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Background: Accurately identifying single-nucleotide polymorphisms (SNPs) from bacterial sequencing data is an essential
requirement for using genomics to track transmission and predict important phenotypes such as antimicrobial resistance.
However, most previous performance evaluations of SNP calling have been restricted to eukaryotic (human) data.
Additionally, bacterial SNP calling requires choosing an appropriate reference genome to align reads to, which, together
with the bioinformatic pipeline, affects the accuracy and completeness of a set of SNP calls obtained. This study evaluates
the performance of 209 SNP-calling pipelines using a combination of simulated data from 254 strains of 10 clinically
common bacteria and real data from environmentally sourced and genomically diverse isolates within the genera
Citrobacter, Enterobacter, Escherichia, and Klebsiella. Results: We evaluated the performance of 209 SNP-calling pipelines,
aligning reads to genomes of the same or a divergent strain. Irrespective of pipeline, a principal determinant of reliable SNP
calling was reference genome selection. Across multiple taxa, there was a strong inverse relationship between pipeline
sensitivity and precision, and the Mash distance (a proxy for average nucleotide divergence) between reads and reference
genome. The effect was especially pronounced for diverse, recombinogenic bacteria such as Escherichia coli but less
dominant for clonal species such as Mycobacterium tuberculosis. Conclusions: The accuracy of SNP calling for a given species
is compromised by increasing intra-species diversity. When reads were aligned to the same genome from which they were
sequenced, among the highest-performing pipelines was Novoalign/GATK. By contrast, when reads were aligned to
particularly divergent genomes, the highest-performing pipelines often used the aligners NextGenMap or SMALT, and/or
the variant callers LoFreq, mpileup, or Strelka.
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Accurately identifying single-nucleotide polymorphisms (SNPs)
from bacterial DNA is essential for monitoring outbreaks (as in
[1, 2]) and predicting phenotypes, such as antimicrobial resis-
tance [3], although the pipeline selected for this task strongly
affects the outcome [4]. Current bacterial sequencing technolo-
gies generate short fragments of DNA sequence (“reads”) from
which the bacterial genome can be reconstructed. Reference-
based mapping approaches use a known reference genome to
guide this process, using a combination of an aligner, which
identifies the location in the genome from which each read is
likely to have arisen, and a variant caller, which summarizes the
available information at each site to identify variants including
SNPs and indels (see reviews for an overview of alignment [5, 6]
and SNP calling [7] algorithms). This evaluation focuses only on
SNP calling; we did not evaluate indel calling because this can
require different algorithms (see review [8]).

The output from different aligner/caller combinations is of-
ten poorly concordant. For example, up to 5% of SNPs are
uniquely called by 1 of 5 different pipelines [9] with even lower
agreement on structural variants [10].

Although a mature field, systematic evaluations of variant-
calling pipelines are often limited to eukaryotic data, usually
human [11-15] but also Caenorhabditis elegans [16] and dairy cat-
tle [17] (see also review [7]). This is because truth sets of known
variants, such as the Illumina Platinum Genomes [18], are rel-
atively few in number and human-centred, being expensive to
create and biased toward the methods that produced them [19].
As such, to date, bacterial SNP calling evaluations are compara-
tively limited in scope (e.g., comparing 4 aligners with 1 caller,
mpileup [20], using Listeria monocytogenes [21]).

Relatively few truth sets exist for bacteria, so the choice of
pipeline for bacterial SNP calling is often informed by perfor-
mance on human data. Many evaluations conclude in favour of
the publicly available BWA-mem [22] or commercial Novoalign
[23] as choices of aligner, and GATK [24, 25] or mpileup as
variant callers, with recommendations for a default choice of
pipeline, independent of specific analytic requirements, includ-
ing Novoalign followed by GATK [15], and BWA-mem followed by
either mpileup [14], GATK [12], or VarDict [11].

This study evaluates a range of SNP-calling pipelines across
multiple bacterial species, both when reads are sequenced from
and aligned to the same genome, and when reads are aligned to
a representative genome of that species.

SNP-calling pipelines are typically constructed around a read
aligner (which takes FASTQ as input and produces BAM as out-
put) and a variant caller (which takes BAM as input and produces
VCF as output), often with several pre- and post-processing steps
(e.g., cleaning a raw FASTQ prior to alignment, or filtering a BAM
prior to variant calling). For the purpose of this study, when
evaluating the 2 core components of aligner and caller, we use
“pipeline” to mean “an aligner/caller combination, with all other
steps in common.”

To cover a broad range of methodologies (see review for
an overview of the different algorithmic approaches [26]), we
assessed the combination of 16 short-read aligners (BBMap
[27], Bowtie2 [28], BWA-mem and BWA-sw [22], Cushaw3 [29],
GASSST [30], GEM [31], HISAT? [32], minimap?2 [33], MOSAIK [34],
NextGenMap [35], Novoalign, SMALT [36], SNAP [37], and Stampy
[38] [both with and without pre-alignment with BWA-aln], and

Yara [39]) used in conjunction with 14 variant callers (16GT [40],
DeepVariant [41], Freebayes [42], GATK HaplotypeCaller [24, 25],
LoFreq [43], mpileup [20], Octopus [44], Pilon [45], Platypus [46],
SolSNP [47], SNVer [48], SNVSniffer [49], Strelka [50], and VarScan
[51]). We also evaluated 3 “all-in-one” variant -alling pipelines,
Snippy [52], SPANDx [53], and SpeedSeq [54], which consolidate
various open-source packages into 1 tool. Reasons for exclud-
ing other programs are detailed in Supplementary Text 1. Where
possible, we applied a common set of pre- or post-processing
steps to each aligner/caller combination, although note that
these could differ from those applied within an “all-in-one” tool
(discussed further in Supplementary Text 1).

Benchmarking evaluations are, however comprehensive,
ephemeral. As programs are being constantly created and up-
dated, it will always be possible to expand the scope of any eval-
uation. To that end, this study originally assessed an initial sub-
set of 41 pipelines, the combination of 4 aligners (BWA-mem,
minimap?2, Novoalign, and Stampy) and 10 variant callers (the
aforementioned list, excluding DeepVariant, Octopus, Pilon, and
SolSNP), plus Snippy.

To evaluate each of this initial set of 41 pipelines, we simu-
lated 3 sets of 150 bp and 3 sets of 300 bp reads (characteristic
of the Illumina NextSeq and MiSeq platforms, respectively) at
50-fold depth from 254 strains of 10 clinically common species
(2-36 strains per species), each with fully sequenced (closed)
core genomes: the gram-positive Clostridioides difficile (formerly
Clostridium difficile [55]), Listeria monocytogenes, Staphylococcus au-
reus, and Streptococcus pneumoniae (all gram-positive), Escherichia
coli, Klebsiella pneumoniae, Neisseria gonorrhoeae, Salmonella enter-
ica, and Shigella dysenteriae (all gram-negative), and Mycobac-
terium tuberculosis. For each strain, we evaluated all pipelines
using 2 different genomes for alignment: one being the same
genome from which the reads were simulated, and one being
the NCBI “reference genome,” a high-quality (but essentially ar-
bitrary) representative of that species, typically chosen on the
basis of assembly and annotation quality, available experimen-
tal support, and/or wide recognition as a community standard
(such as C. difficile 630, the first sequenced strain for that species
[56]). We added ~8,000-25,000 SNPs in silico to each genome,
equivalent to 5 SNPs per genic region, or 1 SNP per 60-120 bases.

While simulation studies can offer useful insight, they can
be sensitive to the specific details of the simulations. Therefore,
we also evaluated performance on real data to verify our con-
clusions. We used 16 environmentally sourced and genomically
diverse gram-negative species of the genera Citrobacter, Enter-
obacter, Escherichia, and Klebsiella, along with 2 reference strains,
from which closed hybrid de novo assemblies were previously
generated using both [llumina (short) and ONT (long; Oxford
Nanopore Technologies) reads [S7]. For this aspect of the study,
we quintupled the scope of the evaluation from the initial set
of 41 pipelines and also present results for a larger set of 209
pipelines.

All pipelines aim to call variants with high specificity (i.e.,
a high proportion of non-variant sites in the truth set are cor-
rectly identified as the reference allele by the pipeline) and high
sensitivity (i.e., a high proportion of true SNPs are found by the
pipeline). The optimal trade-off between these 2 properties may
vary depending on the application. For example, in transmission
inference, minimizing false-positive SNP calls (i.e., high speci-
ficity) is likely to be most important, whereas high sensitivity
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may be more important when identifying variants associated
with antibiotic resistance. We therefore report detailed perfor-
mance metrics for all pipelines, including recall (sensitivity),
precision (positive predictive value, the proportion of SNPs iden-
tified that are true SNPs), and the F-score, the harmonic mean
of precision and recall [11].

