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Abstract

BACKGROUND: X-ray imaging is a crucial and ubiquitous tool for detecting threats to transport

security, but interpretation of the images presents a logistical bottleneck. Recent advances in Deep

Learning image classification offer hope of improving throughput through automation. However,

Deep Learning methods require large quantities of labelled training data. While photographic

data is cheap and plentiful, comparable training sets are seldom available for the X-ray domain.

OBJECTIVE: To determine whether and to what extent it is feasible to exploit the availability of

photo data to supplement the training of X-ray threat detectors.

METHODS: A new dataset was collected, consisting of 1901 matched pairs of photo & X-ray images

of 501 common objects. Of these, 258 pairs were of 69 objects considered threats in the context of

aviation. This data was used to test a variety of transfer learning approaches. A simple model of

threat cue availability was developed to understand the limits of this transferability.

RESULTS: Appearance features learned from photos provide a useful basis for training classifiers.

Some transfer from the photo to the X-ray domain is possible as ∼40% of danger cues are shared

between the modalities, but the effectiveness of this transfer is limited since ∼60% of cues are not.

CONCLUSIONS: Transfer learning is beneficial when X-ray data is very scarce—of the order of

tens of training images in our experiments—but provides no significant benefit when hundreds or

thousands of X-ray images are available.
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1 Introduction

X-ray imaging has been an important tool for aviation security since the 1970s. The technology is

well understood and widely deployed, and image acquisition is reasonably fast: many thousands

of images are acquired every hour at busy airports worldwide. X-rays have the obvious benefit of

being able to ‘see inside’ baggage, parcels and cargo without needing to open them. Imaging simul-

taneously at two or more X-ray energies allows spectroscopic estimation of the material properties of

scanned objects, in particular the effective atomic number.

However, the interpretation of X-ray security images represents a significant bottleneck in the

screening process. Scrutinising the images for prohibited or suspicious content requires skill and

attention, while also being extremely repetitive and boring [3]. As in many security contexts, truly

dangerous target objects are vanishingly rare, and also likely to be obfuscated. Equipment man-

ufacturers, airport management and regulators resort to tricks such as threat image projection [9] to

help counter operator inattention or desensitisation. This interpretation bottleneck is therefore an

attractive target for augmentation or replacement by automated methods.

Recent years have seen dramatic advances in the performance of computational image analysis

and recognition, driven by parallel increases in processing power, algorithmic sophistication and—

crucially—data availability. The prevalence of digital photography on the world wide web and social

media, combined with labelling efforts such as ImageNet [10] and more recently Google Open Images

[18], provide a large body of training data and also underpin de facto benchmarks like the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC), which involves identification of 1000 distinct

object classes in photographic images [25]. Deep learning (DL) methods based on multi-layered con-

volutional neural networks (CNNs) surpassed human performance on ILSVRC in 2015 and continue

to improve [17, 12, 27, 28, 6, 13]. Practical implementations of difficult computer vision problems

such as facial recognition are now routinely available in mass market consumer products such as

smartphones and tablets.

While there are some important differences in the image formation process of typical X-ray scan-

ners compared to photographic cameras, the resulting data is structurally very similar. So it makes

sense to apply DL approaches to the security X-ray domain. A number of groups, ourselves included,

have demonstrated good results from such application [1, 14, 15, 24, 21, 5, 2].

However, methods for training and evaluating deep models are data intensive and the availability

of security X-ray data is poor. In contrast to the ubiquity of portable digital cameras, X-ray equipment
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is bulky and expensive. Although image data is captured in large quantities during screening at sen-

sitive locations such as airports, that data is not collected and published, let alone annotated. There

have been attempts by individual X-ray equipment manufacturers to collect datasets for internal or

machine-specific purposes, and also some data collection efforts undertaken by security-related gov-

ernment agencies, but these tend to be of constrained scope and access to the data is often restricted.

Publicly-available repositories of labelled X-ray image data for security research are rare and on a

much smaller scale than those for photos [20].

