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Abstract 

Environmental boundaries anchor cognitive maps that support memory. However, trapezoidal 

boundary geometry distorts the regular firing patterns of entorhinal grid cells proposedly providing a 

metric for cognitive maps. Here, we test the impact of trapezoidal boundary geometry on human 

spatial memory using immersive virtual reality. Consistent with reduced regularity of grid patterns in 

rodents and a grid-cell model based on the eigenvectors of the successor representation, human 

positional memory was degraded in a trapezoid compared to a square environment; an effect 

particularly pronounced in the trapezoid’s narrow part. Congruent with spatial frequency changes of 

eigenvector grid patterns, distance estimates between remembered positions were persistently 

biased; revealing distorted memory maps that explained behavior better than the objective maps. 

Our findings demonstrate that environmental geometry affects human spatial memory similarly to 

rodent grid cell activity — thus strengthening the putative link between grid cells and behavior along 

with their cognitive functions beyond navigation. 

Introduction 

Boundaries are essential for navigators moving through space. Consistently, boundary geometry 

serves as a strong cue for reorientation1,2. When rodents and human children are disoriented after 

learning the location of a hidden reward, they search for the reward equally often in geometrically 

equivalent corners of rectangular environments3–5. Consistently, human adults rely on boundary 

geometry for spatial updating, facilitated by a limited number of symmetry axes of enclosure 

boundaries6. The learning of positions relative to a boundary, which recruits the hippocampal 

formation, is thought to occur incidentally7,8 and positions closer to a boundary are remembered 

more accurately than those further away from it9. 

Here, we examine the possibility that boundary geometry can cause distortions in human spatial 

memory. We derive this hypothesis from the distortions induced by environmental geometry on 

rodent grid-cell firing patterns10–12. Grid cells, first identified in the entorhinal cortex of freely moving 

rodents, typically exhibit six-fold periodic (hexadirectional) spatial firing extending across the 

environment13. This pattern can be described in terms of its scale, as well as its offset and 

orientation relative to the environment13,14. Along the dorso-ventral axis of medial entorhinal cortex, 

grid cells sharing similar spacing and orientations are organized in discrete modules15–17. Grid cells 

have been directly recorded in human patients undergoing pre-surgical screening18,19 and in human 

fMRI studies hexadirectional signals serve as a proxy measure for activity of the entorhinal grid 

system20. However, empirical evidence demonstrating the behavioral relevance of grid cells remains 

scarce. 

Theoretical work suggests that regular grid patterns provide a compact code for self-localization and 

function as a metric for space, supporting path integration and vector-based navigation14,13,21–27. 

Thus, location is encoded by the conjunction of spatial phases across different modules — the 

population phase25,28 — while the distance and direction between points can be derived from the 

relative difference in population phase25. With a regular underlying grid pattern, there should be a 

tight coupling between the distance separating positions and the change in grid population phase. 

Larger distances in space correspond to greater changes in grid population phase.  
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Environmental geometry strongly influences grid firing patterns in rodents10,12,29,11. Changes made to 

the geometry of a familiar enclosure produce commensurate changes to the scale of grid-patterns, 

resulting in differential rates of change in population phase for travel in the changed and unchanged 

dimension15,17. Similar manipulations made while humans navigate in virtual reality (VR) 

environments produce complementary deficits in path integration30. More strikingly, in highly 

polarized enclosures such as trapezoids, grid-patterns are highly distorted and less regular than in 

control enclosures10. These changes are especially pronounced in the narrow part of the trapezoidal 

enclosure with reduced symmetry, less regular fields and a change of grid orientation — changes 

which do not appear to attenuate with continued exposure10. Similarly, in a quadrilateral 

environment with one slanted wall, firing fields of grid cells were consistently shifted away from the 

slanted wall, resulting in a local distortion of the grid11. Together, these findings indicate that 

environmental boundaries not only anchor spatial representations, but that their specific 

arrangement can distort spatial codes in the mammalian brain. However, the potential 

consequences of compromised grid patterns for human spatial cognition have, to the best of our 

knowledge, not been explored. 

Here, we investigate how environmental geometry — which is known to distort grid-cell based 

computations — influences human spatial cognition. Degraded grid patterns in a trapezoid are 

hypothesized to carry less precise positional information than regular grid patterns, resulting in 

uncertainties about locations in space and the distances between them10,11,28. Thus, we investigated 

the effects of boundary geometry on human spatial memory. We capture the effects of 

environmental geometry on grid patterns using the eigenvectors of the successor representation 

(SR, see Methods), which has been related to reinforcement learning and choice behavior31–35. The 

eigenvectors of the SR exhibit grid-like properties in two-dimensional space whose regularity is 

degraded in a trapezoid32. We demonstrate that distorted eigenvector grid patterns convey less 

precise information about self-location in a trapezoid, this effect being most pronounced in the 

narrow end. We tested whether memory for object positions is impaired in a trapezoid compared to 

a square control environment. Within the trapezoid, we expected worse memory performance 

particularly in the narrow compared to the broad part of the enclosure. In addition, spatial 

computations performed on the basis of distorted grid patterns are expected to exhibit systematic 

biases. SR grid patterns were, on average, stretched in the trapezoid relative to the square and 

compressed in the narrow compared to broad part of the trapezoid. We asked participants to judge 

distances between remembered locations and contrasted their estimates of identical true distances 

as a function of environmental geometry.  

Results 

Positional memory 

We employed immersive VR to investigate effects of environmental geometry on human spatial 

memory (Figure 1A). Wearing a head-mounted display, participants navigated different 

environments using a motion platform translating real-world rotations and steps into virtual 

movement (Figure 1B). Participants were familiarized with the VR setup in a circular environment 

before learning object positions in a square and a trapezoid with the order of environments 

counterbalanced across participants. The environments were of equal surface area and distinct wall 

colors served as orientation cues. In the object position memory task, participants learned the 
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positions of six objects in each environment, organized in two triplets with matched inter-object 

distances in both halves of an environment (Figure 1C). Participants were tested on the positions of 

the objects after an initial learning phase by having to navigate to the remembered position of a 

cued object in each trial (Figure 1D). To probe mnemonic distortions outside of the encoding 

environment, participants judged pairwise distances between object positions in VR by walking the 

distance in the circular familiarization environment and on a computer screen by adjusting a slider 

on a subjective scale. 

