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Abstract

In this work, we propose a new criterion for choosing the regularization parameter in Tikhonov
regularization when the noise is white Gaussian. The criterion minimizes a lower bound of the pre-
dictive risk, when both data norm and noise variance are known, and the parameter choice involves
minimizing a function whose solution depends only on the signal-to-noise ratio. Moreover, when
neither noise variance nor data norm is given, we propose an iterative algorithm which alternates
between a minimization step of finding the regularization parameter and an estimation step of esti-
mating signal-to-noise ratio. Simulation studies on both small- and large-scale datasets suggest that
the approach can provide very accurate and stable regularized inverse solutions and, for small sized
samples, it outperforms discrepancy principle, balancing principle, unbiased predictive risk estimator,
L-curve method generalized cross validation, and quasi-optimality criterion, and achieves excellent
stability hitherto unavailable.
Keywords: Tikhonov regularization, regularization parameter, predictive risk optimization

1 Introduction

In this work, we study discrete linear inverse problems of recovering an unknown object from noisy
indirect measurements. When the matrix is ill-conditioned, the solution given by the generalized inverse is
generally unsatisfactory, especially in the presence of data noise. Then one often employs a regularization
method, which provides a one-parameter family of candidate solutions and a criterion for selecting the
optimal parameter (and a corresponding solution) [43, 7, 19]. In the case of white Gaussian noise, popular
linear regularization methods include truncated SVD [13], Tikhonov regularization [43] and Landweber
method [26], and they all require specifying one scalar parameter, i.e., regularization parameter, which
is notoriously challenging. A large number of choice rules have been proposed in the literature. Most
popular criteria include discrepancy principle (DP) [35], Unbiased Predictive Risk Estimator (UPRE)
[40] and balancing principle (BP) / Lepskii’s principle [27, 34, 2, 33] (see also [11] and references therein),
when the noise level is given, and Generalized Cross Validation (GCV) [9, 46], L-Curve (LC) method
[14, 16] (see also [39, 21] for an algebraic variant), quasi-optimality criterion (QOC) [44, 42] and Hanke-
Raus rule [12], when the noise level is unknown. The heuristic rules (without requiring a knowledge of
the noise level) can categorically grouped into the general context of choice rules based on functional
minimization. See the review [10] for detailed experimental comparison and in-depth discussions for
various linear regularization strategies; see also the work [23]. However, none of the aforementioned
methods can consistently find a near-optimal regularization parameter for all test problems and noise
realizations in simulation studies.

DP, UPRE and GCV have a common drawback in that they depend heavily on the sample realization
and thus can lead to instable solutions. In particular, DP selects a regularized solution with a predictive
error not smaller than the given noise level [35]. Thus, when the predictive error is larger (smaller) than
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the true noise level or the noise level is very small (large), it leads to under-regularized (over-regularized)
solutions, and the error of the approximate solutions may be arbitrarily large. Indeed, in practice, DP
often includes an additional tuning parameter [7]. BP is theoretically better than DP [34, 10]: the
convergence holds if the ratio of the actual and given noise is bounded (which may be larger than one),
thereby avoiding the convergence issue of DP. GCV provides an asymptotically unbiased estimator of
the predictive risk, but for small sized samples it can give unstable solutions [46, 31], due to the flatness
of the GCV curve. Finally, UPRE can fail to approximate the predictive error when the data size is
not large enough or the data norm is too small [5]. Further, the LC method still defies a complete
convergence analysis even though it performs extremely well in many applications [45]. QOC is very
prominent among heuristic rules: it is easy to implement, gives excellent empirical performance, and
further, both convergence and convergence rates have also been established for a wide variety of noise
models, including the infinite-dimensional setting [24, 3, 22, 23]. However, it fails almost surely for
severely ill-posed problems with Gaussian white noise [25].

In this work we propose a novel method for choosing the crucial Tikhonov regularization parameter,
which falls within the realm of rules based on functional minimization. The proposed strategy is inspired
by the predictive risk, an idea that has gained increasing attention in recent years (see the works [30, 29]
and references therein). However, instead of minimizing the predictive risk or its unbiased estimators
directly, it minimizes a lower bound of the predictive risk, when both data norm and noise level are
known. The lower bound is constructed only for the approximation error (a.k.a. bias) and does not
change the noise amplification (a.k.a. variance). This construction ensures that the method chooses a
regularization parameter that is an upper bound of the optimal parameter (with respect to the predictive
risk). The minimizer of the lower bound depends only on the ratio between the data norm and noise level,
i.e. signal-to-noise ratio (SNR), and the procedure is termed as predictive risk optimization (PRO). In
practice, this lower bound is quite tight, and thus the choice rule enjoys excellent accuracy and stability.
We discuss its utility under three different information availability scenarios: (i) SNR is known, (ii) the
data noise level is known, but the true data norm is unknown and (iii) both noise level and data norm are
unknown. In case (i), PRO can be applied directly. In case (ii), we employ an unbiased estimator of the
data norm to efficiently approximate PRO. In case (iii), we propose an iterative algorithm, each iteration
of which is composed of two steps: given estimated data norm and noise variance, one uses PRO to find the
regularization parameter, and given the estimated regularization parameter, one re-estimates the data
norm and noise variance. The procedure is termed as iterative PRO (or I-PRO). Theoretically, we prove a
number of properties of the rule for Tikhonov regularization, e.g., convergence to zero as the noise level
tends to zero, upper bound property and the monotone convergence of the I-PRO procedure. Further, to
demonstrate their performance, we carry out extensive simulation studies on benchmark problems from
two public software packages, i.e., Regularization tools [15] and AIR tools [17], which involve small-scale
1d applications and large-scale 2d tomography problems, respectively, and give a detailed comparative
study with several popular existing choice rules.

The rest of the paper is organized as follows. In Section 2, we describe the setup of a discrete inverse
problem in a Gaussian framework and introduce the PRO criterion. In Section 3, we describe optimization
strategies for three different information availability scenarios. In Section 4, we investigate the PRO

criterion for Tikhonov regularization, establish the well-posedness of the rule and bounds on the chosen
parameter, analyze the convergence of the I-PRO scheme, and describe their efficient implementation for
large-scale problems. In Section 5, we report simulation results and discuss the pros and cons of PRO and
I-PRO, when compared with existing choice rules. Section 6 contains a summary of the work.

