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Abstract 

Colorectal cancer (CRC) is the second most common tumour in 

the world (Bray, 2018). It has been proposed that morbidity and 

mortality could be mitigated by screening methods that identify 
key genetic mutations in the DNA of a patient’s biosample 

(Traverso, 2002). However, for this to work, a theoretical 
understanding of the most likely mutations that initiate 

malignant transformation, and how they affect subsequent 
microevolution, is needed. Specifically, we hypothesise that 

there is a CRC-proliferative mutation that is more likely to be 

initially fixated in the crypt. To investigate this, we developed an 
agent-based model of cells in the colon crypt that shows 

emergent biological homeostasis at the tissue level from the 
cellular and molecular interactions. We equipped each of the 

cells with a molecular gene network which, in their wildtype 

state, regulates homeostasis in the crypt and recapitulates known 
behaviour. We identified and modelled key genes implicated in 

CRC which, when mutated, alter the rate of death and division 
of cells. We used this model to study the biological first 

principles of the fixation of mutations, offering key spatial and 
temporal understanding of this process. We discuss the impact 

and clinical relevance of proliferative genetic mutations in 

isolation, pointing to the KRAS gene as a likely mutation to be 
initially fixed in the crypt. 

Introduction 

The development of colorectal cancer (CRC) is thought to 
occur in marked stages happening throughout an entire decade 
(Williams, 2016); however, the precise mechanisms of 
oncogenic initiation are still debated. Because of this slow 
development, CRC is a highly suitable system for investigating 
the emergence and accumulation genetic alternations that many 
cancers have in common. However, in vivo and in vitro models 
usually take place in a matter of days or weeks, not being able 
to fully recapitulate the microevolutionary oncogenic process. 
Current research points to CRC having an origin at the base of 
colonic crypts: flask shaped invaginations in the inner lining of 
the intestine, which produce new cells to support the tissue 
(Figure 1). Cells at the top of the crypt are continuously worn 
away by the process of nutrient absorption (through the villi) 
and passing food, and thus are being continually renovated by 
stem cells at the bottom. These stem cells divide to replace 
worn cells and may even displace other stem cells so that at a 
given time the whole crypt becomes monoclonal- a descendant 
of one single stem cell. Because of the high rate of division, it 
is here that key oncogenic mutations are thought to arise 

(especially during cell division, which is the most vulnerable 
state for the DNA of the cell).  

It is very difficult to investigate in vivo or in vitro the impact 
that key genetic mutations have in isolation. However, this gap 
in our understanding needs to be addressed to investigate how 
these initial mutations may shape the subsequent evolution of 
the disease, and thus offer some therapeutic insights. We 
propose to overcome the limitations of time, cost and 
tractability of wet-laboratory experiments with the aid of 
theoretical approaches, such as agent-based modelling and 
gene networks. The focus of this work is to determine whether 
there is a CRC-proliferative mutation that is more likely to be 
initially fixated in the crypt. To answer this question, we have 
abstracted the natural processes of crypt homeostasis and 
distilled current genetic knowledge into a network. With this 
realistic simulation, we can recreate the in vitro scenario that 
isolates the probability of key CRC implicated mutations to be 
fixated and thus become the steppingstone in oncogenic 
transformation. 

Background 

ALife has helped model emergent phenomena in human 

diseases such as the emergence and evolution of brain 

tumours (Swanson, 2003). Alife researchers have used the 
distilled essence of biological behaviour to develop nature-

inspired computational techniques that will help us create 

better tools (Andrews, 2008). It is with this virtuous cycle 

of the development of ALife methods in mind that we seek 

to formalize the simulation of complex biosystems and 

apply these to the understanding of cancer (Araujo, 2010) 

(Rubben, 2013), with the ultimate goal of discovering novel 

therapeutic targets such as key switches in cell-cell 

communication (Bentley, 2014). The ALife methods that us 

and others have used, such as agent-based modelling, have 

allowed us to investigate the genetic mutations that occur at 

a molecular level, but which have repercussions at the tissue 
level; as well as the cross-talk between cell types that make 

up the tumour microenvironment (Araujo, 2014). 

