processes for which neural correlates can 

be obtained – by examining the distributed (or multivariate) relationships between task 

measures and fMRI images (LaConte, 2011).  

 

3.2.5 Quantifying Level of BOLD Activity 

 

BOLD Signal change due to functional activation is typically around 0.5% to 1.5% 

in many brain areas (Brühl, 2015). While the experiment described in chapter 4 does 

not involve feedback of the signal to participants, it nevertheless requires the ability to 

detect changes in the signal that is compatible with methods used for neurofeedback 

studies.  

Several factors have to be taken into consideration when deciding on a method 

to obtain a measure of baseline activity. Firstly, slow drifts and changes in variance of 

the BOLD signal have to be accounted for within the baseline measure. An intuitive 

approach to quantify the change in signal is to calculate the mean or median 

percentage signal change. The advantage of the former is that it is less susceptible to 

noise, but can be affected by outlier activations from the voxels recorded. Comparing 

the activity at each incoming time point without correcting for drifts in the signal or 

temporal fluctuations in the amplitude of the signal means that the summary statistics 

of the signal may not be sufficiently sensitive to changes of the signal over time. Take 

for example a case where the variance of the signal is not constant over time. Two 

data points with the same amplitude can be significantly different from the local mean 

in one case but not another (Fig. 3.5), yet may be labelled in a similar manner by an 

algorithm that simply averages the baseline across the entire timeseries. In a similar 
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vein, even if the variance were to remain constant, the presence of a slow drift would 

change the global mean over time such that activity of the most recent data point may 

appear significantly different from the mean even if its amplitude was exactly the same 

as a previous data point that was not.  

 

 

Fig. 3.5. Simulated distribution of signal amplitudes. A peak amplitude of 600 would be 

distant from the mean in the distribution on the left but close to the mean in the distribution on 

the right, yet would be labelled in a similar manner by an algorithm that only relies on the 

change of amplitude from the global mean without taking the variance of the signal into 

consideration. 

 

To overcome these potential problems, I took a sliding window approach in my 

experiment. By using a temporal window of 2 minutes and normalizing the signal within 

this timeframe, I could utilize a normal cumulative distribution function to quantify the 

distribution of signals in terms of percentiles, and detect changes in the signal based 

on this. Activity was averaged for the most recent 2 volumes acquired and compared 

against the preceding normalised baseline in order to further reduce susceptibility to 

noise. This approach is more robust in the face of activation outliers over the course 

of each run and also accounts for changes in the variance of the signal over time. 

However, as with most methods of quantifying BOLD activity, this method is unable to 

correct for large head movements beyond a threshold of 3 mm. Turning to the future, 

more sophisticated methods to account for motion are currently being developed such 

as the prospective motion correction (PMC) system. The PMC system uses an optical 
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camera in the bore of the scanner to track a marker attached to the head of the subject 

in real time, allowing the imaging parameters to be updated dynamically to account for 

motion (Callaghan et al., 2015).  

 

3.3 Quantitative Magnetic Resonance Imaging 
 

Recent developments in neuroimaging have enabled in vivo mapping of 

neuroimaging markers of biologically relevant quantities to be performed with high 

resolution in the form of Quantitative MRI. Anatomical studies relying on morphometric 

analyses of grey and white matter volumes using voxel-based morphometry typically 

utilize T1-weighted images, leading to difficulties comparing anatomical data between 

imaging sites and sessions in multi-center studies due to the arbitrary units of signal 

intensities. On the other hand, Quantitative MRI is sensitive to tissue microstructure 

and provides voxel-wise absolute measures of myelination, water concentration, and 

iron levels that are comparable across imaging sites and time points (Weiskopf et al., 

2013). The main approach used in Quantitative MRI is known as Multi-Parameter 

Mapping (MPM), which uses biophysical models to produce quantitative maps of 

magnetisation transfer saturation (MT), proton density (PD*) and relaxometry 

measures R1 and R2* where R1 = 1/T1 and R2* = 1/T2* that depend on underlying 

tissue microstructure, increasing sensitivity of Quantitative MRI to specific 

microstructural features such as myelination (Weiskopf, Mohammadi, Lutti, & 

Callaghan, 2015).  While whole-brain MPMs can be acquired, parameters such as the 

field of view and isotropic resolution can be altered to examine deep brain structures 

that have been difficult to distinguish using traditional T1-weighted images, such as 

the locus coeruleus, substantia nigra, and ventral tegmental areas. In chapter 4, I 

leverage on the excellent contrast provided by the magnetisation transfer saturation 

(MT) map to define the substania nigra / ventral tegmental area complex using a 

procedure described in the next section. 

The ability to estimate tissue microstructure in vivo and non-invasively has 

opened up new research possibilities for neuroscience and clinical applications. To 

disentangle normal age-related changes in the brain from pathological 

neurodegeneration, Callaghan et al. (2014) acquired multi-parameter maps for a 

healthy cohort between 19-75 years of age to establish a quantitative baseline against 
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which similar measures from a clinical population can be compared. Leveraging on 

the fact that quantitative measures can be compared across different time, Ziegler et 

al. (2018) examined a longitudinal dataset where MT maps were acquired for subjects 

over multiple sessions during adolescent development. They found that psychiatric 

risk factors like compulsivity and impulsivity were tightly linked with aberrant myelin-

related growth in the cingulate and ventral striatum for the former, and dorsal striatum 

and lateral prefrontal regions for the latter. Quantitative MRI can also be used to link 

microstructure to cognitive tasks and abilities. For example, myeloarchitecture in the 

right anterior prefrontal cortex appears to be predictive of metacognitive ability in the 

perceptual domain (Allen et al., 2017), while iron and myelin levels in the ventral 

striatum were predictive of performance on verbal learning memory tests in the ageing 

brain (Steiger, Weiskopf, & Bunzeck, 2016). 

 In chapter 5, I use Quantitative MRI to investigate the relationship between 

tissue microstructure and risk preferences.  

 

3.4 Drawing and Preparation of SN/VTA ROI for rtfMRI 
 

3.4.1 Magnetization Transfer 

 

Protons involved in the generation of the MR signal are found predominantly in 

three pools when it comes to non-fatty tissue: 1) Free Water, 2) Bound Water, and 3) 

Macromolecules. Protons found in free water contain rapid rotations and are largely 

unstructured, making them inefficient in the production of MR signal. Protons present 

in bound water - found on the surface of macromolecules – and macromolecules are 

moderately- to highly-structured resulting in a restricted range of motion which leads 

to different relaxation properties when a RF pulse is applied than when protons are 

able to rotate freely (Henkelman, Stanisz, & Graham, 2001). 

Magnetization transfer typically refers to the transfer of energy between protons 

found in free water, bound water, and macromolecules such as those present in myelin. 

Measures of magnetization transfer have been demonstrated to correlate with myelin 

content as assessed histologically (Schmierer, Scaravilli, Altmann, Barker, & Miller, 

2004). By using a specially designed RF pulse to saturate the macromolecular protons, 

net magnetization of areas with higher levels of macromolecules will be reduced as 
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energy gets transferred to the surrounding unaffected pools in a bid to return the 

energy state of the macromolecular protons to equilibrium (Wolff & Balaban, 1989). In 

the case of the SN, this results in greater delineation of SN from the surrounding white 

matter compared to T1-weighted images where little contrast is observed (Helms, 

Draganski, Frackowiak, Ashburner, & Weiskopf, 2009) (Fig. 3.6).  

 

 

Fig. 3.6. Illustration of contrast around the region of interest. (Left) In the T1-Weighted 

image, SN/VTA is indistinguishable from the surrounding white matter tract. (Right) In the MT-

Weighted image, SN/VTA shows up as a hyperintense region amidst the darker grey of the 

surrounding tissue. 

 

3.4.2 Definition of ROI 

 

Bright areas in MT-contrast images have been shown to be coextensive with 

the SN as delineated histologically by tyrosine hydroxylase immunohistochemistry, 

which stains dopaminergic neurons (Bolding et al., 2013) that are the key component 

of SN/VTA. Leveraging upon this, SN/VTA ROIs can be hand-drawn for each 

individual participant in MRIcron (Rorden & Brett, 2000) using their MT-weighted 

structural images.  

In accordance with procedures previously outlined by Chowdhury, Guitart-

Masip, Lambert, Dolan, and Düzel (2013) and Düzel et al. (2008), medial and lateral 

boundaries of the SN/VTA ROI were defined based on the change in contrast between 
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its bright grey colour and the dark grey colour of the adjacent cerebral peduncle and 

interpeduncular fossa. Lower and upper boundaries of the ROI were selected as the 

slices preceding the ones where the intensity of SN/VTA was indistinguishable from 

surrounding tissue, totalling between 6 to 9 slices contingent on individual SN/VTA 

size differences.  

 

3.4.3 Transformation of ROI 

 

To prepare the hand-drawn SN/VTA ROI for use in TBV, it needs first be co-

registered and transformed to the space and resolution of the EPIs. Co-registration is 

carried out using a single EPI volume (see Image Acquisition) as the reference image, 

and the individual-specific T1-weighted image as the source image. Following this, the 

EPI voxels corresponding to each ROI voxel is indexed based on Euclidean distance 

calculated in native space. Since the coordinate space used in Turbo-Brainvoyager 

differs from common ones such as the Montreal Neurological Institute (MNI) space, 

coordinates for the ROI must also be transformed before it can be accurately 

positioned in Turbo-Brainvoyager. This series of co-registration and transformations is 

executed using custom MATLAB scripts that have been made available on Github 

(Chew & Hauser, 2017). Following these steps, the SN/VTA ROI can now be used in 

Turbo-Brainvoyager. 

 

3.5 fMRI BOLD response and the SN/VTA complex   

 

Before we embark on the experimental portion of the thesis from the next 

chapter, I will briefly review the SN/VTA complex and the interpretations of BOLD 

responses within the region as these will be relevant for the study described in chapter 

4. 

Dopamine cells in the human midbrain largely resides within three different 

groups:  retrobulbar, SN, and VTA (Volkow et al., 1996). While evidence supporting 

the functional and anatomical segregation of SN and VTA in primates is generally 

weak, unlike in rodents (E. Düzel et al., 2009), recent studies have attempted to 

parcellate the SN/VTA into sub-regions based on anatomical connectivity to other 

brain areas like striatum, as assessed by a combination of diffusion tensor imaging 

(DTI) and quantitative MRI (qMRI) (Chowdhury, Lambert, Dolan, & Düzel, 2013). 

https://github.com/tuhauser/rtfMRI
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Although the proportion of dopaminergic neurons in relation to non-dopaminergic 

neurons appears higher in SN than VTA, taken as a whole, the SN/VTA complex 

contains the highest concentration of dopamine cells in the human brain. Dopamine 

neurons from the SN mainly project to the dorsal striatum while those from the VTA 

form broad reciprocal connections with cortical and sub-cortical brain regions, making 

the SN/VTA complex an important site of information integration (Oades & Halliday, 

1987).  

Through the mesolimbic pathway, the SN/VTA complex forms reciprocal 

connections with parts of the limbic system including nucleus accumbens (nAcc), 

hippocampus, amygdala, and cingulate cortex (Adell & Artigas, 2004). This complex 

projects to, and receives, afferent inputs from cortex - especially the prefrontal cortex 

(PFC) - via the mesocortical pathway. In addition, it also has connections with the 

thalamus, hypothalamus, locus coeruleus (LC), raphe nuclei, ventral pallidum, lateral 

habenula, superior colliculus, and reticular formation periaqueductal grey (Ferrucci, 

Giorgi, Bartalucci, Busceti, & Fornai, 2013; Haber & Fudge, 1997). In terms of afferent-

type, the SN/VTA complex receives glutamatergic inputs from the prefrontal cortex, 

glutamatergic, cholinergic, and GABAergic inputs from the pedunculo-pontine 

tegmental nucleus (Nestler, Hyman, & Malenka, 2008; Watabe-Uchida, Zhu, Ogawa, 

Vamanrao, & Uchida, 2012), noradrenergic afferents from the LC (Sara, 2009), 

serotonergic innervations from the raphe nuclei (Nakamura, 2013), and GABAergic 

projections from the nAcc (Russo & Nestler, 2013). Activity of SN/VTA dopamine 

neurons is suppressed by activation of the lateral habenula, which projects to 

GABAergic neurons within subregions of the VTA via glutamatergic inputs and its 

inputs inhibits firing of dopamine neurons (Ji & Shepard, 2007). 

As mentioned in chapter 2, dopamine is involved in modulatory aspects of 

behaviour and cognition, and has been found to govern neural mechanisms underlying 

reward-seeking (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006), addiction 

(Hyman, Malenka, & Nestler, 2006), reinforcement learning (Schultz, Dayan, & 

Montague, 1997), motivation (Westbrook & Braver, 2016), vigour (Niv, Daw, Joel, & 

Dayan, 2007; Rigoli, Chew, Dayan, & Dolan, 2016), risk-seeking (Rigoli et al., 2016), 

subjective well-being (Rutledge, Skandali, Dayan, & Dolan, 2015), working memory 

(Williams & Goldman-Rakic, 1995), and action selection and movement (Parker et al., 

2016). Despite the abundance of dopamine neurons in the SN/VTA complex, it is 



60 
 

important to note when considering the meaning of the BOLD response in SN/VTA 

that there are also glutamatergic and GABAergic efferents from SN/VTA to areas such 

as nAcc (Qi et al., 2016) as well as an abundance of reciprocal connections present 

in SN/VTA. Although it is tempting on this basis to conclude that the BOLD response 

in SN/VTA reflects input from another brain area, such as projections from the lateral 

habenula, this is not necessarily the case as the firing of pre-synaptic terminals can 

also be driven by recurrent excitatory-inhibitory loops of a microcircuit within the same 

brain area (Goense & Logothetis, 2008). 

Duzel et al. (2009) propose that the BOLD signal in SN/VTA may arise from 

several physiological candidates such as local field potentials produced by 

glutamatergic inputs onto dopamine neurons or the inhibition of GABAergic inputs onto 

dopamine neurons (Fig. 3.7). 

 

 

Fig. 3.7. Possible origins of the BOLD response in SN/VTA. 1) Local field potentials by 

glutamatergic afferents onto active dopamine neurons; 2) Local field potentials by glutamatergic 

afferents onto silent dopamine neurons; 3) spiking dopamine neurons; 4) Local field potentials by 

inhibition of GABAergic afferents onto dopamine neurons; 5) Local field potentials by GABAergic 

afferents onto dopamine neurons; 6) Spiking dopamine neurons releasing dopamine; 7) Tonic 

dopamine neurons releasing dopamine (Duzel et al., 2009). 