The performance of 41 SNP-calling pipelines (Supplementary
Table 1) was first evaluated using reads simulated from 254
closed bacterial genomes (Supplementary Table 2), as illustrated
in Fig. 1. In order to exclude biases introduced during other parts
of the workflow, such as DNA library preparation and sequenc-
ing error, reads were simulated error-free. There was negligible
difference in performance when reads were simulated with se-
quencing errors (see Supplementary Text 1).

This dataset contains 62,484 VCFs (comprising 2 read lengths
[150 and 300 bp] * 3 replicates * 254 genomes x 41 pipelines). The
number of reads simulated from each species and the perfor-
mance statistics for each pipeline—the number of true positives
(TP), false positives (FP), and false negatives (FN), precision, re-
call, F-score, and total number of errors (i.e., FP + FN) per million
sequenced bases—are given in Supplementary Table 3, with the
distribution of F-scores illustrated in Fig. 2A.

Median F-scores were >0.99 for all but 4 aligner/callers, with
small interquartile ranges (~0.005), although outliers were nev-
ertheless notable (Fig. 2A), suggesting that reference genome can
affect performance of a given pipeline.

Table 1 shows the top-ranked pipelines averaged across all
species’ genomes, based on 7 different performance measures
and on the sum of their ranks (which constitutes an “overall
performance” measure, lower values indicating higher overall
performance). Supplementary Table 4 shows the sum of ranks
for each pipeline per species, with several variant callers con-
sistently found among the highest-performing (Freebayes and
GATK) and lowest-performing pipelines (16GT and SNVSniffer),
irrespective of aligner.

The evaluation of performance across all species showed
that Novoalign/GATK had the highest median F-score (0.994),
lowest sum of ranks (10), the lowest number of errors per million
sequenced bases (0.944), and the largest absolute number of TP
calls (15,777) (Table 1). However, in this initial simulation, as the
reads are error-free and the reference genome is the same as the
source of the reads, many pipelines avoid FP calls and report a
perfect precision of 1.

Owing to the high genomic diversity of some bacterial species,
the appropriate selection of reference genomes is non-trivial. To
assess how pipeline performance is affected by divergence be-
tween the source and reference genomes, SNPs were re-called
after mapping all reads to a single representative genome for
that species (illustrated in Fig. 1). To identify true variants, closed
genomes were aligned against the representative genome using
both nucmer [58] and Parsnp [59], with consensus calls iden-
tified within 1-to-1 alignment blocks (see Methods). Estimates
of the distance between each genome and the representative
genome are given in Supplementary Table 2, with the genomic

diversity of each species summarized in Supplementary Table
5. We quantified genomic distances using the Mash distance,
which reflects the proportion of k-mers shared between a pair
of genomes as a proxy for average nucleotide divergence [60].
The performance statistics for each pipeline are shown in Sup-
plementary Table 6, with an associated ranked summary in Sup-
plementary Table 7.

In general, aligning reads from 1 strain to a divergent refer-
ence leads to a decrease in median F-score and increase in in-
terquartile range of the F-score distribution, with pipeline per-
formance more negatively affected by choice of aligner than
caller (Fig. 2B).

Although across the full range of genomes, many pipelines
show comparable performance (Fig. 2B), there was a strong neg-
ative correlation between the Mash distance and F-score (Spear-
man p = —0.72, P < 10~%; Fig. 3). The negative correlation be-
tween F-score and the total number of SNPs between the strain
and representative genome, i.e., the set of strain-specific in sil-
ico SNPs plus inter-strain SNPs, was slightly weaker (o = —0.58,
P < 10~%%; Supplementary Fig. 1). This overall reduction in per-
formance with increased divergence was more strongly driven
by reductions in recall (i.e., by an increased number of FN calls)
rather than precision because there was a particularly strong
correlation between distance and recall (Spearman p = —0.94,
P < 10~%°; Supplementary Fig. 2).

Three commonly used pipelines—BWA-mem/Freebayes,
BWA-mem/GATK, and Novoalign/GATK—were among the high-
est performers when the reference genome is also the source of
the reads (Table 1 and Supplementary Table 4). However, when
the reference diverges from the reads, then considering the 2
“overall performance” measures across the set of 10 species,
Snippy instead had both the lowest sum of ranks (20) and the
highest median F-score (0.982), along with the lowest number
of errors per million sequenced bases (2.627) (Table 1).

Performance per species is presented in Table 2, alongside
both the overall sum and range of these ranks per pipeline.
Pipelines featuring Novoalign were, in general, consistently
high-performing across the majority of species (i.e., having
a lower sum of ranks), although they were outperformed by
Snippy, which had both strong and uniform performance across
all species (Table 2). By contrast, pipelines with a larger range
of ranks had more inconsistent performance, such as min-
imap2/SNVer, which for example performed relatively strongly
for N. gonorrhoeae but poorly for S. dysenteriae (Table 2).

Although, in general, the accuracy of SNP calling declined
with increasing genetic distances, some pipelines were more
stable than others. If considering the median difference in F-
score between SNP calls made using the same versus a represen-
tative genome, Snippy had smaller differences as the distance
between genomes increased (Fig. 4).

The highest-ranked pipelines in Table 2 had small, but prac-
tically unimportant, differences in median F-score and so are
arguably equivalently strong candidates for a “general purpose”
SNP-calling solution. For instance, on the basis of F-score alone
the performance of Novoalign/mpileup was negligibly different
from that of BWA-mem/mpileup (Fig. 5). However, when di-
rectly comparing pipelines, similarity of F-score distributions
(see Fig. 2B) can conceal larger differences in either precision
or recall, categorized using the effect size estimator Cliff delta
[61, 62]. Thus, certain pipelines may be preferred if the aim is
to minimize FP (e.g., for transmission analysis) or maximize TP
(e.g., to identify antimicrobial resistance loci) calls. For instance,
although Snippy (the top-ranked pipeline in Table 2) is negligi-
bly different from Novoalign/mpileup (the third-ranked pipeline)
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Figure 1: Overview of SNP-calling evaluation. SNPs were introduced in silico into 254 closed bacterial genomes (Supplementary Table 2) using Simulome. Reads were
then simulated from these genomes. A total of 41 SNP-calling pipelines (Supplementary Table 1) were evaluated using 2 different genomes for read alignment: the
original genome from which the reads were simulated and a divergent genome, the species-representative NCBI “reference genome.” In the latter case, it will not be
possible to recover all of the original in silico SNPs because some will be found only within genes unique to the original genome. Accordingly, to evaluate SNP calls, the
coordinates of the original genome need to be converted to those of the representative genome. To do so, whole-genome alignments were made using both nucmer
and Parsnp, with consensus calls identified within 1-to-1 alignment blocks. Inter-strain SNPs (those not introduced in silico) are excluded. The remaining subset of in
silico calls comprise the truth set for evaluation. There is a strong correlation between the total number of SNPs introduced in silico into the original genome and the
total number of nucmer/Parsnp consensus SNPs in the divergent genome (Supplementary Figure 3).

Table 1: Summary of pipeline performance across all species’ genomes

Top-ranked pipeline(s)

Performance measure When the reference genome is
the same as the source of the When the reference genome is Averaged across all
reads divergent from the reads simulations
F-score bwa-mem with freebayes/gatk, snippy (0.982)* novoalign with
minimap2 with freebayes/gatk, lofreq/mpileup, snippy
novoalign/gatk, stampy/gatk (0.986)
(0.994)
Precision (specificity) snippy, bwa- novoalign/snvsniffer (0.971) novoalign/snvsniffer (0.986)
mem/minimap?2/novoalign/stampy
with

16GT/freebayes/gatk/lofreq/mpileup/
platypus/snver/strelka/varscan

&)
Recall (sensitivity) bwa-mem/novoalign/stampy bwa-mem with 16GT/freebayes, bwa-
with gatk (0.989) stampy/freebayes (0.997) mem/minimap2/stampy
with freebayes (0.992)
No. of TP calls novoalign/gatk (15,777) bwa-mem/freebayes (13,829) bwa-mem/freebayes (14,791)
No. of FP calls stampy with mpileup/platypus novoalign/snvsniffer (1.825) novoalign/snvsniffer (0.913)
0
No. of FN calls novoalign/gatk (0.941) bwa-mem/freebayes (0.188) bwa-mem/freebayes (0.641)
Total no. of errors (FP + FN novoalign/gatk (0.944) snippy (2.627)* snippy (2.125)
calls) per million sequenced
bases
Sum of ranks for all previous novoalign/gatk (10) snippy (20)* novoalign/mpileup (42)
measures

Numbers in parentheses refer to the median value, across all simulations, for each performance measure.