Does the disruption of regular grid patterns (Figure 1EF, Extended Data Figure 1, two-sample t-test: 

t(98)=10.81, p<0.001, d= 2.14, 95% confidence interval (CI): 1.83, 2.61) result in less accurate 

positional codes? To test this notion, we used a Bayesian decoder to decode locations using 

synthetic spike trains sampled from a population of SR grid patterns (n=50), themselves derived 

from the eigenvectors of successor representations from the square and trapezoid environment. 

Decoding was performed using a simple maximum likelihood approach assuming uniform priors36. 

Decoding errors — the displacement between the true and decoded position — were larger in the 

trapezoid than in the square (Figure 1G, two-sample t-test: t(58)=117.41, p<0.001, Cohen’s d=29.93, 

95%-CI: 26.06; 37.00), indicating that distorted grid patterns carry less positional information. To 

exclude the possibility that this reduction simply reflected the change in environmental aspect ratio, 

we verified that decoding accuracy for the smallest rectangular environment entirely enclosing the 

trapezoid exceeds that for the trapezoid itself (Extended Data Figure 2, two-sample t-test: 

t(58)=64.52, p<0.001, d=16.44, 95%-CI: 14.29; 20.46). Thus, distorted grid patterns indeed underlie 

worse position decoding in the trapezoid.  

Is human positional memory also degraded in a trapezoid? In a first step, we compared raw 

positional memory error — the displacement between the response and correct position — 

between the two environments. Consistent with the degradation in positional information seen in 

simulated grid patterns, participants made larger errors in the trapezoid than the square (Figure 2A, 

bootstrapped paired t-test: t(36)=2.71, p<0.001, d=0.45, 95%-CI: 0.16; 0.73; we analyzed the 

behavioral data using bootstrap-based t-tests and report bootstrapped confidence intervals of the 

effect size throughout, see Methods). To ensure that this effect was not due to the fact that the 

trapezoid allows larger errors because of its elongated shape, we calculated memory scores 

accounting for differences in the distribution of possible errors for each position37. We generated a 

chance distribution of 1000 random locations uniformly covering the entire environment and 

quantified the distance of each random location to the correct positions, resulting in a specific 

distribution of possible error distances for each position. For each trial, we calculated the memory 

score as 1 minus the proportion of distances from the chance distribution smaller than the 

replacement error. This yielded a score ranging from 0 (low memory) to 1 (perfect memory) for each 

trial, taking into account the range of possible errors based on the correct position and 

environmental geometry (see Extended Data Figure 4A for the overall distribution of memory 

scores). Importantly, memory scores were significantly lower in the trapezoid compared to the 

square (Figure 2BC, bootstrapped paired t-test: t(36)=-2.30, p<0.001, d=-0.38, 95%-CI: -0.67; -0.08), 

ensuring that decreased positional memory was not due to different distributions of possible errors 

as a result of the elongated shape of the trapezoid.  

In rodents, grid patterns recorded from a trapezoid are known to be more strongly distorted in the 

narrow end of the environment than its base10. Similarly, we found that decoding errors derived 
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from SR grid patterns were also larger in the narrow part of the trapezoid (Figure 1H, two-sample t-

test: t(58)=14.63, p<0.001, d=3.73, 95%-CI: 3.12; 4.82). To determine whether human spatial 

memory differed within the trapezoid, we examined memory errors finding, as expected, that errors 

were larger in the narrow end (Figure 2D, bootstrapped paired t-test: t(31)=2.75, p<0.001, d=0.49, 

95%-CI: 0.19; 0.82). To control for the expected difference in error distributions we again calculated 

memory scores, confirming a robust difference between the two ends of the environment (Figure 

2E, bootstrapped paired t-test: t(31)=-1.59, p=0.023, d=-0.28, 95%-CI: -0.61; 0.06). The difference in 

positional memory errors between the narrow and broad part of the trapezoid was higher than the 

5th percentile of a surrogate distribution of error differences obtained from comparing positional 

memory between the halves of the square, indicating a significant difference between the 

environments (Extended Data Figure 4C, Z=2.18, p=0.015). Taken together, the profile of positional 

memory observed is in line with our predictions derived from deformations of grid patterns with 

degraded positional memory in the trapezoidal compared to the square environment and more 

impaired performance in the narrow than the broad part of the trapezoid. Indeed, calculating the 

Bayes Factor to quantify the likelihood of observing differences in positional memory between 

environments and trapezoid halves based on the decoding errors of the SR grid model compared to 

a null model of no difference revealed strong evidence for the SR grid model (BF10=23.58; we report 

twice the natural logarithm of the Bayes Factor throughout, see Methods). 

In the absence of other positional cues, object locations had to be learned relative to the enclosure 

boundaries in our task. Can differences in boundary proximity explain the pattern of results in line 

with more accurate memory for positions near boundaries9? Due to the specific geometry of the 

trapezoid, distances of object positions to the closest boundary were smaller in the trapezoid than in 

the square (bootstrapped paired t-test: t(36)=-10.09, p<0.001, d=-1.66, 95%-CI: -2.23; -1.30) and 

smaller in the narrow compared to broad part of the trapezoid (bootstrapped paired t-test: t(36)=-

18.34, p<0.001, d=-3.02, 95%-CI: -4.05; -2.44). Hence, the boundary proximity model predicts better 

memory in the trapezoid and the narrow end of this environment — directly opposite to effects we 

predicted and observed. Congruent with the beneficial role of boundary-proximity, distances to the 

closest boundary were negatively correlated with memory scores in the square (Extended Data 

Figure 4E, bootstrapped one-sample t-test: t(36)=-4.42, p<0.001, d=-0.73, 95%-CI: -1.15; -0.40). In 

the trapezoid, however, there was no statistically significant effect of boundary proximity on 

memory scores (bootstrapped one-sample t-test: t(36)=-0.40, p=0.524, d=-0.07, 95%-CI: -0.39; 0.27; 

bootstrapped paired t-test of difference between square and trapezoid: t(36)=-3.45, p<0.001, d=-

0.57, 95%-CI: -0.96; -0.26); suggesting a differential relationship of boundary proximity and 

positional memory in non-rectangular environments. 

