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Eusocial insect colonies represent some of the most extreme examples of specialized division of 16 

labor. Ageing in workers is often associated with a temporal polyethism in the tasks performed both 17 

inside and outside the colony. Such behavioral transition is sometimes linked to a gradual reduction 18 

in individual immunity. Here, we studied the immune ability of Apis mellifera guard bees, which 19 

represent an intermediate stage between house bees working inside the nest and foragers collecting 20 

resources outside, to assess if their specific task is associated with an immune specialization. Through 21 

immune challenge with Gram-negative bacteria Escherichia coli, we compared the guards ability to 22 

clear bacterial cells from their haemolymph with respect to house bees and foragers. Our findings 23 

demonstrate that guards do not show an immune specialization linked to their task but seem to 24 

represent a transition also in terms of immunity, since their anti-bacterial response appears 25 

intermediate between house bees and foragers. 26 
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 30 

INTRODUCTION 31 

Division of labor, i.e. the pattern of specialization by cooperative individuals performing different 32 

tasks or roles in a social group, is often associated with physiological and/or morphological correlates 33 
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that improve task performance (Duarte et al. 2011). Honeybee workers have represented for decades 34 

a model to study social and physiological implications of division of labor in social Hymenoptera 35 

(Robinson 1992) with a growing attention towards the linkage between temporal polyethism and 36 

immunity (Amdam et al. 2005; Wilson-Rich et al. 2008; Laughton et al. 2011).  Among the different 37 

task specialization of honeybee workers, guards represent a peculiar behavioral phenotype, being 38 

intermediate between house bees working inside the nest and foragers collecting resources outside 39 

(Moore et al. 1987). Workers become guards after performing in-hive duties but before foraging: they 40 

patrol the colony entrance, inspecting incoming bees and excluding foreign individuals (Breed et al. 41 

2004; Cappa et al. 2014, 2016, 2019). Only a small proportion of the colony worker population (about 42 

10%) performs guarding activities (Breed et al. 2004), usually middle-aged workers, between 7 and 43 

22 days post-emergence (Moore et al. 1987).  44 

Given their physiological and behavioral features, guards represent an interesting model to investigate 45 

the association between immune system and specific task performed. Indeed, from a physiological 46 

point of view, juvenile hormone (JH) titers of guards are reported to be higher than other middle-aged 47 

bees and JH seems to be involved in the regulation of aggressiveness (Huang et al. 1994; Pearce et 48 

al. 2001). The high level of circulating JH in guards’ haemolymph may have immunosuppressive 49 

effects as in foragers (Amdam et al. 2004, 2005), resulting in a weaker immune system due to these 50 

physiological correlates. Thus, guards could be less immunocompetent than house bees and more 51 

similar to foragers in their immunity. From an ultimate perspective, attending to the colony queen 52 

and brood is a delicate task and an enhanced immunity in house bees with respect to guards and 53 

foragers working outside the colony social core could represent an evolutionary adaptation at the 54 

colony level to reduce the risk of pathogen transmission to the queen and the vulnerable brood 55 

(Cremer et al. 2007). However, foraging outside the colony could expose foragers to pathogens 56 

(Durrer & Schimd-Hempel 1994), and interacting with incoming foragers at the hive entrance might 57 

also represent a costly task in terms of immunity since frequent interactions with conspecifics increase 58 

the risk of disease transmission (Cremer et al. 2007, 2018). Under this perspective we may expect 59 
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guards and foragers to show a strong immune response to cope with the potential higher risks linked 60 

to their specific task. In this scenario, the present work aims to compare the immune ability of guards 61 

with that of house bees and foragers in order to understand if their specialized task is associated with 62 

their individual immunity. 63 

 64 

MATERIALS AND METHODS 65 

Insect collection and maintenance 66 

Apis mellifera ligustica workers were collected from three hives housed outside the Department of 67 

Biology at the University of Florence, Sesto Fiorentino (Florence, Central Italy).  68 

To obtain house bees of known age, combs with sealed brood were removed from hives and 69 

transferred to the laboratory. Newly-emerged workers were marked with a spot on the thorax with 70 

different paint markers according to day of collection and hive of origin before being reinserted into 71 

their hives. Around 300 newly-emerged workers per hive were marked every week for 4 weeks. 72 