This problem is not unique to X-ray security. There are many tasks for which domain-specific

data is scarce compared to the abundance of natural photography [8, 19, 11, 7]. In these cases it is

sometimes possible to leverage the high availability of photographic image data via transfer learning

[29, 22, 30]. Typically this involves representation transfer of network weights or features learned from

photographs as a starting point for learning in the target domain, though in some cases it may also

be possible to employ more general photographic data directly as a supplement to the scarce target

domain data.

Here we investigate the usefulness of photographic data as a transfer source for X-rays using a

newly-acquired dataset consisting of matched pairs of photographic and X-ray images of the same

objects in the same poses. This similarity of content should allow for maximal transferability, with

limitations arising primarily from differences is the nature of danger cues across the two modalities.

We develop a simple model of the overlaps between these cues in order to assess the potential utility

of photographic data in training automated threat detection for X-ray images.

2 Dataset

In order to support useful comparative experiments across the X-ray and photographic modalities,

we have created a new dataset, COMPASS-XP, consisting of matched pairs of images, in which the same

object in the same pose is captured as both an X-ray and a photo. The dataset includes 1901 such pairs,

encompassing 501 objects from 369 object classes, with each object imaged several times in different poses.

The dataset is intended to provide a sampling of the variety of the space of objects potentially

present in aviation baggage. This sampling is highly granular—e.g. we distinguish many different

types of clothing, even different types of hats—but shallow. Classes are represented by only a small

number of instances—in many cases just one—which would not be sufficient to learn to identify

them individually. Rather, the data is intended to discover commonalities across objects within much
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higher-level semantic groupings—specifically, in this case, the grouping of dangerous vs. benign in

the context of an aircraft cabin.

Danger is multivalent: it is not captured by a single trait or object class. An item such as a hatchet

is dangerous, but it does not exhaust the possibilities of danger. Given many hatchet instances it

would in principle be possible to learn to recognise hatchets perfectly, without learning much more

about danger than was apparent from the first one or two. But the things that identify a hatchet as

dangerous may also be shared by many other sharp-edged or pointed metallic objects. The same can

be true for many benign objects: e.g., fabric items such as clothing, towels, bedding etc, tend to be

very poorly distinguished in X-ray images, and it would be difficult to classify them precisely, but

they are interchangeably unthreatening. By including instances of many different such objects, we

aim to improve discoverability of their shared features. We make the explicit assumption that there

is at least some generalisability among different classes. But rather than impose such threat/benign

groupings a priori, which would prejudice the process of discovery, we allow the classifier to learn

pertinent characteristics from the broad spread of the data.

The list of object classes for scanning was based on a subset of the 1000 classes of the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [25] identified as plausible to be carried within

aviation baggage (e.g. car and dog were excluded), supplemented with additional classes deemed

relevant to aviation baggage. In particular, classes were added to increase the range of dangerous

items, which are under-represented in ILSVRC. Labels for danger vs. benign were assigned manually

to the classes: e.g., hatchet and blowtorch are dangerous, whereas running shoe and ukulele are not.

The final tally of 369 classes is not claimed to be exhaustive or perfectly sampled. Some potentially

important classes were excluded for safety reasons—for example, the set includes no true explosives,

although those are certainly relevant threats to aviation. Nevertheless, these classes provide a useful

basis for experimentation.

Digital photographs of each object were taken with a Sony DSC-W800 compact digital camera

mounted on a custom rostrum. X-ray scans were obtained using a Gilardoni FEP ME 536 mailroom

X-ray machine, distributed in the UK by Todd Research under the name TR50. This is a single-view,

dual energy conveyor-belt scanner with a tunnel size of 506×360 mm. Objects were photographed

and scanned in a weighted crate to maintain pose through the scanner’s protective lead curtains.

Additional unboxed scans were also obtained for objects that were large and heavy enough to do so.