Differences in positional memory in both environments were not due to differential navigation 

behavior: There were no statistically significant differences in the excess path lengths of participants’ 

navigation paths from the start position of a given trial to the remembered object location in the 

trapezoid compared to the square environment or between the two parts of the trapezoid 

(Extended Data Figure 5AB, bootstrapped paired t-tests; square vs. trapezoid: t(36)=-0.95, p=0.144, 

d=-0.16, 95%-CI:-0.48; 0.18; broad vs. narrow trapezoid: t(36)=-0.11, p=0.865, d=-0.02, 95%-CI: -0.31; 

0.36). Further, there were no statistically significant differences in walking speeds between the two 

environments or the sub-parts of the trapezoid (Extended Data Figure 5CD, bootstrapped paired t-

tests; trapezoid vs. square: t(36)=-0.01, p=0.973, d=0.00, 95%-CI: -0.33; 0.34; broad vs. narrow 

trapezoid: t(36)=1.15, p=0.079, d=0.19, 95%-CI: -0.14; 0.51). There was no statistically significant 
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relationship between Euclidean distances from the start positions to the correct object positions and 

spatial memory performance (Extended Data Figure 5EF, bootstrapped one-sample t-tests; square: 

t(36)=0.17, p=0.764, d=0.03; 95%-CI: -0.32; 0.35, trapezoid: t(36)=0.58, p=0.358, d=0.10, 95%-CI: -

0.22; 0.46, trapezoid broad: t(36)=1.37, p=0.177, d=0.23, 95%-CI: -0.10; 0.65, trapezoid narrow: 

t(36)=-0.01, p=0.987, d=0.00, 95%-CI: -0.36; 0.32). 

To explore participants’ navigation behavior in more detail we next examined their body and head 

orientation during the replacement period relative to the direction from start to response position in 

each trial. Both body and head orientation of participants were significantly clustered around this 

direction in square (v-tests; body: v=36.84, p<0.001; head: v=36.68, p<0.001) and trapezoid (v-tests; 

body: v=36.89, p<0.001; head: v=36.68, p<0.001) and there was no statistically significant effect of 

environment on the distributions of mean orientations (Extended Data Figure 6AB, Watson-Williams 

tests; body: F(1,72)=0.02, p=0.889; head: F(1,72)=0.14, p=0.709). Similar results were obtained for 

the body and head orientations when comparing trials targeting objects in the broad and narrow 

parts of the trapezoid (Extended Data Figure 6CD, v-test body broad: v=36.73, p<0.001; v-test body 

narrow: v=36.73, p<0.001; Watson-Williams test difference body: F(1,72)=1.53, p=0.220; v-test head 

broad: v=36.54, p<0.001; v-test head narrow: v=36.65, p<0.001; Watson-Williams test difference 

head F(1,72)=0.05, p=0.830). Hence, we do not expect average facing direction to influence our key 

comparisons between the two environments or within the trapezoid. There was no statistically 

significant difference in the circular variance around each trial’s average body direction between 

environments (Extended Data Figure 6E, trapezoid vs. square bootstrapped paired t-test: t(36)=1.06, 

p=0.118, d=0.17, 95%-CI: -0.16; 0.46) or the trapezoid parts (Extended Data Figure 6G, narrow vs. 

broad bootstrapped paired t-test: t(36)=1.14, p=0.076, d=-0.19, 95%-CI: -0.13; 0.54), but the circular 

variance of participants’ facing directions was greater in the trapezoid than in the square (Extended 

Data Figure 6F, bootstrapped paired t-test: t(36)=2.57, p<0.001, d=0.42, 95%-CI: 0.13; 0.73) and 

greater in the narrow than the broad part of the trapezoid (Extended Data Figure 6H, bootstrapped 

paired t-test: t(36)=2.13, p<0.001, d=0.35, 95%-CI: 0.04; 0.69). This suggests that participants relied 

more on visual exploration of the environment, decoupled from body rotations and chosen 

trajectories in our VR setup. Taken together, we observed no credible evidence of participants being 

generally disoriented in the trapezoid or of fundamental differences in navigational strategies 

between environments. The object position memory task was designed to probe memory for 

positions in the broad and narrow part of the trapezoid rather than to evenly sample the 

environment. Therefore, participants faced more frequently towards the narrow or broad end of the 

trapezoid when navigating towards remembered positions in the respective part of the environment 

(Extended Data Figure 7A, v-tests; broad: v=31.84, p<0.001; narrow: v=28.50, p<0.001). Further, 

participants’ velocity was higher along the trapezoid’s long-axis (Extended Data Figure 7B, v-tests; 

broad: v=27.03, p<0.001; narrow: v=13.51, p=0.001). Do attentional resources and task demands 

differ between test environments? This seems unlikely as our design included a secondary task in 

which participants memorized color changes of an extramaze cue and later estimated durations 

between color change events (see Methods). There were no statistically significant differences 

between square and trapezoid (Extended Data Figure 10) in mean (bootstrapped paired t-test: 

t(36)=-0.10, p=0.873 d=-0.02, 95%-CI: -0.37; 0.31) and absolute (bootstrapped paired t-test: t(36)=-

0.32, p=0.629, d=-0.05, 95%-CI: -0.37; 0.29) estimation errors or the error variability (bootstrapped 

paired t-test: t(36)=-0.81, p=0.205, d=-0.13, 95%-CI: -0.46; 0.19). 
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Mnemonic distortions outside of the environment 

Next, we sought to address whether computations based on spatial memories distorted through 

environmental geometry are systematically biased outside of the learning environment. To this end, 

we asked participants to estimate distances between the positions of object pairs in two modalities 

subsequent to the object position memory tasks (Figure 3AB). In the VR version of the distance 

estimation task, participants reported distances by walking the respective distance between two 

remembered object positions in a circular enclosure different from the original square and 

trapezoidal environments. In the desktop version of this task, they indicated these distances on a 

subjective scale via a computer mouse (see Methods). Participants successfully completed both 

versions of the task (Extended Data Figure 8AB, bootstrapped paired t-test of long vs short distances 

in VR version: t(36)=11.00, p<0.001, d=1.81, 95%-CI: 1.38; 2.53; mean±SD of Spearman correlations 

between true and estimated distances in desktop version: r=0.67±0.19), demonstrating the ability to 

compute never-experienced distances from pairs of remembered positions. Comparing distances 

walked in the VR version of the task to true Euclidean distances across all trials revealed an 

overestimation bias (bootstrapped paired t-test: t(36)=5.78, p<0.001, d=0.95, 95%-CI: 0.60; 1.47). 