«Snippy is based on a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the
reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors
per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98. FN: false negative; FP: false positive; TP: true positive.

in terms of F-score and precision, the former is more sensitive and cultures of 2 reference strains (K. pneumoniae subsp. pneu-
(Fig. 5). moniae MGH 78,578 and E. coli CFT073), for which closed hybrid
de novo assemblies were generated using both Illumina paired-
end short reads and Nanopore long reads [63]. Source locations
for each sample, species predictions, and NCBI accession num-
bers are detailed in Supplementary Table 8. The performance
We used real sequencing data from a previous study compris- statistics for each pipeline are provided in Supplementary Ta-
ing 16 environmentally sourced gram-negative isolates (all Enter- ble 9, with an associated ranked summary in Supplementary
obacteriaceae), derived from livestock farms, sewage, and rivers, Table 10.
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Figure 2: Median F-score per pipeline when the reference genome for alignment is (A) the same as the source of the reads and (B) a representative genome for that

species. Panels show the median F-score of 41 different pipelines when SNPs are called using error-free 150- and 300-bp reads simulated from 254 genomes (of 10
species) at 50-fold coverage. Boxes represent the interquartile range of F-score, with midlines representing the median. Upper and lower whiskers extend, respectively,
to the largest and smallest values no further than 1.5x the interquartile range. Data beyond the ends of each whisker are outliers and plotted individually. Pipelines

are ordered according to median F-score and coloured according to either the variant caller (A) or aligner (B) in each pipeline. Note that because F-scores are uniformly
>0.9 when the reference genome for alignment is the same as the source of the reads, the vertical axes on each panel have different scales. Genomes are detailed in
Supplementary Table 2, summary statistics for each pipeline in Supplementary Tables 3 and 6, and performance ranks in Supplementary Tables 4 and 7, for alignments

to the same or to a representative genome, respectively.
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Figure 3: Reduced performance of SNP-calling pipelines with increasing genetic distance between the reads and the reference genome. The median F-score across
the complete set of 41 pipelines, per strain, decreases as the distance between the strain and the reference genome increases (assayed as the Mash distance, which is
based on the proportion of k-mers shared between genomes). Each point indicates the median F-score, across all pipelines, for the genome of 1 strain per species (n =
254 strains). Points are coloured by the species of each strain (n = 10 species). Summary statistics for each pipeline are shown in Supplementary Table 6, performance
ranks in Supplementary Table 7, and the genetic distance between strains in Supplementary Table 2. Quantitatively similar results are seen if assaying distance as the
total number of SNPs between the strain and representative genome, i.e., the set of strain-specific in silico SNPs plus inter-strain SNPs (Supplementary Figure 1).

Lower performance was anticipated for all pipelines, par-
ticularly for Citrobacter and Enterobacter isolates, which had
comparatively high Mash distances (>0.08) between the reads
and the representative genome (Supplementary Table 8), far
greater than those in the simulations (241 of the 254 simulated
genomes had a Mash distance to the representative genome
of <0.04; Supplementary Table 2). Consistent with the simu-
lations (Fig. 3A), there was a strong negative correlation be-
tween Mash distance and the median F-score across all pipelines
(Spearman p = —0.83, P = 3.36 x 107>; Fig. 6A), after excluding 1
prominent outlier (E. coli isolate RHB11-C04; see Supplementary
Table 8).

Notably, the median precision of each pipeline, if calculated
across the divergent set of simulated genomes, strongly cor-
related with the median precision calculated across the set of
real genomes (Spearman p = 0.83, P = 2.81 x 10~!%; Fig. 6B).
While a weaker correlation was seen between simulated and
real datasets on the basis of recall (Spearman p = .41, P = 0.007),
this is consistent with the high diversity of Enterobacteriaceae,

and the accordingly greater number of FN calls with increased
divergence (Supplementary Fig. 2).

Overall, this suggests that the accuracy of a given pipeline on
simulated data is a reasonable proxy for its performance on real
data. While the pipelines that performed more poorly on sim-
ulated data similarly performed more poorly on real data, the
top-ranked pipelines differed, predominantly featuring BWA-
mem, rather than Novoalign, as an aligner (Supplementary Ta-
ble 10). In both cases, however, among the consistently highest-
performing pipelines was Snippy.

Quantitatively similar results were found when quintupling
the scope of this evaluation to include 209 pipelines (Fig. 7).
With this gram-negative dataset, the most consistently highly-
performing pipelines had little variation in F-score, irrespec-
tive of the 10-fold difference in Mash distances between reads
and representative genome (Supplementary Table 8). Particu-
larly highly-performing pipelines in the expanded dataset used
the aligners NextGenMap or SMALT, and/or the variant callers
LoFreq, mpileup, or Strelka (Fig. 7).
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Figure 4: Stability of pipeline performance, in terms of F-score, with increasing genetic distance between the reads and the reference genome. The performance of an
SNP-calling pipeline decreases with increasing distance between the genome from which reads are sequenced and the reference genome to which they are aligned.
Each point shows the median difference in F-score for a pipeline that calls SNPs when the reference genome is the same as the source of the reads, and when it is
instead a representative genome for that species. Points are coloured according to the variant caller in each pipeline, with those towards the top of the figure less
affected by distance. Lines fitted using LOESS smoothing, with the grey band representing the 0.95 confidence interval.

Discussion

Reference genome selection strongly affects
SNP-calling performance

Here we initially evaluated 41 SNP-calling pipelines, the com-
bination of 4 aligners with 10 callers, plus 1 “all-in-one” tool,
Snippy, using reads simulated from 10 clinically relevant species.
These reads were first aligned back to their source genome and
SNPs called. As expected under these conditions, the majority
of SNP-calling pipelines showed high precision and sensitivity,
although between-species variation was prominent.

We next expanded the scope of the evaluation to 209
pipelines (representing the addition of 12 aligners, 4 callers,
and 2 “all-in-one” pipelines, SpeedSeq and SPANDX) and intro-
duced a degree of divergence between the reference genome
and the reads, analogous to having an accurate species-level
classification of the reads but no specific knowledge of the
strain. For the purposes of this study, we assumed that refer-
ence genome selection was essentially arbitrary, equivalent to
a community standard representative genome. Such a genome
can differ significantly from the sequenced strain, which com-
plicates SNP calling by introducing inter-specific variation be-
tween the sequenced reads and the reference. Importantly,

all pipelines in this study are expected to perform well if
evaluated with human data, i.e.,, when there is a negligible
Mash distance between the reads and the reference. For ex-
ample, the mean Mash distance between human assembly
GRCh38.p12 and the 3 Ashkenazi assemblies of the Genome
In A Bottle dataset (deep sequencing of a mother, father, and
son trio [64-66], available under European Nucleotide Archive
study accession PRJINA200694 and GenBank assembly accessions
GCA_001549595.1, GCA_001549605.1, and GCA_001542345.1, re-
spectively) is 0.001 (i.e., consistent with previous findings that
the majority of the human genome has ~0.1% sequence di-
vergence [67]). Notably, the highest-performing pipeline when
reads were aligned to the same genome from which they were
simulated, Novoalign/GATK, was also that used by the Genome
In A Bottle consortium to align human reads to the reference
[64].

While tools initially benchmarked on human data, such as
SNVSniffer [49], can in principle also be used on bacterial data,
this study shows that in practice many perform poorly. For
example, the representative C. difficile strain, 630, has a mo-
saic genome, ~11% of which comprises mobile genetic ele-
ments [56]. With the exception of reads simulated from C. dif-
ficile genomes that are erythromycin-sensitive derivatives of 630
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Figure 5: Head-to-head performance comparison of 3 pipelines using simulated data, on the basis of precision, recall, and F-score. This figure directly compares the
performance of 3 pipelines using simulated data: Snippy, Novoalign/mpileup, and BWA/mpileup. Each point indicates the median F-score, precision, or recall, for the
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results of a Mann-Whitney U test. The line y = x is shown in solid red. The lines y+0.02 = x and y-0.02 = x are shown in dotted red. An expanded version of this figure,

comparing 40 pipelines relative to Snippy, is given as Supplementary Figure 4.

(strains 630Derm and 630deltaerm; see [68]), aligning reads to
630 compromises accurate SNP calling, resulting in a lower me-
dian F-score across all pipelines (Fig. 3). We also observed sim-
ilar decreases in F-score for more recombinogenic species such
as N. gonorrhoeae, which has a phase-variable gene repertoire
[69] and has been used to illustrate the “fuzzy species” concept,
that recombinogenic bacteria do not form clear and distinct iso-
late clusters as assayed by phylogenies of common housekeep-
ing loci [70, 71]. By contrast, for clonal species, such as those
within the M. tuberculosis complex [72], the choice of reference
genome has negligible influence on the phylogenetic relation-
ships inferred from SNP calls [73] and, indeed, minimal effect
on F-score.