2 Background and motivation

Consider the linear inverse problem
g† = Af†, (1)

where f† ∈ Rm, g† ∈ Rn and A ∈ Rn×m. The goal is to recover the true signal f† from a given noisy
measurement of g†, denoted by gη. Throughout, gη := g†+η, where η is a Gaussian distributed random
vector with Eη[η] = 0, Eη[ηiηj ] = σ2δij , with δij denote the standard Kronecker symbol, where Eη[·]
denotes taking expectation with respect to the distribution of η. A linear regularization method Rα
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provides a family of estimates of the solution

fηα = Rαg
η, (2)

for any realization gη. Upon ignoring the usual scaling factor 1/n, the predictive risk pα(gη) is defined
as

pα(gη) = Eη[‖gηα − g†‖2],

where ‖ · ‖ denotes the Euclidean norm, and gηα = Xαg
η is the predictive data, where

Xα = ARα (3)

is the so-called influence matrix. Since the predicted data gηα can be split into

gηα = Xαg
† +Xαη,

by the standard bias-variance dcomposition, the predictive risk pα(gη) is given by

pα(gη) = ‖(Xα − I)g†‖2 + σ2‖Xα‖2F , (4)

where ‖ · ‖F is the Frobenius norm. Equation (4) indicates the predictive risk pα(gη) consists of two
terms: the bias term ‖(Xα − I)g†‖2 due to the approximation error, which depends only the regularity
of the exact solution f†, and the variance term σ2‖Xα‖2F due to noise amplification.

Note that the expression in (4) is not directly computable, since the exact data g† is unknown.
However, this quantity may be estimated using sample data gη to obtain various predictive risk estimators
for parameter choice. This idea has long been pursued in the literature; see, e.g., [32, 41, 8, 38, 6, 28, 30, 29]
and references therein for various practical applications and theoretical developments. For example, with
tr(·) denoting the trace of a matrix, the following two estimators are frequently adopted:

p̂α(gη) = ‖Afηα − gη‖2 − 2σ2tr(I −Xα)

for UPRE and

p̃α(gη) =
‖Afηα − gη‖2

tr(I −Xα)2

for GCV, when the noise level σ2 is known and unknown, respectively. We refer to [28] for further
approximations of the predictive risk in parameter choice. However, it is known that they tend to suffer
from the notorious overfitting issue, i.e., the selected parameter tends to be too small [30], which is also
confirmed by the simulation study in Section 5. See also the recent work [29] for the order optimality of
risk estimators for a class of (ordered) filter based regularization methods, where the numerical challenges
are also highlighted [29, Fig. 1].

GCV and UPRE estimate the minimum value of the predictive risk pα(gη) using the noisy sample gη.
The accuracy of these estimators depends strongly on the sample size, and when the size of gη is small, the
estimation can be unsatisfactory. To illustrate this point, in Fig. 1(a), we show the predictive risk, its bias-
variance decomposition and the optimal α (with respect to predictive risk), for shaw from Regularization
tools. In Fig. 1(b), we show the GCV and UPRE estimators (including their global minimizers). Clearly,
both curves do not have a unique minimizer, and more importantly, the global minimizers are smaller
than the optimal one by several orders of magnitude. Consequently, the corresponding reconstructions
by GCV and UPRE are hugely corrupted by noise amplification and completely useless. This kind of
behavior can be observed in the majority of test problems available in the package Regularization tools
and actually for each problem therein, its presence has a non-negligible significant percentage of randomly
generated samples gη.

In this work we present a novel parameter choice strategy inspired by predictive risk, which aims at
overcoming the aforementioned drawback of lacking robustness. It gives an upper bound of the optimal
parameter, and thus can provide solutions sufficiently accurate yet very stable with respect to sample
variation. The rule is based on the following simple observation:

sn(I −Xα)2‖g†‖2 ≤ ‖(Xα − I)g†‖2 ≤ s1(I −Xα)2‖g†‖2,
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Figure 1: Behavior of the predictive risk and the lower bound for shaw.

where sn(I−Xα) and s1(I−Xα) denote the minimum and maximum singular value of the matrix I−Xα,
respectively. Then given the norm of the true data g†, i.e., ‖g†‖ = ρ, we can bound the predictive risk
pα(gη) both from above and below accordingly using the preceding bounds. It turns out that the upper
bound is not useful since it can trivially reduce to a constant. Surprisingly, graphically, the lower bound
has the same shape as the predictive risk and possesses a minimizer close to the optimal one. In Fig.
1(a), we show the minimizers of the predictive risk (left one) and lower bound (right one), and the lower
bound of the bias term, which empirically motivates the use of lower bound for parameter choice. Thus,
under the hypothesis ‖g†‖ = ρ, we take the minimum of the predictive risk

Tρ(α) = min
‖g†‖=ρ

pα(gη), (5)

and then seek the minimizer of Tρ(α) along α :

α∗ = arg min
α
Tρ(α), (6)

which approximates the optimal parameter and thus can be used as a choice rule. Note that the function
Tρ(α) depends on the variance σ2 of the noise η and the (squared) data norm ρ2. We can rewrite the
lower bound of the predictive risk as

T(ρ2,σ2)(α) = ρ2sn(Xα − I)2 + σ2‖Xα‖2F . (7)

In the construction of the approximation (7), the variance term remains intact, but the bias term is
subsumed by a lower bound. Since the bias term is increasing and the variance one is decreasing, α∗

is an upper bound of the “optimal” regularization parameter, which ensures the non-overfitting of the
choice rule; see Proposition 2 for a proof in the case of Tikhonov regularization. It is worth noting that
problem (7) has a nice variational structure similar to the standard Tikhonov regularization itself: the
first term can be viewed as fidelity (with respect to the identity matrix I), and the second term is a
penalty, controlling the size). This variational structure lends itself to rigorous analysis.

In (7), we give the explicit dependency of T(ρ2,σ2)(α) on the noise variance σ2. Clearly, its minimizer(s)
α∗ depends only on the SNR ρ2/σ2. Thus, the choice rule determines a proper level of regularization
according to the SNR. Nevertheless, the latter information is not always available in practice. In Section
3, we discuss three different strategies for minimizing the function T(ρ2,σ2)(α) according to the available
SNR information.

3 Optimization strategies

Now we apply the lower bound T(ρ2,σ2)(α) given in (7) for parameter choice. The minimization of
T(ρ2,σ2)(α) is possible only if both ρ and σ are known. When some of this information is unavailable, as
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is often the case in practice, we propose to approximate T(ρ2,σ2)(α) (and accordingly the minimizer α∗).
We describe three optimization approaches according to the level of available information. The second
and third cases are more realistic in practical applications.

3.1 ρ and σ known

First, we consider the case of known ρ and σ. This is the least likely case in practice, since usually the
true data norm ‖g†‖ is not known a priori, but theoretically it is the easiest case. Then the function
T(ρ2,σ2) applies directly. Note that minimizers of T(ρ2,σ2) only depend on the SNR ρ2/σ2 or equivalently

ξ := 10 log10

(
ρ2

nσ2

)
, (8)

which is generally known as SNR in decibel (dB), according to ISO 15739:2017, and will also be called
SNR below, by slightly abusing the terminology. Note that given SNR ξ, the minimizer does not depend
on noisy data gη and the choice rule is of a priori nature [7]. For Tikhonov regularization, it can be shown
that the rule is indeed well defined, and the function T(ρ2,σ2) is relatively well behaved and numerically
tractable; see Section 4 below for further details.