Each X-ray image is present in five variant forms that represent the scanned data somewhat dif-

ferently:
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Low Raw 8-bit greyscale data from the scanner’s low energy X-ray channel.

High Raw 8-bit greyscale data from the scanner’s high energy X-ray channel.

Density 8-bit greyscale data representing inferred material density.

Grey RGB PNG image representing a combination of both low and high energy channels in a marginally

more visually readable way.

Colour RGB PNG image with false colour palette representing inferred material properties.

The colour, grey and density images are calculated internally by the scanner using unknown

proprietary algorithms. Comparison with the raw single channel data indicates that some spatial

filtering is performed on the colour and grey images to improve the image sharpness and apparent

resolution. All X-ray images are 580 pixels high, with variable width depending on the object size.

For objects imaged in our weighted crate, the width is typically ∼1200 pixels, of which some ∼350 is

typically empty belt leading in and out. Trimmed scan size is approximately 850×580 pixels. Photos

were captured as RGB JPEG at 5152×3864 pixels.

Between 1–6 instances of each object class were scanned, and each instance was scanned in 3–8

poses. Examples of image types, instances and poses for the class carving knife are shown in Fig. 5,

while Table 1 summarises the contents of the final collected dataset. All the images and correspond-

ing metadata are released under the Creative Commons Attribution License (CC-BY) in the Zenodo

data repository, and can be freely downloaded via doi:10.5281/zenodo.2654887.

3 Danger detection

We consider the problem of detecting threats as a supervised binary classification problem, i.e. where

the classification boundary is learned algorithmically from a training set of images that have been

explicitly labelled as either dangerous or not. We do not attempt to distinguish between different

degrees of danger.

Unless otherwise specified, we used a logistic regression (LR) classifier with L2 regularisation (see

Section 3.3 for tests using different classifiers). All tests were repeated multiple times (reported as,

e.g., N = 100) using the full dataset randomly partitioned into training and test sets, with the follow-

ing constraints:

1. All poses of the same object instance were always in the same set.
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2. The proportion of dangerous objects present in each set was maintained, to the extent possible

given constraint 1.

Note that since the number of poses of each instance varies, the exact number of images in each set

was not always identical. The dataset contains more benign than threat objects, so samples were

weighted to compensate for the mismatch. In general, where several different configurations were to

be directly compared (e.g., when results are presented in the same plot), the same training/test splits

were used for all configurations.

Classifier performance was evaluated using the area under the receiver operating characteristic

curve (AUC) [4]. This has an intuitive interpretation as the rate at which a system can correctly dis-

tinguish which is which of a danger and a benign example. AUC does not require us to decide what

detection rate is needed nor what false alarm rate is acceptable for the aviation security domain.

While these considerations are essential for a system nearer to deployability, for earlier research such

as this it is more useful to report the overall performance without prejudging the operational de-

mands.

All computational experiments were written in Python (https://python.org) with the SciPy

stack of scientific packages (https://scipy.org). Deep learning models were implemented us-

ing Keras (https://keras.io) and TensorFlow (https://tensorflow.org), while classic machine

learning methods were implemented using SciKit-Learn (https://scikit-learn.org/). Additional

statistical analysis and plotting was performed using R (https://www.r-project.org).

3.1 Baseline tests

As a human baseline, we tested the performance of human observers using a two-alternative forced

choice (2AFC) paradigm [16]. The subjects were presented with random image pairs of which exactly

one was of an object from a class that had been labelled as dangerous, and were required to choose

which image contained the threat. The test was undertaken by naı̈ve participants who were not

familiar with the image data (N = 5 for each modality, non-overlapping). They were not shown any

training images, but instead were briefed on the general nature of the content and the danger criteria.

Subjects achieved a median AUC of 95.9% for colour X-ray images and 97.6% for photos.