Before the immune challenge, combs were inspected to collect marked workers of an age span 73 

between 1 and 2 weeks post-emergence. With this procedure we obtained house bees of an age 74 

interval similar to guards (Moore et al. 1987). Since guards do not go back to inside-hive duties after 75 

initiating guarding (Breed et al. 2004), we assumed that house bees collected on the combs were not 76 

guards at the time of collection. Marking was used to identify house bees among workers inside the 77 

crowded hive. Foragers and guards were instead collected while performing their specific tasks. 78 

Unfortunately it was not possible to control for the exact age of guards because, as reported by 79 

previous work, the percentage of workers that become guards is quite low (about 10%) and in fact, 80 

only a couple of our marked bees were observed while involved in guarding tasks (and collected for 81 

the bacterial injection). Similarly, the possibility to collect a sufficient number of marked foragers 82 

after 3 weeks was quite scarce, but workers performing foraging tasks should be at least 18-20 days 83 

old (Seeley 1982). Thus, we collected at the entrance of each hive a large number of unmarked 84 

foragers returning from their foraging. Finally, bees at the entrance were observed for 20 min every 85 
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day prior to immune challenge and classified as guards if they showed typical guarding behavior at 86 

the hive entrance: patrolling the board with wings held open, chasing landing bees, inspecting bees 87 

on the board and attacking some of them (Butler & Free 1952). All the bees performing such 88 

behaviors were collected and transferred to the lab for the immune challenge.  89 

 90 

Bacterial injection 91 

To evaluate the workers’ ability to remove bacteria from their haemolymph (i.e. bacterial clearance), 92 

we challenged workers with the Gram-negative bacteria Escherichia coli, an immune elicitor not 93 

naturally found in A. mellifera, to exclude its presence prior to experimental infection, already used 94 

in previous studies testing immunocompetence in insects (Yang & Cox-Foster 2005; Manfredini et 95 

al. 2010; Cappa et al. 2015; 2019). Injection of live bacteria induce the activation of the organism 96 

immune system (Charles & Killian 2015) and subsequent bacterial clearance evaluation provide an 97 

integrative view of workers immunity being linked to other parameters used to assess insects’ immune 98 

response (Gillespie et al. 1997). Bacterial cultures of E. coli tetracycline-resistant strain XL1-Blue 99 

were grown in Luria-Bertani (LB) complex medium added with 10 μg/mL tetracycline overnight at 100 

37 °C in a shaking incubator. After centrifugation, bacteria were washed twice and then resuspended 101 

in phosphate-buffered saline (PBS). The approximate amount of bacterial cells in the solution was 102 

determined using a hemocytometer (Neubauer), then cells were diluted to ~ 1.5 × 108 cells/mL in 103 

PBS. Bees were injected with 1 µL of inoculum, containing ~ 1.5 × 105 cells, between the 2nd and 104 

3rd tergite with a HamiltonTM micro-syringe (Cini et al. 2018). After injection, bees were separated 105 

according to category into plastic cylindrical containers (Ø 10 cm × h 10 cm) provided with ad libitum 106 

honey as food and maintained under controlled conditions (~ 30 °C; 55% RH). Twenty-four hours 107 

later workers were dissected in a plate on ice to facilitate manipulation and removal of the sting 108 

apparatus in order to avoid a reduction in bacteria viable cells due to antimicrobial activity of venom 109 

compounds (Baracchi et al. 2011). Each dissected bee was then inserted into a sterile plastic bag with 110 

10 mL of PBS and processed with a Stomacher® 400 Circulator (230 rpm × 10 min) to homogenize 111 



 5 

the bee body in the PBS. Afterwards, 0.1 mL of serially diluted PBS suspensions (dilutions 10-1, 10-112 

2) of each sample were plated on LB solid medium added with 10 μg/mL tetracycline and incubated 113 

overnight at 37 °C. The following day, colonies grown on the plate were counted and expressed as 114 

Colony Forming Units (CFUs) per bee. A total of 348 E. coli-injected bees were plated: (i) house 115 

bees, N = 176, (ii) guards, N = 85, (iii) foragers, N = 87. At least 15 workers of each category per 116 

colony were used. Ten control bees for each category (N = 30) were injected with 1 µL of PBS, 117 

homogenized and plated following the same procedure to ensure absence of bacterial strains capable 118 

of growing on LB plates added with tetracycline. 119 

 120 

Statistical analyses 121 

To test the effects of bee category on the antibacterial response we fitted a generalized linear model 122 