3.2 ρ unknown and σ known

In many applications, the SNR ξ is unknown and only an estimate of σ2 is available. This happens when
the measurement is acquired by an industrial device, and by collecting multiple repetitive measurements
of a zero excitation signal, the read-out noise allows estimating the noise level σ2 (e.g., via maximum
likelihood). This is a standard calibration procedure for providing the noise level (measurement precision)
σ2 of a device in industry. Using the following unbiased estimator of ρ2

ρ̂2 = ‖gη‖2 − nσ2, (9)

we can define an M -estimator of α∗. Specifically, we take the minimizer

α∗ := arg min
α
{Uη(α) := T

(ρ̂2,σ2)
(α)} (10)

where Uη(α) is an unbiased estimator of T(ρ2,σ2)(α), i.e. Eη[Uη(α)] = T(ρ2,σ2)(α). Upon slightly abusing
terminology, we also refer it to as PRO.

3.3 ρ and σ unknown

When both ρ and σ are unknown, PRO cannot be applied directly, and we propose an alternating esti-
mating/minimization strategy. The procedure is summarized in the I-PRO algorithm below.

Formally, the I-PRO algorithm alternates between estimating the SNR (given α) and estimating α
(given the SNR), in a manner similar to the classical EM algorithm or coordinate ascent in variational
Bayes. We term it as iterative predictive risk optimization (I-PRO). Surprisingly, this simple procedure
can provide excellent estimates of the SNR for ill-posed problems, and the obtained solutions are often
very close to the ones corresponding to known ρ and σ, as confirmed by extensive simulation results in
Section 5.

Computationally, PRO is based on two invariants, i.e., the smallest singular value sn(Xα−I) of Xα−I
and trace of XT

αXα. They can be both computed by means of SVD of the matrix A, whereas Xα can be
written in terms of SVD of A, which is very convenient when the problem size is small. Otherwise, they
can be computed without the SVD of A, using randomized algorithms; see Section 4.3 for further details.

4 Tikhonov regularization

Now we consider PRO and I-PRO for standard Tikhonov regularization. The corresponding influence
matrix Xα ∈ Rn×n is given by

Xα = A(A∗A+ αI)−1A∗.
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Algorithm 1 I-PRO: Iterative Predictive Risk Optimization.

1: Fix ε = 10−16, α0 6= 0, α1 = 0, k = 1
2: while |αk − αk−1| > εαk do
3: Update the variance according to formula

σ2
k(α) =

1

n
‖rηαk
‖2 (11)

where rηα := Afηα − gη is the residual.
4: Update the signal norm using

ρ2k(αk) = ‖gη‖2 − ‖rηak‖
2. (12)

5: Update αk by computing minimizer of equation (7) given ρ2k and σ2
k, i.e.,

αk+1 := arg min
α
T(ρ2k,σ2

k)
(α). (13)

6: end while
7: return αk

Clearly, Xα is symmetric and positive semidefinite, with its singular values sn(Xα) ≤ . . . s1(Xα) < 1.
Let s1 ≥ ... ≥ sr > 0 = sr+1 = . . . = smin(m,n) be the singular values of the matrix A, with r being the
rank of A. Then the singular values si(Xα) of Xα are given by

si(Xα) =


s2i

s2i + α
, i = 1, . . . , r,

0, i = r + 1, . . . , n.
(14)

Since sn(Xα − I) = 1− s1(Xα) > 0, a lower bound of the predictive risk pα(gη) is given by

T(ρ2,σ2)(α) = ρ2
α2

(s21 + α)2
+ σ2

r∑
i=1

s4i
(s2i + α)2

. (15)

The explicit form of T(ρ2,σ2) facilitates the analytical study of PRO. It is convenient to introduce two
auxiliary functions. We denote the first and the second terms (involving α) of equation (15) by f1(α)
and f2(α), respectively, i.e.,

f1(α) =
α2

(α+ s21)2
and f2(α) =

r∑
i=1

s4i
(α+ s2i )

2
.

Next, for any fixed h = σ2/ρ2, we define a parameterized function

Th(α) = f1(α) + hf2(α) and α∗ = arg min
α∈[0,s21/2]

Th(α).

The re-parameterization does not change the minimizer α∗, but is more convenient for the analysis. The
following identities hold for the function Th(α) :

lim
α→0+

Th(α) = rh and lim
α→∞

Th(α) = 1.

4.1 The PRO function Th(α)

The next lemma gives the convexity and monotonicity of f1(α) and f2(α).

Lemma 1. The function f1(α) is convex over [0, s21/2] and monotonically increasing, and f2(α) is convex
and monotonically decreasing over [0,∞).
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Proof. Direct computation gives

f ′1(α) = 2α
(α+s21)

2 − 2α2

(α+s21)
3 =

2αs21
(α+s21)

3 > 0,

f ′′1 (α) =
2s21(α+s

2
1)−6αs

2
1

(α+s21)
4 =

2s21(s
2
1−2α)

(α+s21)
4 .

Thus, f1 is convex over the interval (0, s21/2]. Further,

f ′2(α) = −
r∑
i=1

2s4i
(α+ s2i )

3
< 0, f ′′2 (α) =

r∑
i=1

6s4i
(α+ s2i )

4
.

This completes the proof of the lemma.

Lemma 2. For any minimizer α∗(h) ∈ [0, s21/2] to the function Th(α), it is strictly monotonically
increasing in h.

Proof. We prove the assertion by the implicit function theorem. The existence of a unique α∗ ≡ α∗(h) ∈
[0, s21/2] follows from the strict convexity of Th over the interval, cf Lemma 1. First, we claim that α∗(h)
is not α = 0. Indeed, it follows from straightforward computation that

T ′h(α) =
2αs21

(α+ s21)3
− h

r∑
i=1

2s4i
(α+ s2i )

3
(16)

and thus

lim
α→0+

T ′h(α) = −2h

r∑
i=1

s−2i < 0.

Thus, Th is differentiable at α∗(h), and the optimal α∗ ≡ α∗(h) satisfies the optimality condition

f ′1(α∗) + hf ′2(α∗) = 0.

Then by the chain rule, we have

f ′′1 (α∗)
dα∗

dh
+ f ′2(α∗) + hf ′′2 (α∗)

dα∗

dh
= 0,

i.e.,
dα∗

dh
=

−f ′2(α∗)

f ′′1 (α∗) + hf ′′2 (α∗)

Then in view of Lemma 1, the denominator is strictly positive for any α∗ > 0, from which the desired
assertion follows directly.