Importantly, these modelling approaches can connect the 

different time and space scales are needed (Rejniak, 2010), 

and have shown the feasibility of modelling cells with 

internal genomes to study cancer initiation (Fontana, 2010). 
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Figure 1. An intestinal crypt is an invagination in the inner lining 

of the intestine. Stem cells at the base constantly replenish the 

tissue. 

Modelling Colorectal Cancer 

There have been advances in the computational study of CRC, 
such as the effects of variation of cell cycle rate in that may 
disrupt homeostasis in colon crypts (Smallbone, 2013). Bravo 
and Axelrod measured the variation in stem cells, proliferating 
cells, and differentiated cells in multiple crypts in normal 
human biopsy specimens, offering a metric of the robustness 
with which crypts recover from chemotherapy and radiation 
scheduling protocols (Bravo, 2013). Meineke  used a lattice-
free cylindrical surface to model experimental data showing 
that cell movement is a consequence of mitotic activity 
(Meineke, 2001). Venturing into molecular modelling, 
Leeuwen developed a hybrid model that incorporates the WNT 
ligand gradient along the crypt axis that is shown to regulate 
the cell cycle and cell division (Van Leeuwen, 2009), being one 
of the first truly multiple-scale abstractions that link the 
subcellular, cellular and tissue level processes.  

Agent-Based Modelling (ABM) theory has been further 
developed to study subcellular behaviour. Using such 
advances, Mirams was able to show theoretically that the 
probability of mutations fixation is only weakly associated with 
the destruction of WNT-dependent cell proliferation (Mirams, 
2012). Introducing space into the already complex dynamics, 
Buske developed one of the first 3D crypt models to study 
combined effect of WNT and Notch signalling on cell 
proliferative behaviour (Buske, 2011). There are other ABMs, 
such as those proposed by (Dunn, 2013) and more recently by 
(Ingham-Dempster, 2017), that abstract the concept of anoikis 
(programmed cell death) for a systemic investigation of 
emergence behaviours and migration dynamics that are 
difficult to study in vitro. The researchers were able to localize 
cell death to a small region at the top of the crypt and 
identifying it as an emergent property in response to changes in 
cell proliferation rates. 

Mutations in the Intestine Crypt Evolution 

Recent work in genetics and molecular biology has helped 
identify key genetic alternations implicated in the 
tumorigenesis of CRC. These genes have been generally 
classified as either tumour-suppressor genes (TSGs), due to 
their anti-growth properties; or proto-oncogenes (POG), which 
drive proliferation and will be the focus of our investigation. 
CRC mutations inactivate TSG function, or increase POG 
function (the mutated version termed oncogene). Typically, 
mutations are recessive in TSGs but dominant in proto-
oncogenes; this means both alleles need to be altered in TSGs 

for loss-of-function to occur, whereas mutation in one of the 
copies of proto-oncogenes is enough to promote proliferative 
behaviour, and thus have a more measurable effect (Evan 
2006). It has been calculated that in normal human cells, the 
average mutation rate is ~2.5×10−8 mutations/nucleotides 
(Nachman, 2000). Mutations can manifest as point mutations 
altering one specific gene or through small structural 
aberrations such as short gene duplications, deletions or 
inversions. Furthermore, cancers may demonstrate 
chromosomal instability (CIN), where defects during cell 
division leads to daughter cells with large chromosomal 
amplifications, deletions or whole chromosome 
rearrangements (aneuploidy). CIN that lead to changes in 
chromosome number or structure accounts for 85% of sporadic 
colorectal cancers (Tsang, 2014). These mechanisms may lead 
to the loss of a TSG or to a gain in POGs such as KRAS.  

Although much work has been done to elucidate the genetic 
signalling pathways, the connections between all the genes 
involved in CRC oncogenesis is still not fully understood. The 
current evidence points to the existence of some key mutations 
that are consistent in CRC. Amplifications and mutations of 
POGs KRAS and BRAF have been consistently observed in 
CRC; especially in CIN tumours (Pino and Chung 2010). While 
some mutations have been studied both biologically and 
clinically, the knowledge on the role they have when combined 
with mutations in other OGs or TSGs is still limited. It is 
therefore of importance to determine the chances that different 
mutations have to get fixated in the crypt, as these would then 
synergise with subsequent mutations in the path to malignant 
transformation.  