 

Although there is no conclusive physiological evidence that points to one single 

mechanism eliciting the BOLD response, the most straightforward method of triggering 

a BOLD response – given the correlation between BOLD and local field potentials – 
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would be via glutamatergic afferents from the prefrontal cortex (PFC) or mesopontine 

nuclei, at least for motivationally-salient or reward-related stimuli. For example, in one 

of the first human fMRI studies focused exclusively on the VTA, D’Ardenne, McClure, 

Nystrom, and Cohen (2008) leveraged upon the reward prediction error hypothesis of 

dopamine function (Schultz, Dayan, & Montague, 1997) to show that BOLD response 

in the VTA reflected positive reward prediction errors which occurs when the reward 

received by the participant exceeded expectations. Excitatory glutamatergic direct 

afferents to the VTA could account for the increased BOLD response during a positive 

RPE, and although D’Ardenne et al. (2008) did not find a significant BOLD response 

corresponding to a negative RPE, it is not inconceivable that glutamatergic afferents 

onto inhibitory interneurons in the SN/VTA inhibit the firing of dopamine neurons 

despite elevated local field potentials. A reason that this might not have translated to 

a BOLD signal if local field potentials did change is that the proportion of inhibitory 

interneurons in the SN/VTA is relatively small (~30%), limiting the sensitivity of fMRI 

to detect their engagement (Düzel et al., 2009).  

Recent studies in rodents suggest a causal role for SN/VTA GABAergic 

neurons in the calculation of RPEs, which suggests the plausibility of recurrent activity 

within the same area generating local field potentials that modulate the BOLD 

response as opposed to just glutamatergic afferents onto these neurons (Eshel et al., 

2015). Thus, it is highly likely that the origin of the BOLD signal in the SN/VTA complex 

is heterogeneous and dependent – at least partially – on the task at hand since direct 

and recurrent afferents into the SN/VTA complex arise from many different brain 

regions and the SN/VTA itself (Lammel, Ion, Roeper, & Malenka, 2011). Given that 

many of these connections with other brain regions are reciprocal in nature, it has 

recently been demonstrated that activating and inhibiting dopamine neurons in the 

SN/VTA using optogenetics lead to downstream modulation of reward-related BOLD 

signal in striatum – and indeed also global BOLD signal changes across the brain 

(Lohani, Poplawsky, Kim, & Moghaddam, 2017) – and this relationship can be 

attenuated by a top-down input from PFC that is in turn correlated with predictable 

changes in reward-related behaviours (Ferenczi et al., 2016). Understanding the origin 

of the BOLD signal in SN/VTA is crucial to the interpretation of studies such as this. 

Although a causal link between firing of dopamine neurons and the BOLD signal 

has yet to be established physiologically in humans, there is nevertheless converging 
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evidence that BOLD response in the SN/VTA is strongly linked to dopamine 

neurotransmission. In rats, optogenetic stimulation of midbrain dopamine neurons 

increased BOLD activity in downstream regions such as the striatum (Ferenczi et al., 

2016). Following a neurotoxic lesion that render rhesus macaques hemiparkinsonian, 

Zhang et al., (2006) found that BOLD response elicited by the dopamine agonist 

amphetamine was correlated with the amount of residual dopamine neurons that 

remained intact in the lesioned site of SN/VTA. Using a delayed monetary incentive 

delay task in humans, Schott et al. (2008) demonstrated that reward-related DA 

release in the nAcc, as measured by [11C]raclopride positron emission tomography 

(PET), was correlated with BOLD response in the SN/VTA during reward anticipation 

in the same set of participants, providing evidence for a quantitative relationship 

between SN/VTA BOLD and dopamine neurotransmission.  

 In the preceding chapters, I have reviewed the current literature on value-based 

decision-making, discussed the evidence for a relationship between dopamine and 

risk preferences, and provided a primer on non-invasive measures of neural activity 

and how the BOLD response can be interpreted. In the following chapter, I bring 

together these components in a study where I use a real-time fMRI protocol to 

investigate the influence of endogenous fluctuations of BOLD activity in the SN/VTA 

on risk preferences. 
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Chapter 4: Endogenous fluctuations in the dopaminergic 

midbrain drive behavioural choice variability 
 

To know one’s own state is not a simple matter. One cannot look directly at one’s own face with 

one’s own eyes, for example. One has no choice but to look at one’s reflection in the mirror. 

Through experience, we come to believe that the image is correct, but that is all.  

Haruki Murakami, The Wind-Up Bird Chronicle 

 

Human behaviour is inherently variable. Even when facing the same task 

repeatedly, humans often act in inconsistent ways. This observation led the English 

poet Horace Smith to suggest that, “inconsistency is the only thing in which men are 

consistent.” Inconsistencies in value-based decision making often violate the tenets of 

rational economic theory. Many economic models explain this variability by injecting 

stochasticity into subjective preferences (Harless & Camerer, 1994). 

 
The human brain shows substantial regional activity fluctuations in the absence 

of external stimulation (i.e., resting-state) (Fox & Raichle, 2007; Tavor et al., 2016). 

The functional role of these fluctuations is not well understood. Endogenous 

fluctuations endure when participants perform externally imposed tasks and can 

explain neural variability in task-evoked responses (Fox, Snyder, Zacks, & Raichle, 

2006). Studies investigating low-level cognitive processes have shown that 

endogenous fluctuations also influence how stimuli are processed. Endogenous 

fluctuations in task-relevant areas influence perception of auditory (Sadaghiani, Poline, 

Kleinschmidt, & D’Esposito, 2015) and somatosensory stimuli (Boly et al., 2007) and 

can influence the force exerted during simple motor actions, such as button presses 

(Fox, Snyder, Vincent, & Raichle, 2007). However, it remains unknown whether 

intrinsic fluctuations also affect complex cognitive processes, such as decision making, 

and whether variability in pre-stimulus brain activity can predict future decisions. 

 
In this study, we hypothesized that endogenous fluctuations in areas implicated 

in decision making would explain variability in choice. In particular, we hypothesized 

that endogenous fluctuations in the dopaminergic midbrain, encompassing substantia 

nigra and ventral tegmental area (SN/VTA), play a key role in decision making under 

risk. SN/VTA contains the largest assembly of dopamine neurons in the human brain 

and is centrally involved in decision making (Starkweather, Babayan, Uchida, & 
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Gershman, 2017; Steinberg et al., 2013). Modulating dopamine neurotransmission 

can increase risk taking (Burke et al., 2018; Rigoli et al., 2016; Rutledge, Skandali, 

Dayan, & Dolan, 2015) and dopamine dysfunction is strongly linked to problem 

gambling and impulsive behaviors (Buckholtz et al., 2010). Although it is not possible 

to directly assess dopaminergic activity using fMRI, dopamine-related quantities such 

as reward prediction errors (Lak, Stauffer, & Schultz, 2014) are observed in BOLD 

activity within the SN/VTA (D’Ardenne, McClure, Nystrom, & Cohen, 2008; Hauser, 

Eldar, & Dolan, 2017). 

 
To test our hypothesis, we developed a novel real-time fMRI framework to 

trigger presentation of options based on intrinsic fluctuations of blood oxygenation 

level-dependent (BOLD) activity in the SN/VTA (Fig. 4.1). We developed an 

algorithm that detected epochs of very high and very low activity, providing a trigger 

to probe participants with a matched set of choices between a safe and a risky 

option in these two background brain states (Rigoli et al., 2016; Rutledge et al., 

2015). The risky option comprised equal probabilities of a prize (£6, £9, or £12) or 

£0. The value of the safe option was always lower than the potential prize from the 

risky option and varied systematically around each subject’s economic indifference 

point, the offer for which a subject chooses safe and risky options in equal 

proportion. Safe option values were determined from pre-scanning decisions from an 

extensive choice set (see Methods).  
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Fig. 4.1. Schematic of real-time fMRI setup. BOLD activity from anatomically defined SN/VTA is 

extracted and denoised (removing movement, breathing, and pulsatile artifacts) in real-time. The 

overlay on the sagittal image indicates intersecting coverage across all subjects in the study. 

Endogenous activity reflecting a low/high background activity state (exceeding a 15th/85th 

percentile cut-off) triggered presentation of a trial with a choice between a safe option (here, £2.8 

guaranteed reward) and a risky option (here, £0 or £6 with equal probability). To ensure similar 

rates of risk taking across individuals, safe options varied around each subject’s indifference point 

which was determined prior to scanning. This design allowed us to efficiently and selectively probe 

subjects with identical options during very low and very high endogenous SN/VTA activity. Any 

difference in behaviour can therefore be attributed to endogenous SN/VTA activity. 

 

 

4.1 Methods 
 

4.1.1 Participants 
 

49 healthy, young adults (age: 25.2 ± 4.2, mean ± SD) were recruited through 

the University College London (UCL) Psychology Subject Database. Participants were 

screened to ensure no history of neurological or psychiatric disorders. Six participants 

were excluded from analyses: 3 participants because of excessive number of missed 

trials (>20) and 3 due to frequent large head movements (>3mm). A total of 43 

participants (Group 1: 10 females, 2 males; Group 2: 21 females, 10 males) were 

included. Participants in both groups went through identical procedures with the only 

difference being that the range of values for the safe options, drawn around each 

subject’s indifference points, was wider for Group 2 than Group 1, allowing us to better 

distinguish between competing computational models (see Procedure). The study 

was approved by the UCL research ethics committee, and all participants gave written 

informed consent. 
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4.1.2 Procedure  

 

Our study protocol spanned two sessions approximately 24 hours apart. On 

the first day, we assessed gambling behaviour and collected structural brain scans. 

These scans were used to define individualized anatomical masks of the dopaminergic 

midbrain for use in the following session. On the second day, decision making was 

reassessed before participants participated in the real-time fMRI experiment reported. 

Day 1 

Probabilistic Gambling Task. Participants first played a probabilistic gambling 

task consisting of 180 trials. On each trial, participants chose between a certain 

monetary amount and a gamble with equal probabilities of two outcomes. There were 

three gamble options available: £0 and £6, £9, or £12. The certain amounts were 

determined using 12 divisors (0.82, 0.87, 0.93, 1, 1.1, 1.23, 1.4, 1.6, 1.9, 2.25, 2.75, 

3.5) on the expected value of the gambles, chosen to accommodate a wide range of 

risk sensitivity. Take for example a fraction of 3.5 and a gamble between £0 and £6. 

The expected value of a £0 or £6 gamble is £3 (0.5 x £0 + 0.5 x £6), which divided by 

3.5 gives a certain amount of £0.86. There were 12 certain amounts for each gamble 

option in total, and each trial was repeated 5 times in a randomized sequence.  

Structural Scans. Multi-Parameter Maps were acquired for each subject 

(Weiskopf et al., 2013). The magnetization-transfer (MT) saturation image was used 

for the drawing of the region-of-interest (SN/VTA) due to its ability to delineate grey 

and white matter in subcortical/brainstem regions, in line with preceding studies 

(Hauser et al., 2017; Koster, Guitart-Masip, Dolan, & Düzel, 2015). 

Day 2  

Prior to the real-time fMRI session, participants completed a shorter version of 

the probabilistic gambling task consisting of 108 trials to recalibrate the participants’ 

indifference points. The only difference between this task and the task on Day 1 was 

that each trial was repeated 3 instead of 5 times.  

Probabilistic Gambling Task Inside the MRI Scanner. Choice behaviour across 

both days was fitted to a prospect theory-based parametric decision model that has 

been used in past studies (Rutledge, Skandali, Dayan, & Dolan, 2014; Sokol-Hessner 
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et al., 2009) to describe decision-making under risk. The expected utility of the certain 

options and gambles were determined using the following equations: 

 

Ugamble = 0.5(Vgain)α 

Ucertain = (Vcertain)α 

 

where Vgain is the value of the potential gain from a gamble and Vcertain is the value of 

the certain option. α alters the degree of curvature of the utility function and represents 

the degree of risk aversion. When presented with an option where the expected values 

for the certain gain and the gamble are equal, a subject with α = 1 would be risk-neutral 

and indifferent between the two, a risk-seeking individual with α > 1 would choose the 

gamble more often, and a risk-averse individual with α < 1 would choose the certain 

gain more often. The probability of selecting a gamble was determined by the following 

softmax rule: 

 

Pgamble = 
1

1+𝑒−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛) 

 

where the degree of stochasticity in choice behaviour is captured by the inverse 

temperature parameter μ. When μ is low, participants are more likely to choose 

randomly between safe and risky options irrespective of their subjective values. When 

μ is high, participants increasingly choose the action leading to the highest expected 

reward. Expected utilities for the certain option were sampled evenly (5 bins) between 

Pgamble = 0.3 and 0.7 for each gamble level for the first group of participants, and Pgamble 

= 0.1 and 0.9 for the second group of participants. These utilities were then converted 

back to objective values and used as the safe options in the real-time fMRI session. 

The real-time fMRI task consisted of 90 trials in total with 30 trials for each gamble 

level (£0 and £6, £9, or £12) of which 15 trials were allocated to the low baseline 

condition and 15 trials allocated to the high baseline condition according to criteria 

defined in the following section. 
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4.1.3 Real-time fMRI  
 

Software and Preprocessing of Images. Real-time preprocessing of the 

functional data was performed using Turbo-BrainVoyager (TBV) (Brain Innovation, 

Maastricht, The Netherlands) and custom scripts. Time courses for every voxel within 

the SN/VTA ROI were extracted from smoothed and realigned images [6mm Full 

Width at Half Maximum (FWHM)] and exported using TBV. Exported data were then 

corrected for additional noise sources (movement and physiological noise; cf below). 

Physiological noise arising from breathing and pulsatile artifacts were modeled using 

a Fourier expansion of physiological phases based on the RETROICOR model (Glover, 

Li, & Ress, 2000) and respiratory volume (Birn, Diamond, Smith, & Bandettini, 2006) 

were incrementally regressed out in real time from the exported time courses using a 

custom-made MATLAB (MathWorks, Natick, USA) toolbox. The ensuing filtered time 

courses were then analysed to detect endogenous fluctuations.  

 

 

Fig 4.2. Sliding window approach to quantifying BOLD activity levels. Endogenous activity 

reflecting a low/high background BOLD activity state (exceeding a 15th/85th percentile cut-off based 

on an incremental sliding window of 2 minutes) triggered presentation of a trial involving a choice 

between a safe option and a risky option. Trials presented in both low/high background activity 

states were matched and thus any difference in behaviour can be attributed to distinct levels of 

endogenous SN/VTA BOLD activity. 

 
 

Quantifying the Level of BOLD Activity 

 

We used a sliding window approach to quantify endogenous activation of the 

SN/VTA over the course of the experiment (Fig. 4.2). This measure not only takes 
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scanner-induced and other slow signal drifts (e.g., due to a warming of the gradient 

coils) into consideration but is also robust to outlier activations and can account for 

changes in the variance of the signal over time. A normal cumulative distribution 

function was used to quantify the distribution of BOLD signal within an ongoing sliding 

window consisting of 69 volumes (approximately 2 minutes). The mean of the most 

recent 2 volumes was compared to the previous 69 volumes over the progression of 

the entire experiment. The distribution of the sliding window was updated with each 

new volume acquired. Thresholds for the trials were set below the 15th percentile for 

low baseline trials and above the 85th percentile for high baseline trials. When BOLD 

activity reaching the thresholds was detected, a trial was immediately presented. 