The next proposition summarizes some properties of the minimizer to Th(α).

Proposition 1. Let r be the rank of the matrix A. Then the following statements hold for the function
Th(α).

(i) Over the interval [0, s21/2], the function Th has a unique minimizer α∗.

(ii) If s1 > 0 and h ≤ (27r)−1, the function Th(α) admits a unique global minimizer α∗ in (0, s21/2].

(iii) For h ≤ ζ := s21/tr(A
∗A), the minimizer α∗ ≡ α∗(h) satisfies

s21h ≤ α∗ ≤ (1− (h/ζ)
1
3 )−1s21(h/ζ)

1
3 .
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Proof. Part (i) is already shown in Lemma 2.

Part (ii). By Lemma 1, the function Th(α) is differentiable and strictly convex in the interval α ∈ [0, s21/2].
Furhter, Th is increasing in the interval α ∈ (s21/2,∞) if h < (27r)−1. Indeed, in view of (16),

T ′h(α) ≥ 2αs21
(α+s21)

3 − h
∑r
i=1

2s21
(α+s2i )

2

≥ 2αs21
(α+s21)

3 −
2hrs21
α2 =

2s21
α2

(
α3

(α+s21)
3 − hr

)
.

Clearly α3

(α+s21)
3 is an increasing in α, and its minimum over [s21/2,+∞) is achieved at α = s21/2 with a

minimum value 1/27. Therefore under the condition h ≤ (27r)−1, there exists a unique global minimizer
to Th(α) in [0,+∞) and it is located within the interval [0, s21/2]. Moreover, as argued in Lemma 2 that
if h > 0, α = 0 cannot be a minimizer. This shows part (ii).

Part (iii). Clearly, by Lemma 2, as h tends to zero monotonically, the minimizer α∗(h) also decreases
monotonically. Further, the optimality condition d

dαTh(α∗) = 0 implies

α∗s21
(s21 + α∗)3

(
r∑
i=1

s4i
(s2i + α∗)3

)−1
= h. (17)

Next we bound the quantity on the left hand side. Since
∑r
i=1

s4i
(s2i+α

∗)3
≥ s41

(α∗+s21)
3 , we deduce

h ≤ α∗s21
(s21 + α∗)3

(α∗ + s21)3

s41
=
α∗

s21

This shows the first inequality. Meanwhile, from the inequality

r∑
i=1

s4i
(s2i + α∗)3

≤
r∑
i=1

s2i
(α∗)2

=
tr(A∗A)

(α∗)2
,

we obtain

h ≥ α∗s21
(s21 + α∗)3

(α∗)2

tr(A∗A)
=

s21
tr(A∗A)

(α∗)3

(s21 + α∗)3
,

i.e., α∗

α∗+s21
≤ (tr(A∗A)h/s21)

1
3 . Solving for the inequality gives the assertion in part (iii).

Remark 1. According to Theorem 1, the function Th always has a finite positive and unique minimizer
within the interval [0, s21/2], which is also the unique global minimizer over [0,∞) if the SNR is sufficiently
large. In practice, minimizing over [0, s21/2] is sufficient for Tikhonov regularization. Since the function
Th(α) is strictly convex in α ∈ [0, s21/2], in principle, its minimization is numerically tractable. For
example, one may apply Newton type methods, which is guaranteed to converge globally [37]. Thus it is
numerically more amenable than choice rules based on predictive risk, e.g., UPRE and GCV, which are
known to suffer from (bad) local minima as well as flatness near global minima; see Fig. 1.

Next we turn to the upper bound property of α∗.

Lemma 3. For any g†, there exists an α0 > 0, such that there holds for all α ≤ α0

r∑
i=1

2αs2i
(s2i + α)3

(g†,ui)
2 ≥ 2αs21

(s21 + α)3
‖g†‖2,

where ui denotes the ith left singular vector of the matrix A.

Proof. By the identity
∑r
i=1(g†,ui)

2 = ‖g†‖2 = ρ2, the assertion is equivalent to

r∑
i=1

2αs2i
(s2i + α)3

(g†,ui)
2 ≥

r∑
i=1

2αs21
(s21 + α)3

(g†,ui)
2.
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Now we claim that for all sufficiently small α, there holds

s2i
(s2i + α)3

≥ s21
(s21 + α)3

, i.e.
s21 + α

s2i + α
≤
(s21
s2i

) 1
3

,

which, with λ = (
s21
s2i

)
1
3 , is equivalent to α ≤ s21

1−λ−2

λ−1 = s21λ
−1(1 + λ−1). Thus, it suffices to choose

α0 = s
4
3
1 s

2
3
n .

Remark 2. The bound α0 given in Lemma 3 is very loose. In practice, the coefficients (g†,ui)
2 can decay

very rapidly to zero as i increases, especially for severely ill-posed problems, due to smoothing property
of A (and regularity condition on f†, e.g., source conditions [7, 19]). Then, the first few terms in the
summation are dominating, and one expects a much larger bound. In practice, it is often O(1).

Proposition 2. If the minimizer α∗ to the function Th is sufficiently small, then it is an upper bound
of a local minimizer to the predictive risk pα(gη).

Proof. Straightforward computation shows that the predictive risk pα(gη) is given by

pα(gη) =

r∑
i=1

α2

(s2i + α)2
(g†,ui)

2 + σ2
r∑
i=1

s4i
(s2i + α)2

,

It suffices to show that d
dαpα(gη)|α=α∗ > 0. Note that d

dαpα(gη)|α=α∗ is given by

r∑
i=1

2α∗s2i
(s2i + α∗)3

(g†,ui)
2 − σ2

r∑
i=1

2s4i
(s2i + α∗)3

.

Since the minimizer α∗ of T(ρ2,σ2) is sufficiently small, by Lemma 3, d
dαpα(gη)|α=α∗ > 0. This and the

monotonicity of the sums in pα(gη) complete the proof.

4.2 Convergence of the iterative scheme

Now we analyze the convergence of the I-PRO algorithm for Tikhonov regularization. First, by viewing
the estimates ρ and σ as functions of α, we have the following monotonicity result.

Lemma 4. The functions ρ2(α) and σ2(α) are monotonically decreasing and increasing, respectively, in
α.

Proof. The variance estimate σ2(α) is proportional to ‖Afηα−gη‖2. For any α0, α1 > 0, by the minimizing
property of fηα0

and fηα1
, i.e.,

‖Afηα0
− gη‖2 + α0‖fηα0

‖2 ≤ ‖Afηα1
− gη‖2 + α0‖fηα1

‖2,
‖Afηα1

− gη‖2 + α1‖fηα1
‖2 ≤ ‖Afηα0

− gη‖2 + α1‖fηα0
‖2,

we deduce that the residual ‖Afηα − gη‖ is monotonically increasing in α. Then the assertion follows
immediately.