We hypothesise that there is a CRC-proliferative mutation 

that is more likely to be initially fixated in the crypt. To provide 
evidence for this, we will simulate key mutations in an agent-

based model that can help us understand 1. how long does it 
take for a random mutation to be fixed in the crypt? and 2. how 

fast would a key mutation fixate in the crypt? We will perform 
multiple simulations on CIN conditions (such as copy number 

decreased to 1 or 0 or copy number increased to 3) and point 
mutation in each POG abstraction.  

The System 

In order to investigate the role that the individual mutations 
have in CRC initiation, we have designed a computational 
model that exhibits the same homeostatic behaviour of a 
healthy crypt. We have abstracted the behaviour at a cellular 
level and modelled each cell as a circular agent. As described 
in Figure 1, the colon crypt is an invagination that is in constant 
renewal. For representation, we have adapted the invagination 
into a two-dimensional plane made up of cells with a 
continuous boundary to the left and right of the cells, thus 
preserving the original three-dimensional geometry (Figure 2). 
In our computational model, cells are represented by agents that 
react to the morphogens in the microenvironment, enabling 
cells to divide, quiesce or die (Figure 3). During normal 
homeostasis, three populations of morphogen-regulated cells 
coexist: Stem Cells (SCs) at the bottom, Transit Amplifying 
Cells (TACs) in the middle and fully differentiated Epithelial 
Cells (ECs) at the top (Figure 2). Cells are physically able to 
push other cells in all directions, with higher probability of 
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pushing cells up or sideways up, a low probability of dividing 
sideways and an even lower probability of going downwards to 
the sides or downwards (Table 1). SCs proliferate at the bottom 
compartment, pushing cells up and supplying a fresh batch of 
TACs that eventually differentiate at the top of the crypt and 
are shed away. 

We previously studied the intestinal glands in the colon, or 
colon crypts: invaginations in intestinal tissue that help absorb 
nutrients as food passes through them (Figure 1). We found that 
ALife techniques are ideal to address biological complex 
systems at the molecular, cellular and tissue level; and capable 
of shedding light on in vivo experiments that report seemingly 
different findings. Specifically, we were able to bridge different 
values reported for these contributors, and thus reconcile 
theories on which one is the biggest contributor the time it takes 
for a crypt to become the descendant of a single basal stem cell, 
also known as monoclonality (Araujo, 2018). In our work we 
focused on two key morphogens the process of cell renewal in 
the crypt: WNT (promoting the stem-cell phenotype) and EGF 
(promoting cell division and regulating cell differentiation). 
We modelled both morphogens as being maximum at the base 
of the crypt, as they are thought to be provided by Paneth cells 
which reside there (Sato, 2011). It is currently thought that the 
morphogens concentrations decrease in a gradient throughout 
the length of the crypt (Bach, 2000). In our homeostatic model, 
the WNT ligand concentration, keeping all the cells in contact 
with it in a stem cell phenotype, is completely depleted 10 to 
30 μm (approximately one to three cell diameters) above the 
base. When cells are out of the WNT concentration, but still 
within the EGF gradient, they lose stem cell properties, start 
aging, and are able to divide proportionally to the bio-
availability of EGF. Once these transit-amplifying cells are 
pushed outside of the EGF gradient (approximately 31 μm 
above the base of the crypt) they become fully differentiated 
epithelial cells, stop dividing and their likelihood of being shed 
away or dying is 100%. Besides EGF, other morphogens have 
been implicated in the regulation of TAC cells (Carulli, 2014) 
and EGF in the model is only representative of a putative 
morphogen acting by a gradient. 

 

Figure 2. The compartments that make up the colon crypt 
model. The WNT morphogen (right) maintains cells in SC 
state, while EGF regulates cell division.  

Our previous results (Araujo, 2018) show that the geometry 
of the crypt such as the total number of stem cells (Fletcher, 
2012), the proportion of side cell displacement (Ritsma, 2015) 
and the number of basal stem cells (Kozar, 2013) all have a 
profound impact on the time to monoclonality. We showed that 
a niche of stem cells dividing from the bottom provide a 
continuous influx of new cells, and that eventually the 
dynamics (such as cell displacement), generate observable 
global effects such as a change in the frequency of 
monoclonality. This is important because it offers a metric for 
the possible fixation of mutations; but it doesn’t consider the 
phenotype changes that an altered genotype might confer. To 
obtain a true metric by which genetic alterations will spread 
through the crypt it is important to include realistic abstractions 
of oncogenic mutated cells in the intestine. 