There was a minimum inter-trial interval of 20s to allow the hemodynamic response 

for each trial to return close to baseline. If threshold criteria were not met by 55s, a 

trial was presented and categorized as low or high depending on whether it was lower 

or higher than the mean of the preceding baseline, respectively. This procedure was 

applied to the 15.1 ± 5.8% (mean ± SD) of trials that did not reach the threshold criteria. 

  

Image Acquisition.  

 

MRI data were acquired at the Wellcome Centre for Human Neuroimaging at 

UCL, using a Siemens Trio 3-Tesla scanner equipped with a 32-channel head coil. A 

partial-volume 2D echo-planar imaging (EPI) sequence that was optimized for striatal, 

medial prefrontal, and brainstem regions was selected for the functional images. Each 

volume consisted of 25 slices with 2.5mm isotropic voxels [repetition time (TR): 1.75s; 

echo time (TE): 30ms; slice tilt: -30°]. At the beginning of each functional session, 10 

EPI volumes were acquired with the 10th volume selected as the template used to co-

register the ROI. Field maps with 3mm isotropic voxels (whole brain coverage) were 

also acquired to correct the EPIs for any inhomogeneity in magnetic field strength. 

Subsequently, the first 6 volumes of each run were discarded to allow for T1 saturation 

effects. Sequence settings were identical across participants (e.g., no variation in tilt 

angle) and no slices were discarded. Overlapping coverage across all participants is 

indicated in orange in Figure 4.1.  

Structural images consisted of 3 spoiled multi-echo 3D fast low angle shot 

(FLASH) acquisitions at 0.8mm isotropic resolution with T1 (TR: 18.7ms; flip angle: 

20°), proton density (PD) (TR: 23.7ms; flip angle: 6°), and magnetization transfer (MT) 
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(TR: 23.7ms; flip angle: 6°; excitation preceded by a 2kHz off-resonance Gaussian 

radiofrequency (RF) pulse with 4ms duration and 200° nominal flip angle) weightings. 

Additional B1 mapping and field maps were acquired to get calibration data measuring 

the spatial distribution of the B1+ transmit field in order to detect the spatial variation 

in flip angle. 

 

ROI Definition and Transformation.  

 

Bright areas in MT-contrast images have been shown to be coextensive with 

the SN as delineated histologically by tyrosine hydroxylase immunohistochemistry, 

which stains dopaminergic neurons (Bolding et al., 2013) that are the key component 

of SN/VTA. Leveraging upon this, SN/VTA ROIs were hand-drawn for each individual 

in MRIcron (Rorden & Brett, 2000) using MT-weighted structural images. In 

accordance with procedures outlined previously (Chowdhury, Guitart-Masip, Lambert, 

Dolan, & Düzel, 2013), medial and lateral boundaries of the SN/VTA ROI were defined 

based on the change in contrast between its bright grey colour and the dark grey colour 

of the adjacent cerebral peduncle and interpeduncular fossa. Lower and upper 

boundaries of the ROI were selected as the slices preceding the ones where the 

intensity of SN/VTA was indistinguishable from surrounding tissue, totalling between 

6 to 9 slices contingent on individual SN/VTA size differences. To prepare the hand-

drawn SN/VTA ROI for use in TBV, it needs to be co-registered and transformed to 

the space and resolution of the EPIs. Co-registration was carried out using a single 

EPI volume as the reference image, and the individual-specific T1-weighted image as 

the source image. Following this, the EPI voxels corresponding to each ROI voxel 

were indexed based on Euclidean distance calculated in native space. Since the 

coordinate space in TBV differs from more common ones such as the Montreal 

Neurological Institute (MNI) space, coordinates for the ROI were transformed before 

use in TBV. This series of co-registration and transformations was executed using 

custom MATLAB scripts available on Github (https://github.com/tuhauser/rtfMRI).  

 

4.1.4 Offline Analyses  
 

Images were preprocessed using standard procedures in SPM 12 (Wellcome 

Centre for Human Neuroimaging, UCL). This consisted of unwarping EPIs using field 
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maps, motion correction, spatial transformation to the MNI template, and spatial 

smoothing with a 6-mm full-width at half-maximum Gaussian kernel. 

 

4.2 Results 
 

4.2.1 Endogenous fluctuations in SN/VTA BOLD activity modulate risk taking 

 

We first asked how the two modes of endogenous SN/VTA activity (low and 

high) influenced choice behaviour. On average, participants chose the risky option 

more when pre-stimulus SN/VTA activity was low compared to when it was high (low 

activity: 59.6 ± 1.5% (mean ± SEM), high activity: 56.2 ± 1.8%, t42 = 3.83, P < 0.001, 

Fig. 4.3A). This effect of greater risk taking following low compared to high activity was 

present in 30 of 43 participants (Fig. 4.3B).  

 

 

 

 
 

Fig. 4.3. Endogenous fluctuations in SN/VTA BOLD activity bias behavioural choice. A, 

Subjects (n = 43) gambled more when options were presented against a background of low 

compared to high endogenous SN/VTA activity. B, This effect of greater risk taking for low than 

high activity was consistent across subjects. *** P < 0.001. Data are mean ± SEM.  

 

 

Control Analysis 

To validate the results obtained from our online procedure and to examine 

whether the effect of endogenous BOLD activity on risky choice behaviour was a 
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general property across the brain, we sampled activity from multiple regions. The ROI 

for vmPFC was derived from www.neurosynth.org, the VS ROI was bilateral 8-mm 

spheres at MNI coordinates derived from a previous study (Rutledge et al., 2014), a 

group anatomical mask from a previous study (Hauser et al., 2017) was used for 

SN/VTA ROI, and the primary auditory cortex (A1) was Brodmann Areas 41 from the 

Wake Forest University PickAtlas toolbox for SPM (Maldjian, Laurienti, & Burdette, 

2004). 

BOLD time courses for these ROIs were extracted and filtered using an 

incremental GLM with the same motion and physiological regressors as in the real-

time fMRI experiment. Based on our real-time procedure, BOLD activity for each 

region was averaged for the 2 most recent TRs prior to trial presentation and compared 

against each preceding baseline window of 2 minutes. As our design was optimized 

to detect activity fluctuations in the SN/VTA, the threshold used to categorize trials as 

low or high activity in the SN/VTA would be overly conservative when applied to other 

brain regions. This would lead to many trials being left uncategorized. To ensure that 

all trials were categorized, we relaxed the threshold and categorized each trial as low 

or high depending on whether pre-trial BOLD activity for each of these regions was 

lower or higher than the mean of the preceding baseline period. 

To test whether our main effect of risk preference change is specific to SN/VTA 

BOLD activity, we investigated the relationship between endogenous fluctuations of 

BOLD activity in other brain regions and risky choice. We conducted offline analyses 

on A1 as a control area, as well as VS and vmPFC, which are regions strongly 

implicated in value-based decision making (Bartra, McGuire, & Kable, 2013). We used 

independent ROIs for all areas including SN/VTA and re-categorized trials based on 

endogenous activity in each of these ROIs.  
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Fig 4.4. Control analyses. A, Offline re-classification of endogenous activity using independent 

ROIs (see Methods) revealed that only endogenous dopaminergic midbrain fluctuations were 

significantly associated with choice variability. B, Differences in signal change between low and 

high activity conditions were largest in vmPFC and smallest in VS (yellow: trials categorised as 

high activity, orange: signals categorised as low activity). This suggests that endogenous 

fluctuations in SN/VTA were not more extreme than other regions. ** P < 0.01. Data are mean ± 

SEM. 

 

Risky choice behaviour was significantly greater for low compared to high 

baseline activity in the independent SN/VTA ROI (low baseline activity: 59.7 ± 1.5% 

(mean ± SEM), high baseline activity: 56.0 ± 1.9%, t42 =2.92, P = 0.003). There was 

no significant relationship between risk taking and endogenous activity in any of the 

control and decision-related areas tested (Fig. 4.4A). Risk taking was similar for low 

and high baseline activity in VS (low: 58.6 ± 1.7%, high: 57.0 ± 1.8%, t42 = 0.95, P = 

0.35), vmPFC (low: 58.6 ± 1.6%, high: 57.1 ± 1.9%, t42 = 1.01, P = 0.32), and A1 (low: 

58.9 ± 1.6%, high: 57.0 ± 1.8%, t42 =1.43, P = 0.16). To further verify that the effects 

we observe are driven by local rather than global fluctuations, we tested whether 

SN/VTA activity was still predictive of risk taking even after controlling for activity in 

control area A1 (t42 = 2.34, P = 0.02). These findings suggest that the effect is not a 

general effect of low and high BOLD activity modes across the brain, but specific to 

local fluctuations in the dopaminergic midbrain that explain variability in risk taking. 

A caveat of the above analysis is that the absence of any effect in a control 

area could be due to reduced endogenous signal variability. To rule out this alternative 

explanation, we calculated the signal change of epochs used to trigger each trial 
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relative to their preceding baselines. Differences in signal change between low and 

high activity conditions were largest in vmPFC and smallest in VS, suggesting that 

activity used to trigger trials in SN/VTA was no more extreme than that observed in 

other regions, supporting our finding of a specific effect of SN/VTA endogenous 

fluctuations on risk taking (Fig. 4.4B). 

To determine whether the VS results were affected by partial volume effects 

due to its location and the image acquisition parameters, we re-ran the preprocessing 

steps and re-analysed the data after discarding the top and bottom slices of the partial 

volumes. We found that risk taking was still similar for low and high baseline activity in 

VS (low: 58.7 ± 1.7%, high: 57.0 ± 1.9%, t42 = 1.02, P = 0.32), suggesting that the 

absence of an association between VS BOLD activity and risk taking was not due to 

partial volume effects. 

As SN/VTA BOLD signals recorded in real-time may be contaminated by 

signals from surrounding structures due to smoothing, we also performed offline 

analyses on unsmoothed functional images using the same algorithm to reclassify pre-

stimulus activity and found consistent results in unsmoothed data. Risk taking was 

higher for trials presented against a background of low compared to high SN/VTA 

BOLD activity (low activity: 59.9 ± 1.8%, high activity: 55.6 ± 2.1%, t42 = 3.2, P = 0.003). 

To test how sensitive the effect we observe is to the timing of pre-stimulus 

activity, we reanalysed the data, reclassifying activity levels as high or low based on 

volumes t-2 and t-3 before trial onset (instead of t-1 and t-2). Discarding the final 

volume of SN/VTA signal before trial onset did not affect the relationship between pre-

stimulus activity and risk taking (t42 = 2.95, P = 0.005), suggesting that the effect we 

observe does not depend on the precise timing of option presentation. 

These control analyses suggest that the effect of greater risk taking following 

low compared to high activity is unaffected by the precise timing of option presentation 

or degree of smoothing and is specific to SN/VTA with no effect in other decision or 

control areas. 
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4.2.2 A computational mechanism for the effect of endogenous fluctuations on 

risk taking 

 

We next examined how endogenous fluctuations in SN/VTA BOLD activity 

influenced risk taking and tested whether the effect was specific to a certain set of 

offers. We computed the difference between the average return for risky and safe 

options and identified a main effect of this value difference, indicating that increased 

value for risky relative to safe options was associated with an increased propensity to 

choose the risky option (F(2.822, 118.505) = 107.580, P < 0.001, Fig. 4.5A). We found 

a main effect of endogenous fluctuations in SN/VTA activity on risk taking (F(1,42) = 

14.356, P < 0.001, Fig. 4.5A) but no interaction with value difference (F(3.113, 130.749) 

= 0.127, P = 0.95), indicating that low SN/VTA activity is associated with greater risk 

taking irrespective of how much risky and safe options differed in value. We also found 

no interaction between risky option value (i.e., £6, £9, or £12) and activity (F(1.957, 

82.208) = 0.493, P = 0.61), further supporting an association between low endogenous 

SN/VTA activity and a value-independent increase in risk taking. 

 

 

Fig 4.5. Endogenous fluctuations in SN/VTA BOLD activity modulate value-independent 

influences on choice. A, The activity-induced shift in risk taking was independent of value with 

low endogenous activity leading to increased risk taking irrespective of option value. Differences 

in objective value between risky and safe options were divided into bins of equal sizes for each 

subject. B, Choices were fitted to a parametric decision model based on prospect theory with the 

best-fitting model including a gambling bias parameter that was higher when endogenous activity 

was low. Positive gambling bias parameters reflects a tendency to take risks irrespective of option 

value. *** P < 0.001. Data are mean ± SEM. 
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We next asked whether endogenous SN/VTA BOLD activity influenced option 

valuation in a manner consistent with standard economic models. We tested the 

following four models of choice. 

 

Parametric Decision Model Based on Prospect Theory 

Details of this model are provided in the previous section (Procedure, Day 2). This 

model provided a good fit for choice behaviour in both low- and high-activity conditions 

with an average pseudo-R2 of 0.44 (SD: 0.15).  

 
Parametric Approach-Avoidance Decision Model 

A recent model (Rutledge et al., 2015) that was developed to account for value-

independent tendencies to choose gambles is the approach-avoidance model, which 

allows choice probabilities to differ from 0 or 1 in the limit when a softmax rule is used. 

Expected utilities were determined using equations in the prospect theory model 

described earlier. 

The main difference lies in the softmax rule where the probability of gambling 

depended on a new parameter, β, determined by the following equations: 

 

     Pgamble = 
1− 𝛽

1+𝑒−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛) + β if β ≥ 0 

Pgamble = 
1+ 𝛽

1+𝑒−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)  if β < 0 

 

If β is positive, choice probabilities are mapped from (β, 1). If β is negative, 

choice probabilities are mapped from (0, 1+β). This model also provided a good fit of 

behaviour with an average pseudo-R2 of 0.47 (SD: 0.14). 

 
Parametric Decision Model Based on Prospect Theory with Gambling Bias  

 
To account for the possibility of a shift in indifference points leading to a 

difference in tendencies to choose gambles, the softmax rule in the parametric 

prospect theory model included an additional parameter, κ, such that:  

 

Pgamble = 
1

1+𝑒−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛+𝜅) 
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κ here represents a gambling bias that is additive to the expected utilities. This model 

provided the best fit out of all the models tested with a pseudo-R2 of 0.55 (SD: 0.12). 

Model comparison based on Bayesian Information Criterion (BIC) confirmed the fit and 

revealed that this model fitted the data best (Table 4.1). Larger effects of endogenous 

SN/VTA fluctuations on task-evoked SN/VTA responses (as measured using the 

average of an epoch corresponding to 5.25s to 10.5s in Fig. 4.8A later) correlated with 

larger increases in gambling bias parameter. 