Now we can prove that the sequence {αk}∞k=1 of regularization parameters generated by the I-PRO

algorithm is actually monotone. Once it is bounded, the result provides a constructive proof of the
existence of a fixed point.

Theorem 1. For any α0 ∈ [0, s21/2], the sequence {αk} generated by the I-PRO algorithm is monotone.

Proof. If α0 < α1, then by the monotonicity in Lemma 4, h(α) = σ2(α)/ρ2(α) is monotonically increasing,
and thus h(α0) < h(α1). Then by Lemma 2, α∗h(α0)

< α∗h(α1)
, i.e., α1 < α2. The case α0 > α1 follows

similarly. This shows the monotonicity of the iterates {αk}∞k=1.
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Note that by the optimality condition to Th, at the fixed point α∗ satisfies

αs21
(α+ s1)3

− σ2(α)

ρ2(α)

r∑
i=1

s4i
(α+ s2i )

3
= 0. (18)

Note that this equation can be rewritten into a (high-degree) polynomial in α, and thus the existence of
a root is ensured. Further, by Lemma 4, ‖Afηα−gη‖ decreases monotonically to the least-squares residual
as α tends to zero, and thus the limit limα→0+ ‖Afηα − gη‖ > 0 makes sense.

Proposition 3. The following statements hold for the I-PRO algorithm.

(i) If limα→0+ ‖Afηα − gη‖ > 0, then 0 is not a fixed point of the I-PRO algorithm.

(ii) If the estimate σ2(α∗)/ρ(α∗) is smaller (greater) than the exact one, then I-PRO estimate α∗ is
smaller (greater) than the PRO estimate.

Proof. Assertion (i) is direct from (18) and an argument by contradiction, and (ii) follows from Lemma
2.

Proposition 3(ii) suggests that one may monitor the quantity σ2(αk)/ρ2(αk) during the iteration as
an a posteriori check: if it is deemed to be too small, then the iteration should be terminated.

4.3 SVD-free implementation

For large-scale problems, SVD is usually too costly to apply (randomized SVD may be applied instead,
when the problem has low-rank structure [20]). Instead we implement PRO and I-PRO as follows. It
follows from (14) that the first term in the function T(ρ2,σ2) depends on the smallest eigenvalue of the
influence matrix I−Xα, or the largest eigenvalue λ1(A∗A) of A∗A. Thus, we employ classical algorithms
for computing λ1(A∗A), e.g., power method, and take

sn(Xα − I)2 =

(
α

λ1(A∗A) + α

)2

. (19)

To compute the term ‖Xα‖2F , we employ a randomized trace estimator [18]:

‖Xα‖2F = tr(X∗αXα) = Ez[‖Xαz‖2]

'
∑p
i=1 ‖A(A∗A+ αI)−1A∗z(i)‖2,

where z follows the standard Gaussian distribution and {z(i)}pi=1 are p i.i.d. samples of Z (other choices
are also possible). Each summand involves solving one linear system: (A∗A + αI)w(i) = A∗z(i). Once
w(i) are obtained, we have

‖Xα‖2F '
p∑
i=1

‖Aw(i)‖2. (20)

In practice, only a few samples are required for an accurate estimation (see [1] for relevant error bounds
on randomized trace estimators). The randomized trace estimation is widely used in implementing GCV.
The difference lies in the fact that for PRO, it is applied to the matrix X∗αXα, instead of Xα in GCV.

5 Numerical simulations and discussions

Now we present two sets of simulation studies with synthetic data from popular public software packages,
i.e., Regularization tools and AIR tools. The first aims to show the robustness of the proposed method for
problems with small and moderately sized samples, and the second to show its performance on large-scale
problems.
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Figure 2: Synthetic data for baart with n = 64 and random seed 9, i.e. rng(9).

5.1 Small and moderately sized samples

Below we compare the Tikhonov solutions by PRO and I-PRO with that by existing choice rules in two
scenarios: (i) PRO versus DP, BP and UPRE, if σ is known; (ii) I-PRO versus LC, GCV and QOC, if σ is
unknown. DP is implemented by solving for α in

‖Afηα − gη‖ =
√
nσ.

The implementation of BP follows [11, equation (1.7)] with the constants γ = 1/4 and c given in [11,
Table 1, p. 961]. All the rules are computed on an equally distributed grid on a logarithmical scale.
We evaluate them on eight inverse problems (i.e., baart, deriv2, foxgood, gravity, heat, i laplace, phillips,
shaw) from the public package Regularization tools (downloaded from http://people.compute.dtu.dk/

pcha/Regutools/index.html, accessed on July 1, 2019). They are all one-dimensional linear integral
equations of first kind, with different degree of ill-posedness. Each problem refers to one example, except
heat and i laplace. The heat family depends on one parameter controlling its conditioning, and we choose
the values 1 and 5 to simulate mildly ill-posed and almost well-posed scenarios, respectively. The i laplace
family has four cases, of which the first three cases have smooth solutions and thus standard Tikhonov
regularization is suitable. This gives rise to a total of eleven examples. For each example, we take 100
independent and identically distributed (i.i.d.) realizations {ηi}100i=1 of the Gaussian noise with mean zero
and covariance σ2I, seeded by MATLAB function rng(i) with i = 1, ..., 100, leading to 100 replicates
of noisy data gηi ∼ N (g, σ2I); see Fig. 2 for typical noisy data for baart.

To measure the accuracy of a reconstruction fηα, we use the relative `2 norm error. ratio between the
reconstruction fηα and the ground truth f†

ε(α, η) =
‖fηα − f†‖
‖f†‖

Other quality measures can be used, and the observations below remain unchanged. Further, we define
the ‘oracle’/optimal `2 norm error, denoted by εo(η), as the minimum value of `2 norm error achieved
along the regularization path. Then we measure the efficiency of a parameter choice rule by computing
the ratio between the oracle `2 norm error over the `2 norm error of the solution given by the rule

eff∗(η) =
εo

ε(α∗, η)
, (21)

where ∗ = DP, UPRE, BP, PRO, LC, GCV, QOC, I-PRO. Finally, to show the overall performance of a
choice rule on a fixed problem setup, we take the median of its efficiency over the 100 replicates.

In Tables 1 and 2, we present quantitative results for all the eight choice rules under consideration at
three typical SNR values (i.e., ξ = 10, 20, 40) and two sample sizes (i.e., n = 64 and 1024). The results
are the median (columns from 3 to 10) of the empirical efficiency distributions computed from the 100
replicates. Below we examine the results more closely.