In general, more diverse species have a broader range of
Mash distances on Fig. 2A (particularly notable for E. coli), as do
those forming distinct phylogroups, such as the 2 clusters of L.
monocytogenes, consistent with the division of this species into
multiple primary genetic lineages [74-76].

Therefore, 1 major finding of this study is that, irrespective of
the core components within an SNP-calling pipeline, the selec-
tion of reference genome has a critical effect on output, particu-
larly for more recombinogenic species. This can to some extent
be mitigated by using variant callers that are more robust to in-

creased distances between the reads and the reference, such as
Freebayes (used by Snippy and SpeedSeq).

A suboptimal choice of reference genome has previously
been shown to result in mapping errors, leading to biases in
allelic proportions [77]. Heterologous reference genomes are in
general suboptimal for read mapping, even when there is strict
correspondence between orthologous regions, with short reads
particularly vulnerable to FP alignments [78]. There is also an
inverse relationship between TP SNP calls and genetic distance,
with a greater number of FP calls when the reads diverge from
the reference genome [21].

The experimental design made several simplifying assumptions
regarding pipeline usage. Most notably, when evaluating SNP
calling when the reference genome diverges from the source of
the reads, we needed to convert the coordinates of one genome
to those of another, doing so by whole-genome alignment. We
took a similar approach to that used to evaluate Pilon, an all-
in-one tool for correcting draft assemblies and variant calling
[45], which made whole-genome alignments of the M. tuberculo-
sis F11 and H37Rv genomes and used the resulting set of inter-
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strain variants as a truth set for benchmarking (a method we
also used when evaluating each pipeline on real data). While
this approach assumes a high degree of contiguity for the whole-
genome alignment, there are nevertheless significant breaks in
synteny between F11 and H37Rv, with 2 regions deemed partic-
ularly hypervariable, in which no variant could be confidently
called [45]. For the strain-to-representative genome alignments
in this study, we considered SNP calls only within 1-to-1 align-
ment blocks and cannot exclude the possibility that repetitive
or highly mutable regions within these blocks have been mis-
aligned. However, we did not seek to identify and exclude SNPs
from these regions because, even if they were present, this
would have a systematic negative effect on the performance of
each pipeline. To demonstrate this, we recalculated each per-
formance metric for the 209 pipelines evaluated using real se-
quencing data after identifying, and masking, repetitive regions
of the reference genome with self-self BLASTn (as in [79]). As
we already required reference bases within each 1-to-1 align-
ment block to be supported by both nucmer and Parsnp calls
(i.e., implicitly masking ambiguous bases), we found that repeat-
masking the reference genome had negligible effect on overall F-
score although marginally improved precision (see Supplemen-
tary Text 1). However, it is important to note that the parameters
used for repeat-masking will determine which paralogues will
be successfully masked. For the purpose of this study, we used
reasonably conservative parameters (detailed in Supplementary
Text 1) and so expect to have primarily masked more simi-
lar paralogues. The likelihood of mis-mapping (and thereby FP
SNP calling) would increase among more divergent paralogues,
although optimizing parameters to detect these is non-trivial.
More lenient repeat-masking parameters, in masking more di-
vergent positions, would also reduce the number of true SNPs it
is possible to call.

Furthermore, when aligning reads from 1 genome to a dif-
ferent genome, it is not possible to recover all possible SNPs in-
troduced with respect to the former because some will be found
only within genes unique to the original genome (of which there
can be many because bacterial species have considerable ge-
nomic diversity; see Supplementary Table 5). Nevertheless, there
is a strong relationship between the total number of SNPs intro-
duced in silico into 1 genome and the maximum number of SNPs
itis possible to call should reads instead be aligned to a divergent
genome (Supplementary Fig. 3). In any case, this does not affect
the evaluation metrics used for pipeline evaluation, such as F-
score, because these are based on proportional relationships of
TP, FP, and FN calls at variant sites. However, we did not count
true-negative calls (and thereby assess pipeline specificity) be-
cause these can only be made at reference sites, a far greater
number of which do not exist when aligning between divergent
genomes.

While the programs chosen for this study are in common
use and the findings generalizable, it is also important to note
that they are a subset of the tools available (see Supplemen-
tary Text 1). It is also increasingly common to construct more
complex pipelines that call SNPs with 1 tool and structural vari-
ants with another (e.g., in [80]). Here, our evaluation concerned
only accurate SNP calling, irrespective of the presence of struc-
tural variants introduced by suboptimal reference genome se-
lection (i.e., by aligning the reads to a divergent genome) and so
does not test dedicated indel-calling algorithms. Previous indel-
specific variant-calling evaluations, using human data, have rec-
ommended Platypus [8] or, for calling large indels at low read
depths, Pindel [81].

Many of the findings in this evaluation are also based on
simulated error-free data for which there was no clear need
for pre-processing quality control. While adapter removal and
quality-trimming reads are recommended precautionary steps
prior to analysing non-simulated data, previous studies differ
as to whether pre-processing increases the accuracy of SNP calls
[82], has minimal effect upon them [83], or whether benefits in-
stead depend upon the aligner and reference genome used [21].
While more realistic datasets would be subject to sequencing er-
ror, we also expect this to be minimal: Illumina platforms have
a per-base error rate <0.01% [84]. Accordingly, when comparing
pipelines taking either error-free or error-containing reads as in-
put, sequencing error had negligible effect on performance (see
Supplementary Text 1).

We have also assumed that given the small genome sizes
of bacteria, a consistently high depth of coverage is expected
in non-simulated datasets, and so have not evaluated pipeline
performance on this basis (discussed further in Supplementary
Text 1). In any case, a previous study found that with simulated
NextSeq reads, variant-calling sensitivity was largely unaffected
by increases in coverage [11]. It has also been reported that ran-
dom polymerase errors have minimal effect on variant calls for
sequencing depths >20-fold and that these are primarily of con-
cern only when calling minor variants [77].

Finally, so as to approximate “out of the box” use conditions,
we made a minimal-effort application of each program with
no attempt at species-specific optimization. Had we optimized
the individual components of an analytic pipeline (which, al-
though often structured around, are not limited to 1 aligner and
1 caller), we could conceivably reduce the high variance in F-
score when SNP calling from real data which, in this study, was
notably divergent (see Fig. 7). For instance, DeepVariant [41], a
TensorFlow machine-learning-based variant caller, had highly
variable performance on real data but required as input a train-
ing model made using a deep neural network. At the time of
use, there was currently no production-grade DeepVariant train-
ing pipeline (the default training model supplied with DeepVari-
ant, and used in this study, was based on human data), nor were
there a large enough number of non-simulated, bacterial truth
sets on which to train it. As such, we expect the performance
of DeepVariant to have been under-estimated in this evaluation.
Most notably, NextGenMap/DeepVariant was the most precise of
the 209 pipelines evaluated on (divergent) real data (mean pre-
cision = 0.9715), although this pipeline had comparatively low
recall and an accordingly poor F-score (Supplementary Table 10).

In this study we sought to use all aligners and callers uni-
formly, with equivalent quality control steps applied to all reads.
To that end, while direct comparisons of any aligner/caller
pipeline with “all-in-one” tools (such as Snippy, SPANDx, and
SpeedSeq) are possible, the results should be interpreted with
caution. This is because it is in principle possible to improve
the performance of the former through additional quality con-
trol steps—i.e., compared to an “all-in-one” tool, it is not neces-
sarily the aligner or caller alone to which any difference in per-
formance may be attributed. For instance, although Snippy and
SpeedSeq use BWA-mem and Freebayes, both tools are distinct
from the BWA-mem/Freebayes pipeline used in this study (Fig. 7
and Supplementary Table 10). This is because they implement
additional steps between the BWA and Freebayes components,
as well as altering the default parameters relative to standalone
use. Snippy, for example, uses samclip [85] to post-process the
BAM file produced by BWA-mem, removing clipped alignments
in order to reduce FP SNPs near structural variants.
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Our results emphasize that one of the principal difficulties of
alignment-based bacterial SNP calling is not pipeline selection
per se but optimal reference genome selection (or, alternatively,
its de novo creation, not discussed further). If assuming all input
reads are from a single, unknown, origin, then in principle a ref-
erence genome could be predicted using a metagenomic classi-
fier such as Centrifuge [86], CLARK [87], Kaiju [88], or Kraken [89].
However, correctly identifying the source genome from even a
set of single-origin reads is not necessarily simple, with the per-
formance of read classifiers depending in large part on the se-
quence database they query (such as, e.g., EMBL proGenomes
[90] or NCBI RefSeq [91]), which can vary widely in scope, re-
dundancy, and degree of curation (see performance evaluations
[92, 93]). This is particularly evident among the Citrobacter sam-
ples in the real dataset, with 3 methods each making differ-
ent predictions (Supplementary Table 8). Specialist classification
tools such as Mykrobe [94] use customized, tightly curated allele
databases and perform highly for certain species (in this case,
M. tuberculosis and S. aureus) although by definition do not have
wider utility. An additional complication would also arise from
taxonomic disputes such as, for example, Shigella spp. being es-
sentially indistinct from E. coli [95].