 
Parametric Decision Model Using Expected Values  

The final model tested was one that used the expected values of the gamble 

(Egamble) and certain gain (Ecertain) and passed through the following softmax with the 

same gambling bias term β as before: 

 

Pgamble = 
1

1+𝑒−µ(𝐸𝑔𝑎𝑚𝑏𝑙𝑒−𝐸𝑐𝑒𝑟𝑡𝑎𝑖𝑛+𝜅) 

 
This model had the lowest fit with a pseudo-R2 of 0.36 (SD: 0.17), which suggests that 

more of the variance could be accounted for by the inclusion of a risk aversion 

parameter to convert objective values into subjective values.  

 
Model comparison revealed that a parametric model based on prospect theory 

(Sokol-Hessner et al., 2009) provided a good description of behaviour (pseudo-R2 = 

0.44 ± 0.15) but was outperformed by a model (Brown et al., 2014; Timmer, 

Sescousse, Esselink, Piray, & Cools, 2017) that included a gambling bias parameter 

(pseudo-R2 = 0.55 ± 0.12; Table 4.1). Changes in this gambling bias parameter κ shift 

the sigmoidal decision function in standard models, capturing a propensity to take risks 

irrespective of offer value. This gambling bias parameter was significantly higher in 

low compared to high activity conditions (t30 = 2.21, P = 0.04). No differences were 

observed for other model parameters (risk aversion α: t30 = -0.5, P = 0.62, inverse 

temperature µ: t30 = 0.13, P = 0.9; Fig. 4.5B). This finding suggests that endogenous 

SN/VTA activity does not impact the valuation process in a value-dependent way, but 

instead influences a more general decision process that does not depend on the 

relative values of available options. 
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Table 4.1. Model Comparison Results. 
 

BIC measures are summed across 31 subjects. The winning model (lowest BIC) here was the 

parametric decision model based on prospect theory with the addition of a gambling bias. ∆BIC 

refers to the difference in BIC scores between each model and the winning model. 

 
 
Variability (i.e., standard deviation) in SN/VTA BOLD activity was uncorrelated with 

the difference in risk taking between low and high activity across participants 

(Spearman ρ = -0.19, P = 0.29). By design, all participants were offered a set of options 

in the real-time fMRI task such that each should gamble half of the time on average. 

However, the percentage of risky choices was negatively correlated with the difference 

in risk taking between low and high SN/VTA activity (Spearman ρ = -0.46, P = 0.002). 

This means that the decisions of people who gamble less than predicted by prospect 

theory are more susceptible to endogenous SN/VTA fluctuations. 

 
Dopamine activity is known to influence behaviour in multiple ways. For 

example, high tonic dopamine is proposed to mediate an enhanced motivational vigour 

(Hamid et al., 2016; Niv, Daw, Joel, & Dayan, 2007), leading to faster reaction times. 

We reasoned that if endogenous SN/VTA BOLD fluctuations reflect changes in tonic 

dopamine, participants should choose more quickly when endogenous activity is high. 

Matching this prediction, we found faster reaction times in high (1.67 ± 0.05s) 

compared to low (1.72 ± 0.05s) activity conditions (t42 = 3.13, P = 0.003; Fig. 4.6A), 

consistent with an influence of tonic dopamine on endogenous SN/VTA BOLD activity. 

This effect was present in 31 of 43 participants (Fig. 4.6B). We conducted an additional 

multiple linear regression and predicted reaction times based on SN/VTA BOLD 

activity, choice to safe or risky option, and the absolute value of the difference in option 

subjective values, an index of choice difficulty. Even when controlling for these 

variables, reaction times were still significantly related to SN/VTA BOLD activity (t42 = 

3.08, P = 0.004). 

 

 

Model Parameters Mean R2 BIC ∆BIC 

Prospect Theory 4 0.44 2636 130 
Approach-Avoidance 6 0.47 2804 298 
Prospect Theory with Gambling Bias 6 0.55 2506 0 
Expected Values with Gambling Bias 4 0.36 2927 421 



86 
 

 

Fig. 4.6. Endogenous fluctuations in dopaminergic midbrain modulate vigour. A, 

Endogenous activity in dopaminergic midbrain modulated vigour as captured by response speed. 

Subjects (n = 43) were faster (P < 0.01) to make choices for options presented on a background 

of high compared to low endogenous activity. B, This effect of faster response speeds for high 

than low activity was consistent across subjects. ** P < 0.01. 

 

4.2.3 Endogenous fluctuations affect phasic responses during choice 

 

We next asked how endogenous SN/VTA BOLD fluctuations shifts preferences 

in risky decision making as described in our computational model. Given a known 

association between baseline activity and task-evoked responses (Fox et al., 2006), 

we hypothesized that endogenous SN/VTA BOLD fluctuations impact risk taking 

through an influence on the expression of phasic task-evoked activity known to 

represent choice-relevant information (Lak et al., 2014). Apart from the SN/VTA, other 

candidate sites that could be involved are the ventral striatum (VS) and ventromedial 

prefrontal cortex (vmPFC), regions that receive dense dopaminergic innervation 

(Ferenczi et al., 2016; Williams & Goldman-Rakic, 1998) and express strong functional 

connectivity with the SN/VTA (Fig. 4.7). 
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Fig. 4.7. Intrinsic fluctuations in dopaminergic midbrain co-activate a decision network. To 

identify a network of brain areas that the SN/VTA was embedded in and whose activity co-varied 

with endogenous fluctuations in the SN/VTA, we first extracted the BOLD time course from each 

subject’s SN/VTA using the same independent ROI as in the offline analyses. This was then 

included as an additional regressor in a GLM at the 1st level analysis in SPM. T-Contrasts on this 

SN/VTA regressor were used in the 2nd level group analysis, revealing that activity in dopaminergic 

midbrain co-activates a decision-related network of areas including VS and vmPFC (both P<0.05, 

FWE-corrected). 

 

We examined task-evoked SN/VTA responses and found that phasic 

responses to offer presentation were significantly increased in low compared to high 

pre-stimulus activity (Fig. 4.8A; P < 0.01, cluster-extent permutation test, height 

threshold t = 2, 5000 permutations). We next examined task-evoked responses in VS 

and vmPFC and found the same effect as in SN/VTA with low endogenous SN/VTA 

BOLD activity leading to larger phasic task-evoked responses in both VS (P < 0.01, 

cluster-extent permutation, Fig. 4.8B) and vmPFC (P < 0.01; Fig. 4.8C). Consistent 

with previous studies (Bartra et al., 2013), we also found that phasic BOLD responses 

in VS and vmPFC reflected the subjective values of options. 
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Fig. 4.8. Task-evoked responses are influenced by endogenous fluctuations. A, B, C, 

Endogenous fluctuations lead to distinct task-evoked response patterns with greater BOLD 

responses in SN/VTA, VS, and vmPFC when offers are presented against a background of low 

endogenous SN/VTA activity. Percent signal change was calculated relative to the two volumes 

following stimulus onset to correct for differences in starting baseline. The green horizontal line 

indicates statistical significance (P < 0.01). 

 

We reasoned that if task-evoked responses play a critical role in translating 

endogenous fluctuations into risky choice, then participants with stronger effects of 

endogenous SN/VTA BOLD fluctuations on task-evoked responses should show a 

greater difference in risk taking in low compared to high activity conditions. We found 

this to be the case, with larger effects of endogenous SN/VTA fluctuations on task-

evoked SN/VTA responses predicting larger increases in the gambling bias parameter 

κ (r = 0.39, P = 0.03; Fig. 4.9A). This effect was specific to phasic SN/VTA responses 

as there was no such effect in decision and control areas (all P > 0.1).  

Lastly, we investigated the relative contributions of both endogenous SN/VTA 

BOLD fluctuations and task-evoked responses to risk taking using multi-level 

mediation analyses (Atlas, Lindquist, Bolger, & Wager, 2014). These analyses were 

conducted using the Mediation Toolbox (http://wagerlab.colorado.edu/tools) (Wager, 

Davidson, Hughes, Lindquist, & Ochsner, 2008). Evoked responses in the SN/VTA, 

VS, and vmPFC were determined as the maximum percentage change in BOLD signal 

within a 10s epoch following trial onset, while baseline SN/VTA was determined as the 

percentile that each trial was triggered off. Distribution of path coefficients were 

estimated by drawing 10,000 random samples and significance estimates were 

computed through bootstrapping.  
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Fig. 4.9. Endogenous fluctuations modulate risk taking via task-evoked responses. A, The 

effect of endogenous SN/VTA activity on risk taking is associated with phasic task-evoked SN/VTA 

responses. Subjects with a larger difference in task-evoked responses between low and high 

activity conditions had larger differences in gambling bias parameter κ (r = 0.39, P = 0.03). B, 

Mediation analysis shows task-evoked VS responses mediate the influence of endogenous 

SN/VTA fluctuations on risk taking through their influence on task-evoked SN/VTA responses, 

indicating the effect of endogenous SN/VTA fluctuations on behaviour is under the influence of 

reciprocal dynamics between SN/VTA and VS.  

 

The mediation analysis tests whether baseline SN/VTA BOLD activity 

influences the magnitude of task-evoked responses in SN/VTA [VS / vmPFC] (path a), 

whether task-evoked responses in SN/VTA [VS / vmPFC] are correlated with choice 

controlling for SN/VTA baseline (path b), whether the relationship between SN/VTA 

baseline and risk taking is reduced after controlling for task-evoked responses (path 

c’), and finally a test of mediation. A mediator can be interpreted as an indirect pathway 

through a brain region that links endogenous fluctuations in SN/VTA baseline activity 

with choice, whereby this relationship would be reduced or abolished if the mediator 

is disrupted. To further understand how task-evoked responses in VS mediates 

baseline SN/VTA BOLD activity and choice despite the absence of a direct link 

between VS and choice, we conducted an additional analysis using task-evoked 

responses in VS to predict choice using task-evoked responses in SN/VTA as a 

mediating variable.  

We found that SN/VTA BOLD activity significantly impacted task-evoked 

response in both SN/VTA and VS (Fig. 4.9B; Table 4.2). Task-evoked SN/VTA 

responses modulated risk taking, but task-evoked VS responses influenced risk taking 
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only indirectly through their impact on task-evoked SN/VTA responses (Fig. 4.10; 

Table 4.2). These results show that endogenous SN/VTA BOLD fluctuations shape 

decision making through their influence on task-evoked responses to offers in a 

decision network. 
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Fig. 4.10. Endogenous SN/VTA activity modulates task-evoked responses in a decision 

network. A, Endogenous SN/VTA activity influences task-evoked responses in SN/VTA, which in 

turn modulate decision making. B, C, Endogenous SN/VTA activity also influences task-evoked 

responses in VS in B and vmPFC in C. VS thereby mediates the effect of endogenous SN/VTA 

activity on risk taking. D, E, Further analysis revealed that task-evoked responses in SN/VTA and 

VS dynamically interact with each other. Of these three decision areas, only SN/VTA directly 

influences risk taking, with task-evoked VS responses indirectly influencing behaviour through their 

influence on task-evoked SN/VTA responses. This result indicates that endogenous SN/VTA 

activity induces differential phasic responses in SN/VTA and VS, which in turn interact with and 

dynamically influence risk taking. 
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Table 4.2. ROI-based Mediation Results. 

 

 
 SN/VTA VS VMPFC  

 
Mediation of 
endogenous SN/VTA 
fluctuations on choice 

 
Path a 

 
-0.16*** 

 
-0.21*** 

 
-0.19*** 

(0.03) (0.04) (0.05) 
P < 0.001 P < 0.001 P < 0.001 

     
 Path b -0.16* -0.0011 -0.04 
 (0.08) (0.05) (0.05) 
 P = 0.03 P = 0.98 P = 0.31 
     
 Direct c’ -0.14* -0.10* -0.12* 
 (0.06) (0.05) (0.05) 
 P = 0.01 P = 0.04 P = 0.02 
     
 Mediation 

a x b 
-0.13 -0.26* 0.01 

 (0.15) (0.10) (0.09) 
 P = 0.40 P = 0.02 P = 0.96 

 

 
Mediation of task-
evoked VS responses 
on choice 

 
Path a 

 
0.52*** 

  

(0.03)   
P < 0.001   

     

 Path b -0.24**   

 (0.09)   

 P = 0.006   

     

 Direct c’ 0.13   

 (0.07)   

 P = 0.08   

     

 Mediation 
a x b 

-2.41**   

 (0.89)   

 P = 0.005  
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 SN/VTA VS VMPFC  

 
Mediation of task-
evoked SN/VTA 
responses on choice 

 
Path a 

  
0.63*** 

 

 (0.04)  
 P < 0.001  

     
 Path b  0.13  
  (0.07)  
  P = 0.07  
     
 Direct c’  -0.24**  
  (0.09)  
  P = 0.006  
     
 Mediation 

a x b 
 1.58*  

  (0.78)  
  P = 0.04  

 

 

Coefficients, standard errors, and p-values for the different paths in the mediation analyses 

(n=43). *P < 0.05, **P < 0.01, ***P < 0.001 
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4.3 Discussion 

 

The brain expresses substantial ongoing activity in the absence of external 

stimulation. Although many studies capitalize on this fact and have described this 

‘resting state’ (Fox & Raichle, 2007), little is known about the function of spontaneous 

fluctuations and whether it carries relevance for higher-order cognition. We show that 

endogenous fluctuations in the dopaminergic midbrain have direct behavioural 

relevance in modulating a preference for risky decision making in humans. Using a 

novel framework to study the influence of intrinsic fluctuations on behaviour, we find 

greater risk taking when choice options are presented against a background of low 

compared to high SN/VTA BOLD activity. Our findings highlight that the endogenous 

state of a network relevant for behaviour is critical for determining which actions are 

taken. 

We show that endogenous SN/VTA BOLD activity influences risky decisions 

via modulation of phasic task-evoked responses to potential rewards. Our results are 

consistent with findings that impulsive behaviour is linked to phasic dopamine release 

(Buckholtz et al., 2010; Joutsa et al., 2012) and to levodopa administration (Rigoli et 

al., 2016; Rutledge et al., 2015), assumed to increase phasic dopamine (Pessiglione, 

Seymour, Flandin, Dolan, & Frith, 2006). Low pre-stimulus activity and levodopa 

administration may both exert their effects on risk taking by boosting task-evoked 

phasic responses, which in turn promote risk-taking behaviour. 