First, the oracle `2 norm error, εo, in the second column depends crucially on the problem type,
condition number and ground truth. When n = 64 (see Table 1), except for one case, εo ranges from 0.11
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`2 error σ know λ unknown σ and λ unknowns

n = 64 Oracle DP UPRE BP PRO LC GCV QOC I-PRO

low statistic (ξ = 10)

baart 0.34 43.1% 74.5% 61.1% 78.7% 71.1% 71.2% 79.3% 79.5%
deriv2 0.46 76.9% 90.2% 87.5% 99.0% 94.4% 90.2% 84.9% 98.8%
foxgood 0.11 12.7% 51.5% 38.5% 77.2% 56.0% 51.6% 60.5% 76.4%
gravity 0.19 73.8% 76.3% 86.9% 87.4% 93.3% 75.2% 96.9% 86.7%
heat(1) 0.50 87.0% 96.9% 91.9% 89.4% 0.1% 95.2% 82.4% 89.1%
heat(5) 0.38 98.5% 90.2% 80.2% 98.5% 88.0% 88.0% 55.0% 55.9%
i laplace(1) 0.22 63.2% 87.4% 84.0% 96.1% 96.6% 87.4% 96.2% 96.4%
i laplace(2) 0.86 97.0% 99.2% 98.3% 99.4% 99.4% 99.3% 99.3% 99.4%
i laplace(3) 0.28 65.8% 89.8% 84.4% 95.9% 96.7% 87.7% 94.9% 96.3%
phillips 0.19 77.6% 85.4% 87.6% 95.5% 91.6% 82.8% 97.2% 94.4%
shaw 0.24 57.9% 88.7% 74.1% 95.9% 95.2% 86.3% 95.5% 96.2%

medium statistic (ξ = 20)

baart 0.21 45.7% 78.4% 35.3% 68.8% 72.8% 72.3% 68.4% 69.4%
deriv2 0.39 87.7% 94.5% 93.2% 97.5% 98.5% 92.8% 85.1% 97.4%
foxgood 0.06 14.5% 48.8% 32.4% 79.5% 83.7% 48.7% 86.9% 79.6%
gravity 0.11 84.4% 78.2% 85.5% 90.1% 76.0% 78.3% 97.3% 87.5%
heat(1) 0.33 90.4% 89.8% 96.1% 74.2% 0.3% 86.9% 58.6% 71.3%
heat(5) 0.18 98.4% 92.8% 98.5% 99.4% 94.5% 94.5% 80.9% 80.9%
i laplace(1) 0.16 74.8% 88.1% 82.9% 95.1% 95.3% 88.2% 92.1% 95.2%
i laplace(2) 0.84 97.9% 99.0% 98.3% 98.8% 99.4% 99.0% 99.0% 98.8%
i laplace(3) 0.18 60.6% 86.2% 69.0% 89.4% 92.2% 85.8% 77.7% 89.6%
phillips 0.09 82.9% 75.2% 80.4% 90.3% 73.9% 73.5% 99.0% 88.0%
shaw 0.18 70.8% 84.4% 82.6% 97.6% 95.8% 84.5% 95.5% 97.5%

high statistic (ξ = 40)

baart 0.15 51.7% 76.9% 24.9% 72.2% 88.9% 71.2% 89.8% 70.6%
deriv2 0.26 95.0% 95.6% 97.7% 88.0% 91.6% 95.5% 88.9% 86.2%
foxgood 0.02 24.7% 56.1% 10.5% 84.9% 49.5% 41.8% 84.7% 84.6%
gravity 0.04 86.4% 84.8% 80.4% 95.9% 45.6% 84.9% 96.2% 95.5%
heat(1) 0.13 95.4% 82.5% 23.8% 59.7% 1.6% 78.9% 96.1% 36.2%
heat(5) 0.02 90.3% 99.8% 85.3% 99.8% 16.4% 16.4% 99.6% 99.6%
i laplace(1) 0.10 73.2% 87.0% 83.4% 92.3% 85.5% 86.9% 87.8% 92.7%
i laplace(2) 0.82 98.4% 99.1% 98.6% 97.9% 99.6% 99.1% 98.5% 97.7%
i laplace(3) 0.06 60.6% 78.2% 68.0% 68.9% 69.2% 73.4% 94.1% 67.3%
phillips 0.03 93.5% 56.8% 90.6% 72.0% 22.3% 51.1% 98.0% 70.3%
shaw 0.11 64.4% 87.0% 68.4% 79.6% 91.8% 87.4% 69.1% 80.0%

Table 1: Performance comparison between choice rules DP, UPRE, BP, PRO, LC, GCV, QOC, I-PRO on
examples from Regularization tools. For each row: column one gives the problem and column two shows
the oracle `2-norm error. From the third to tenth column the median efficiency of the choice rule (see
equation 21). The three blocks correspond to three different levels of statistic. The sample size n of each
problem is 64.
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`2 error σ know λ unknown σ and λ unknowns

n = 1024 Oracle DP UPRE BP PRO LC GCV QOC I-PRO

low statistic (ξ = 10)

baart 0.21 30.1% 86.7% 41.9% 69.8% 41.6% 83.3% 74.5% 70.3%
deriv2 0.37 70.6% 96.4% 67.4% 95.6% 78.0% 96.3% 90.1% 95.9%
foxgood 0.06 4.3% 55.6% 20.0% 84.4% 29.7% 49.3% 88.8% 84.2%
gravity 0.09 40.0% 77.8% 42.3% 90.1% 95.5% 76.1% 97.4% 90.4%
heat(1) 0.30 67.0% 91.7% 50.8% 71.8% 56.8% 90.2% 51.3% 71.5%
heat(5) 0.20 97.4% 62.2% 99.9% 83.5% 0.1% 60.9% 0.1% 81.8%
i laplace(1) 0.26 81.8% 96.4% 76.4% 93.8% 97.0% 96.4% 98.0% 93.8%
i laplace(2) 0.81 96.6% 99.4% 96.4% 99.5% 98.2% 99.4% 99.0% 99.5%
i laplace(3) 0.20 45.7% 90.2% 47.7% 78.1% 65.0% 90.7% 92.1% 78.2%
phillips 0.08 44.4% 64.4% 39.0% 86.3% 98.3% 65.5% 99.1% 86.8%
shaw 0.18 41.1% 87.1% 54.0% 97.7% 86.6% 83.2% 97.6% 97.9%

medium statistic (ξ = 20)