How could distorted grid patterns during encoding bias later distance estimates? The entorhinal grid 

system is thought to be a central component of the neural substrate supporting vector based 

navigation — allowing navigational vectors to be calculated by comparing the grid population phases 

of positions22,38,39,25,27. In such a system, the difference in grid population phase between locations is 

expected to be proportional to the Euclidean displacement between them25,28. Thus, in order for a 

subject to make accurate distance judgements, the relationship between the Euclidean distance and 

grid phase distance must be held constant in both the presentation and response context. If, for 

example, a distance was encoded with a population of grid patterns that had been compressed 

(increased frequency) then attempts to recapitulate that distance with unbiased grid patterns would 

result in an overestimate in Euclidean space. To determine if successor-based grid patterns were 

systematically distorted in either the square or trapezoid environment we applied a Fourier 

approach. Specifically, analysis of the spatial frequency of the SR grid rate maps revealed a sparser 

packing of grid fields in the trapezoid than the square (Figure 1I, Extended Data Figure 3A, two-

sample t-test: t(98)=3.98, p<0.001, d=0.79, 95%-CI: 0.39; 1.25, see methods). Hence, grid phase 

changed more slowly as a function of distance in the trapezoid, which might result in 

underestimations of distances relative to the square28. 

Taking advantage of our design in which participants learned a triplet of object positions in each half 

of an environment with matched inter-object distances, we compared distance estimates between 

environments. In line with stretched SR grid patterns, distances were judged to be shorter in the 

trapezoid than in the square in both the VR (Figure 3C, bootstrapped paired t-test: t(36)=1.44, 

p=0.025, d=0.24, 95%-CI: -0.08; 0.61) and the desktop (Figure 3D, bootstrapped paired t-test: 

t(36)=1.49, p=0.027, d=0.24, 95%-CI: -0.07; 0.56) version of the task. This effect was highly reliable 

between the two versions of the task (Extended Data Figure 8C, Spearman r=0.79, p<0.001, 95%-CI 

of correlation coefficient: 0.61; 0.88). Next, we tested for a difference between distance estimates 

for the two parts of the trapezoid. Consistent with higher frequencies of the successor based grid 

patterns in the narrow compared to the broad part (Figure 1J, Extended Data Figure 3B, two-sample 

t-test: t(98)=3.90, p<0.001, d=0.78, 95%-CI: 0.39; 1.21), participants estimated the same distances to 

be longer in the narrow than in the broad part of the trapezoid (VR: Figure 3E, bootstrapped paired 
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t-test: t(36)=2.09, p=0.002, d=0.34, 95%-CI: 0.03; 0.68; desktop: Figure 3F, bootstrapped paired t-

test: t(36)=3.46, p<0.001, d=0.57, 95%-CI: 0.22; 1.05). Again, the difference between remembered 

distances was highly correlated across the two modalities (Extended Data Figure 8D, Spearman 

r=0.70, p<0.001, 95%-CI of correlation coefficient: 0.36; 0.89). We calculated surrogate distributions 

of distance differences between the two halves of the square to contrast the two environments. In 

both versions of the task, the distance difference of the trapezoid halves differed significantly from 

the surrogate distributions of distance differences obtained from the square halves (Extended Data 

Figure 8EF, VR: Z=4.05, p<0.001; desktop: Z=3.68, p<0.001). These findings demonstrate that — 

across two versions of the task with very different response formats — distance estimates for 

identical distances are systematically biased in a way consistent with the spatial frequencies of 

distorted SR grid patterns in the trapezoid. We assessed the likelihood of observing longer distance 

estimates in the square and in the narrow end of the trapezoid given differences in spatial frequency 

of the SR grid patterns. Again, the Bayes Factor strongly favored the SR grid model over the null 

model (VR: BF10=15.31; desktop: BF10=18.68). 

Reconstruction of remembered locations 

What is the structure of deformed memory maps? To reconstruct remembered object positions 

from estimated inter-object distances, we applied multidimensional scaling to the data obtained in 

the desktop version of the task (Figure 4A). We extracted coordinates along two dimensions (see 

Extended Data Figure 9A), which we mapped onto the true coordinates of the trapezoid using 

Procrustes analysis to match the two configurations of coordinates (Figure 4A and Extended Data 

Figure 9B, see Methods). We quantified the deviance between the true and reconstructed positions 

after Procrustes analysis and compared this Procrustes distance to a surrogate distribution of 

distances obtained from shuffling object-position-assignments to assess the statistical significance of 

the reconstruction accuracy (Figure 4B). The observed Procrustes distances were significantly lower 

than the 5th percentiles of the surrogate distributions (Figure 4C, bootstrapped paired t-test: t(36)=-

8.48, p<0.001, d=-1.39, 95%-CI: -2.26; -0.89), reflecting a close match between true and 

reconstructed positions. Importantly, re-calculating above-described memory scores with the 

reconstructed positions led to higher scores compared to the true positions (Figure 4D, 

bootstrapped paired t-test: t(36)=3.09, p<0.001, d=0.51, 95%-CI: 0.18; 0.95), providing direct 

evidence that positional memory is used to compute distances between objects and that distorting 

the spatial map also distorts distance estimates. This effect was also significant when excluding trials 

targeting objects whose reconstructed position lay outside of the environment (bootstrapped paired 

t-test: t(36)=1.42, p=0.023, d=0.23, 95%-CI: -0.08; 0.64). The increase in memory scores could be 

explained if, for each position, reconstructed positions reflect remembered positions in the 

trapezoid. To quantify this, we calculated the error vectors between the true and remembered 

positions in the object position memory task and compared these to the error vectors of the 

reconstructed positions. We observed a strong relationship between the two sets of error vectors as 

indicated by a significant correlation of their average lengths (Figure 4E, Pearson r=0.62, p<0.001, 