Reward-predicting cues elicit phasic responses in midbrain dopamine neurons 

(Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006). In rodents, optogenetic 

manipulation of SN dopamine neurons boosts striatal dopamine release and biases 

action selection (Howard, Li, Geddes, & Jin, 2017). Optogenetic stimulation of striatal 

D2-receptor neurons modulates risk preferences (Zalocusky et al., 2016). Attenuation 

of pre-choice phasic dopamine via electrical stimulation of the lateral habenula 

reduces preference for risk in rodents (Stopper, Tse, Montes, Wiedman, & Floresco, 

2014). Our study builds on these results by identifying a possible link between pre-

stimulus brain activity, phasic responses to stimuli, and subsequent risky choice. 

The functional role of these endogenous fluctuations remains unclear, but they 

might form a reference point relative to which potential offers are evaluated. While 

standard models of economic decision making often treat preferences as independent 
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of a rational agent’s current state, real-world behaviour often reflects comparison 

against a reference point that can change over time (Tversky & Kahneman, 1991), 

sometimes substantially changing the subjective value of an offer (Kahneman & 

Tversky, 1979). If endogenous SN/VTA BOLD activity reflects slow dopaminergic 

fluctuations, proposed to index environmental reward rate (Hamid et al., 2016; Niv et 

al., 2007) or reward anticipation (MacInnes, Dickerson, Chen, & Adcock, 2016), then 

these fluctuations could represent a reference point against which potential rewards 

are compared during decision making (Kőszegi & Rabin, 2006; Louie & Glimcher, 

2012). Potential rewards presented on a background of low activity could lead to 

enhanced task-evoked responses linked to greater risk taking (Stopper et al., 2014).  

Endogenous fluctuations may constitute an evolutionarily conserved principle 

that enables the brain to introduce variability across a wide variety of processes 

including perception (Boly et al., 2007; Sadaghiani et al., 2015) and motor action (Fox 

et al., 2007). Neural variability has been hypothesized to reflect the dynamic range of 

potential responses to environmental stimuli, allowing the brain to flexibly transition 

between states in response to changing task demands (Garrett, Kovacevic, McIntosh, 

& Grady, 2013). It could also reduce susceptibility to becoming entrenched in specific 

behavioural repertoires (van Leeuwen, 2008) and promote exploration in dynamic 

environments that are a common feature of the natural world (Wilson, Geana, White, 

Ludvig, & Cohen, 2014). 

One possible source of variability that could relate to our results is D2/D3 

autoreceptor availability in the SN/VTA. Lower autoreceptor availability is associated 

with greater dopamine release following amphetamine administration and greater trait 

impulsivity (Buckholtz et al., 2010). The link we find between risk taking and phasic 

responses is also consistent with the finding that phasic dopamine during gambling 

tasks is greater in pathological gamblers (Joutsa et al., 2012). 

One limitation of our study is that BOLD activity is an indirect measure of local 

neuronal activity thought to consist of an ensemble of signals including afferent and 

recurrent inputs (Logothetis & Wandell, 2004). Phasic and tonic dopamine release 

may contribute to fluctuations in SN/VTA BOLD activity, while optogenetic stimulation 

of dopamine neurons in VTA is sufficient to elicit BOLD activity in VTA (Brocka et al., 

2018). However, SN/VTA BOLD activity may also reflect activity in other cell types 
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including glutamatergic (Sesack & Grace, 2010) and GABAergic neurons that act to 

inhibit dopamine neurons when reward is expected (Eshel et al., 2015). Reduced 

GABAergic activity could also be associated with greater phasic dopamine release 

and provide an alternate explanation for greater risk taking when pre-stimulus SN/VTA 

BOLD activity is low. 

Previous studies have shown that dopamine release in VS, as measured using 

PET, is linked to reward-related SN/VTA BOLD activity (Schott et al., 2008). While we 

have focused on the SN/VTA, the extent to which BOLD activity in the downstream 

VS responds to a cue is tightly coupled to SN/VTA BOLD activity. Future studies might 

extend these findings with direct striatal recordings that assess the relationship 

between spontaneous fluctuations and risk taking. 

Our effect is consistent across individuals, albeit modest in terms of effect size 

(on average, a 3.4% increase in the number of risky options chosen). We would predict 

a larger effect size with direct electrophysiological recordings, since fMRI 

measurements are inherently noisy at several levels (Webb, Levy, Lazzaro, Rutledge, 

& Glimcher, 2019). However, given the many factors that contribute to risky decision 

making, it would be surprising if the state of the brain when options are presented had 

a large effect on the probability of risky decisions, especially in the absence of any 

environmental changes. 

The effect size is comparable in size to previous studies. For example, a 

standard clinical dose of 150mg of levodopa increased risk taking by only 5% on 

average (Rutledge et al., 2015) and natural aging leads to a comparable decrease in 

risk taking, which we surmised may reflect age-related dopaminergic decline 

estimated at 5-10% per decade (Rutledge et al., 2016). It is also noteworthy that the 

effect of low pre-stimulus SN/VTA activity on risk taking is particularly large in relative 

terms for unattractive gambles. The probability that individuals choose the least 

attractive gambles (chosen less than 20% of the time) is much greater under low than 

high pre-stimulus activity (18.7% vs 15.4%), a 21% relative increase. In contrast, the 

probability that individuals choose the most attractive gambles (chosen more than 80% 

of the time) is only 5% greater under low than high pre-stimulus activity in relative 

terms. Our findings may be particularly relevant to understanding pathological 

gamblers, who may take risks that others would generally avoid.  
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Our key finding is that variability in higher-order cognition can emerge out of a 

neurophysiologically well-defined process. While risk preferences are thought of as 

personality traits determined partly by genetic variation (Frydman, Camerer, Bossaerts, 

& Rangel, 2010), we show that the expression of risk preferences reflects in part 

individual susceptibility to endogenous fluctuations. Neural variability may change with 

task experience, consistent with reductions in neural variability during skill learning 

(Santos, Oliveira, Jin, & Costa, 2015) and the impact of endogenous fluctuations may 

be largest in novel environments. Aberrant endogenous fluctuations might also play a 

role in disorders where there is excessive behavioural variability or risk taking, such 

as ADHD (Hauser, Fiore, Moutoussis, & Dolan, 2016) and pathological gambling 

(Joutsa et al., 2012). Accounting for the influence of endogenous neural fluctuations 

on behaviour is critical for understanding the neurobiological processes underlying 

cognition in health and disorder.   
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Chapter 5: Risk preferences correlate with tissue 

microstructure 
 

Like the entomologist in search of colourful butterflies, my attention has chased in the gardens of 

the grey matter cells with delicate and elegant shapes, the mysterious butterflies of the soul, whose 

beating of wings may one day reveal to us the secrets of the mind. 

Santiago Ramón y Cajal, Recollections of My Life 

 

As discussed in Chapter 2, decisions encountered in the real world generally 

depend on the values of options available to an organism. These values are subjective 

quantities that are internally generated by the organism rather than objective attributes 

of the options. Imagine that a decision has to be made between a single sumptuous 

chocolate chip cookie and two scoops of espresso biscotti ice-cream. Someone who 

dislikes the taste of coffee might opt for the former while someone who enjoys the 

flavour of coffee might opt for the latter, resulting in different decision outcomes despite 

identical options being presented to both people. Such decisions are afforded an 

additional layer of complexity known as risk when the expected outcomes of options 

are probabilistic rather than deterministic, and the influence of risk on subjective values 

may vary according to the risk attitude of each individual. Individuals who are averse 

to risk assign lower subjective values to options with low probabilities of receiving a 

desired outcome, while individuals who are risk-seeking show the opposite preference. 

A sure gain of £5 has a higher subjective value than an option with an equal probability 

of winning £10 or nothing for a risk-averse individual while the opposite is true for a 

risk-seeking individual. 

Many studies have previously investigated the functional anatomy of risky 

decision-making, with areas such as ventromedial prefrontal cortex (vmPFC) (Bartra, 

McGuire, & Kable, 2013; Levy & Glimcher, 2012), orbitofrontal cortex (OFC) (Padoa-

Schioppa, 2013; Padoa-Schioppa & Cai, 2011), ventral striatum (VS) (Bartra et al., 

2013), and substantia nigra and ventral tegmental area (SN/VTA) (D’Ardenne, 

McClure, Nystrom, & Cohen, 2008) being implicated in the decision process. Despite 

this, the neurobiology driving the relationship between neuroanatomy and risk 

preferences remains unclear. An underlying source of uncertainty is that volumetric 

measures of brain structure are often qualitative in nature and lack specificity in the 

form of properties like axon, myelin, iron, and water concentrations (Tabelow et al., 
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2019). In the vein of Cajal and his quest to study the structure of the cerebral cortex, 

the emerging field of in vivo histology seeks to address the preceding lacunae by using 

a combination of biophysical models, quantitative magnetic resonance imaging (qMRI), 

and voxel-based quantification (VBQ) using the multi-parameter mapping (MPM) 

approach. MPM quantifies the longitudinal relaxation rate, R1, effective transverse 

relaxation rate, R2*, percent saturation due to magnetization transfer (MT) and 

effective proton density (PD*). An advantage of these measures is that they are largely 

impervious to inter-site biases and are also comparable across different time points 

due to their quantitative nature as an absolute measure (Weiskopf et al., 2013), 

facilitating reproducibility and increasing neurobiological specificity of neuroanatomy 

findings. Collectively, this approach is coined in vivo histology using MRI (hMRI). 

 In the present study, I use hMRI to estimate parameters sensitive to tissue 

microstructure in order to better understand the neuroanatomical correlates of risky 

decision-making.  High resolution MPMs (800 µm isotropic) were acquired for 46 

healthy participants who also engaged in a risky decision-making task involving a 

choice between a safe and a risky option. The risky option comprised equal 

probabilities of a prize (£6, £9, or £12) or £0. The value of the safe option was always 

lower than the potential prize of the risky option and was obtained using divisors on 

the expected value of the gamble (see Methods).  

 

5.1 Methods 

 

5.1.1 Participants 

 
46 healthy, young adults (age: 25.0 ± 4.2, mean ± SD) were recruited through 

the University College London Psychology Subject Database. Participants were 

screened to ensure no history of neurological or psychiatric disorders. One subject 

was excluded due to excessive movements during scanning as measured by the 

standard deviation of R2* maps (Balteau et al., 2018; Castella et al., 2018), leaving a 

total of 45 participants included in the study. The study was approved by the University 

College London (UCL) research ethics committee, and all participants gave written 

informed consent.  
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5.1.2 Study Design 

 

Participants completed the experiment at the Wellcome Centre for Human 

Neuroimaging, University College London, in an appointment that lasted 

approximately an hour. Each appointment consisted of a probabilistic gambling task 

that lasted 25 minutes, and a 35-minute neuroimaging session where multi-parameter 

maps (Callaghan et al., 2014; Draganski et al., 2011) were acquired while participants 

viewed a muted nature documentary. 

 

Probabilistic Gambling Task  

 
Participants played a probabilistic gambling task consisting of 180 trials (Fig. 

5.1). On each trial, participants chose between a certain monetary amount and a 

gamble with equal probabilities of two outcomes. There were three gamble options 

available: £0 or £6, £0 or £9, and £0 or £12. The certain amounts were determined 

using 12 divisors (0.82, 0.87, 0.93, 1, 1.1, 1.23, 1.4, 1.6, 1.9, 2.25, 2.75, and 3.5) on 

the expected value of the gambles, chosen to accommodate a range of risk sensitivity. 

Take for example a fraction of 3.5 and a gamble between £0 and £6. The expected 

value of a £0 or £6 gamble would be (0.5 x £0) + (0.5 x £6) which gives £3, and this is 

then divided by 3.5 to give a certain amount of £0.86. There were 12 certain amounts 

for each gamble option in total, and each trial was repeated 5 times in a randomized 

sequence. Participants had a maximum time of 3 seconds to make a choice or receive 

£0 automatically upon exceeding that. The chosen option was displayed for a further 

700 milliseconds before an intertrial interval (4.2 to 5.8 seconds) commenced. The 

outcome of a randomly selected trial was added to a starting pay of £10. 
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Fig. 5.1. Experimental design. On each trial, participants chose between a safe option (here, 

£2.8 guaranteed reward) and a risky option (here, £0 or £6 with equal probability). Their chosen 

option remained on the screen for a further 700ms before the commencement of an intertrial 

interval with a mean of 5000ms. Outcomes of chosen gambles were not revealed to the 

participants.  

 

5.1.3 Structural Data Acquisition and Processing 

 
Imaging data consisted of 3 spoiled multi-echo 3D fast low angle shot (FLASH) 

acquisitions at 0.8 mm isotropic resolution with T1 [TR: 18.7 ms; flip angle: 20°], proton 

density (PD) [TR: 23.7 ms; flip angle: 6°], and magnetization transfer (MT) [TR: 23.7 

ms; flip angle: 6°; excitation preceded by a 2kHz off-resonance Gaussian 

radiofrequency (RF) pulse with 4 ms duration and 200° nominal flip angle] weightings. 

One RF sensitivity map was acquired for each contrast to address RF sensitivity bias 

during processing. Additional B1 Mapping and Field Maps were also acquired to get 

calibration data measuring the spatial distribution of the B1+ transmit field in order to 

detect the spatial variation in flip angle. These data can be combined to generate multi-

parameter maps  (Callaghan et al., 2014). 

All images were processed using SPM 12 (Wellcome Centre for Human 

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Maps of R2* were estimated from T1-, 

PD-, and MT-weighted RF gradient echos using an ordinary least squares ESTATICS 

approach (Weiskopf, Callaghan, Josephs, Lutti, & Mohammadi, 2014) that provides a 

more robust estimation of R2* with a higher signal-to-noise ratio. The data acquired for 

each contrast (T1w, PDw, MTw) were then averaged to increase their signal-to-noise 

ratio. The 3 resulting volumes were then used to calculate MT and R1 maps (Helms, 

Dathe, Kallenberg, & Dechent, 2008; Weiskopf et al., 2013). Subsequent processing 

steps followed the standard pipeline within the hMRI toolbox (https://hmri-
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group.github.io/hMRI-toolbox/) which included co-registration, segmentation, 

diffeomorphic image registration (DARTEL), and smoothing [6mm Full Width at Half 

Maximum (FWHM)]. Additionally, an enhanced tissue probability map was used to 

improve segmentation for subcortical areas (Lorio et al., 2016). 

 

5.2 Results 
 

5.2.1 Average gambling is correlated with tissue microstructure in SN/VTA, VS, 

and Right Hippocampus 

 
I first asked whether decision areas involved in risk were extended to 

neuroanatomy (Bartra et al., 2013; D’Ardenne et al., 2008; Rangel, Camerer, & 

Montague, 2008). To do so, I conducted region of interest (ROI) analyses using 

multiple regression. vmPFC ROI was derived from a meta-analysis of experiments 

investigating neural correlates of subjective value (Bartra et al., 2013), OFC ROI was 

a single 8-mm sphere at MNI coordinates [x = 26, y = 18, z = -16] derived from a 

previous study (Peters & Büchel, 2009), VS ROI was bilateral 8-mm spheres at MNI 

coordinates [left: x = −10, y = 12, z =  −8;  right: x = 10, y = 12, z = −8] derived from a 

previous study (Robb B. Rutledge, Skandali, Dayan, & Dolan, 2014), a group 

anatomical mask from a previous study (Hauser, Eldar, & Dolan, 2017) was used for 

SN/VTA ROI, and to test an a priori prediction of the model-based approach detailed 

later, LC was included and defined as 4 × 6 × 10 mm cuboids centered at x = -5, y = -

34, z = -21 on the left and x = 7, y = -34, z = -21 on the right (Bär et al., 2016), placing 

the LC in the floor of the fourth ventricle and in the rostral pons. As no results were 

significant within the vmPFC and OFC ROIs, they have been dropped from further 

discussion. 