The Algorithm 

We had previously developed an ABM that recapitulates the 
known mechanics of the healthy crypt (Araujo, 2018). Novel in 
this work, we have completely redesigned our agents, giving 
them an internal genetic circuit for decision making. As in the 
original model, every cell is queried at every time step in an 
asynchronous update. A random cell that has not been 
previously updated during the time step is picked and follows 
the update algorithm by which it is given the chance to decide 
whether to die, divide or do nothing per cell cycle (Figure 3). 

The cell identity is decided by its position with respect to the 
WNT concentration (SC) and the EGF gradient (TAC) though 
a probabilistic calculation. SC cells have a fixed rate of 
division, divisionSC, while under the influence of WNT, which 
might be altered by a mutation. Their probability of division 
100% throughout the wildtype SC compartment is then 
calculated as: 

R(SCdiv)= 100*(divisionSC) 

Wildtype TACs have 100% chance of dividing as they leave 
the WNT concentration but are still in contact with the EGF 
gradient. The wildtype TACs chance of division, TACdiv, 
decreases linearly to 0% as it travels to the top of the EGF 
gradient. To achieve this, we normalize the difference between 
the EGF and WNT, Dgrad, and calculate the vertical distance, 
yPos, between the TAC cell and the end of the WNT ligand 
concentration, which modulates division TAC: 

R(TACdiv)= 100*(divisionTAC)*(yPos-Dgrad)/Dgrad 

Where divisionSC and divisionTAC are biological parameters 
for wildtype cells, as shown in (Table 1). When a cell divides 
it pushes one of its neighbours, selected with the baseline 
probabilities shown in Table 1. The probability of death is 
100% when leaving the EGF gradient. We model aging as a 
decrease in telomere length, therefore reducing the number of 
times a cell can divide (initially 5 divisions) and persist within 
the TAC-compartment. Each round, the algorithm queries the 
system for a user defined condition. For this work we will use 
one of three user-specific queries: 1. a set time (in days), 2. if 
the basal SCs have become monoclonal, and 3. if a mutation 
has disappeared from the basal SC compartment. If the user 
specific query is not met, it continues updating cells, and 
advancing to a new time step when every cell has been updated 
or stopping when the query has been met. 
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Figure 3. Algorithm for cell dynamics. The program ends when 
the user specific query (E.g. reaching monoclonality) is met. 

Agent design  

We designed the agents to offer different information that could 
be displayed visually with regards to key metrics of interest. In 
the wildtype visualization, SCs (cells inside the WNT ligand 
concentration) are tagged green, TACs (cells outside the WNT 
and in the EGF gradient) are marked white, and ECs (cells 
outside of both gradients) are coloured peach (Figure 2). To 
track the lineage of cells, we give a tag number to each of the 
initial basal SC which is inherited by their progeny throughout 
the simulation. In the initial baseline condition, as shown in 
Figure 2, we assume that cells that are in the column 
immediately on top of the SC are progeny of it and therefore 
inherit this number, which is displayed at the centre of each cell 
in the visualization. This gives a representation and a clear 
pathway of how cell mixing and eventually monoclonality 
occur. Other metrics such as the number of divisions and age 
are also stored in each agent and can be shown as the number 
displayed on each cell.  

Biological Parameters 

The structure of the seven gene network used in this paper was 
extracted from and confirmed against literature (De Roock, 
2011) (Sartore-Bianchi, 2016) (Strubberg, 2017) (Pan, 2017) 
(Berg, 2012). Inputs (WNT and EGF levels at crypt positions), 
outputs (calculated cell properties) and trigger values 
(threshold levels for different outputs) of the gene network 
algorithm in the baseline case (no mutations), were selected 
based on the parameters from Table 1, while mutation impacts 
are shown in Figure 3. The gene output for copy number 
changes, gene inactivation/activation mutations, signal 
thresholds for output changes were selected to reproduce the 
expected mutation impact outputs (Figure 4 and Table 2). 