95%-CI of correlation coefficient: 0.33; 0.79) and a clustering of their orientations (Figure 4F, angular 

difference of vectors significantly clustered around 0, v-test: v=13.77, p=0.001). These findings show 

that positions reconstructed based on distance estimates were shifted in the same direction as 

remembered positions and that the magnitude of this shift corresponded to the size of errors in the 

object position memory task. 
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Discussion 

Here, we used immersive VR to demonstrate that environmental geometry can distort human spatial 

memory. Our data show that positional memory is impaired in a trapezoid compared to a square 

with the deficits being most pronounced in the narrow end of the trapezoid environment. These 

findings are consistent with environmentally-induced distortions observed in rodent entorhinal grid-

patterns. Equally, they closely mirror predictions drawn from a model grid cell system derived from 

the eigenvectors of the successor representation (SR). Importantly, mnemonic distortions persisted 

outside of the environment: Participants estimated identical distances to be different in the square 

and trapezoid as well as between the narrow and broad part of the trapezoid, underscoring an effect 

of environmental geometry during encoding on subsequent memory in line with spatial frequencies 

of SR grid patterns. Moreover, remembered positions reconstructed from these distance estimates 

directly reflected positional memory during the learning task. 

Our findings demonstrate a strong impact of environmental geometry on human spatial memory. 

We predicted this influence from rodent data in which the six-fold symmetry of grid firing is 

distorted in a trapezoidal enclosure, with the most pronounced distortions in the narrow part of the 

enclosure10. We show degraded positional memory as a function of environmental geometry, in line 

with larger position decoding errors based on the eigenvector grid patterns of the SR as well as with 

impaired positional decoding from simulated grid cells with locally distorted firing patterns11. In 

concert with evidence for impaired path integration with disrupted grid cell firing in rodents40 and 

increased path integration errors in older adults with weaker hexadirectional signals measured with 

fMRI41, previous studies support the interpretation that the integrity of the grid pattern is beneficial 

for human spatial memory. The strength of hexadirectional signals and the directional coherence of 

the orientation of these signals across voxels in the entorhinal cortex are associated with memory 

performance across participants learning object positions in circular enclosures20,42. Our findings 

dovetail with this notion as they demonstrate that environmental geometry, known to compromise 

grid-patterns in rodents, influences spatial cognition in a within-subject design. 

We further demonstrate that distortions persist beyond the encoding environment. The grid cell 

population phase is thought to provide a mechanism to encode spatial positions and calculate 

vectors between locations25. As such, distortions of the grid-pattern can decouple the rate of change 

in population phase from distance in the environment28. Two positions separated by a given distance 

will be encoded more similarly when grid patterns are of lower rather than higher spatial frequency. 

When estimating distances between positions, more similar grid population phases will result in 

shorter distance estimates22,25,27,38,39. Consistent with the lower spatial frequencies of SR grid 

patterns, participants estimated identical distances to be shorter in the trapezoid than in the square. 

Within the trapezoid, SR grid patterns had a higher spatial frequency in the narrow end and, 

consistently, participants estimated distances to be greater in the narrow compared to the broad 

part. 

Our results show that human spatial memory was distorted in a trapezoidal environment, suggesting 

that boundary geometry can distort mnemonic representations. Previous studies have investigated 

the role of trapezoidal boundary geometry for spatial updating and reorientation. Evidence suggests 

successful use of trapezoid room geometry for spatial updating in the absence of additional 

orientation cues. A limited number of symmetry axes was suggested to facilitate the maintenance of 
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one’s orientation in angular in contrast to circular environments6. Consistently, human participants 

successfully rely on trapezoidal boundary geometry for heading retrieval43,44. In our task, wall 

textures provided additional, unambiguous non-geometric cues for orientation in both 

environments, making it unlikely that participants were disoriented in either the square or the 

trapezoid5,44. This supports our interpretation of the effects reflecting differences in positional 

memory rather than being driven by disorientation or differences in navigation behavior. Learning 

positions relative to environmental boundaries recruits the hippocampal formation and is thought to 

occur incidentally7,8. Recent evidence suggests that positions near a boundary are remembered 

more accurately than positions in the center of a rectangular enclosure9. While we replicate the 

finding that boundary proximity is beneficial for positional memory in the square, this cannot explain 

the pattern of results we observed. Positions in the trapezoid were closer to the nearest boundary 

than in the square and, within the trapezoid, positions in the narrow were closer to a boundary than 

in the broad part. Our findings suggest that boundaries can also distort human spatial memory, in 

line with grid pattern distortions through environmental geometry. 

Prior studies suggested that changing environmental boundaries might influence human spatial 

cognition in ways consistent with findings from studies of rodent place45 and grid cells13. Focusing on 

path integration, one of the core functions assumed for grid cells13,14,21, biases in human navigation 

have been reported to follow predictions derived from grid cell firing30. In particular, the 

experimental design in Chen et al.30 built upon the observation that rodent grid-patterns rescale to 

match changes made to the geometry of already familiar enclosures15. Expansions and compressions 

of boundaries relative to preceding trials resulted in under- and overshoots of the return path in a 

path integration task, when the path included a component along the manipulated boundary 

dimension30. This illustrates how, through environmental change, altering the rate of change in grid 

cell population phase in relation to distance traveled can introduce biases in human navigation28,30. 

As described above, translating this idea to the memory-based estimation of distances between 

locations might explain the diverging judgments of identical distances observed in our data. 

Expansions and compressions of virtual environments have further been demonstrated to impact 

spatial memory in humans and, under conditions of environmental change, positional memory 

follows models of place cells and boundary proximity46,47. While the studies described above indicate 

how boundary manipulations in familiar environments influence spatial behavior, we built upon 

work showing that distorted grid-patterns persist in static trapezoid environments even with 

prolonged experience10. Our findings suggest that distortions of the brain’s spatial metric can result 

in mnemonic distortions under constant boundary conditions within a specific environment and 

even outside of this encoding environment. 

We opted for a purely behavioral experiment; our hypotheses, experimental design and analysis 

however directly built upon findings from electrophysiological recordings of grid cells in rodents10. 

We employed highly immersive VR technology to enhance the impact of environmental geometry on 

spatial cognition and engage proprioceptive, vestibular and motor systems during the task. 