As an algorithmic baseline, we tested performance of a machine classifier trained on simple en-

gineered features expressing basic image statistics: pixel histograms; Tukey five number summaries

(minimum, first quartile, median, third quartile, maximum) for the three colour channels (abbrevi-

ated RGB5); ‘busyness’, assessed as the sum of squared deviations from the mean value; and the
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latter supplemented by the mean itself. Results are shown in Fig. 5. The best performing feature set

for colour X-rays was RGB5 (median AUC 82.9%), while for photos it was the histogram (median

AUC 74.6%).

Notably, the classifiers on engineered features all performed better on X-rays than photos. This

is in contrast to the results for human observers and what is found below using learned features, for

which photo performance is always better. We infer that the false colour palette indicating material

density provides information that helps to identify some of the ‘low-hanging fruit’ in the danger clas-

sification when using simple RGB summary features—in particular the presence of metal objects—

but that this advantage is outweighed by the greater detail and familiarity of photographic content

when assessing more difficult cases.

3.2 Deep learning from scratch

Deep learnt image classification models have a very large number of trainable parameters (e.g.

roughly 18 million for DenseNet, 22 million for Inception v3), and consequently require a large quan-

tity of data to train. Given the meagre quantities of labelled X-ray data available, training such a

model from scratch almost inevitably leads to significant overfitting.

In tests using our X-ray dataset, while the CNNs we trained consistently converged to high ac-

curacy on the training data within 30–40 epochs, their performance only weakly generalised to the

test data. Over repeated trial runs of 100 training epochs, typical final median AUCs were 81–83%.

This performance is notably no better than was achieved using logistic regression on the engineered

RGB5 vectors with just 15 feature dimensions.

3.3 Using pre-trained appearance features

Rather than training a complex deep neural network from scratch, we can exploit knowledge already

learned from a large corpus of out of domain photographic images in the form of pre-trained appear-

ance features. In a deep model trained on labelled images such as those in ImageNet, the outputs of

the pre-classification pooling layers are a representation of an image in terms of attributes useful for

the learned classification task, which the model performs very well. This feature space is of signifi-

cantly lower dimension (103–104) than the original image space (105–106), but the feature dimensions

are more informative. We transfer this representation as a starting point for our own different classi-

fication task, in the expectation that the image properties these features distill will also prove useful

in our target domain.
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We tested this technique with features from five candidate pre-trained networks, details of which

are given in Table 2. Summary results from a range of tests on these features are shown in Fig. 5.

We first investigated the relative performance of classifying danger vs benign in different image

modalities (Fig. 5(a)). Classifier performance was higher when analysing photographic images rather

than X-ray images. This is unsurprising given that the appearance features are learned from and

tailored to photo classification. The five X-ray variants did not vary much in their performance, but

the false colour version showed a small consistent advantage and we have focussed on that variant

in most subsequent tests.

We also compared the performance of a range of different classification algorithms applied to

these appearance features, finding that regularised logistic regression (LR) outperformed other ap-

proaches, including fully-connected deep networks with up to 3 hidden layers (FC0–FC3). Notably

the worst performer was a nearest-neighbour (NN) approach, suggesting that dangerous images are

not strongly clustered in appearance space. On the basis of these results, we focus on LR for classifi-

cation in most of our tests.

Finally, we compared the performance of the different appearance models for both photos and

false colour X-rays (Fig. 5(c)). Once again the performance on photos was better than for X-rays,

probably reflecting the greater similarity with the image domain on which the features were origi-

nally trained. The best performing features for photos were those from the Xception network. How-

ever, these features were actually the worst for X-ray images, for which DenseNet features provided

the best performance. Since targeting X-rays is our primary concern, we focus on DenseNet features

in the remainder.

It is worth noting that all feature models significantly outperformed the engineered features of

Fig. 5, confirming the merit of the transferred feature approach. However, they all fall short of the

accuracy of human observers.

3.4 Cross-modality training between X-ray and photo

In the previous tests we made use of photo-trained features, but made no attempt to employ photos

directly in model training. To see whether there is additional benefit to be gained from such training,

we performed a series of tests in which the availability of training data from the target modality was

artificially restricted.