One recommendation, which is quick and simple to apply,
would be to test which of a set of candidate reference genomes is
most suitable by estimating the distance between each genome
and the reads. This can be accomplished using Mash [60], which
creates “sketches” of sequence sets (compressed representa-
tions of their k-mer distributions) and then estimates the Jac-
card index (that is, the fraction of shared k-mers) between each
pair of sequences. Mash distances are a proxy both for average
nucleotide identity [60] and measures of genetic distance de-
rived from the whole-genome alignment of genome pairs (Sup-
plementary Table 2), correlating strongly with the total num-
ber of SNPs between the strain genome and the representative
genome (Spearman p = 0.97, P < 10~%°), and to a reasonable de-
gree with the proportion of bases unique to the strain genome
(Spearman p = = 0.48, P < 10~°). More closely related genomes
would have lower Mash distances and so be more suitable as
reference genomes for SNP calling. This would be particularly
appropriate if, for example, studying transmission events as a
closely related reference would increase specificity, irrespective
of the aligner or caller used. For larger studies that require mul-
tiple samples to be processed using a common reference, the
choice of reference genome could be one that “triangulates” be-
tween the set of samples—i.e., has on average a similar distance
to each sample, rather than being closer to some and more dis-
tant from others.

Using a highly divergent genome (such as the representa-
tive Enterobacter genomes in the real dataset, each of which dif-
fers from the reads by a Mash distance >0.1; Supplementary
Table 8) is analogous to variant calling in a highly polymor-
phic region, such as the human leukocyte antigen, which shows
>10% sequence divergence between haplotypes [67] (i.e., even
for pipelines optimized for human data—the majority in this
study—this would represent an anomalous use case).

Prior to using Mash (or other sketch-based distance estima-
tors, such as Dashing [96] or FastANI [97]), broad-spectrum clas-
sification tools such as Kraken could be used to narrow down
the scope of the search space to a set of fully sequenced can-
didate genomes, i.e., those genomes of the taxonomic rank to
which the highest proportion of reads could be assigned with
confidence. This approach is similar to that implemented by the

Python package PlentyOfBugs [98], which, assuming the species
or genus is already known, automates the process of download-
ing and sketching candidate genomes to create a database for
querying with Mash.

In the future, reads from long-read sequencing platforms,
such as Oxford Nanopore and Pacific Biosciences, are less likely
to be ambiguously mapped within a genomic database and so in
principle are simpler to classify (sequencing error rate notwith-
standing), making it easier to select a suitable reference genome.
However, long-read platforms can also, in principle if not yet
routinely, generate complete de novo bacterial genomes [99] for
downstream SNP calling, possibly removing the need to choose
areference entirely. Similarly, using a reference pan-genome in-
stead of a singular representative genome could also maximize
the number of SNP calls by reducing the number of genes not
present in the reference [100]. A popular means of representing
the pan-genome, as used by tools such as Roary [101], is as a col-
lection of individual consensus sequences, ostensibly genes but
more specifically open reading frames with protein-coding po-
tential. This use of consensus sequences could also reduce the
number of nucleotide differences between a set of sequenced
reads (which may be from a highly divergent strain) and the
(consensus) reference.

An alternative approach to reducing errors introduced when
using a single reference genome could be to merge results from
multiple reference genomes (the approach taken by REALPHY to
reconstruct phylogenies from bacterial SNPs [102]) or from mul-
tiple aligners and/or callers, obtaining consensus calls across
a set of methods. This is the approach taken by the NASP
pipeline [103], which can integrate data from any combination
of the aligners Bowtie2, BWA-mem, Novoalign, and SNAP, and
the callers GATK, mpileup, SolSNP, and VarScan (ensemble ap-
proaches have similarly been used for somatic variant calling,
e.g., by SomaticSeq [104]).

If considering the overall performance of a pipeline as the
sum of the 7 different ranks for the different metrics consid-
ered, then averaged across the full set of species’ genomes,
the highest-performing pipelines are, with simulated data,
Snippy and those using Novoalign in conjunction with LoFreq or
mpileup (Table 2), and with real (more divergent) data, those us-
ing NextGenMap or SMALT in conjunction with LoFreq, mpileup,
or Strelka (Supplementary Table 10).

Some of the higher-performing tools apply error correction
models that also appear suited to bacterial datasets with high
SNP density, despite their original primary use case being in dif-
ferent circumstances. For instance, SNVer (which, in conjunc-
tion with BWA-mem, ranks second to Snippy for N. gonorrhoeae;
see Table 2) implements a statistical model for calling SNPs from
pooled DNA samples, where variant allele frequencies are not
expected to be either 0, 0.5, or 1 [48]. SNP calling from het-
erogeneous bacterial populations with high mutation rates, in
which only a proportion of cells may contain a given mutation,
is also conceptually similar to somatic variant calling in hu-
man tumours, where considerable noise is expected [77]. This
is a recommended use case for Strelka, which performed highly
on real (and particularly divergent) data, being among the top-
performing pipelines when paired with many aligners (Fig. 7).

Irrespective of pipeline used, increasing Mash distances be-
tween the reads and the reference increases the number of FN
calls (Supplementary Fig. 2). Nevertheless, Snippy, which uses
Freebayes, is particularly robust to this, being among the most
sensitive pipelines when evaluated using simulated data (Fig. 5
and Supplementary Fig. 4). Notably, Freebayes is haplotype-
based, calling variants based on the literal sequence of reads
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aligned to a particular location, so avoiding the problem of 1 read
having multiple possible alignments (increasingly likely with in-
creasing genomic diversity) but only being assigned to 1 of them.
However, as distance increases further, it is likely that reads will
cease being misaligned (which would otherwise increase the
number of FP calls), but rather they will not be aligned at all,
being too dissimilar to the reference genome.

With an appropriate selection of reference genome, many
of these higher-performing pipelines could be optimized to
converge on similar results by tuning parameters and post-
processing VCFs with specific filtering criteria, another routine
task for which there are many different choices of application
[105-108]. In this respect, the results of this study should be in-
terpreted as a range-finding exercise, drawing attention to those
SNP-calling pipelines that, under default conditions, are gener-
ally higher-performing and that may be most straightforwardly
optimized to meet user requirements.

We have performed a comparison of SNP-calling pipelines
across both simulated and real data in multiple bacterial species,
allowing us to benchmark their performance for this specific
use. We find that all pipelines show extensive species-specific
variation in performance, which has not been apparent from
the majority of existing, human-centred, benchmarking stud-
ies. While aligning to a single representative genome is common
practice in eukaryotic SNP calling, in bacteria the sequence of
this genome may diverge considerably from the sequence of the
reads. A critical factor affecting the accuracy of SNP calling is
thus the selection of a reference genome for alignment. This is
complicated by ambiguity as to the strain of origin for a given
set of reads, which is perhaps inevitable for many recombino-
genic species, a consequence of the absence (or impossibility)
of a universal species concept for bacteria (but see [109]). For
many clinically common species, excepting M. tuberculosis, the
use of standard “representative” reference genomes can com-
promise accurate SNP calling by disregarding genomic diversity.
By first considering the Mash distance between the reads and a
candidate set of reference genomes, a genome with minimal dis-
tance may be chosen that, in conjunction with one of the higher-
performing pipelines, can maximize the number of true variants
called.

A total of 264 genomes, representing a range of strains from
10 bacterial species, and their associated annotations, were ob-
tained from the NCBI Genome database [110] ([111], accessed 16
August 2018), as detailed in Supplementary Table 2. One genome
per species is considered to be a representative genome (criteria
detailed at [112], accessed 16 August 2018), indicated in Supple-
mentary Table 2. Strains with incomplete genomes (i.e., assem-
bled only to the contig or scaffold level) or incomplete annota-
tions (i.e., with no associated GFF, necessary to obtain gene co-
ordinates) were excluded, as were those with multiple available
genomes (i.e., the strain name was not unique). After these fil-
ters were applied, all species were represented by ~30 complete
genomes (28 C. difficile, 29 M. tuberculosis, and 36 S. pneumoniae),
with the exceptions of N. gonorrhoeae (n = 15) and S. dysenteriae (n
= 2). For the 5 remaining species (E. coli, K. pneumoniae, L. monocy-
togenes, S. aureus, and S. enterica), there are >100 usable genomes

each. Because it was not computationally tractable to test every
genome, we chose a subset of isolates based on stratified selec-
tion by population structure. We created all-against-all distance
matrices using the “triangle” component of Mash v2.1 [60], then
constructed dendrograms (Supplementary Figs 5-9) from each
matrix using the neighbour-joining method, as implemented in
MEGA v7.0.14 (MEGA Software, RRID:SCR.000667) [113]. By man-
ually reviewing the topology, 30 isolates were chosen per species
to create a representative sample of its diversity.