Currently, immersive VR does not allow the concurrent recording of neural data. The contribution of 

locomotor cues to the experience of navigation in general has been emphasized previously48 and 

recent studies in rodents have used gain manipulations in VR to emphasize the contributions of 

locomotor cues to grid cell firing specifically49,50. Having established the impact of environmental 

geometry on human spatial cognition, an exciting question for future research would be to combine 

manipulations of environmental geometry with neuroimaging techniques such as fMRI to study the 
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deformations of the cognitive map we describe here in the brain. To do so, an important measure 

could be the hexadirectional signal that can be observed in the human entorhinal cortex20. Beyond 

fMRI, an exciting future avenue is paved by the development of new magnetoencephalography 

systems, which might allow the combination of immersive VR with recordings of neural data51. 

As large parts of human indoor navigation take place in rectangular rooms, the novelty of a 

trapezoidal enclosure in our task might be considered as a factor contributing to impaired 

performance compared to the square. Such an effect of unfamiliarity with polarized environments, 

however, would not predict the observed within-environment differences in performance. Further, 

we did not observe statistically significant differences in participants’ walking speeds between 

environments or in the directness of their paths from the start to the remembered object positions. 

Thus, none of our control measures provided credible evidence for fundamental differences in 

navigational performance between the environments per se. Additionally, we observed no credible 

evidence that the environmental manipulation affected the detection and encoding of color change 

events, speaking against an effect of increased task demand in the trapezoid as sufficient attentional 

resources were available for this secondary task. 

Importantly, the effects we observed in positional memory persisted outside of the environment as 

demonstrated by the differential estimates for matched distances between positions within the 

different parts of the trapezoid. These distortions were highly reliable across response modalities, 

demonstrating a general, task-invariant mnemonic effect. Our findings dovetail with asymmetric 

distance judgments between landmarks and non-landmarks as well as overestimations of distances 

as a function of intermediary boundaries52–57. Beyond boundaries separating positions, our findings 

demonstrate that distance estimates can be influenced through the geometric arrangement of 

boundaries. The response profiles observed in the VR version of the task revealed a general 

tendency to overestimate distances between positions, consistent with previous studies reporting 

overestimations of navigated distances58 and spatial scale in map drawings59. We used the distances 

estimated on a subjective scale in the desktop version of the task to reconstruct remembered 

positions. Accounting for the distortions in participants’ memory by using these reconstructed 

positions to re-compute memory scores yielded increased performance scores. This illustrates the 

close match between positions reconstructed from distance estimates and positional memory within 

the environment, and demonstrates that, consistent with the formation of cognitive maps60, 

distances never directly experienced in the task were computed from remembered positions. Grid 

cells have been suggested to support this kind of vector computation25,27. This is further in line with 

evidence for the involvement of the entorhinal grid system in imagination61,62 and theoretical 

accounts proposing a role for spatially tuned cells in memory63–65.  

Environmental geometry systematically biased memory-based computations outside of the 

trapezoid environment, thereby linking our findings to a growing body of literature implicating grid-

cell computations in cognitive functions beyond navigation66. For example, grid-like hexadirectional 

signals were also observed during trajectories through an abstract space spanned by the dimensions 

of neck and leg length of stick figure birds67. Collectively, these findings point towards a role of the 

entorhinal grid system in mapping cognitive spaces66. As proposed for navigable space13,21,25,14,26, the 

regular firing patterns of grid cells might provide a metric for these spaces allowing the efficient 

encoding of specific stimuli located at different positions within a space. Speculatively, correlated 

feature dimensions or feature spaces in which subsets of feature combinations are impossible might 
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distort how grid cells map these spaces in a similar way as environmental geometry distorts grid cell 

firing patterns, resulting in biased representations similar to the distortions of spatial memory 

observed in this study. 

In conclusion, our data show distortions of human spatial memory consistent with the changes 

induced in rodent grid cell activity by the geometry of highly polarized enclosures. These distortions 

persist outside of the environment, indicating an enduring impact of environmental geometry on 

memory. In line with the proposed roles for grid cells in navigation and mapping feature dimensions 

beyond navigable space, these findings suggest that environmental geometry might be able to 

distort the metric of cognitive representations. 
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Methods 

Participants 

53 Participants between the age of 18 and 30 were recruited from the Norwegian University of 

Science and Technology. All participants provided written informed consent before participation, 

and all research procedures were approved by the regional ethics committee (REC North, reference 

number 2017/153). Participants were compensated for their time at a rate of 100 NOK per hour. 

Sample size was based on a power calculation assuming a small to medium effect (d=0.4) of 

environmental geometry on human spatial cognition, resulting in a sample size of 52 to achieve a 

statistical power of 80% (∝=0.05, two-tailed test). 39 participants (mean age 23.8±2.5 years, 36% 

female) completed the experiment (14 incomplete datasets due to technical difficulties with the VR 

setup or motion sickness). Two participants were excluded due to poor memory performance 

defined as average replacement errors more than 1.5 times the interquartile range larger than the 

upper quartile of average errors in the sample. Thus, 37 participants entered the analyses. 

Overview 

We designed our experiment to test distortions of spatial memory as a function of environmental 

geometry. Figure 1A provides an overview of the experiment structure. Participants were first 

(Figure 1A: I) familiarized with the VR setup before beginning the object position memory task in the 

first environment. The object position memory task (Figure 1A: II & IV) was carried out in a 

trapezoidal or square environment for 20 minutes each, with the order of environments 

counterbalanced across participants. Subsequent to navigating an environment, participants were 

prompted to estimate the durations between occasional color change events encountered in that 

environment (Figure 1A: III & V). In the last two tasks, participants were asked to estimate distances 

between pairs of objects in VR and on a computer screen (Figure 1A: VI & VII), respectively. The 

design of each task and the corresponding analyses are described in detail in the following sections. 

All analyses were performed using Matlab (Release 2017a, The MathWorks, Inc.) and statistical tests 

(two-tailed unless stated otherwise, alpha-level 0.05) were performed using resampling procedures 

as implemented in EEGLAB68. Specifically, test statistics were compared against a surrogate 

distribution obtained from 10000 bootstrap samples respecting within-subject dependencies. 

Respecting the dependent nature of our data, Cohen’s d was calculated as the mean difference 

divided by the standard deviation of the difference scores (c.f. equation 6 in69) and 95 % confidence 

intervals of this effect size were bootstrapped (10000 iterations) using the Measures of Effect Size 

Toolbox70. Circular statistics were implemented using the Matlab-based Circular Statistics Toolbox71. 