For each trial, the full data set of matched pairs was divided into training and test sets, but then

only a fraction of the training set was used for training in the target modality. The remainder of
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the training data was optionally added as supplementary training data using the ‘wrong’ image

type—simulating transfer of data that is from the correct application domain but a different modal-

ity. Performance of the trained classifiers was then evaluated using only the target modality images

from the test set. Results are shown in Fig. 5, with the light bars showing results that include the sup-

plementary, cross-modality training data and the dark ones showing results with only the restricted

target modality training data. Note the non-uniform sampling of the horizontal axis, with more

dense sampling of low target data levels, corresponding to likely scenarios of low data availability.

The leftmost light bar in each plot shows pure cross-training with no data at all from the real

target modality. In this situation it would be impossible to train a classifier at all without recourse

to transferred data. So, even though the performance is not especially impressive (median AUC

77.3% targeting colour, 74.3% targeting photos), the transfer is clearly beneficial. Comparing both

modalities, it appears that photos represent a better training proxy for X-rays than vice versa.

Conversely, the rightmost dark bar in each plot shows the effect of training with all available

target modality training data and no transfer data. This clearly provides the best performance of all

the configurations: given ideal data availability there would be no point in transferring data from a

different modality.

Based on the intermediate fraction results, we can make two observations.

First, even a small amount of true target data can significantly improve the training. For both

modalities, training with just 4% of target data alone (∼60 images) achieves better median perfor-

mance than using all the cross-modality data (∼1500 images), although the variance is higher with

the small training set—with so few data points, the performance is particularly sensitive to a good or

bad selection of training examples.

Second, the benefits accruing from the cross-modality data tail off rapidly as the target modality

availability increases. For both modalities, the effect of including the transfer data is close to neutral

once the target fraction gets to about 30%.

Together, these results suggest that while there is some applicability of photo data to the training

of X-ray threat detectors, that applicability is quite limited in practice. In the next section, we attempt

to understand what this implies about how cues to danger overlap between the two image spaces.
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4 Estimating the transferability of learned danger cues

Consider a danger classifier operating in some space of image features, F. For a given body of labelled

training data, some feature combinations in F will represent cues to danger class (either for or against),

while others will be neutral. Given any test image, the evidence of the cues for and against will

ultimately determine the classification. If the training data is well-sampled from the target domain

(and assuming danger and not-danger are in fact discriminable in F), the learned cues will provide a

good basis for successful classification.

When the training domain differs from the target, there will be a mismatch between the set of

cues that are learned and the set that are actually informative in the target domain. In the case of our

X-ray and photo domains, we will denote the true set of danger cues for photos as P and the true set

of danger cues for X-rays as X. The transferability of learning from one domain to another depends

on the intersection of these cue sets, PX = P ∩ X. The non-overlapping subsets P0 = P \ X and

X0 = X \ P are neutral with respect to the other domain, and so should have no effect on the transfer

(except potentially as noise sources that could reduce the efficacy of learning). The intersection of X-

ray and photo cues can be considered a disjoint union PX = PX+ ∪ PX− of features that consistently

provide evidence for the classification in both domains (PX+) and features that provide contradictory

evidence between the domains (PX−). This model is illustrated in Fig. 5(a).

The particular feature sets cueing danger may be difficult or impossible to identify in all but the

simplest feature spaces, but we can draw conclusions about the ‘magnitude’ of the sets since they de-

termine the classifier accuracy. For example, when training on photos to target X-rays, classification

will be better than random to an extent determined by the informative cues PX+, and worse than it

could be to an extent determined by the misleading cues PX−.

We can further probe the cue sets by manipulating the labels on the training data: with the labels

inverted, the contributions of the PX+ and PX− fractions are reversed. Cues that were contradictory

become confirmatory and vice versa. Median AUC results from N = 100 trials using such different

training configurations with both DenseNet appearance features and the engineered RGB5 features

are shown in Table 3.