The gene signalling pathway diagram was converted into a 
simple algorithm (Figure 4) which returns cell parameters for 
proliferation probability, death probability, cell cycle length 
and cell fate (stem cell, TAC or differentiated cell) based on the 
position of the cell in the crypt. Also included in the algorithm 
are abstracted impacts for activating or deactivating point 
mutations and copy number changes e.g. if KRAS was 
activated proliferation probability was increased. Each stage of 
the algorithm represents a gene receiving a signal of a certain 
strength either from the previous gene in the network or from 
the initial signalling protein (EGF or WNT).  

  

Figure 4. Simplified gene network. The network was 
constructed based on the mutation frequency of key CRC 
related genes documented in the COSMIC database ((Forbes, 
2017); cancer.sanger.ac.uk). Black arrows with solid line: gene 
activation; Black arrows with dash line: effects; Red arrows: 
inhibition; red boxes: proto-oncogenes; blue box: tumour 
suppressors. The input and output variables as well as the 
calculation for signal integration are a first approximation to 
reconcile in-vivo (Ritsma, 2015) and in-vitro (Snippert, 2013) 
data with yet-unquantified but known genetics (Forbes, 2017. 

Parameters      Value Reference 

Cell Diameter 10 μm (Bach, 2000) 

Width and length of 
crypt 

16 x 
25 cells 

(Bach, 2000; 
Totafurno, 1987) 

SC division rate 
(divisionSC) 

Once every 
24 hours max 

(Fischer, 2016) 

TAC division rate 
(divisionTAC) 

Once every 
12-24 hours 
max 

(Kozar, 2013) 

Probability of Side 
Displacement per 
cell division (SDisp) 

0.24 (0.12 
each side) to 
0.74  

(Ritsma, 2015) 
 
(Snippert, 2013) 

Probability of 
Downwards 
Displacement 
per cell division 

0.08 for 
TACs, 
0.00 for SCs 

(Ritsma, 2015) 

Table 1: Baseline parameters used to simulate a murine small 
intestine crypt.  
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Genetic Alteration Change in Probability 

Gene copy number increase to 3 
or more 

output gene signal > 100% 

Gene copy number decrease to 1 output gene signal < 100%  

                >  0% 

Gene copy number decrease to 0 output gene signal = 0% 

 

Activating mutation output gene signal > 100% 

regardless of input 

Minimum cell cycle length 12 hours (normally applies 

to TAC) 

Maximum cell cycle length 24 hours (normally applies 
to SC) 

Table 2- Altered probabilities from mutations in the abstracted 
gene network. The actual values of the variables as well as the 
calculations describing signal transduction are still being 
elucidated, and thus we have abstracted these values in a first 
approximation to recapitulate published data. 

Model Validation 1: Positional Mitotic Index 

We compare our model with a metric used by us and others in 
the past: mitotic activity, which causes a pressure-driven 
passive movement from the bottom to the top of the crypt, as 
described in (Meineke, 2001). We ran 100 simulations and 
defined our end user-query as a 30-day period. When tested, the 
average division per row (Figure 5) recapitulates the data for 
mitotic index distribution in the crypt presented in Fig 4.iv of 
(Sunter, 1979), where there is a maximum of mitotic activity a 
few rows after leaving the base of the crypt and decreases 
throughout the rest of the rows.  

Model Validation 2: Neutral Drift Dynamics 

We test for evidence of a neutral drift in the cellular dynamics 
of intestinal stem cells, and compare to results found by 
(Snippert, 2010). In their experimental system, a 14 basal stem 
cell population was calculated to have a probability of side 
displacement of 0.74, demonstrating neutral competition 
amongst SCs. In 100 simulations of such experiment (Figure 6) 
we find found that the dynamics exhibited by the updated 
model agree with that reported in Figure 7D of (Snippert, 
2010).  

Experiments 

We hypothesise that there is a CRC-proliferative mutation that 
is more likely to be initially fixated in the crypt. To provide 
evidence for this, we focus on answering: 1. how long does it 
take for a random mutation to be fixed in the crypt? and 2. how 
fast would a key POG mutation fixate in the crypt? To 
investigate the time to mutation fixation and quantify the role 
that the individual mutations have in CRC initiation, we first 
establish a baseline to fixation. Subsequently we simulate 
experiments that explore mutational scenarios. Our 
experiments are: 

Experiment 1- Baseline time to monoclonality. In their cell-
tracking experiments Ritsma et al. measured the time it takes 

for one basal SC sub-clone to divide sideways enough to make 
the entirety of the crypt a descendant of this cell, or monoclonal 

(Ritsma, 2015). The researchers performed this experiment 
with a number of crypts and describe in their results the 

percentage of crypts that have become monoclonal in a 140-
day period. The researchers use 8 basal SC and 16 suprabasal 

SCs, each with a probability of side displacement of 0.24% 
(0.12 each side) per division. We perform 100 simulations with 

the baseline model, as shown in Figure 7, based on the accepted 
parameters shown in Table 1 and Table 2, and measure our 

results using this same methodology.  