Data collection and analysis were not performed blind to the conditions of the experiments. 

Virtual reality 

Aiming to maximize the feeling of immersion and thereby the impact of environmental features we 

employed state of the art VR technology consisting of a head mounted display (HMD, Oculus Rift 

CV1) and a motion platform (Cyberith Virtualizer). Participants wore low-friction overshoes and were 

strapped into a harness attached to the motion platform’s ring system allowing free rotations. To 

navigate the virtual environments, participants were instructed to lean slightly into the ring 

construction to slide the front foot backwards across the sensors of the low-friction base plate of the 

motion platform while taking a step forward with the back foot (see Supplementary Video 1), 

generating translational movement in the current forward direction determined by the orientation 
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of the participant in the ring system72. Head movements were tracked in 3D using the HMD’s 

tracking system and the virtual environments were displayed to both eyes separately at a resolution 

of 1080 x 1200 pixels and a refresh rate of 90 Hz. The virtual environments were created and 

presented using the Unreal Engine (v.4.13.2, Epic Games Inc., 2017) and participants’ eye height was 

set to 1.80 virtual meters (vm). Participants were familiarized with the VR setup in a circular 

environment (45.74vm in diameter) consisting of a grass floor curtailed by a wall (height 3.75vm). A 

set of trees spread around the outside the environment served as cues for orientation. During 

familiarization, participants practiced walking and turning by navigating the circular environment to 

collect coins appearing at random positions in the environment. Participants were instructed to walk 

towards the coins and collect them via button presses on a handheld controller. Additionally, this 

familiarization period served as a practice for the time estimation task (see below). 

Object position memory task 

Participants performed an object position memory task during which they iteratively learned the 

positions of six objects in a trapezoidal environment (36vm×76vm×8vm×76vm) with side lengths 

proportional to the enclosure rodents explored in a study reporting distortions of grid cell firing 

patterns10. To establish a behavioral baseline, participants performed this task also in a square 

control environment (40.27vm×40.27vm) with equal surface area. There were no distal cues outside 

of the environment to enforce spatial learning based on environmental geometry. To facilitate 

orientation, each wall was presented in a unique color. Both environments had a grass floor and a 

blue sky with moving clouds was visible (Figure 1B). Participants performed the task for 20 minutes 

in each environment with the order counterbalanced across participants. In each environment, 

participants learned the positions of six everyday objects presented as three-dimensional models. 

The assignment of objects to arenas and positions was randomized across participants. 

In each trial of an initial learning phase, participants navigated to a start position indicated by a 

traffic cone. Then, an object was shown at its predefined position in the environment and 

participants were instructed to navigate to the object, collect it via button press and memorize its 

position. Each object was shown once and the order of objects was randomized. In the subsequent 

test phase (Figure 1B), participants again navigated to start positions. Upon arrival, a picture of one 

of the objects was shown as a cue for 3 seconds in front of the participant, prompting participants to 

navigate to where they remembered this object in the environment. Participants indicated the 

remembered position via button press after arrival and received feedback about their accuracy in 

the form of one of five smiley faces. The object then appeared at its correct position and participants 

collected it before the beginning of the next trial. Participants completed 30.54±6.71 and 30.38±8.09 

(mean±SD) test trials in square and trapezoid, respectively, and there was no statistically significant 

difference between environments in the number of trials (bootstrapped paired t-test: t(36)=0.18, 

p=0.759). 

The order of trials was randomized for mini-blocks of six trials, so that within a mini-block each 

object was sampled once and no two consecutive trials sampled the same objects. A triplet of object 

positions (Figure 1C) was randomly generated for each participant with a minimum distance of 11vm 

between object positions and a minimum of at least 3vm to the nearest boundary. Positions were 

constrained so that the connection between two objects was parallel to the long-axis of the 

trapezoid or one of the walls of the square. The third object was placed at an angle ranging from 90°-

120° relative to the first two with the same distance to one of the objects as between the first two. 
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Such a triplet of positions was placed in both the narrow and broad part of the trapezoid defined 

based on the midpoint of its long-axis and the left and right part of the square. Placing triplets of 

objects with matched distances in each part of the environment allowed direct comparisons of 

remembered distances between environments and their sub-parts (see distance estimation tasks). 

Since cues were only shown once participants arrived at the start position of a given trial, 

participants never walked the direct path between two objects. There were no statistically 

significant relationships of the distance from start positions to target object positions (mean and 

standard deviation square: 18.66±4.65vm; trapezoid: 19.92±8.50vm; trapezoid broad: 

21.10±10.95vm; trapezoid narrow: 18.73±4.67vm) and spatial memory performance (Extended Data 

Figure 5EF). 

Positional memory 

Raw positional memory errors were quantified as the Euclidean distance between the correct 

position of an object in the environment and the position remembered by the participant. To limit 

the influence of outlier trials we excluded trials with errors larger than 1.5 times the interquartile 

distance above the upper quartile of errors for each participant (mean±SEM number of trials 

excluded =3.35±0.26) from all further analyses. Average positional memory errors were compared 

across environments using a bootstrap-based paired t-test (Figure 2A). To account for the fact that 

despite equal area larger errors are possible in the trapezoid compared to the square control 

environment, we subsequently quantified performance using memory scores. Specifically, we 

generated a distribution of 1000 random locations uniformly covering each environment and 

quantified for each trial the proportion of locations further away from the correct object position 

than the position indicated by the participant. Importantly, calculating memory scores based on the 

distribution of possible errors for each target position yields a measure comparable across positions 

and environments37 with a chance level of 0.5 for random performance and scores closer to 1 for 

high performance. To test the hypothesis of degraded spatial memory in the trapezoid memory 

scores were compared across environments using a bootstrap-based paired t-test (Figure 2B). 

In a next step, we aimed to test the more specific hypothesis of increased degradation of positional 

memory in the narrow compared to the broad part of the trapezoid derived from the larger 

distortions of firing patterns of grid cells in this part of the environment10. We used a bootstrap-

based t-test to test whether positional memory errors differed between the narrow and broad part 

of the trapezoid (Figure 2D). Outlier participants were excluded based on our standard criterion of 

values more than 1.5 times the interquartile range above or below the upper or lower quartile, 

respectively (see Extended Data Figure 4B for full dataset). Distributions of possible errors can differ 

also for positions within the same environment. Therefore, we also tested whether memory scores 

differed between the two parts of the trapezoid (Figure 2E). 