 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/ventricle-of-heart
https://www.sciencedirect.com/topics/medicine-and-dentistry/pons
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Figure 5.2. VBQ region of interest (ROI) analysis and average gambling.  Myelin increases in 

right hippocampus and ventral striatum with higher average gambling are estimated from increased 

R1 (red) while reductions in iron in SN/VTA with higher average gambling are estimated from 

decreased R2* (orange). Figure thresholded at P < 0.001 uncorrected level for display purposes.  

 

The percentage of gambles chosen, or average gambling, by each subject was 

modelled as the key dependent variable with age, gender, and total intracranial volume 

included as nuisance covariates (Ridgway et al., 2008). Age in particular contributes 

greatly to global patterns of microstructure variation observed using VBQ measures 

(Callaghan et al., 2014). The main effects of average gambling was analysed within 

each ROI corrected for small-volume as well as multiple comparisons using a Family-

wise error (FWE) cluster alpha of 0.05. Often used as an index of cortical myelination 

(Lutti, Dick, Sereno, & Weiskopf, 2014), R1 in the ventral striatum (Fig. 5.2) was found 

to be positively related to average gambling. Anterior right hippocampus was also 

positively related to average gambling at the whole-brain FWE-cluster level. R2*, a 

marker of hepatic iron content (Daugherty & Raz, 2013; Wood et al., 2005), in the 

SN/VTA was negatively related to average gambling (Fig. 5.2) and comparable in 

quantity to other published R2* values (VBQ measure: 23.7 ± 1.6, Literature (Callaghan 

et al., 2014): 26.7 ± 4.1, mean ± SD). See Table 5.1 for summary of these results. 

 

Table 5.1. Results for average gambling. 

Map Region PFWE kE t z x y z 

R1+ R Hippo. < 0.001 206 3.97 3.63 26 -8 -23 

R1+ VS 0.001 59 4.37 3.92 -7 15 -13 

R2*- SN/VTA 0.02 15 3.62 3.34 6 -22 -15 

 

+ and - refer to positive and negative t-contrasts for the main effect of average gambling. Hippo = 

hippocampus, VS = ventral striatum, SN/VTA = substantia nigra and ventral tegmental area. 
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5.2.2 Iron in SN/VTA and LC is associated with risk aversion and choice 

stochasticity  

 
Having established a relationship between R1 and R2* maps and a model-free 

measure of risk, I next turned to a model-based approach which has the added 

advantage of showing how tissue microstructure is related to specific processes 

underlying risky choice (O’Doherty, Hampton, & Kim, 2007). Choice behaviour was 

fitted to a prospect theory-based parametric decision model that has been used in 

previous studies (Rutledge, Skandali, Dayan, & Dolan, 2015; Sokol-Hessner et al., 

2009) to describe decision-making under risk. The expected utility of the certain 

options and gambles were determined using the following equations: 

 

Ugamble = 0.5(Vgain)α 

Ucertain = (Vcertain)α 

 

where Vgain is the value of the potential gain from a gamble and Vcertain is the value of 

the certain option. α alters the degree of curvature of the utility function and represents 

the degree of risk aversion. When presented with an option where the expected values 

for the certain gain and the gamble are equal, a subject with α = 1 would be risk-neutral 

and indifferent between the two, a risk-seeking individual with α > 1 would choose the 

gamble more often, and a risk-averse individual with α < 1 would choose the certain 

gain more often. The probability of selecting a gamble was determined by the following 

softmax rule: 

 

Pgamble = 
1

1+𝑒−𝛽(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛) 

 

where the degree of stochasticity in choice behavior is captured by the inverse 

temperature parameter β. When β is low, participants are more likely to choose 

randomly between safe and risky options irrespective of their subjective values. When 

β is high, participants increasingly choose the action leading to the highest expected 

reward. This model provided a good fit for choice behaviour with an average pseudo-

R2 of 0.45 (SD: 0.16). 
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Fig. 5.3. VBQ ROI analysis and model parameters. A, Iron reduction in SN/VTA with higher risk 

aversion parameter is estimated from decreased R2* (Top). Increased iron in LC with higher 

inverse temperature parameter is estimated from increased R2* (Bottom). B, Correlation between 

mean R2* within the SN/VTA ROI and risk aversion parameter was just above the significance 

threshold (ρ = -0.28, P = 0.058, Left) while mean R2* within the LC ROI was positively correlated 

with the inverse temperature parameter (Spearman ρ = 0.34, P = 0.02, Fig 5.3B, Right). 

 

Similar to the model-free analysis, risk aversion (α) and inverse temperature (β) 

parameters were placed in a multiple regression analysis with age, gender, and total 

intracranial volume included as nuisance covariates. Higher risk aversion parameters 

related to decreased R2* in the SN/VTA (Fig. 5.3A, Top) whereas higher inverse 

temperature parameters related to increased R2* in the LC (Fig. 5.3A, Bottom). VBQ 

measures extracted using the same SN/VTA ROI as before revealed that the negative 

correlation between SN/VTA R2* and risk aversion parameter was just above the 

significance threshold (ρ = -0.28, P = 0.058, Fig. 5.3B, Left) suggesting that a sub-

region of the SN/VTA may be more important for driving this association. LC R2* and 

the inverse temperature parameter was significantly correlated (Spearman ρ = 0.34, 

P = 0.02, Fig. 5.3B, Right) suggesting that individuals who are more deterministic in 

their choices possess higher levels of iron in the LC. See Table 5.2 for summary of 

these results. 
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Table 5.2. ROI results for risk aversion (α) and inverse temperature (β). 

Parameter Map Region PFWE kE t z x y z 

α R2*- R SN/VTA 0.03 14 3.63 3.35 5 -22 -16 

α R2*- L SN/VTA 0.01 18 3.62 3.34 -9 -25 -18 

β R2*+ L LC 0.002 23 3.77 3.47 -3 -32 -19 

 

+ and - refer to positive and negative t-contrasts for the main effect of each computational 

parameter. SN/VTA = substantia nigra and ventral tegmental area, LC = locus coeruleus. 

 

5.3 Discussion 
 

Recent developments in the field of quantitative MRI have permitted in vivo 

mapping of biologically relevant measures to be executed with high resolution. The 

findings here demonstrate that individual differences in risky decision-making is 

related to quantitative measures of myelination and iron in the brain. Previous studies 

have identified several key areas involved in risky decision-making such as VS, 

vmPFC, OFC, and SN/VTA (Bartra et al., 2013; D’Ardenne et al., 2008; Levy & 

Glimcher, 2012; Nieuwenhuis, Aston-Jones, & Cohen, 2005; Padoa-Schioppa & Cai, 

2011; Polezzi, Sartori, Rumiati, Vidotto, & Daum, 2010; Rangel et al., 2008). I extend 

these findings using quantitative magnetic resonance imaging to demonstrate that risk 

preference is related to myelination in the VS and right hippocampus, as well as iron 

levels in SN/VTA. The peak R1 observed in left VS is located in close proximity to 

coordinates reported in a different study (Peters & Büchel, 2009) that also found 

subjective value coding of both delayed and probabilistic rewards in the left VS, 

suggesting that levels of myelination may be involved in the coding of subjective value. 

That myelination in right hippocampus is related to risky decision-making here is 

interesting especially in the absence of outcomes and future work may build on these 

results by investigating its functional role in risk. 

The model-based results suggest that markers of microstructural iron in LC is 

linked to individual variation in choice stochasticity with more deterministic individuals 

displaying higher R2*. The LC is a key component of the noradrenaline system and 

has been implicated in attention (Aston-Jones, Rajkowski, & Cohen, 2000; 

Nieuwenhuis et al., 2005), surprise (Clewett, Schoeke, & Mather, 2014; Preuschoff, ’t 

Hart, & Einhauser, 2011), emotional memory (Hämmerer et al., 2018, 2017), 
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modulation of neural gain (Eldar, Cohen, & Niv, 2013), and metacognitive performance 

(Hauser, Allen, et al., 2017). While I can only speculate as to the exact process 

underlying the observed relationship here, attention and gain appear to be viable 

candidates with propranolol (a β-adrenergic blocker) administration in previous studies 

impairing attention that could result in choices that are more stochastic (De Martino, 

Strange, & Dolan, 2008), and lowered neural gain as a function of malfunctioning 

catecholamine systems resulting in increased choice variability (Hauser, Fiore, 

Moutoussis, & Dolan, 2016). 

While just above the significance threshold, the relation between SN/VTA R2* 

and risk aversion parameter is interesting to speculate on. The main iron compound 

found in SN/VTA dopamine neurons and LC noradrenaline neurons is the 

neuromelanin-iron complex (Zucca et al., 2017). Although the interplay between iron, 

dopamine, and neuromelanin is a complicated process and equilibrium between the 

three is essential for homeostasis in cells, increased iron deposition has been 

observed in the brains of Parkinson’s disease patients (Stankiewicz et al., 2007; Ulla 

et al., 2013) which is a disease characterized by the degeneration and loss of 

dopamine neurons in the SN (Damier, Hirsch, Agid, & Graybiel, 1999; Sofic et al., 

1988). Although the link between iron levels and quantity of dopamine neurons is not 

entirely straightforward, the negative correlation between SN/VTA R2* with both 

average gambling and the risk aversion parameter is at least consistent with findings 

that pharmacologically increasing dopamine levels leads to increased gambling (Rigoli 

et al., 2016; Rutledge et al., 2015). Furthermore, iron accumulation is observed in 

ageing which is also related to a decline in the dopamine system and reduced risk 

taking for potential rewards (Rutledge et al., 2016; Stankiewicz et al., 2007). 

One limitation of the study is that the R1 and R2* quantitative maps may also be 

sensitive to factors other than the ones facilitating straightforward interpretations like 

myelin and hepatic iron content. For example, R1 values could be influenced by axonal 

density (Gouw et al., 2008) and other variations in microstructure (Harkins et al., 2016) 

with iron and other macromolecules also playing a potential role (Callaghan, Helms, 

Lutti, Mohammadi, & Weiskopf, 2015) while some variation in R2* could be due to fibre 

orientation related to the position of participants within MRI scanner bore (Bender & 

Klose, 2010; Wharton & Bowtell, 2012). However, the close correspondence between 

measures of R2* in the SN/VTA here and a previous study (Callaghan et al., 2014) is 
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reassuring and suggests that differences due to such factors may not be too large a 

confound for interpretation. A second limitation of the study is the use of ROI analyses 

on the basis of regions thought to be involved in the decision network. Peak locations 

of effects of interest, such as representation of subjective value in the vmPFC, often 

vary from study to study and although significant effects were found in VS, SN/VTA, 

LC, and right hippocampus here, these were missing in the OFC and vmPFC which 

raises questions for future work regarding the biological substrates of certain quantities 

assumed to play a role in risky decision-making. 

In this study, I used hMRI to reveal the association between risk preferences 

and tissue microstructure. The model-free results suggest that myelin and iron in the 

VS, SN/VTA, and right hippocampus are key predictors of average gambling while the 

model-based results suggest that levels of iron in the LC is predictive of how 

deterministic an individual will be in their choice behaviour. As a whole, these results 

suggest a link between processes underlying decision-making and existing 

microstructure of each individual’s neuroanatomy beyond grey and white matter 

volume. Future work may use a richer task design to better isolate components of risk 

and reward to extend these findings, especially since the quantitative nature of MPMs 

can be used for multi-site comparisons and facilitate reproducible research.  
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Chapter 6: A neurocomputational model of mood and 

intrinsic rewards 
 

All men seek happiness. This is without exception. Whatever different means they employ, they all 

tend to this end. The cause of some going to war, and of others avoiding it, is the same desire in 

both, attended with different views. The will never takes the least step but to this object. This is the 

motive of every action of every man, even of those who hang themselves. 

Blaise Pascal 

 

Previous chapters have touched on the contributions of neural variability and 

neuroanatomy to risk. Common across many tasks involving the assessment of risk 

preferences is the use of rewards like food or money. However, there also exist 

rewards that are intrinsically experienced by an individual and these are more difficult 

to measure due to the lack of economic markets for such goods. This chapter 

examines the influence of intrinsic rewards on mood and discusses a framework that 

can be used to estimate values of intangible goods or experiences. 

A key index of quality of life is subjective well-being which “refers to how people 

experience and evaluate their lives and specific domains and activities in their lives” 

(Oswald & Wu, 2010). Individuals with higher subjective well-being display lower 

mortality rates (Chida & Steptoe, 2008; Steptoe, Deaton, & Stone, 2015) and are less 

at risk of disease (Davidson, Mostofsky, & Whang, 2010). In the workplace, employees 

who possess higher subjective well-being demonstrate increased productivity without 

a loss of output quality (Oswald, Proto, & Sgroi, 2015), have reduced rates of 

absenteeism (Pelled & Xin, 1999), are rated more positively by their supervisors, and 

also produce greater financial performance (Peterson, Luthans, Avolio, Walumbwa, & 

Zhang, 2011). Maximising subjective well-being should therefore be of interest to 

individuals, organisations, and governments, and be considered a target for health 

and economic policies (Dolan & White, 2007).  

The problem arises when it comes to designing measures that are likely to 

increase well-being. When contemplating the future, people routinely engage in 

affective forecasting where they make predictions about what it would feel like to 

experience specific events like winning the lottery or meeting their favourite celebrity. 

However, studies on affective forecasting have revealed that people habitually 
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misjudge how future events would impact on their emotional states, occasionally 

leading them to perform actions that may be detrimental to the maximization of their 

subjective well-being (Meyvis, Ratner, & Levav, 2010; Wilson & Gilbert, 2005).  This 

is known as the impact bias where people overestimate both the intensities and 

durations of their hedonic responses to future events (Gilbert & Wilson, 2007; 

Morewedge & Buechel, 2013). Whereas the value of tangible goods can be assessed 

by their net economic prices or willingness-to-pay (Plassmann, O’Doherty, & Rangel, 

2007), the value of intangible goods (e.g. autotelic experiences) are more difficult to 

define or elicit accurately due to biases (Nisbet & Zelenski, 2011; Van de Mortel, 2008) 

and mixed findings regarding the predictive validity of implicit measures (Keatley, 

Clarke, & Hagger, 2013; Levesque, Copeland, & Sutcliffe, 2008). Neuroscience-

informed methods involving self-reported values of intrinsic rewards – such as the 

experience of mastering a musical composition for its own sake – and neural 

measurements pertaining to those values may provide some insight as to how the true 

valuation of intrinsic rewards may be obtained relative to money (Krajbich, Camerer, 

Ledyard, & Rangel, 2009).  