  

Figure 5. Mitotic index distribution in the crypt (upwards form 
the crypt as described in in Figure 2) of 100 simulated crypts 
with 8 basal and 16 suprabasal stem cells over a 30-day period. 
We compare it to data presented in Fig 4.iv of (Sunter, 1979).  

 

 

Figure 6. Frequency of monoclonal crypts over time as a 
percentage of surviving SC clones (out of initial 14) as 
predicted by neutral drift dynamics (Snippert, 2010). 

  
Figure 7. Progression from 8 stem cell lineages towards 

monoclonality of stem cell 7 (marked purple) over 24 days. 
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Figure 8: Simulation of biological data for monoclonality based 
on experiments reported on (Ritsma, 2015). From 100 
simulations (as shown in Figure 7) we measure every 10 days 
the percentage of simulations that have become monoclonal. 
By day 140, 100% have reached this state. 

 

 

Figure 9. Time to a mutation fixation within 100 days (black 
boxes) from 4000 simulations. They grey box shows the 
number simulations that still contained a mutant at the basal SC 
compartment that could spread throughout the crypt given more 
simulated time. 

 

    

Figure 10. Time to a mutant loss from the crypt from 4000 
simulations.  

Experiment 2- Time to Mutation Fixation. In Experiment 2, 
a genetic mutation is randomly introduced into one of the basal 
stem cells (BSC). Mutations that lead to changes in the output 
signal of the gene in Figure 4 will ultimately alter proliferation 
probability, cell death probability and cell cycle length. 

 

Figure 11. Probability of fixation for each genetic mutation as 
a cumulative distribution function for the oncogenes KRAS, c-
Myc, EGFR, BRAF and AKT1. 

The crypt is allowed to evolve for 100 days and the 
simulation is stopped when one of the three conditions is 
satisfied: 1. The time limit is reached. 2. Mutation is fixed. or 
3. The mutation population is swept from the crypt. The 
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mutation is assumed to be fixed when the mutated lineage takes 
over all BSCs, as eventually, all cells in the crypt will have the 
same ancestor and inherit the same type of mutation. Similarly, 
the mutation is assumed dead when mutated ancestors is lost 
from the first row. 

Experiment 3- Fixation Probability of Oncogenes. Finally, 
we simulate a point mutation and compare it to the gain of one 
gene and the loss of one alleles of the proto-oncogenes EGFR, 
KRAS, BRAF, c-Myc, and AKT1, with the altered probabilities 
shown in Figure 4. 200 simulations were run for each genetic 
mutation with basal stem cell number set to 8. 

Results 

Results 1: Establishing a baseline time to monoclonality. In 
our baseline simulations for monoclonality (Figure 8), 100% of 
the crypts become monoclonal, or fixed, by day 140 following 
the same trend as that reported by Ritsma (Ritsma, 2015). 
These dynamics are important to our understanding of the 
genetic evolution of the crypt, since they would give us an 
estimate of how fast we can expect a neutral mutation to spread 
through a healthy crypt. Using this as our baseline, we will 
proceed to analyse the results of Experiments 2, 3 and 4.  

 

Results 2: Time to Mutation Fixation. Results from 
Experiment 2 show a distribution of the time it took for a 
mutation to become fixed in the crypt. The data collected from 
4000 simulations ran for 100 days of simulated time shows that, 
if a mutation arises, it is mostly likely to be fixed within 20 to 
40 days (Figure 9). Interestingly, 102 simulations contained at 
least one mutant cell which could dominate the crypt given 
more simulated time.  

