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Abstract. Magnetic Resonance Imaging (MRI) is one of the most flex-
ible and powerful medical imaging modalities. This flexibility does how-
ever come at a cost; MRI images acquired at different sites and with
different parameters exhibit significant differences in contrast and tis-
sue appearance, resulting in downstream issues when quantifying brain
anatomy or the presence of pathology. In this work, we propose to com-
bine multiparametric MRI-based static-equation sequence simulations
with segmentation convolutional neural networks (CNN), to make these
networks robust to variations in acquisition parameters. Results demon-
strate that, when given both the image and their associated physics
acquisition parameters, CNNs can produce segmentations that exhibit
robustness to acquisition variations. We also show that the proposed
physics-informed methods can be used to bridge multi-centre and longi-
tudinal imaging studies where imaging acquisition varies across a site or
in time.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a widespread, non-invasive, non-ionizing
medical imaging technique. It is capable of imaging any part of the body to
produce three dimensional anatomical and functional reconstructions, excelling
at soft tissue contrast. MRI is therefore aptly suited for looking at pathological
changes in the brain, such as tissue atrophy or lesions. However, large scale stud-
ies that rely on multiple scanners from different manufacturers suffer from site
and hardware-dependent variabilities in the acquired data [13]. Without means
to account for these differences, this variability impacts our ability to conduct
multi-centre analyses and extract meaningful and reproducible biomarkers [6].
Further challenges are encountered in longitudinal studies since scanner and
sequence protocol changes cause inconsistencies in patient imaging that make
disease evolution impossible to quantify.

One issue caused by the non-quantitative nature of MRI images is that algo-
rithms are often unable to deal with different sequence parameters. For example,
if MR images are acquired with small differences in acquisition, segmentation al-
gorithms often produce disparate results, exhibiting apparent growth/shrinkage
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of regions of interest [4]: this is caused by signal intensity changes that depend
on the tissue. Dementia is an example of a condition in which MR imaging
biomarkers such as cortical atrophy or hippocampal volume can be used for the
diagnosis of the condition. Due to the difficulty in disentangling imaging physics
and underlying anatomy, even trained clinicians may fail to account for protocol
differences. This is explained by the fact that the information available to the
users is limited to voxel intensities, which are unreliable, and a priori knowledge
of brain morphology, which is not subject-specific.

Current methods to mitigate these effects are cumbersome and imperfect.
They normally rely on either a per-site analysis followed by a joint meta-analysis
[5] or the use of statistical models with linear covariates [1], which provide com-
putationally efficient yet often inaccurate means of standardization. When at-
tempted, correction for scanning variability can either be made at the tissue-class
or the voxel level. The former may be less robust due to the lack of granularity
whilst the latter is highly susceptible to errors induced by the required registra-
tion to a group-wise space.

Gaining robustness to pulse sequences has been investigated in [10] implicitly
by employing parameter estimation combined with simulation as an augmenta-
tion to a segmentation network, with a focus on accuracy rather than precision.

This work aims to address the issue of acquisition-induced biomarker ex-
traction variability (resulting from imprecise segmentations) through the use of
a novel physics-informed convolutional neural network, where segmentation is
used as a pretext task. Parametric tissue maps, together with sequence simu-
lating models, are used to generate realistic samples as if they were acquired
with different physics parameters. The importance of MRI sequence simulators
is crucial here — they can be used to train machine learning algorithms to learn
the features of scanners or sequence parameters without having to expend a
vast amount of resources to acquire real data, while realistically reproducing an
MRI scan. For computational reasons, we propose to use a static equation-based
simulation approach, which makes use of simplified imaging equations to most
efficiently generate sufficiently large and varied datasets required for this under-
taking. By providing both simulated samples and associated physics parameters
as training data for a neural network, we can demonstrate that these networks
can produce segmentations that are robust to MRI physics variations because
they are explicitly learning how the physics interacts with image contrast.

2 Methodology

Here we describe how physics-based image synthesis is combined with the pro-
posed physics-informed architecture to achieve more consistent segmentations.