For each genome used in this study, we excluded, if present,
any non-chromosomal (i.e., circular plasmid) sequence. A simu-
lated version of each core genome, with exactly 5 randomly gen-
erated SNPs per genic region, was created using Simulome v1.2
[114] with parameters -whole_genome = TRUE -snp = TRUE -
num.snp = 5. Because the coordinates of some genes overlap,
not all genes will contain simulated SNPs. The number of SNPs
introduced into each genome (from ~8000 to 25,000) and the me-
dian distance between SNPs (from ~60 to 120 bases) is detailed
in Supplementary Table 2.

The coordinates of each SNP inserted into a given genome
are, by definition, genome- (that is, strain-) specific. As such, it
is straightforward to evaluate pipeline performance when reads
from 1 genome are aligned to the same reference. However, to
evaluate pipeline performance when reads from 1 genome are
aligned to the genome of a divergent strain (i.e., the represen-
tative genome of that species), the coordinates of each strain’s
genome need to be converted to representative genome coor-
dinates. To do so, we made whole-genome (core) alignments
of the representative genome to both versions of the strain
genome (1 with and 1 without SNPs introduced in silico) using
nucmer and dnadiff, components of MUMmer v4.0.0beta2 [58],
with default parameters (illustrated in Fig. 1). For 1-to-1 align-
ment blocks, differences between each pair of genomes were
identified using MUMmer show-snps with parameters -Clr -x
1, with the tabular output of this program converted to VCF
by the script MUMmerSNPs2VCE.py [115]. The 2 resulting VCFs
contain the location of all SNPs relative to the representative
genome (i.e., inclusive of those introduced in silico), and all inter-
strain variants, respectively. We excluded from further analy-
sis 2 strains with poor-quality strain-to-representative whole-
genome alignments, both calling <10% of the strain-specific in
silico SNPs (Supplementary Table 11). The proportion of in sil-
ico SNPs recovered by whole-genome alignment is detailed in
Supplementary Table 11 and is, in general, high: of the 254
whole-genome alignments of non-representative to represen-
tative strains across the 10 species, 222 detect >80% of the in
silico SNPs and 83 detect >90%. For the purposes of evaluating
SNP-calling pipelines when the reference genome differs from
the reads, we are concerned only with calling the truth set of
in silico SNPs and so discard inter-strain variants (see below).
More formally, when using each pipeline to align reads to a di-
vergent genome, we are assessing the concordance of its set of
SNP calls with the set of nucmer calls. However, it is possible
that for a given call, 1 or more of the pipelines are correct and
nucmer is incorrect. To reduce this possibility, a parallel set of
whole-genome alignments were made using Parsnp v1.2 with
default parameters [59], with the exported SNPs contrasted with
the nucmer VCF.

Thus, when aligning to a divergent genome, the truth set of
in silico SNPs (for which each pipeline is scored for TP calls) are
those calls independently identified by both nucmer and Parsnp.
Similarly, the set of inter-strain positions are those calls made by
1 or both of nucmer and Parsnp. Because we are not concerned
with the correctness of these calls, the lack of agreement be-
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tween the 2 tools is not considered further; rather, this estab-
lishes a set of ambiguous positions, which are discarded when
VCFs are parsed.

Simulated SNP-containing genomes, sets of strain-to-
representative genome SNP calls (made by both nucmer and
Parsnp), and the final truth sets of SNPs are available in Sup-
plementary Dataset 1 (hosted online via the Oxford Research
Archive [116]).

From each of 254 SNP-containing genomes, 3 sets of 150-bp and
3 sets of 300-bp paired-end data were simulated using wgsim, a
component of SAMtools v1.7 (SAMTOOLS, RRID:SCR-002105) [20].
This requires an estimate of average insert size (the length of
DNA between the adapter sequences), which in real data is of-
ten variable, being sensitive to the concentration of DNA used
[117]. For read length x, we assumed an insert size of 2.2x; i.e.,
for 300-bp reads, the insert size is 660 bp (Illumina paired-end
reads typically have an insert longer than the combined length
of both reads [117]). The number of reads simulated from each
genome is detailed in Supplementary Table 3 and is equiva-
lent to a mean 50-fold base-level coverage, i.e., (50 x genome
length)/read length.

Perfect (error-free) reads were simulated from each SNP-
containing genome using wgsim parameters -e 0 -r 0 -R0 -X 0
-A 0 (respectively, the sequencing error rate, mutation rate, frac-
tion of indels, probability an indel is extended, and the fraction
of ambiguous bases allowed).

Each set of reads was then aligned both to the genome of the
same strain and to the representative genome of that species
(from which the strain will diverge), with SNPs called using 41
different SNP-calling pipelines (10 callers each paired with 4
aligners, plus the self-contained Snippy). The programs used,
including version numbers and sources, are detailed in Supple-
mentary Table 1, with associated command lines in Supplemen-
tary Text 1. All pipelines were run using a high-performance
cluster employing the Open Grid Scheduler batch system on Sci-
entific Linux 7. No formal assessment was made of pipeline run
time or memory usage. This was because given the number of
simulations it was not tractable to benchmark run time using,
forinstance, a single core. The majority of programs in this study
permit multithreading (all except the callers 16GT, GATK, Platy-
pus, SNVer, and SNVSniffer) and so are in principle capable of
running very rapidly. We did not seek to optimize each tool for
any given species and so made only a minimume-effort appli-
cation of each pipeline, using default parameters and minimal
VCF filtering (see below). This is so that we obtain the maximum
possible number of TP calls from each pipeline under reasonable
use conditions.

While each pipeline comprises 1 aligner and 1 caller, there
are several ancillary steps common in all cases. After aligning
reads to each reference genome, all BAM files were cleaned,
sorted, had duplicate reads marked, and were indexed using Pi-
card Tools v2.17.11 (Picard, RRID:SCR-006525), [118] CleanSam,
SortSam, MarkDuplicates, and BuildBamIndex, respectively. We
did not add a post-processing step of local indel realignment
(common in older evaluations, e.g., [12]) because this had a negli-
gible effect on pipeline performance, with many variant callers
(including GATK HaplotypeCaller [25] [GATK, RRID:SCR_001876]
and Freebayes [FreeBayes, RRID:SCR.010761]) already incorpo-
rating a method of haplotype assembly (see Supplementary
Text 1).

Each pipeline produces a VCF as its final output. As with a
previous evaluation [15], all VCFs were regularized using the vc-
fallelicprimitives module of vcflib v1.0.0-rc2 [119], so that dif-
ferent representations of the same indel or complex variant
were not counted separately (these variants can otherwise be
presented correctly in multiple ways). This module splits ad-
jacent SNPs into individual SNPs, left-aligns indels, and regu-
larizes the representation of complex variants. The set of non-
regularized VCFs cannot be meaningfully compared (see Supple-
mentary Text 1).

Different variant callers populate their output VCFs with
different contextual information. Before evaluating the perfor-
mance of each pipeline, all regularized VCFs were subject to
minimal parsing to retain only high-confidence variants. This
is because many tools record variant sites even if they have a
low probability of variation, under the reasonable expectation
of parsing. Some tools (including Snippy and SNVer) apply their
own internal set of VCF filtering criteria, giving the user the op-
tion of a “raw” or “filtered” VCF; in such cases, we retain the fil-
tered VCF as the default recommendation. Where possible, (ad-
ditional) filter criteria were applied as previously used by, and
empirically selected for, COMPASS [120], an analytic pipeline
employing Stampy and mpileup for base-calling non-repetitive
core genome sites (outlined in Supplementary Text 1 with fil-
ter criteria described in [121] and broadly similar to those rec-
ommended by a previous study for maximizing SNP validation
rate [122]). No set of generic VCF hard filters can be uniformly
applied because each caller quantifies different metrics (such as
the number of forward and reverse reads supporting a given call)
and/or reports the outcome of a different set of statistical tests,
making filtering suggestions on this basis. For instance, in par-
ticular circumstances, GATK suggests filtering on the basis of the
fields “FS,” “MQRankSum,” and “ReadPosRankSum,” which are
unique to it (detailed at [123]). Where the relevant information
was included in the VCF, SNPs were required to have (i) a min-
imum Phred score of 20, (ii) >5 reads mapped at that position,
(iii) >1 read in each direction in support of the variant, and (iv)
>75% of reads supporting the alternative allele. These criteria
were implemented with the “filter” module of BCFtools v1.7 [20]
using parameters detailed in Supplementary Table 12.