The raw results are difficult to interpret quantitatively because AUC values are not additive—

indeed, they do not combine in any clearly defined way. To get around this, we propose a simple

model for the relationship between the size of the cue sets and the observable AUC values.

Assume that each cue is independent and binary—that is, either it is present in a consistent way
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in an image or set of images or it is not. The size of a cue set, X = |X|, represents the information value

it contributes to classification. Sizes are additive in the following restricted sense: for disjoint sets the

sizes add and subtract; a set and its negation cancel each other; but a set added to itself remains the

same size.

We assert that classification accuracy is a function f of the information value. The exact form of

this relationship is unknown, but we make the following assumptions about it: that f is non-decreasing

(i.e., better information never leads to worse accuracy) and decelerating (i.e., the performance boost

from an additional increment of information gets smaller the larger the baseline of information to

which it is added). Our metric of accuracy in this case is how much the AUC exceeds 50% (so a

perfectly random classifier corresponds to zero information), though the same analysis should also

be applicable to any alternative scoring method. For convenience we normalise both the information

and accuracy into [0, 1]. The model is illustrated in Fig. 5(b).

Now, consider accuracy results from the different training configurations from the upper half of

Table 3, where the target domain is X-ray. Denote the values as follows:

• Ah: measured by human testing. This does not operate in the same feature space as the other

tests, so it does not encompass the same cues. However, we assume that humans can in some

sense approximate the cues available to a classifier in F, together with some set of additional

cues HX external to F, giving an overall cue pool of size X0 + PX+ + PX− + HX

• Ax: trained directly on X-rays, accessing a cue pool of size X0 + PX+ + PX−

• Ax,p: trained on both X-rays and photos, accessing a cue pool of size X0 + PX+

• Ax,¬p: trained on a combination of correctly-labelled X-rays and incorrectly-labelled photos,

accessing a cue pool of size X0 + PX−

• Ap: trained on photos only, accessing a cue pool of size PX+ − PX−

Given these values and the monotonicity assumptions on f , we can infer lower bounds on the

relative sizes of the different cue sets:

PX+

X0 ≥
Ax − Ax,p

Ax,p + Ax,¬p − Ax
(1)

PX−

X0 ≥
Ax − Ax,¬p

Ax,p + Ax,¬p − Ax
(2)

11



HX
X
≥ Ah − Ax

Ax
(3)

We cannot immediately place upper bounds on PX+ and PX− because the two sets can jointly

become arbitrarily large. But a larger PX+ provides no benefit for transfer learning if offset by equal

losses from PX−. By making the additional assumption that PX− is negligible, we can also infer an

upper bound on PX+:
PX+

X0 ≤
Ap

Ax,¬p
(4)

Bounds can be estimated from results targeting photos in exactly the same way. (In that case we

denote the overlap set XP for distinguishability, and the human cues as HP.)

Estimates for all these are shown in Table 4. The key value of interest is the upper bound on the

ratio PX+/X0. This ratio compares the amount of information about danger common and consistent

between X-ray images and photos to the amount of information present in X-ray images but not

photos. The larger the ratio, the greater the potential usefulness of photo transfer learning to the X-

ray domain. Our results suggest that the commonality of danger cues between the two modalities in

the DenseNet appearance space is only about 40%. This is enough that photos can indeed be helpful

where training data is very scarce, but the benefit is relatively quickly subsumed by a relatively

modest quantity of domain-specific data.

We also note from these results that the assumption of negligible PX− is reasonable in the case

of DenseNet features (indeed the lower bound on PX− is marginally negative), but it is clearly not

valid for RGB5. It is perhaps not surprising that there is a higher scope for contradictory cues in such

a relatively crude feature space.

5 Discussion

X-ray image data is much less readily available than photographic data for training deep learning

models, and it is more difficult and expensive to produce. It therefore makes sense to try to exploit the

high availability of photographic data. In this study we have performed experiments using a newly

acquired dataset, COMPASS-XP, consisting of matched pairs of photographic and X-ray images of

the same objects in the same poses, in order to investigate the transferability of image data between

the two modalities. Our specific focus is on automated threat detection in the context of aviation

security.