2.1 MRI simulation methods

The signal intensity obtained in MR images results from the non-linear interac-
tion between tissue properties and parameters associated with a specific acquisi-
tion sequence. In this work, we use a simplified, yet robust, simulation model by
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which static singular equations are employed for each simulated sequence previ-
ously employed by [9]. These equations take as input the tissue properties and
MR sequence parameters and produce an image of the corresponding sequence.
The assumption that signal intensity at any given voxel is based on tissue, se-
quence, and scanner properties is made here. Contrarily to more complex MR
simulators, the proposed model assumes the signal does not change in time, i.e.
the model described as ‘static’. In this work, we focus on two widely used gra-
dient echo T1-weighted sequences, namely 3D spoiled Gradient echo (SPGR)
and 3D magnetization prepared gradient echo (MPRAGE). For both sequences,
PD(x), T1(x) and T ∗

2 (x) are respectively the proton density, T1 value and T ∗
2

value of the tissue at position x, θ is the sequence flip angle, TR the relaxation
time and TE the echo time. For the SPGR sequence, the static equation derived
by Jog et al. [9] expresses the voxel intensity bS(x) at position x as

bS(x) = GSPD(x)sinθ
1 − e

− TR
T1(x)

1 − cos θe
− TR
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e
− TE
T∗
2

(x) , (1)

where GS is the scanner gain. Similarly, the static equation for MPRAGE se-
quences describes the intensity bM (x) at position x as

bM (x) = GMPD(x)

(
1 − 2e

−TI
T1(x)

1 + e
−(TI+TD+τ)

T1(x)

)
, (2)

where GM is the scanner gain, TD is the delay time, and τ is the slice imaging
time.

A variable inversion time (TI) results in images of differing contrasts owing to
the non-linear signal scaling of the different tissue types. Figure 1 illustrates the
phenomenon, showcasing two axial slices of MPRAGE simulations with TIs of
800 and 1200ms, respectively, simulated from the same set of parametric maps.

Fig. 1. Left: Middle axial slice of simulated MPRAGE volume with TI=600ms. Right:
Middle axial slice of simulated MPRAGE volume with TI=1200ms. Note the difference
in tissue contrasts, particularly between white and cortical grey matter.
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2.2 Physics-aware CNNs for image segmentation

We propose to inject the sequence parameters of an input image in a CNN
network by the addition of a fully connected layer. Since a strong correlation
between segmentation volumes and parameter choice can be observed, we expect
the introduction of the physics parameters to allow such a network to account
for the physics induced appearance variability and attain a more consistent,
unmarred segmentation.

2.3 Network architecture

We used the 3D U-Net architecture as described in [3] as a starting point for the
proposed physics injected network. Our proposed architecture (Figure 2) adds
an adjacent branch (physics branch), boasting two fully connected layers of ten
neurons each which have as input an N-dimensional vector. This vector consists
of the variable physics parameters used to generate the image to be segmented,
as well as negative exponentiation of said parameters. The latter is included as
a means of making the network privy to the underlying simulation process. This
branch is connected to the network via a concatenation operation that broad-
casts the branch’s output as additional channels immediately following the final
shortcut connection of the base 3D U-Net architecture.

3 Experiments

3.1 Creation of physics-based gold standard segmentation

It is important to reiterate the primary goal of this work, which is to mitigate
the detrimental effects of imaging parameter choices on the consistency of MRI
image segmentations. As such, we are primarily concerned with achieving seg-
mentations that are consistent across acquisitions, more so than approaching
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Fig. 2. Diagramatic representation of the proposed network. The novel contribution is
primarily the pink box (physics-aware subnet) and the simulation framework used to
train the model.
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a hypothetical ‘ground truth’ segmentation. With this in mind, and as proper
ground truth tissue segmentations are ‘illusory’ in brain imaging (i.e. humans
often disagree, and image resolution is insufficient), we propose to create a gold
standard reference segmentation that is consistent and stable across subjects,
i.e. one that is precise, concordant and systematic, but not necessarily accurate.

To achieve this, and owing to the T1-W nature of the simulations we pro-
pose a ”Physics Gold Standard”, whereby we make use of the quantitative R1

maps for this purpose. By assuming that tissues can be parameterised by normal
distributions, with mean and standard deviations equivalent to literature R1 val-
ues, we can generate segmentation maps directly from quantitative acquisitions,
thereby being largely independent of acquisition physics. Because there can be
some significant variation in quantitative maps, we opt to use parameters de-
rived from works whose multiparametric map creation protocol most resembles
our own, with an increased standard deviation to account for some additional
variability. To this end, the R1 values we choose are 0.683 ± 0.080 ms for grey
matter, 1.036 ± 0.080 ms for white matter, taken from [15]. We note that [15]
do not quote values for CSF, but as per [12] which cites multiple other studies
on this matter, the R1 values for CSF are largely independent of acquisition pa-
rameters. Due to this, and the fact that we only focus on grey and white matter
segmentation consistency in this work, we opt to model our normal CSF distri-
bution with 0.240 ± 0.03 ms, one of the cited values that most closely matched
the R1 CSF measurements in our maps. Using this ”Physics Gold Standard”
we can model each tissue in a probabilistic, and more anatomically grounded,
manner without having to concern ourselves with the inherent bias that would
be associated with choosing a more typical ”ground truth”.