From these filtered VCFs, evaluation metrics were calculated
as detailed below.

Parallel sets of 150-bp Illumina HiSeq 4000 paired-end short
reads and ONT long reads were obtained from 16 environmen-
tally sourced samples from the REHAB project (“the environ-
mental REsistome: confluence of Human and Animal Biota in
antibiotic resistance spread” [124]), as detailed in [63]: 4 En-
terobacter spp., 4 Klebsiella spp., 4 Citrobacter spp., and 4 Es-
cherichia coli, with species identified using matrix-assisted laser
desorption ionization (MALDI) time-of-flight mass spectrome-
try, plus subcultures of stocks of 2 reference strains, K. pneumo-
niae subsp. pneumoniae MGH 78,578 and E. coli CFT073. Additional
predictions were made using both the protein- and nucleotide-
level classification tools Kaiju v1.6.1 [88] and Kraken2 v2.0.7
(Kraken, RRID:SCR-005484) [125], respectively. Kaiju was used
with 2 databases, 1 broad and 1 deep, both created on 5 Febru-
ary 2019: “P” ([126]; >20 million bacterial and archaeal genomes
from the compact, manually curated, EMBL proGenomes [127],
supplemented by ~10,000 viral genomes from NCBI RefSeq [128])
and “E” ([129]; >100 million bacterial, archaeal, viral, and fungal
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genomes from NCBI nr, alongside various microbial eukaryotic
taxa). Kaiju was run with parameters -e 5 and -E 0.05, which,
respectively, allow 5 mismatches per read and filter results on
the basis of an E-value threshold of 0.05. The read classifications
from both databases were integrated using the Kaiju “merge-
Outputs” module, which adjudicates on the basis of the lowest
taxonomic rank of each pair of classifications, provided they are
within the same lineage, or else reclassifies the read at the low-
est common taxonomic rank ancestral to the two. Kraken2 was
run with default parameters using the MiniKraken2 v1 database
([130], created 12 October 2018), which was built from the com-
plete set of NCBI RefSeq bacterial, archaeal, and viral genomes.

Hybrid assemblies were produced using methods detailed
in [63] and briefly recapitulated here. Illumina reads were pro-
cessed using COMPASS (see above). ONT reads were adapter-
trimmed using Porechop v0.2.2 [131] with default parameters,
and then error-corrected and subsampled (preferentially se-
lecting the longest reads) to 30-40x coverage using Canu v1.5
(Canu, RRID:SCR-015880) [132] with default parameters. Finally,
Mlumina-ONT hybrid assemblies for each genome were gener-
ated using Unicycler v0.4.0 [57] with default parameters. The
original study found high agreement between these assemblies
and those produced using hybrid assembly with PacBio long
reads rather than ONT, giving us high confidence in their robust-
ness.

In the simulated datasets, SNPs are introduced in silico into a
genome, with reads containing these SNPs then simulated from
it. With this dataset, however, there are no SNPs within each
genome: we have only the short reads (i.e., real output from an Il-
lumina sequencer) and the genome assembled from them (with
which there is an expectation of near-perfect read mapping).

To evaluate pipeline performance when the reads are aligned
to a divergent genome, reference genomes were selected as rep-
resentative of the predicted species, with distances between the
2 calculated using Mash v2.1 [60] and spanning approximately
equal intervals from 0.01 to 0.12 (representative genomes and
Mash distances are detailed in Supplementary Table 8). The
truth set of SNPs between the representative genome and each
hybrid assembly was the intersection of nucmer and Parsnp
calls, as above.

Samples, source locations, MALDI ID scores, and associated
species predictions are detailed in Supplementary Table 8. Raw
sequencing data have been deposited with the NCBI under Bio-
Project accession PRJNA422511 [133], with the associated hybrid
assemblies available via FigShare [134].

To allow both the replication and expansion of this evalua-
tion using real sequencing data, a complete archive is available
as Supplementary Dataset 2 (hosted online via the Oxford Re-
search Archive [135]) comprising reads, assemblies, indexed ref-
erence genomes, the associated SNP call truth sets, VCFs, and a
suite of Perl scripts.

For each pipeline, we calculated the absolute number of TP (the
variant is in the simulated genome and correctly called by the
pipeline), FP (the pipeline calls a variant that is not in the simu-
lated genome), and FN SNP calls (the variant is in the simulated
genome but the pipeline does not call it). We did not calculate
true-negative calls for 2 reasons. First, to do so requires a VCF
containing calls for all sites, a function offered by some vari-
ant callers (such as mpileup) but not all. Second, when aligning
reads to a divergent genome, a disproportionately large number
of reference sites will be excluded, particularly in more diverse

species (e.g., gene numbers in N. gonorrhoeae differ by up to one-
third; see Supplementary Table 5).

We then calculated the precision (positive predictive value)
of each pipeline as TP/(TP + FP), recall (sensitivity) as TP/(TP +
FN), miss rate as FN/(TP + FN), and total number of errors (FP +
FN) per million sequenced bases. We did not calculate specificity
because this depends on true-negative calls. We also calculated
the F-score (as in [11]), which considers precision and recall with
equal weight: F = 2 « [(precision x recall)/(precision + recall)].
The F-score evaluates each pipeline as a single value bounded
between 0 and 1 (perfect precision and recall). We also ranked
each pipeline on the basis of each metric so that—for example—
the pipeline with the highest F-score, and the pipeline with the
lowest number of FPs, would be rank 1 in their respective dis-
tributions. As an additional “overall performance” measure, we
calculated the sum of ranks for the 7 core evaluation metrics (the
absolute numbers of TP, FP, and FN calls, and the proportion-
based precision, recall, F-score, and total error rate per million
sequenced bases). Pipelines with a lower sum of ranks would, in
general, have higher overall performance.

We note that when SNPs are called after aligning reads from
1 strain to that of a divergent strain, the SNP-calling pipeline
will call positions for both the truth set of strain-specific in silico
SNPs and any inter-strain variants. To allow a comparable eval-
uation of pipelines in this circumstance, inter-strain calls (ob-
tained using nucmer and Parsnp; see above) are discarded and
not explicitly considered either TP, FP, or FN. While the set of
true SNPs when aligning to a divergent strain will be smaller
than that when aligned to the same strain (because all SNPs are
simulated in genic regions but not all genes are shared between
strains), this will not affect proportion-based evaluation metrics,
such as F-score.

Differences between distributions are assessed by Mann-
Whitney U tests, with results interpreted using the non-
parametric effect size estimator Cliff delta [61, 62], estimated
at a confidence level of 95% using the R package effsize v0.7.1
[136]. The Cliff delta employs the concept of dominance (which
refers to the degree of overlap between distributions) and so is
more robust when distributions are skewed. Estimates of delta
are bound in the interval (-1, 1), with extreme values indicat-
ing a lack of overlap between groups (respectively, set 1 « set 2
and set 1> set 2). Distributions with |delta| < 0.147 are negligi-
bly different, as in [137]. Conversely, distributions with |delta| >
0.60 are considered to have large differences.

All data analysed during this study are included in this pub-
lished article and its supplementary information files. The sim-
ulated datasets generated during this study—comprising the
SNP-containing genomes, log files of the SNPs introduced into
each genome, and VCFs of strain-to-representative genome SNP
calls—are available in Supplementary Dataset 1 (hosted online
via the Oxford Research Archive at http://dx.doi.org/10.5287/bod
leian:AmMNXrjYNS).

Raw sequencing data and assemblies from the REHAB
project, described in [63], are available in the NCBI under BioPro-
ject accession PRJNA42251 (https://www.ncbi.nlm.nih.gov/biopr
oject/PRINA422511), with associated hybrid assemblies available
via FigShare [134].
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A complete archive to facilitate both the replication and ex-
pansion of this evaluation using the real (REHAB project) se-
quencing data is available as Supplementary Dataset 2 (hosted
online via the Oxford Research Archive at https://tinyurl.com/v4
pévol). This archive comprises 18 sets of paired-end reads and
assemblies, the associated indexed reference genomes, SNP call
truth sets, VCFs, and a suite of Perl scripts. These scripts are
also available via https://github.com/oxfordmmm/GenomicDive
rsityPaper. Snapshots of these data and code are also available
from the GigaScience GigaDB repository [138].