These experiments exploited photographic data in two very distinct ways. The first, and more ob-

12



viously successful, was a representation transfer approach in which a pre-trained deep convolutional

neural network was used for feature extraction. The transfer source in this case was ∼1.2 million Im-

ageNet photographs; the domain-specific photographs from the matched pairs dataset were used

only for performance comparison, not for learning transfer. The model’s pre-trained filter parame-

ters were used to map the images into a lower-dimensional, higher-salience appearance space within

which the domain-specific X-ray threat detection learning was able to perform better than in the raw

image space. As has previously been found in numerous other domains [23], this approach pro-

vided a clear benefit, in this case increasing AUC percentage results from the low 80s to the low 90s.

While still some way short of practical deployability in a busy airport, this is certainly a significant

improvement.

The second approach—built on top of the first—was one of functional transfer, in which we at-

tempted to make use of up to ∼1500 domain-specific photos from the matched pairs dataset to assist

the learning of danger cues applicable to X-ray images. The use of matched pairs meant that func-

tional differences would be driven primarily by differences between the two modalities rather than

by differences in subject matter or context. This transfer approach produced some benefit in cases

where the supply of X-ray training data was highly constrained, but was outpaced by even a rela-

tively small addition of real X-ray data—of the order of 50–100 images in our tests.

We interpret this as evidence that the shared pool of cues across the two modalities that are useful

for a task such as classifying benign vs danger is relatively small. We developed a simple model of

this cueing and estimated that the overlap is no more than about 40%. This disjunction places limits

on what can usefully be learned without access to a reasonable quantity of data from the target X-ray

domain. An overlap of 40% is in some ways remarkable for such different imaging modalities, and is

enough to produce significantly better results than would be possible in the absence of such overlap,

but the missing 60% is an insurmountable obstacle. Having X-ray data for training gives access to the

full range of cues, including the overlap. It is clear that learning all the available cues imperfectly

is better than learning only 40% with higher precision.

In an ideal world, the scarcity of domain-specific training data would be addressed and there

would be no need for any form of transfer learning. This is unlikely to be the case any time soon, so

strategies for dealing with this problem can be expected to remain relevant for some time. On the

basis of our results, we make the following recommendations:

• Unless training data in the target modality is very abundant (e.g. >10,000 images), it is better to

use a pre-trained photographic CNN for image features. The risk of lost sensitivity to modality-
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specific features is almost certainly outweighed by the benefit of access to rich generic ones.

We found DenseNet-201 to be the most performant model for our X-ray images, but CNN

differences were marginal compared to not using one at all.

• If at all possible, acquire domain-specific training data in the target modality. The more the

better, but even 10 or 20 target domain X-rays can substantially improve performance on a

binary classification task.

• Domain-specific photographic images can usefully supplement very scarce X-ray images (e.g.

<100), but the benefits are marginal otherwise.

Actual performance gains will vary significantly with the problem domain, so it is difficult to

draw more general conclusions. However, it seems likely that the majority of the benefit to be had

from transfer from photographic to other imaging modalities will already have been captured in the

feature extraction of a pre-trained CNN, and the available improvements beyond that may be quite

limited.

It is worth remarking that human performance on our X-ray data is better than that of our trained

models. At some level, this performance must be making use of cues present in the X-rays, and the

interpretation of those cues must in some sense be transferred from outside the target domain—the

subjects were not trained on domain-specific data and were not experienced X-ray readers. But this

lack of domain training was also true of subjects looking for threats in our photographic data. Clearly,

these viewers were bringing much larger experiential and cognitive frameworks to bear in order to

make contextual judgements regarding danger. Such frameworks are far beyond the scope of current

DL models.
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Classes Instances Matched Pairs

Threat Benign Total Threat Benign Total Threat Benign Total

ImageNet 11 176 187 26 224 250 93 845 938
Custom 24 158 182 43 208 251 165 798 963