baart 0.17 29.4% 80.8% 28.7% 67.8% 58.8% 79.6% 81.5% 68.0%
deriv2 0.31 76.5% 95.8% 71.6% 92.0% 85.5% 95.4% 89.6% 91.9%
foxgood 0.04 6.3% 49.1% 16.0% 91.5% 52.1% 45.9% 88.2% 91.2%
gravity 0.05 45.7% 81.1% 46.0% 91.7% 97.5% 81.6% 96.8% 91.2%
heat(1) 0.19 74.0% 86.8% 59.5% 64.1% 84.7% 86.3% 95.5% 62.7%
heat(5) 0.10 91.1% 53.7% 98.8% 74.3% 0.2% 52.6% 0.2% 72.3%
i laplace(1) 0.24 87.0% 97.5% 83.5% 93.0% 97.3% 97.6% 95.8% 93.0%
i laplace(2) 0.79 97.1% 99.5% 96.8% 98.9% 98.4% 99.5% 99.0% 99.0%
i laplace(3) 0.12 46.5% 91.3% 45.3% 72.2% 76.2% 91.3% 95.1% 71.8%
phillips 0.04 53.7% 54.4% 41.8% 72.8% 90.0% 52.8% 99.1% 73.2%
shaw 0.15 47.9% 87.6% 68.9% 95.1% 93.7% 85.9% 91.6% 95.1%

high statistic (ξ = 40)

baart 0.12 30.1% 78.6% 19.3% 68.6% 78.1% 76.1% 76.2% 68.4%
deriv2 0.21 88.4% 95.4% 78.3% 82.1% 98.7% 95.1% 89.6% 81.6%
foxgood 0.02 11.8% 56.9% 7.1% 88.1% 90.1% 55.8% 72.3% 88.7%
gravity 0.02 54.6% 82.3% 49.4% 96.9% 79.3% 80.9% 94.0% 96.8%
heat(1) 0.07 87.7% 77.3% 12.4% 53.1% 85.6% 77.1% 99.0% 48.5%
heat(5) 0.02 71.8% 39.0% 92.2% 54.8% 0.5% 37.7% 0.5% 51.7%
i laplace(1) 0.21 90.8% 98.3% 88.3% 91.2% 98.5% 98.3% 95.6% 91.0%
i laplace(2) 0.77 98.3% 99.7% 97.9% 98.4% 99.2% 99.7% 98.9% 98.4%
i laplace(3) 0.05 47.6% 86.8% 43.9% 59.0% 97.1% 87.4% 95.9% 58.6%
phillips 0.02 76.2% 65.5% 61.0% 83.7% 50.9% 63.6% 93.9% 83.1%
shaw 0.06 38.2% 87.9% 36.6% 56.7% 92.3% 87.1% 80.6% 56.2%

Table 2: See caption of Table 1, but with the sample size n of each problem being 1024.
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Figure 3: Reconstructions for baart with n = 64 and ξ = 10 and two different noise realizations with
rng(9) and rng(12).

to 0.50, from 0.06 to 0.39, and from 0.02 to 0.26, for low, medium and high statistic, respectively. In the
exceptional case, i.e., i laplace(2), the ground truth object f† to be recovered is actually almost invisible
within the meaning of the inverse problems theory [4], and so εo fails to reach barely 0.82. For all choice
rules with σ2 known, the efficiency of any parameter choice rule is almost always larger than 60%. The
efficiency depends on both the choice rule and specific problem. For example, baart and foxgood are fairly
challenging for all eight choice rules. In particular, on these two problems, DP does not perform as well
as the others. This may be related to the well known fact that DP is sensitive to the estimation accuracy
of the noise variance σ2. Despite a strong dependency on the problem, the percentage generally increases
with the SNR, indicating the convergence of these rules (at least on average). It is worth noting that
LC is very effective in most cases but it fails spectacularly on heat, for which all other methods work
reasonably well. Moreover, the efficiency distributions for DP, UPRE, GCV (and occasionally also LC)
have very low median, and thus in practice, these choice rules can fail to choose a suitable α value. The
observations on GCV is consistent with prior empirical study in [30]. Surprisingly, PRO and I-PRO (and
BP and QOC) can consistently provide satisfactory solutions for all noise realizations. This property is
highly desirable in practice, and it is attributed to the fact that PRO and I-PRO are designed to achieve
the minimum error in the mean squared sense (at least approximately!), and thus are fairly robust with
respect to noise realization. This contrasts sharply with other existing choice rules, which always suffer
from a significant number of failures. One example of failure is given in Fig. 3: whereas in (d) and (e)
all choice rules yield good estimates of the ground truth, in (a) and (b) existing choice rules, e.g., UPRE
or GCV, are highly inefficient and the corresponding solutions are omitted since they extend over several
orders of magnitude above the ground truth.

In practice, it is also important to check the variance of the efficiency distribution. By considering
each problem separately (given the SNR ξ and the size n), the simulation study indicates that the
empirical efficiency distribution by PRO has a very small variance. This is due to the fact that given
σ2, the estimation ρ̂2 of the data norm ρ2 given in (9) is relatively insensitive to the noise realization,
especially when the sample size n is not too small. In contrast, the empirical efficiency distributions by
DP, UPRE and GCV (and sometimes also LC) spread out, and thus these methods do not enjoy uniform
performance with respect to noise realization. This behavior is clearly visible in Fig. 4: PRO and I-PRO
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Figure 4: Box plots of the `2-norm error distributions over 100 samples for nine 1d problems, with SNR
ξ = 20 and n = 256.

plots show distributions with small variances, whereas that of the other methods have broad tails; see
also Fig. 3 for the illustration of the excellent stability of the PRO and I-PRO solutions. Overall, BP
works fairly well, but it is below par on the example baart. Fig. 4 indicates that among all eight rules,
PRO, I-PRO and QOC emerge as the strongest contenders.

Now we provide numerical insights into the fixed point iteration in the I-PRO algorithm, when σ
is unknown. Numerically, it always converges rapidly, and the corresponding fixed point equation has
few fixed points, if not unique globally. (It was proved to be unique within the interval [0, s21/2] in
Proposition 1.) However, the convergence of the algorithm is necessary but not sufficient for ensuring
the good performance of I-PRO: the converged solution can potentially be very bad! Remarkably, I-PRO
estimates are always very close to that by PRO, which is consistently observed on all benchmark examples.
This is evident by comparing the 7-th column with the 11-th column of Tables 1 and 2: the reconstruction
errors of PRO and I-PRO are nearly identical, except for heat(5). In the exceptional case, i.e., heat(5)
with ξ = 10 and n = 64, the condition number is very small (around 3) so the problem is actually well
posed. In this case, the efficiency of PRO is about 99%, while the efficiency of I-PRO is only about 56%.
This difference originates from the fixed point iteration: a close inspection shows that the fixed point
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Figure 5: Scatter plots of the efficiency of PRO and I-PRO. The top, middle and bottom rows are for
ξ = 10, ξ = 20 and ξ = 40, respectively.

iteration converges to an α value very close to zero. Practically, this seems not a serious restriction,
since reconstructions actually do not change much when varying α near zero, due to the well-conditioned
nature of the specific problem. Although not proved, the fixed point iteration is observed to work well
for all ill-conditioned problems.