3.2 Datasets

27 multiparametric volumes from an early onset Alzheimer’s disease dataset
containing both patients and controls were used for simulation. The maps con-
sist of R1 (longitudinal magnetisation relaxation rate), R∗

2 (effective transverse
magnetisation relaxation rate), proton density (PD), and magnetisation transfer
(MT). We make use of the former three for the simulations. These maps are ac-
quired via three 3D multi-echo FLASH (fast low angle shot) acquisitions further
described in [8]. All subjects were rigidly registered to MNI space before their
use in simulations.

As a real-world data example, we used a subset of the SABRE dataset con-
sisting of data from 22 subjects drawn from an elderly population with high car-
diovascular risk factors, where each subject was imaged within the same scanning
session using two different T1-W MPRAGE protocols and one Turbo Spin-Echo
protocols. We make use of only the paired MPRAGE images in this work. Mid-
space (so as not to bias the registration towards either acquisition protocol)
intra-subject registrations are carried out to resample these images to be 1mm
isotropic.
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Table 1. Mean dice scores of GIF, base 3D U-Net and 3D U-Net-Physics methods
on segmentation task across inference subjects. All dice scores are estimated against a
Physics Gold Standard.

Experiments
Sequences

MPRAGE SPGR
GM WM GM WM

GIF 0.851 ± 0.020 0.919 ± 0.009 0.916 ± 0.010 0.847 ± 0.018
Base 0.904 ± 0.024 0.943 ± 0.012 0.946 ± 0.017 0.902 ± 0.021

Physics 0.910 ± 0.017 0.948 ± 0.009 0.948 ± 0.019 0.907 ± 0.015

3.3 Simulation experiment and results

For each of the 27 subjects acquired with a multiparametric acquisition, we
simulated 121 MPRAGE volumes with TIs between 600 and 1200 ms (5 ms
increments) with constant TD of 600 ms and constant τ of 10 ms. These values
were chosen by extending the optimised range of 900 - 1200 ms found in [14].
Similarly, 121 SPGR volumes were simulated per subject sampling randomly
from the parameter space spanning TR between 15 and 100 ms, TE between
4 and 10 ms, and FA between 15 and 75 degrees. These values were chosen
according to the typical values explored in [9] for SPGR sequences. For each
subject, a single ”Physics Gold Standard” segmentation was used across the
associated synthesized images.

3.4 Robustness to acquisition parameters

We train our network on 3D 96x96x96 randomly sampled from the simulated
volumes. For the MPRAGE volumes, TI and e−TI are passed as a vector into
the physics branch while for SPGR volumes a vector containing TR, TE, FA,
e−TR, e−TE , and sin(FA) is passed as input to the physics branch. Subjects
were randomly split between training (2420 simulated volumes over 19 subjects),
validation (242 simulated volumes over two subjects) and testing (726 simulated
volumes over six subjects). Networks were trained until convergence, as defined
per performance on the validation set when over 1000 iterations have elapsed
without decreases in the loss (a probabilistic version of the dice loss [11]), using
NiftyNet [7], a deep learning framework designed for medical imaging.

In a first instance, we compare the performance of 3D U-Net-Physics with
that of base 3D U-Net (trained simply by excluding the physics branch), as
well as GIF [2], a segmentation software based on geodesical information flows.
Segmentation stability for the two tissue classes is assessed via measures of the
coefficient of variability within the set of synthesized data for each test subject.
Results, presented in Table 2 show that for MPRAGE simulation, the model en-
hanced with the Physics branch provides more stable volume estimates for the
two tissue classes. Table 1 shows the dice scores for the segmentations compared
to the ”Physics Gold Standard”. It is apparent that ”accuracy”-wise all meth-
ods perform similarly. A sign-rank test is carried out to calculate the p-value
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Table 2. Mean coefficients of variability resulting from GIF, 3D U-Net and 3D U-Net-
Physics methods on segmentation task across inference subjects

Experiments
Sequences

MPRAGE SPGR
GM WM GM WM

GIF 0.00619 0.00783 0.00114 0.00091
Base 0.00332 0.01491 0.00531 0.00160

Physics 0.00244 0.00405 0.00425 0.00083

of the Physics and Base method dices, resulting in p <0.0001, indicating the
Physics model’s higher performance is statistically significant. The larger gap
in performance between the CNN and GIF methods can likely be attributed
to differences exhibited between our ”Physics Gold Standard” and more typical
segmentation ground truths, the latter being closer to what GIF might output.
For a single subject, we plot in Figure 3 the resulting variations in extracted
volumes for a range of TI compared to the standard obtained at 900 ms for
WM (left) and GM (right). The introduction of the physics branch to the model
appears to noticeably reduce the variability observed when using a non-physics
aware network.