(GLZ) with negative binomial distribution with log-link function and using Type III Sums of squares 123 

for accounting for unbalanced design. Hive of origin and interaction between bee category and hive 124 

were included as model effects. Sequential Bonferroni-corrected pairwise comparisons were 125 

performed to test for difference among bee categories (α = 0.017). Statistical analyses were performed 126 

using the program SPSS 17.0 for Windows (SPSS Inc., Chicago, IL, USA). 127 

 128 

RESULTS 129 

Antibacterial response was significantly different according to bee category (GLZ: Wald χ2 = 7.303, 130 

df = 2, P = 0.026) while neither hive of origin nor the interaction between hive of origin and bee 131 

category were significant (respectively GLZ: Wald χ2 = 0.307, df = 4, P = 0.858 and GLZ: Wald χ2 = 132 

5.567, df = 2, P = 0.234). Bacterial clearance was higher in house bees than in foragers (Fig. 1, Wald 133 

χ2 = 7.153, df = 2, P = 0.015, α = 0.017, effect size: Cohen's d = 0.202), while no significant difference 134 

was found between guards and house bees (Fig. 1, Wald χ2 = 0.248, df = 2, P = 0.618, α = 0.017) and 135 

between guards and foragers (Fig. 1, Wald χ2 = 3.556, df = 2, P = 0.119, α = 0.017). No CFUs were 136 

detected in plates from PBS-injected controls. 137 
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 138 

DISCUSSION 139 

Our results indicate that the behavioral task transition of guards from non-guarding house bees to 140 

foragers is paralleled by a transition in individual immunity, with guards having an intermediate 141 

antibacterial response between workers performing tasks inside the hive and foragers collecting 142 

resources outside the colony. Guards did not show an increased immune function despite their 143 

behavioral specialization, their antimicrobial response being similar when compared to both house 144 

bees and foragers. From a proximate point of view, we can hypothesize that the physiological 145 

correlates of guarding, i.e. high JH and lowered vitellogenin titers (Huang et al. 1994; Pearce et al. 146 

2001) together with the energetically demanding task of a continuous patrolling at the colony entrance 147 

could be responsible for the absence of an enhanced immunity in guards. On the other hand, from an 148 

ultimate perspective, guarding may not represent a costly task in terms of social immunity and would 149 

not require therefore an enhanced immune system in workers performing such behavior. A high 150 

number of interactions with incoming foragers at the hive entrance might expose guards to a higher 151 

risk of disease transmission (Cremer et al. 2007). However, guards in the majority of cases guard 152 

briefly, for 1 to 3 days, and they do not revert to inside-hive duties after initiating guarding activities 153 

(Moore et al. 1987; Breed et al. 2004). Thus, guarding for a short period of time may not require a 154 

task-related increase in individual immune ability. 155 

The immune trend showed by our groups of bees highlighted a higher immune ability in bees working 156 

inside the nest as already demonstrated by previous work (Amdam et al. 2004, 2005; Laughton et al. 157 

2011). Workers in the first 2 weeks after eclosion are usually engaged in queen attendance and nursing 158 

activities such as brood care and brood rearing (Huang et al. 1994). Nurses are also the main target 159 

of Varroa mites (Cervo et al. 2014; Xie et al. 2016), and their increased immunity could help them 160 

to cope with the parasite pressure and the pathogens it transmits (Francis et al. 2013).  161 

The intermediate immune response of guards and the progressive trend of immunity loss going from 162 

inside-nest to outside-nest tasks suggest that, as postulated by social immunity predictions (Cremer 163 
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et al. 2007, 2018), individuals working in the social core of the colony have highly efficient immune 164 

responses while immune competence decrease while approaching energetically costly outside-nest 165 

duties.  166 

 167 
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 280 

Fig. 1 ⎯ Bacterial clearance of E. coli-injected workers. House bees (HB, N = 176) showed a 281 

significantly higher antibacterial response than foragers (F, N = 87), while guards (G, N = 85) showed 282 

a bacterial clearance similar to both house bees and foragers. Box plots represent the number of 283 

colony forming units (CFUs) detected on LB agar plates from the homogenized honeybee suspension 284 

of workers after overnight incubation at 37 °C (P = 0.015). 285 
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