Figure 10 summaries the times at which the mutated ancestor 
was washed out from the crypt, showing that the survival rate 
for a mutation is low. Most mutant cells were swept from the 
crypt within the first 2 days. The results suggest that mutant 
domination is a slow and inefficient process, as most mutant 
cells are replaced by WT clone in a stochastic manner (Figure 
10). This highlights the importance of monoclonal conversion 
in cancer initiation as it prevents the accumulation of 
mutations.  

 

Results 3: Fixation Probability of Oncogenes. Figure 11 
shows the probability of fixation for known proto-oncogenes 
under the scenario of a point mutation (blue), an increase in 
copy number (red) and loss of a gene (pink). The more likely 
scenario for true oncogenes activation is an activating mutation 
or an increase in copy number via CIN. Broadly, the cumulative 
distribution function for the oncogenes KRAS, c-Myc, EGFR, 
BRAF and AKT1 under our theoretical conditions (Figure 4) is 
under 20% by day 100. Specifically, AKT1 showed an increase 
in fixation when losing copy numbers (Figure 11.e). Some 
oncogenes have also been implicated in key cell maintenance 
processes, so having more than one role makes their precise 
contribution difficult to predict. Models such as this have 
helped us detangle the isolated effect of single mutations and 
suggest a metric for their contribution in oncogenesis. In the 
case of c-Myc (Figure 11.b) and EGFR (Figure 11.c), the model 
suggests a higher frequency of fixation via point mutations, 

while gene amplification leads to the highest fixation of BRAF 
(Figure 11.d) and KRAS (Figure 11.a). The model points to 
KRAS having the highest likelihood of being fixated. These 
distributions, although in general agreement with reported 
behaviour in literature, do not by themselves explain a mutation 
fixation reported to be more than 25% for APC and possibly 
higher for KRAS (Vermeulen, 2013). Further, recent studies 
show that more than 97% of KRAS mutations in CRCs could 
be due to point mutations, conferring perhaps more plasticity 
(Bronte, 2015). Our results suggest that the precise mechanisms 
of oncogenic alterations for the fixation of mutations are not yet 
fully understood. Collectively, these results suggest that the 
theoretical impact of individual initiating mutations must be 
refined to fully capture the complexity joint mutations, which 
will be the next step in our research. 

Conclusions 

In this work, we investigated whether there is a kind of CRC-
proliferative mutation that is more likely to be initially fixated 
in the crypt. We focused on modelling the EGFR and WNT 
genes and their connectivity, with special interest on CRC 
implicated proto-oncogenes. The evidence provided by the 
abstracted model suggests that KRAS could be heavily 
responsible for cancer initiation. In addition, in agreement with 
biological observations, oncogenes generally have higher 
fixation probability for activating mutations and lower 
probability for non-activating mutations. These results align 
with clinical evidence. Clinical studies for the rest of genetic 
mutations in CRC initiation are limited. In particular, the 
mechanism underlying aberrant activation of c-Myc is 
unknown. A major reason for this is that majority of these 
genetic mutations may occur in later stages of cancer 
progression or presented in an alternative pathway to CRC, thus 
further evaluation on the genetic network is required. The 
simplified model was able to provide a theoretical insight into 
the nature and significance of each genetic mutation in early 
tumour formation, and we aim for it to help both biologist and 
computational cancer researchers to interesting areas of 
exploration. 

For our next step, we aim to further investigate the genetic 
and epigenetic interdependencies in CRC initiation, focusing 
on in silico experiments that cannot be done in vitro or in vivo, 
but which may have a significant impact on colorectal adenoma 
(Lao, 2011). The current model already allows shared 
information across multiple scales, so it can be readily extended 
to consider a multiple sequence of mutations. Also, epigenetic 
events (i.e. DNA methylations) that affect the regulation of key 
genes could be added to the molecular level. Quantifying the 
impact from both genetic and epigenetic abnormalities can help 
us shed light on non-intuitive mechanisms underlying cancer 
initiation. Finally, if information such as patient characteristics 
and carcinogen influence is available, the model could yield 
clinically relevant results. 

The crypt model aims to investigate individual contribution 
of key genetic mutation in early stage of colorectal cancer. Our 
simulated results are in general agreement with evidence from 
the literature, and we believe that the next step is to further 
extend this bridge to clinically-relevant human data for 
therapeutic discoveries. Much work remains to be done to fully 
understand the CRC pathogenesis. 
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