3.5 Application to a data bridging study

MRI acquisitions are often updated due to hardware or sequence changes, harm-
ing our ability to perform ongoing clinical research studies and to compare pa-

Fig. 3. Comparing the (left) WM and (right) GM volume consistency for simulated
data within the 600 - 1200 TI range over three methods (GIF, Baseline, Physics).
Volumes are presented as a deviation from the volume at TI=900ms.
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tients longitudinally. This experiment aims to test if the proposed method could
be used to compensate for acquisition parameter updates from an image seg-
mentation biomarker. To do this, we use the 3D-UNet-Physics network trained
in the previous section and applied it to the Bridge SABRE dataset, where each
subject has a pre and a post parameter update MRI acquisition. Despite images
being acquired back-to-back, these images exhibit significant differences owing to
differing scanning protocols. As MRI acquisition parameters were not available
for this data, we experimentally found an optimal TI parameter that, if applied
to the pre-update and post-update acquisition parameters, would make the seg-
mentations between those as close as possible. To achieve this, we partitioned
the data into two sets, a ”training” set with 12 image pairs, and a ”test” set
with 10 image pairs. We segment all training set pairs with different hypotheti-
cal TI values (i.e. run inference on our physics informed network for each image
121 times, passing a different value of TI from the 600 - 1200 ms TI range at
each pass), and plot the similarity (volume-wise) between TI pairs in Fig. 4 as a
contour. This plot shows us how the similarity between GM and WM between
the pairs changes according to the TI passed at inference to segment the images.
The white point in the figure represents the pre/post TI pair that minimizes
the volume difference between training set examples. Finally, we apply this TI
parameter pair to the hold-out test set and test if the output segmentations were
bridged. Similarly to the white point, the black points indicate the TI pairing
that provided the smallest difference in tissue segmentation volumes for each of
the 10 subjects. Qualitatively, we observe clustering of these black points around
the white point, indicating that this choice of parameters generalizes to the hold-
out standardization subjects, lending credence to the model’s ability to account
for the imaging process.

To quantitatively compare to a baseline method, we ran GIF on both pre
and post upgrade scans, estimating the WM and GM volumes for each sub-
ject - here denoted GIF-Uncorrected. We then find a linear mapping between
pre- and post-sequence upgrade volumes on the training set as a form of correc-
tion/bridging, and apply it to the hold-out test set - here denoted GIF-Corrected.
GIF-Uncorrected exhibits a volumetric difference over tissues of 5%. We found
that the linear correction method applied to GIF resulted in a mean volumetric
segmentation difference of 3% over tissues. When using the physics model (i.e.
choosing the aforementioned ideal parameter pairs denoted by the white point in
4), this value was found to be 2%. While the differences do not seem large, any
improvements are beneficial for the sample size for a hypothetical trial. Consis-
tency could have been potentially improved further if true physics parameters
were available, rather than experimentally found.

4 Discussion and Conclusions

This work aimed to address the problem of imaging induced variability in biomarker
extraction by constructing networks that are privy to those imaging parameter
choices. We show that, for MPRAGE-type sequences, our method outperforms
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Fig. 4. Top: GM contour of mean percent volume differences across a ”training” (12
subjects) subset of SABRE paired dataset. Bottom: WM contour of mean percent
volume differences across a ”training” (12 subjects) subset of SABRE paired dataset.
Black points: Ideal params for each of 10 ”test” subjects. White point: Point of volume
pair minimisation for ”training” subjects.

its alternatives, particularly with regards to grey matter. For SPGR we note
that performance is more tissue dependent, with small, but significant, decreases
in grey matter segmentation consistency compared to competing methods but
presenting improvements in white matter consistency. Despite this, it is worth
noting that our physics informed network always outperforms its base counter-
part, lending credence to the notion that these external parameters can always
be leveraged towards some gain in segmentation consistency.

Further work is needed to ascertain the ideal architectural setup for pass-
ing external parameters. While the proposed construction performs well for
MPRAGE sequences, the results suggest that this might not be the case for
others, especially if multiple parameters are involved: The network may require
a greater capacity to leverage the additional information.

Results on real data show that the proposed method improved the consis-
tency of estimated volumes, even when the acquisition parameters were found
experimentally. Future work will test the proposed method on a more diverse
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range of protocols and will apply it to larger bridge studies where significant
improvements stand to be made.
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