Drawing on these ideas, here we hypothesized that the experience of skilled 

performance relating to intrinsic rewards would influence the momentary happiness of 

participants in a similar vein as extrinsic rewards. In particular, we hypothesized that 

the extent to which momentary happiness was influenced by both types of reward 

would be reflected in the brain, representing the subjective value of rewards. Recent 

studies (Rutledge, Skandali, Dayan, & Dolan, 2014, 2015; Vinckier, Rigoux, Oudiette, 

& Pessiglione, 2018) have demonstrated a use for experience sampling as an effective 

approach to relating rewards and subjective feelings when affective and motivational 

responses are elicited by extrinsic rewards, and here we extend these methods to 

investigate how momentary happiness is influenced by intrinsic rewards.  

To test our hypothesis, we developed a reinforcement learning task 

incorporating both an explicit reward component and a skilled performance component 

that did not affect payment. On each trial, participants chose between two boxes, one 

of which was more rewarding than the other, before having to navigate a cursor 

through a series of barriers. Over the course of the experiment, the box containing the 

higher reward switched and when the end of the track was reached, they received 
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some points from their chosen box. Performance was titrated using a continuous 

staircase method to keep performance at a similar level across participants. 

 

6.1 Methods 

 

6.1.1 Participants 

 
37 healthy, young adults (age: 25.8 ± 4.7, mean ± SD) were recruited through 

the University College London Psychology Subject Database. Subjects were screened 

to ensure no history of neurological or psychiatric disorders. 4 participants were 

excluded due to excessive head movements during scanning, leaving a total of 33 

participants (age: 26.1 ± 4.9) included in the study. The study was approved by the 

University College London (UCL) research ethics committee, and all participants gave 

written informed consent.  

 

6.1.2 Procedure 

 
Participants completed the experiment at the Wellcome Centre for Human 

Neuroimaging, University College London, in an appointment that lasted 

approximately 90 minutes. 

Experimental Task  

Stimuli were presented in MATLAB (MathWorks, Inc.) using Cogent 2000. The 

layout of each trial resembled a T-Maze (Howe, Tierney, Sandberg, Phillips, & 

Graybiel, 2013). On each trial, participants first chose between a blue or magenta box, 

one of which contains a higher number of points (Mean: 50 ± 10, mean ± SD) than the 

other average (Mean: 25 ± 10) on. Points from the better box were drawn from a 

Gaussian with a mean of 50 and standard deviation of 10, while points from the worse 

box were drawn from a Gaussian with a mean of 25 and standard deviation of 10. 

Every 19 to 23 trials, a reversal occurred where the box that previously contained the 

higher number of points on average now contained a lower number of points and vice 

versa for the other box. On half the trials, participants were afforded a free choice and 

for the remaining half, participants had were only presented with a single option.  

After a choice was made, the chosen option was highlighted and 4 barriers 

appeared on the screen along with a small square at the bottom of the screen. 
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Following a 1s delay, the small square automatically moved up at the T-Maze towards 

the chosen option. Participants were able to control the horizontal position of the 

moving square to avoid crashing into the barriers. If they passed a barrier without 

crashing, the barrier turned green. Otherwise, the barrier turned red providing 

immediate feedback about performance. Crucially, the participants’ final payment 

depended only on the number of points accumulated across the experiment and not 

their performance on each trial. After the cursor had entered the chosen box, the 

outcomes were displayed for 800ms following a 1.5s delay. Total cumulated points 

was displayed to the participants on the top right of the screen throughout the 

experiment. Participants were presented with the question, “How happy are you at this 

moment?” after every two to three trials. After a 1s delay period, a rating line appeared 

and participants had 4s to move a cursor, which always started at the midpoint, along 

the scale with button presses. The left end of the line was labelled “very unhappy” and 

the right end of the line was labelled “very happy”.  

Staircase Procedure  

To ensure that differences in mood-related responses were not due to skill-

related differences in how often each participant crashed into the barriers, we used a 

staircase procedure - Parametric Estimation by Sequential Testing (PEST) (Taylor & 

Creelman, 1967) - to calibrate the speed at which the cursor moved for every 

participant such that they would be able to avoid crashing into the barriers on 

approximately 70% of the trials. This calibration was carried out over 60 trials prior to 

the start of the task in the scanner. 
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Fig. 6.1. Experiment paradigm. On each trial, subjects choose between two options, one of which 

leads to a higher number of points than the other on average. The high-reward option reverses 

every 18-21 trials. After choices are made, selected options are immediately outlined and a cursor 

appears at the bottom of the T-Maze along with 4 barriers. After a 1000ms delay, the cursor 

automatically moves up the maze and participants navigate around the barriers with button presses 

constituting a form of skilled performance that may be intrinsically rewarding for some participants 

despite the lack of instrumental value. Contacted barriers turn red and avoided barriers turn green. 

The performance component typically lasted for 2500ms. After the cursor reaches the selected 

option, the reward outcome (i.e., extrinsic rewards) is displayed for 800ms. A 1500ms delay inter-

trial interval follows each trial. After every 2-3 trials, subjects are asked to rate their current 

happiness by moving a cursor on a line with a maximum time limit of 4000ms. 

 

6.1.3 Image Acquisition 

 

MRI was acquired at the Wellcome Centre for Human Neuroimaging, University 

College London, using a Siemens Prisma 3-Tesla scanner equipped with a 64-channel 

head coil. Functional images were acquired with a gradient echo T2*-weighted echo-

planar sequence with whole brain coverage and each volume consisted of 48 slices 

with 3mm isotropic voxels [repetition time (TR): 3.36s; echo time (TE): 30ms; slice tilt: 

0°] in ascending order. A field map [double-echo FLASH, TE1 = 10ms, TE2 = 12.46ms] 

with 3mm isotropic voxels (whole brain coverage) was also acquired for each 

participant to correct the functional images for any inhomogeneity in magnetic field 

strength. Subsequently, the first 6 volumes of each run were discarded to allow for T1 

saturation effects. Structural images were T1-weighted (1 x 1 x 1 mm resolution) 

images acquired using a MPRAGE sequence. 
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6.2 Results 
 

6.2.1 Happiness is modulated by reward outcomes and performance 

 

We first asked whether participants were able to track which box contained 

higher value outcomes and found that participants were able to learn the reward 

contingencies (Fig. 6.2A), choosing the option that contained a higher value 84.8% ± 

5.6 (mean ± SD) of the time when afforded a free choice. We next examined the 

determinants of momentary happiness and found that participants reported greater 

average happiness after receiving higher than lower outcomes (t32 = 8.4, P < 0.001, 

Fig. 6.2B), consistent with previous research (Rutledge, Skandali, Dayan, & Dolan, 

2015; Rutledge, Skandali, Dayan, & Dolan, 2014). Participants were not penalized or 

rewarded with additional points whether they had crashed into any of the barriers or 

successfully avoided all of them, meaning that performance was non-instrumental to 

the receipt of eventual monetary reward. Despite this, participants also reported being 

happier when they navigated through the maze without crashing into any barriers 

compared to when they crashed into at least one barrier (t32 = 6.4, P < 0.001, Fig. 

6.2B), suggesting that a determinant of momentary happiness may be intrinsically 

derived. Accordingly, there was considerable variation across participants in terms of 

how much extrinsic rewards and skilled performance contributed to momentary 

happiness (Fig. 6.2C). 
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Fig. 6.2. Task behaviour and modulation of happiness by reward outcomes and skilled 

performance. A, Average choice behaviour across participants (n = 33) in black with the shaded 

area corresponding to SEM. Grey vertical bands represent intervals where reversals can occur 

with timing jittered across participants. High-value options were chosen more often than low-value 

options, indicating that subjects tracked changing reward contingencies. In half of trials, only one 

of the two options was available. B, Subjects were happier when they received an outcome from 

the high-value option compared to the low-value option (t32 = 8.4, P < 0.001, in blue). Subjects 

were happier on average when they navigated through the T-maze without hitting a barrier 

compared to when they hit at least one barrier (t32 = 6.4, P < 0.001, in orange). C, The majority (29 

of 33) were happier after receiving a reward from a high-value compared to low-value option and 

the majority (29 of 33) were happier after achieving perfect compared to imperfect performance. 

There was no relationship between happiness for reward outcomes compared to happiness for 

skilled performance (R = -0.11, P = 0.55). *** P < 0.001. 

 

6.2.2 Computational model of subjective well-being 

 

Next, we investigated the relationship between outcomes, performance, and 

happiness using a computational model of mood. In line with previous literature 

(Rutledge et al., 2014, 2015), we accounted for the decay of influences over time:  

 

Happiness(t) = w1 ∑ ɣ𝑡
𝑗=1  t-j

 
Rewardj + w2 ∑ ɣ𝑡

𝑗=1  t-j
 
Performancej 

 

where t is the trial number, weights w capture the influence of different task events, 0 

≤ ɣ ≤ 1 represents a discount factor that reduces the impact of distal relative to recent 

events, reward is the z-scored outcome of the chosen box on each trial, and 

performance is the z-scored result of whether a barrier was hit on each trial where a 1 

is assigned if no barriers were hit, and 0 if at least one barrier was hit. Parameters 

were fit to happiness ratings in each individual subject. This model explained a decent 

amount of fluctuations in happiness with r2 = 0.27 ± 15.3 (mean ± SD, Fig. 6.3A), and 
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we found that weights for both performance (t32 = 5.79, P < 0.001, Fig. 6.3B) and 

reward (t32 = 8.27, P < 0.001, Fig. 6.3B) were positive on average. The discount factor 

ɣ was 0.44 ± 0.31 (mean ± SD). Model comparison revealed that this model performed 

better than models containing individual terms for reward (r2 = 0.19 ± 13.6) and 

performance (r2 = 0.08 ± 12.2), suggesting that the happiness of participants are not 

solely dependent on the receipt of explicit points, but is also influenced by the non-

instrumental experience of skilled performance.  

 

Table 6.1. Model Comparison Results. 
 

BIC measures are summed across 33 subjects. The winning model (lowest BIC) here was the 

model with both reward and performance having identical discount factors. ∆BIC refers to the 

difference in BIC scores between each model and the winning model. 

 

Despite performance being held constant (Percent perfect: 69 ± 2.4, mean ± 

SD, Fig. 6.3C), we found considerable variation across individuals in how much 

performance contributed to happiness. Furthermore, these measures were 

uncorrelated (Pearson’s ρ = 0.26, P = 0.15). Interestingly, the median speed of the 

cursor and the weight for performance were positively correlated (R = 0.42, P = 0.01) 

suggesting that individuals who may have been more proficient at executing a 

sequence of motor actions or who were more motivated on the task had their 

happiness impacted by performance by a greater amount. Similar to performance, 

there was a good amount of variation across individuals in how much explicit outcomes 

contributed to happiness even as most participants learnt the reward contingencies to 

a similar extent in terms of the percentage of times they chose the higher value option 

(Fig. 6.3D). 

Model Parameters Mean R2 BIC ∆BIC 

Reward 2 0.19 -6747 507 
Performance 2 0.08 -5907 1347 
Reward and Performance 3 0.27 -7254 0 
Reward and Performance  
(Separate discount factors ɣ) 

4 0.28 -7131 123 



128 
 

 

Fig. 6.3. Computational modelling of mood. A, Average happiness across the task and model fit is 

displayed for the computational model of mood (n=33, mean r2 = 0.27). B, Happiness was significantly 

related to the history of extrinsic rewards in the form of points (t32 = 8.27, P < 0.001) and also to the 

history of skilled performance, a proxy for intrinsic rewards (t32 = 5.79, P < 0.001). C, D, The contribution 

of reward to happiness varied across subjects despite a similar high choice accuracy across subjects. 

Despite titrating difficulty to match performance around 70%, subjects displayed considerable variation 

in weights for performance impacts on happiness in the computational model. *** P < 0.001. 
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6.2.3 Neural correlates of extrinsic rewards and skilled performance 

 

Having established inter-individual variability in the influence of outcomes and 

performance on happiness, we then asked whether this variability was also predictive 

of neural responses to extrinsic rewards and performance. First, we regressed event-

related activity on parametrically-modulated task events to find areas of the brain that 

could reflect these quantities. We found an effect of extrinsic rewards at time of 

outcome display in vmPFC (Fig. 6.4A, top: -3, 38, -1; t32 = 5.92, P < 0.05 Family-Wise-

Error (FWE) cluster-corrected), and an effect of skilled performance in a region of the 

vmPFC anterior to that (Fig. 6.4A, bottom: -3, 50, -1; t32 = 4.24, P < 0.05 FWE cluster-

corrected). Next, we extracted the weights for reward and skilled performance using 

an independent vmPFC mask (Bartra, McGuire, & Kable, 2013) and found that similar 

to our happiness model, the vmPFC weights in this unbiased mask for both extrinsic 

rewards (t32 = 3.36, P = 0.002) and skilled performance (t32 = 2.90, P = 0.007) were 

significantly positive (Fig. 6.4B) suggesting an association between vmPFC activity 

and these quantities.  

After determining that neural responses in the vmPFC were associated with 

both extrinsic rewards and skilled performance, we next examined whether these 

responses differed in individuals whose momentary happiness was more strongly 

influenced by one quantity over the other. We first split participants into two groups 

depending on whether they had a higher happiness-model-derived weight for 

performance compared to reward and vice versa. We found that the group with larger 

happiness weights for performance had a significant positive vmPFC weight for 

performance (signrank: P = 0.004) but not extrinsic rewards (P = 0.13), while the group 

with larger happiness weights for extrinsic rewards had a significant positive vmPFC 

weight for extrinsic rewards (P = 0.01) but not performance (P = 0.2). The former group 

also showed greater responses in vmPFC for skilled performance compared to the 

group with larger happiness weights for explicit rewards (P = 0.003, Fig. 6.4C), 

suggesting that we can distinguish between the two groups based on neural 

responses to intrinsic rewards (experience of skilled performance). 
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Fig. 6.4. Relative impacts of reward and performance on mood predict vmPFC responses. 