Total 35 334 369 69 432 501 258 1643 1901

Table 1: Summary of the COMPASS-XP dataset.
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Model Reference Input Size Parameters Features

DenseNet-201 [13] 224× 224 18.3m 1920
Inception V3 [27, 28] 299× 299 21.8m 2048
MobileNet V2 (alpha=1.4) [26] 224× 224 4.4m 1792
NASNet (Large) [31] 331× 331 84.9m 4032
Xception [6] 299× 299 20.9m 2048

Table 2: Summary of the deep networks for which we have tested pre-trained appearance features.
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Target Training Median AUC (%) Cue Contributions

Human DenseNet RGB5

Colour — 95.9 X0 + PX+ + PX− + HX
Colour 90.6 82.0 X0 + PX+ + PX−

Colour + Photo 90.9 78.8 X0 + PX+

Colour + Inv Photo 87.5 76.7 X0 + PX−

Photo 76.3 70.5 PX+ − PX−

Photo — 97.6 P0 + XP+ + XP− + HP
Photo 92.0 70.5 P0 + XP+ + XP−

Photo + Colour 91.2 69.1 P0 + XP+

Photo + Inv Colour 88.5 70.0 P0 + XP−

Colour 75.9 54.4 XP+ − XP−

Table 3: Summary of feature space test results.
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Targeting X-rays Targeting Photos

≤ PX+

X0 ≤ PX−
X0 ≥ HX

X ≥ ≤ XP+

P0 ≤ XP−
P0 ≥ HP

P ≥
DenseNet 0.08 0.70 −0.01 0.13 0.09 0.67 0.02 0.13
RGB5 0.23 0.78 0.14 0.43 0.03 0.22 0.07 1.32

Table 4: Estimated bounds on relative sizes of danger cue sets.
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FIGURE CAPTIONS

Figure 1: Elements of the COMPASS-XP dataset. Each X-ray/photo matched pair is present in six

different image types, of which five are X-ray variants. Each object class (in this case carving knife),

may be represented by multiple instances, and each instance occurs in multiple poses.

Figure 2: Classification performance of human observers compared with logistic regression using

engineered features. (75% training split, N=100 for engineered features; N=5 human subjects for

each modality, distribution estimated by bootstrap resampling to N=100.)

Figure 3: Classification performance using pre-trained appearance features. Broken down by (a)

image type; (b) classification algorithm; (c) appearance feature model. (75% training split, N=100.)

Figure 4: Effect of supplementing training data with domain-specific images from a different modal-

ity. Results in the left plot are for classifiers targeting colour X-ray data, those on the right are for clas-

sifiers targeting photos. Classifiers are trained using a fraction of the available training data in their

correct target modality: a fraction of 0% means no training is performed with the correct modality,

while a fraction of 100% means the whole training set is used. The training is optionally supple-

mented with the unused portion of the training data, but using the ‘wrong’ imaging modality (light

bars). AUC performance in both cases is calculated for the target modality only, and the test sets are

disjoint from training data in both modalities. Note the non-uniform sampling on the horizontal axis:

more tests were performed at low levels of target data, where the effect of the transfer data is most

pronounced. Results are aggregated over feature models. (LR, 80% overall training split, N=100.)

Figure 5: (a) Conceptual representation of the different sets of danger cues learnable in some feature

space F. P0 are photo cues that are neutral with respect to X-ray images, and X0 are likewise X-ray

cues that are neutral for photos. PX+ are cues present in both image modalities that are consistent

(i.e., indicate the same danger class in both modalities), while PX− are present in both but contradic-

tory. (b) Schematic of the relationship between measurable performance (AUC, normalised such that

[0.5, 1] 7→ [0, 1]) and the underlying information available from feature cues. The true relationship is
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unknown, but we can derive some bounds on the relative contribution sizes given the constraint that

the relationship is monotonically increasing and decelerating (as shown).
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