In Fig. 5, we show the scattered plots of the efficiency of PRO and I-PRO. The I-PRO estimates are
mostly close to that of PRO, except outliers for I-PRO on the well-conditioned problem, i.e., heat(5), which
concurs with the observation from Tables 1 and 2. I-PRO can also provide an estimation on SNR, which
is generally very close to the true values. The precise mechanism is unclear but it essentially underpins
the reliability of I-PRO for parameter choice when σ2 is unknown.

5.2 Large-scale problems

Now we illustrate the proposed PRO and I-PRO on three tomography examples from public package
AIR tools, i.e., paralleltomo (parallel beam tomography), fanbeamtomo (fan beam tomography) and
seismictomo (seismic tomography) (available at http://people.compute.dtu.dk/pcha/AIRtoolsII/

index.html, accessed on July 1, 2019). The problem parameters are taken as follows: for paralleltomo
and fanbeamtomo, the number of discretization intervals in both dimensions is fixed at ` = 128 (i.e.,
the domain consists of `2 cells), 175 parallel rays for each angle θ ∈ {0, 1, ..., 179}; For seismictomo, we
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Figure 7: (a) The noise amplification error n−1‖Xα‖2F and approximation error sn(I−Xα)2 (lower bound)
versus α for paralleltomo. (b): T(ρ2,σ2)(α) (solid line) and its successive approximations T

(ρ̂2,σ̂2)
(α) with

I-PRO. I-PRO converges after four iterations (i.e., i = 4). The minimizers of these two functions provide
the PRO and I-PRO solutions showed in the left panels of Fig. 8.

consider the same discretization ` = 128 with 128 sources and 175 receivers (seismographs). See [17]
for a complete description of these problems. For each example, we consider three noise levels (with
SNR ξ = 10, 20, 30), each with 50 realizations ηi, i = 1, . . . , 50, i.i.d. Gaussian noise with mean zero
and variance σ2. See Fig. 6 for exemplary noisy sinograms. In the implementation, for PRO, we take
100 α values equidistributed in a logarithmic scale over the interval (10−8, 10−2)‖A‖2/2 (as prescribed
by Proposition 1) to find the minimizer of the function T(ρ2,σ2)(α) (over the sample points), and finally
compute the reconstructions using LSQR [36]. Meanwhile, I-PRO implements the fixed point iteration
given in the I-PRO algorithm, initialized at the value α1 := α(50) (from the samples). In all experiments
below, the algorithm converges in less than 10 iterations.
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(a) fanbeamtomo, ξ = 30 (b) paralleltomo, ξ = 20 (c) seismictomo, ξ = 10

Figure 6: Sinograms of tomography examples at various SNRs.

Since both terms of T(ρ2,σ2)(α) depend only on the matrix A, they can be precomputed. In Fig.
7(a), we show the two terms sn(I − Xα)2 and ‖Xα‖2F as a function of the regularization parameter α
for paralleltomo, and in Fig. 7(b), the sequence of four intermediate objective functions Tρ̂2,σ̂2(α) by the
I-PRO algorithm. The iterative process returns an α value close to the PRO value.

Due to the large number of cells (`2 ' 1.6 × 104), the variance of the reconstructions with respect
to the noise realization is very small. In Table 3, we show the efficiency of the methods. For all three
examples, all eight rules can choose a suitable regularization parameter, and in terms of efficiency, PRO
and I-PRO perform better than existing methods when SNR is low and slightly worse when SNR is high,
for paralleltomo and fanbeamtomo. This is attributed to the fact that by construction, PRO and I-PRO
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DP (ℓ2 error=0.35699) UPRE (ℓ2 error=0.36405) BP (ℓ2 error=0.66479) PRO (ℓ2 error=0.41618)

LC (ℓ2 error=0.47165) GCV (ℓ2 error=0.36405) QOC (ℓ2 error=0.73976) I-PRO (ℓ2 error=0.43712)

Figure 8: Reconstructions for paralleltomo, for the noisy sinogram showed in Fig. 6(b).

provide conservative estimates of the optimal parameter (with respect to predictive risk). In Fig. 8, we
show exemplary reconstructions for paralleltomo.

6 Conclusion

In this work, we have proposed a new criterion, termed as PRO, to choose the crucial Tikhonov regu-
larization parameter for discrete linear inverse problems. It is based on minimizing a lower bound of
the predictive risk, and can handle effectively both known and unknown noise levels. In the latter case,
we proposed an iterative scheme, i.e., I-PRO, which alternates between estimating the noise level and
minimizing the predictive risk. Extensive numerical simulations show that both PRO and I-PRO are not
only competitive with six existing choice rules including discrepancy principle, unbiased predictive risk
estimator, balancing principle, generalized cross validation, L-curve criterion and quasi-optimality crite-
rion) in terms of accuracy, but also can yield more stable results in terms of reliability for small-sized
samples. Moreover, the methods apply also to large-scale inverse problems, and can produce solutions
with improved accuracy for data with low signal-to-noise ratio. One preliminary theoretical analysis was
provided to show several interesting properties of PRO and I-PRO, and the compelling empirical results
promote further analysis, especially regularizing property and convergence rates, as well as developing
extensions to other linear regularization techniques.
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problem stat `2 error σ known, ρ unknown σ and ρ unknowns

ξ Oracle DP UPRE BP PRO LC GCV QOC I-PRO

seismic 10 0.35 99.8%, 74.5%, 41.2%, 93.5%, 87.9%, 74.5%, 93.2%, 93.5%
20 0.24 99.4%, 80.0%, 74.8%, 99.4%, 48.5%, 80.0%, 99.1%, 99.4%
30 0.17 100.0%, 90.9%, 93.9%, 99.6%, 43.5%, 84.1%, 99.6%, 99.6%

fanbeam 10 0.55 99.8%, 88.6%, 89.2%, 98.7%, 99.0%, 88.6%, 72.3%, 98.7%
20 0.37 98.8%, 94.9%, 55.9%, 87.2%, 75.2%, 94.9%, 51.6%, 83.5%
30 0.24 96.6%, 97.8%, 33.9%, 76.9%, 82.9%, 97.8%, 96.5%, 61.5%

parallel 10 0.54 99.4%, 90.0%, 90.2%, 97.9%, 99.4%, 90.0%, 70.5%, 97.9%
20 0.34 97.4%, 95.8%, 51.9%, 83.3%, 73.8%, 95.8%, 46.6%, 79.2%
30 0.19 94.1%, 93.9%, 27.0%, 68.2%, 71.3%, 93.9%, 98.2%, 52.1%

Table 3: Performance comparison between the choice rules on the AIR tools dataset. The first column
indicates the problem, the second gives the SNR of the data, the third shows the oracle `2-norm error,
εo, and the 4th–11th columns: the median efficiency of the methods.
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