A, Top. BOLD activity in vmPFC was parametrically modulated by reward outcome (Peak: -3,38,-

1). Bottom. Bold activity in an overlapping region of vmPFC was modulated by trial-by-trial 

performance (Peak: -3,50,-1). B, An independent vmPFC region-of-interest (ROI) shows the 

expected significant modulation by both reward outcome and performance (both P < 0.01). C, In 

the independent vmPFC ROI, subjects with higher performance than reward weights in the 

computational analysis of mood displayed stronger neural responses in the vmPFC for 

performance than subjects with higher reward than performance weights (P = 0.01). D, The 

difference between performance and reward weights in the happiness model, a measure 

potentially reflecting the relative subjective values of intrinsic and extrinsic rewards, predicted the 

difference in neural responses for successful performance relative to reward in the independent 

vmPFC ROI (ρ= 0.52, P = 0.002). * P < 0.05, ** P < 0.01. 
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Across participants, we found a significant positive relationship (Spearman’s ρ 

= 0.52, P = 0.002, Fig. 6.4D) between the relative weights for extrinsic rewards and 

performance in our mood model, a measure potentially reflecting the subjective values 

for extrinsic and intrinsic rewards respectively, and the pattern of neural responses to 

both quantities within the independent vmPFC mask. This finding suggests that the 

extent to which an individual’s mood is influenced by extrinsic or intrinsic rewards is 

reflected in the brain. As previous studies (Rutledge et al., 2014) have found a positive 

association between BOLD activity in the right anterior insula and z-scored happiness 

ratings, we conducted a region-of-interest (ROI) analysis using an 8mm sphere 

(coordinates 42, 5, -14) and similarly found increased BOLD activity in the right 

anterior insula for positive versus negative z-scored happiness ratings after regressing 

out outcomes for explicit rewards and skilled performance (Fig. 6.5). 

 

 

Fig. 6.5. Effect of happiness question on right anterior insula. (A) After controlling for extrinsic 

outcomes and skilled performance, BOLD activity in the right anterior insula was higher when 

participants made positive ratings of happiness than negative ratings. Dashed vertical grey line 

indicates onset of happiness question. (B) A generalized linear model was constructed by 

regressing BOLD activity in right anterior insula against z-scored happiness ratings. Timepoints 

where happiness ratings were significantly represented in the BOLD activity are indicated in red.  
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6.3 Discussion 

Using experience sampling (Kahneman, Krueger, Schkade, Schwarz, & Stone, 

2004; Reis & Gable, 2000) combined with functional neuroimaging, we investigated 

the contributions of intrinsic and extrinsic rewards to subjective well-being or 

happiness using a task designed to disentangle affective responses to both reward 

types. Recent studies have used a similar approach to examine subjective feelings 

within the context of value-based decision-making (Eldar, Rutledge, Dolan, & Niv, 

2016; Rutledge et al., 2014; Vinckier et al., 2018) and social interactions (Rutledge, 

de Berker, Espenhahn, Dayan, & Dolan, 2016). On top of extending those findings to 

the reinforcement learning domain, our findings here highlight that fluctuations in 

momentary happiness is not only influenced by rewards that are externally quantifiable 

but also those that are intrinsically experienced. Furthermore, vmPFC BOLD activity 

reflects the extent to which an individual’s happiness is driven by intrinsic over extrinsic 

rewards.  

While improvements in skilled performance can be enhanced by rewarding 

individuals for performance (Sugawara, Tanaka, Okazaki, Watanabe, & Sadato, 2012), 

holding performance constant across participants here allowed us to investigate how 

happiness varied independently of how skilled an individual was in the task. We show 

that individuals whose happiness were largely influenced by intrinsic rewards exhibited 

increased vmPFC BOLD responses for successful versus unsuccessful skilled 

performance relative to individuals whose happiness were largely influenced by 

extrinsic rewards. The positive correlation between the performance parameter in our 

mood model and the median speed of the cursor suggests that individuals who may 

have been more proficient at the task were also those whose momentary happiness 

were greater impacted by their performance.  

The vmPFC, together with orbitofrontal cortex, codes for the value of different 

types of goods and anticipatory outcomes like food or juice (Hare, Malmaud, & Rangel, 

2011; Padoa-Schioppa, 2007), money (Martino, Kumaran, Seymour, & Dolan, 2006), 

and even aesthetic judgments (Jacobsen, Schubotz, Höfel, & Cramon, 2006; 

Kawabata & Zeki, 2004). An interpretation of this is that the vmPFC plays a principle 

role in representing qualitatively different types of goods on a common scale which 

would facilitate decisions to be made between otherwise incommensurable goods 
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(Levy & Glimcher, 2011, 2012). Our study builds on these results by identifying an 

association between vmPFC BOLD activity and rewards that are intrinsically valued, 

such as the experience of performing a skilled task flawlessly. 

The vmPFC has further been demonstrated to play a role in affect with 

subjective emotional experiences elicited by images and pleasurable music leading to 

changes in vmPFC BOLD activity and regional cerebral blood flow (Blood & Zatorre, 

2001; Winecoff et al., 2013; Zald, Mattson, & Pardo, 2002). Damage to the vmPFC 

has resulted in abnormal emotional responses (Hiser & Koenigs, 2018; Koenigs et al., 

2007; Zald & Andreotti, 2010) and maladaptive decision-making in environments 

where emotional regulation may be useful (Grossman et al., 2010; Spaniol, Di Muro, 

& Ciaramelli, 2019). Our finding that the extent to which individuals care more about 

intrinsic or extrinsic rewards insofar as their momentary happiness is influenced by 

them is reflected in a similar manner in the vmPFC suggests that the strong 

association observed between measures of happiness and vmPFC BOLD activity 

could allow subjective values of intrinsic rewards to be estimated from an individual’s 

mood dynamics. 

People exhibit biases when it comes to predicting how future events would 

impact on their emotional states and are also prone to making sub-optimal decisions 

by misjudging the hedonic consequences of pursing an option (Meyvis et al., 2010; 

Nisbet & Zelenski, 2011; Wilson & Gilbert, 2005), posing a difficulty for enacting 

policies that objectively increased subjective well-being. Additional factors such as the 

social desirability bias (Van de Mortel, 2008) further decrease the reliability of self-

reported value when an individual’s assessment of a hypothetical experience or good, 

such as the availability of public parks, differs from what society perceives it ought to 

be. Our results suggest that the combination of computational modelling and 

measures of momentary happiness can be used as a tool to obtain accurate value 

estimates of intangible goods like performance or experiences. An advantage of our 

method is that it can be applied to any experience without a need to probe people 

explicitly about the content of those experiences, reducing biases associated with 

social desirability. Furthermore, the use of computational modelling and experience 

sampling in a previous study have found that parameter estimates obtained from a 

similar approach were not confined to a controlled setting but also replicated outside 

of the laboratory  (Rutledge et al., 2014). Future work could expand on our findings in 
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more naturalistic settings such as a corporate workplace, and build on them using 

experiences that could be important for well-being. 

Consistent with previous results, we also observed differential BOLD activity in 

right anterior insula during onset of the rating question for positive and negative 

happiness ratings, providing evidence that it plays a role in the interoceptive 

awareness of affective states (Craig, 2009; Damasio & Carvalho, 2013; Rutledge et 

al., 2014). Our main finding is that vmPFC BOLD activity in response to intrinsic and 

extrinsic rewards can by predicted by measures of momentary happiness, suggesting 

that such measures can be used as a convenient tool to approximate implicit values 

of abstract goods and experiences that may be otherwise challenging to quantify. Such 

a tool would prove useful for policies targeting the maximisation of subjective well-

being by providing a computational and neuroscientific framework for measuring the 

implicit values of abstract goods and experiences. 
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Chapter 7: Conclusions and general discussion 
 

It is good to have an end to journey toward; but it is the journey that matters, in the end. 

Ursula K Le Guin, The Left Hand of Darkness 

 

This thesis has used a mixture of neuroimaging and computational modelling 

approaches to investigate how neurophysiological processes and neuroanatomical 

features influence risky choice, and the relationship between the implicit value of an 

experience and subjective well-being. We have drawn upon ideas discussed in 

chapter 2 and methods summarised in chapter 3 to form the basis of predictions 

made in later empirical chapters. In Chapter 4, we used a novel application of real-

time functional magnetic resonance imaging (rt-fMRI) to test the prediction that 

endogenous fluctuations in the dopaminergic midbrain influence behavioural choice 

variability. Chapter 5 details how risk preferences were related to the content of brain 

tissue microstructure by leveraging on the development of in vivo histology using MRI 

(hMRI). In Chapter 6, we used fMRI to investigate the neural correlates of intrinsic 

and extrinsic rewards and their relation to subjective well-being.  

In this final chapter, I discuss some general principles that can be drawn from 

these studies.  

 

7.1 Variability in the brain 

 
 In chapter 2, we discussed how brain imaging signals that co-varied with 

experimental variables of interest were thought to be functionally relevant to decision 

processes through representations of choice features (e.g. subjective value) or 

computations. Indeed, studies have shown that people with lesions to areas implicated 

in the decision network like vmPFC and OFC demonstrated impairments in preference 

judgements and value maximization when afforded choices between multiple options 

(Camille, Griffiths, Vo, Fellows, & Kable, 2011; Fellows, 2011; Gläscher et al., 2012; 

Rushworth, Noonan, Boorman, Walton, & Behrens, 2011). However, such signals may 

not always be explicitly used to guide the behaviour of an organism.  In a group of 

depressed participants who were administered amisulpride (a D2/D3 receptor 

antagonist), researchers found acute enhancement of reward-related striatal 
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activation and corticostriatal functional connectivity relative to depressed participants 

who received placebos as participants played a monetary incentive delay task in the 

MRI scanner (Admon et al., 2017). Despite this, reward-motivated behaviour of 

depressed participants in the experimental group remained significantly different from 

that of the healthy controls, suggesting that normalised neural signals need not 

necessarily translate to overt behavioural differences and that there could be other 

factors at play when representations are transformed to behaviour.   

One such factor could be neural variability. A source of variability is noise which 

permeates the nervous system at sensory, cellular, and motor levels. Noise is an 

inevitable consequence of brains operating across multiple scales from molecular 

components to complex systems of neurons that produce behaviour. Another source 

of variability is the initial state of a neural circuit that could lead to divergent neuronal 

and behavioural responses (Faisal, Selen, & Wolpert, 2008). A system with dynamics 

that are highly sensitive to the initial conditions when an event commences will 

demonstrate greater response variability. While much work in the field of decision-

making have focused on the representation and computation of value in response to 

options and outcomes presented to participants, often overlooked are the contributions 

of endogenous fluctuations in brain imaging signals to choice even in the absence 

external stimulation. In chapter 4, we provided evidence that endogenous fluctuations 

in the dopaminergic midbrain is able to drive variability in risky choice behaviour, 

suggesting a systematic relationship between variability at the neural level and 

complex behaviours. 

Why might variability be observed across a broad spectrum of processes like 

perception (Boly et al., 2007; de Gee et al., 2017; Sadaghiani, Poline, Kleinschmidt, & 

D’Esposito, 2015), motor action (Fox, Snyder, Vincent, & Raichle, 2007), and higher 

cognition (Chew et al., 2019)? One compelling hypothesis is that neural variability 

reflects the dynamic range of potential responses to environmental stimuli, allowing 

the brain to flexibly transition between states in response to changing task demands 

(Garrett, Kovacevic, McIntosh, & Grady, 2013). This could help reduce susceptibility 

to becoming entrenched in specific behavioural repertoires (van Leeuwen, 2008) and 

promote exploration in dynamic environments that are often a feature of the natural 

world (Wilson, Geana, White, Ludvig, & Cohen, 2014). This does not necessarily mean 

that behaviour is completely variable from moment to moment – recall that other 
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factors such as the value of options still dominated the decision to take a risk for the 

experiment described in chapter 4. Rather, the initial states of a circuit could provide 

a frame of reference used in computations performed by downstream regions. Within 

the context of noise, systems that use thresholds for signal detection demonstrate 

strategies like stochastic resonance that rely on changes in noise levels for the 

periodic detection sub-threshold signals (Russell, Wilkens, & Moss, 1999). Further, 

neuronal networks formed in the presence of noise display reduced generalization 

errors and are less prone to overfitting (Krogh & Hertz, 1992). 

The results described in chapter 5 suggest that risk preferences can also be 

predicted to some extent by individual differences in the makeup of tissue 

microstructure. Together with the finding that neural variability is translated to 

behavioural variability in some people more than others, future work might expand on 

these ideas using a multi-modal approach to paint a unifying picture of the relationship 

between neuroanatomy and variability within the context of risk. Such an avenue of 

research could be potentially useful within the field of computational psychiatry where 

illnesses can manifest as extremes of behaviours ranging from repetitive actions to 

highly unpredictable ones. 

 

7.2 Subjective well-being as a computational hedonometer 

 

 In chapter 6, we touched on the idea of subjective well-being and how it should 

be a target for policies to maximise due to the benefits it conveys to individuals and 

societies. A difficulty with designing potential measures to improve well-being presents 

itself in the form of biases when it comes to affective forecasting and self-reports that 

are sometimes used to inform change. For example, despite the future boost in mood 

associated with outdoor walks in nearby nature, people failed to anticipate the hedonic 

benefits of choosing that option (Nisbet & Zelenski, 2011).  

When it comes to reporting the value of a good or experience, a common 

economic assumption is that the smallest amount an individual would accept to give 

up the good or largest amount an individual would pay to obtain the good reflects its 

economic value for the individual. However, in the absence of markets for hypothetical 

experiences or public goods, willingness to pay may not necessarily represent 

economic value but could instead be an expression of an individual’s attitudes towards 
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the good (Kahneman, Ritov, Jacowitz, & Grant, 1993). An example of this was 

demonstrated in a recent study where the willingness to pay was used to investigate 

the value of receiving thoughts and prayers following hardship (Thunström & Noy, 

2019). The authors found that atheistic and religiously agnostic participants were not 

only willing to pay to avoid receiving prayers, they also negatively valued thoughts 

from Christians compared to other secular groups. Willingness to pay may thus reflect 

a measure of attitude on an arbitrary scale for goods that lack economic markets.   

The experimental results presented in chapter 6 provide evidence that the 

values of both intrinsic and extrinsic rewards are encoded in the ventromedial 

prefrontal cortex, supporting the idea of a common currency in which subjective values 

of different goods are represented (Levy & Glimcher, 2012). That the extent to which 

an individual’s happiness is influenced by intrinsic over extrinsic reward - as revealed 

by computational modelling - is reflected in this region suggests that our approach 

could be useful in estimating the subjective value of intrinsic rewards. Rather than 

probing participants explicitly about the contents of their experiences which may be 

susceptible to biases, our computational hedonometer is able to disentangle the 

contributions of distinct goods or events to measures of momentary happiness. This 

allows us to derive value estimates for abstract goods or experiences relative to money 

and could prove useful for informing policies that aim to improve subjective well-being. 

Future studies could expand on these results by applying our approach to other 

naturalistic settings and goods (e.g. public goods like parks) to examine whether 

changes inspired by such measures of intrinsic rewards generate larger hedonic 

benefits and greater improvement in well-being compared to traditional methods. 
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