Project name: Genomic diversity affects the accuracy of bacterial
SNP calling pipelines

Project home page: https://github.com/oxfordmmm/GenomicDi
versityPaper

Operating system(s): Platform-independent

Programming language: Perl (v5.22.1)

Other requirements: Third-party software prerequisites are de-
tailed in documentation provided with Supplementary Dataset
2 (https://tinyurl.com/v4p6vol)

License: GNU GPL

Supplementary Table 1. Sources of software

Supplementary Table 2. Genomes into which SNPs were intro-
duced in silico, and various measures of distance between each
strain’s genome and the representative genome of that species
Supplementary Table 3. Summary statistics of SNP-calling
pipelines after aligning simulated reads to the same reference
genome as their origin

Supplementary Table 4. Ranked performance of SNP-calling
pipelines after aligning simulated reads to the same reference
genome as their origin

Supplementary Table 5. Genome size diversity within 5 clini-
cally common bacterial species

Supplementary Table 6. Summary statistics of SNP-calling
pipelines after aligning simulated reads to a reference genome
differing from their origin

Supplementary Table 7. Ranked performance of SNP-calling
pipelines after aligning simulated reads to reference genome dif-
fering from their origin

Supplementary Table 8. Environmentally sourced/reference
gram-negative isolates and associated representative genomes.
Supplementary Table 9. Summary statistics of SNP-calling
pipelines after aligning real reads to a reference genome differ-
ing from their origin

Supplementary Table 10. Ranked performance of SNP-calling
pipelines after aligning real reads to reference genome differing
from their origin

Supplementary Table 11. Proportion of strain-specific in silico
SNPs detected in whole-genome alignments between the strain
genome and a representative genome

Supplementary Table 12. VCF filtering parameters, as used by
BCFtools

Supplementary Table 13. Summary statistics of SNP-calling
pipelines after aligning both simulated error-free and error-
containing reads to the same reference genome as their origin

Supplementary Table 14. Summary statistics of SNP-calling
pipelines after aligning both simulated error-free and error-

containing reads to a reference genome differing from their ori-
gin

Supplementary Table 15. Summary statistics of SNP-calling
pipelines after aligning simulated error-free reads to a reference
genome differing from their origin, both with and without local
indel realignment

Supplementary Table 16. Summary statistics of E. coli SNP-
calling pipelines after aligning simulated error-free reads to a
reference genome differing from their origin, both with and
without VCF regularization

Supplementary Table 17. Summary statistics of E. coli SNP-
calling pipelines after aligning simulated error-free reads to a
reference genome differing from their origin, at 5-, 10-, 25- and
50-fold depths of coverage

Supplementary Figure 1. Reduced performance of SNP-calling
pipelines with increasing genetic distance between the reads
and the reference genome (assayed as total number of SNPs).
The median F-score across a set of 41 pipelines, per strain, de-
creases as the distance between the strain and the reference
genome increases (assayed as the total number of SNPs between
the strain and representative genome, i.e., the set of strain-
specific in silico SNPs plus inter-strain SNPs). Each point indicates
the genome of 1 strain per species (n = 254 strains). Points are
coloured by the species of each strain (n = 10 species). Summary
statistics for each pipeline are given in Supplementary Table 6,
performance ranks in Supplementary Table 7, and the genetic
distance between strains in Supplementary Table 2. Quantita-
tively similar results are seen if assaying distance as the Mash
distance, which is based on the proportion of k-mers shared be-
tween genomes (Fig. 3).

Supplementary Figure 2. Decreasing sensitivity (i.e., an in-
creased number of false-negative calls) with increasing genetic
distance between the reads and the reference genome (assayed
as Mash distance). The median sensitivity (recall) across a set of
41 pipelines, per strain, increases as the distance between the
strain and the reference genome increases (assayed as the Mash
distance, which is based on the proportion of shared k-mers be-
tween genomes). Each point indicates the genome of 1 strain per
species (n = 254 strains). Points are coloured by the species of
each strain (n = 10 species). Summary statistics for each pipeline
are given in Supplementary Table 6, performance ranks in Sup-
plementary Table 7, and the genetic distance between strains in
Supplementary Table 2.

Supplementary Figure 3. Total number of SNPs it is possible
to call should reads from 1 strain be aligned to a representa-
tive genome of that species. Strong correlation between the to-
tal number of SNPs introduced in silico into 1 genome and the
maximum number of SNPs it is possible to call assuming reads
from the former are aligned to a representative genome of that
species (which will not necessarily contain the same comple-
ment of genes). Each point represents the genome of 1 strain,
with genomes detailed in Supplementary Table 2. The line y = x
is shown in red.

Supplementary Figure 4. Head-to-head performance compari-
son of all pipelines relative to Snippy, on the basis of F-score,
using simulated data. This figure directly compares the perfor-
mance, using simulated data, of 40 pipelines relative to Snippy.
Each point indicates the median F-score for the genome of 1
strain per species (n = 254 strains). Data for Snippy are plot-
ted on the x-axis, and for the named pipeline on the y-axis.
Raw data for this figure are given in Supplementary Table 6.
Text in the top left of each panel is an interpretation of the
difference between each pair of distributions, obtained using
the R package “effsize,” which applies the non-parametric ef-
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fect size estimator Cliff delta to the results of a Mann-Whitney
U test.

Supplementary Figure 5. Selection of E. coli isolates by man-
ual review of dendrogram topology. There are numerous usable
complete genomes for E. coli. For the SNP-calling evaluation, a
subset of isolates was selected (indicated in red boxes) so as
to maximize the diversity of clades represented. To do so, an
all-against-all distance matrix for each genome was created us-
ing the “triangle” component of Mash v2.1, with a dendrogram
constructed using the neighbour-joining method implemented
in MEGA v7.0.14. Sources for the selected genomes are given in
Supplementary Table 2.

Supplementary Figure 6. Selection of K. pneumoniae isolates by
manual review of dendrogram topology. There are numerous us-
able complete genomes for K. pneumoniae. For the SNP-calling
evaluation, a subset of isolates was selected (indicated in red
boxes) so as to maximize the diversity of clades represented. To
do so, an all-against-all distance matrix for each genome was
created using the “triangle” component of Mash v2.1, with a den-
drogram constructed using the neighbour-joining method im-
plemented in MEGA v7.0.14. Sources for the selected genomes
are given in Supplementary Table 2.

Supplementary Figure 7. Selection of L. monocytogenes isolates by
manual review of dendrogram topology. There are numerous us-
able complete genomes for L. monocytogenes. For the SNP-calling
evaluation, a subset of isolates was selected (indicated in red
boxes) so as to maximize the diversity of clades represented. To
do so, an all-against-all distance matrix for each genome was
created using the “triangle” component of Mash v2.1, with a den-
drogram constructed using the neighbour-joining method im-
plemented in MEGA v7.0.14. Sources for the selected genomes
are given in Supplementary Table 2.

Supplementary Figure 8. Selection of S. enterica isolates by man-
ual review of dendrogram topology. There are numerous usable
complete genomes for S. enterica. For the SNP-calling evaluation,
a subset of isolates was selected (indicated in red boxes) so as
to maximize the diversity of clades represented. To do so, an
all-against-all distance matrix for each genome was created us-
ing the “triangle” component of Mash v2.1, with a dendrogram
constructed using the neighbour-joining method implemented
in MEGA v7.0.14. Sources for the selected genomes are given in
Supplementary Table 2.

Supplementary Figure 9. Selection of S. aureus isolates by man-
ual review of dendrogram topology. There are numerous usable
complete genomes for S. aureus. For the SNP-calling evaluation,
a subset of isolates was selected (indicated in red boxes) so as
to maximize the diversity of clades represented. To do so, an
all-against-all distance matrix for each genome was created us-
ing the “triangle” component of Mash v2.1, with a dendrogram
constructed using the neighbour-joining method implemented
in MEGA v7.0.14. Sources for the selected genomes are given in
Supplementary Table 2.

Supplementary Dataset 1. Simulated datasets for evaluating
bacterial SNP-calling pipelines. This archive contains the set of
254 SNP-containing genomes, VCFs containing the nucmer and
Parsnp strain-to-representative genome SNP calls, and the final
truth sets of SNPs used for evaluation.

Supplementary Dataset 2. Real sequencing datasets for evalu-
ating bacterial SNP-calling pipelines. This is a complete archive
to facilitate both the replication and expansion of this evalua-
tion using real (REHAB project) sequencing data. It comprises 18
sets of paired-end reads and assemblies, the associated indexed
reference genomes, SNP call truth sets, VCFs, and a suite of Perl
scripts.

BWA: Burrows-Wheeler Aligner; COMPASS: Complete Pathogen
Sequencing Solution; EMBL: European Molecular Biology Lab-
oratory; FN: false negative; FP: false positive; GASSST: Global
Alignment Short Sequence Search Tool; GATK: Genome Analy-
sis Toolkit; GFF: General Feature Format; MALDI: matrix-assisted
laser desorption ionization; NCBI: National Center for Biotech-
nology Information; NHS: National Health Service; ONT: Oxford
Nanopore Technologies; SNAP: Semi-HMM-based Nucleic Acid
Parser; SNP: single-nucleotide polymorphism; TP: true positive;
VCF: variant call format.
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