Since the rotationally symmetric geometry of the square does not pre-define how to calculate the 

difference in positional memory, we created a surrogate distribution by shuffling which half of the 

environment was to serve as the subtrahend and minuend for the error difference across 

participants. For each permutation, we calculated the error difference for objects located in the two 

halves of the square. The positional memory error difference observed in the trapezoid was smaller 

than the 5th percentile (one-tailed test) of the surrogate distribution obtained from 10000 

permutations, (Extended Data Figure 4C). The shape of the surrogate distribution did not differ 

statistically from normality (Kolmogorov-Smirnov test, D=0.01, p=0.277), we hence used it to convert 
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the p-value reflecting the number of occurrences of smaller memory ratios in the surrogate 

distribution into a Z-statistic. To visualize response behavior in the two parts of the trapezoid we 

collapsed across all trials from all participants for objects located in the broad and narrow part of the 

arena. Response positions were centered on the respective true positions and divided into 50x50 

square bins with a side length of 0.6vm. The resulting histogram was smoothed using a Gaussian 

kernel with a standard deviation of 0.5vm and plotted as a heatmap (Extended Data Figure 4D). To 

test the influence of the distance to the nearest boundary on positional memory we calculated the 

Pearson correlation between the Euclidean distance to the closest boundary and the memory scores 

across all trials from an environment for each participant. We tested the resulting correlation 

coefficients against 0 and between the environments using bootstrap-based t-tests. Negative 

correlation coefficients indicate better memory closer to the boundary. 

Parameters of navigation 

To assess whether differences in navigation behavior might underlie the observed differences in 

positional memory, we analyzed navigational performance in the replacement phase of each trial, 

where participants navigated to the remembered position of a cued object. For each trial, we 

calculated the Euclidean distance between the start position and the response location and 

subtracted it from the length of the path walked by the participant. This excess path length 

measures the directness of the paths taken, potentially reflecting the degree of certainty about the 

trajectory as increased uncertainty might lead to more turns and longer paths. We contrasted 

averaged excess path lengths between the two environments and the broad and narrow part of the 

trapezoid (Extended Data Figure 5AB). Likewise, we contrasted average walking speeds during the 

replacement phase between the environments and trials targeting objects from the two trapezoid 

parts (Extended Data Figure 5CD).  

Further, we assessed whether the distance from a trial’s start position was related to the accuracy of 

object position memory in a consistent way across subjects. For each subject, we calculated the 

Spearman correlation coefficient between the distances from start to true object positions and 

positional memory as defined by the Euclidean distances between true and remembered object 

positions. The resulting coefficients were tested against 0 for all trials in the two environments 

separately (Extended Data Figure 5E) or for trials probing objects in the narrow and broad part of the 

trapezoid, respectively (Extended Data Figure 5F). 

In a next step, we assessed rotations participants made during the replacement phase of the trial. To 

this end, we centered the rotation of the body as measured by the orientation of the motion 

platform’s ring construction and the orientation of the participant’s head as tracked by the HMD on 

the direction from start to response position. We averaged orientation values for trials within square 

and trapezoid or broad and narrow part of the trapezoid, respectively, and tested for clustering 

around 0° using V-tests and differences of averaged orientation values between conditions using 

Watson-Williams tests71 (Extended Data Figure 6, top row). Additionally, we quantified the circular 

variance of centered orientation values and contrasted it across conditions (Extended Data Figure 6, 

bottom row). None of these measures suggested influences of navigation behavior per se on the key 

conclusions of the paper. 

Further, we tested the sampling of directions separately for trials targeting objects in the narrow and 

broad part of the trapezoid. For each of 36 angular bins with a width of 10° we computed the 



 

17 

proportion of time points for which participants’ bodies faced the direction of that bin. We averaged 

these proportions across participants for the polar histogram in Extended Data Figure 7A. To test 

whether angular sampling was biased towards the long and short base of the trapezoid we 

calculated the angular mean for each participant and used v-tests to test for a clustering around 

180° and 0°, respectively. Next, we quantified average movement velocity for each direction bin 

(Extended Data Figure 7B). We weighted directions by average velocity to compute a circular mean 

for each participant. Again, we tested using v-tests whether the resulting circular means clustered 

around 180° and 0° for trials where target objects were located in the broad and narrow part of the 

environment, respectively. 

Distance estimation tasks 

After completing the time estimation task following the second object position memory task in the 

second environment, participants estimated distances between pairs of object positions in two 

modalities: on a computer screen and by walking the actual distances in VR. 

Virtual reality 

Participants were placed in the same circular virtual arena as during the familiarization session. Each 

trial began with an arrow pointing to the middle of the arena, with the arrow appearing at a random 

location on the arena floor. After participants positioned themselves on the base of the arrow, 

images of two objects were presented in front of them for 3 seconds (Figure 3A). Participants were 

instructed to walk the distance they remembered the objects to be apart based on the object 

position memory task while following the direction indicated by the arrow. When participants 

terminated a trial via button press, a checkmark was presented to indicate the successful 

registration of the response and the next trial began. Due to time constraints this task was restricted 

to distances between objects within a triplet, resulting in 12 trials making up a block. Trial order 

within blocks was randomized with the constraint that trials with objects from the two environments 

alternated. Participants completed two blocks with a short break in between.  

Since only distances within a triplet of positions were tested in this task, participants’ averaged 

estimates for the long and short distances were compared using a bootstrap-based paired t-test as 

an indicator of successful task performance (Extended Data Figure 8A). To test whether distance 

estimates for the same distances differed between environments or the narrow and broad part of 

the trapezoid, we took advantage of the fact that true distances were matched across position 

triplets and thereby environment parts. Distance estimates for the two triplets within an 

environment were averaged and contrasted between the square and trapezoid using a bootstrap-

based t-test (Figure 3C). Similarly, response distances within a triplet were averaged and compared 

between the narrow and the broad part using a bootstrap-based t-test (Figure 3E). As for the 

difference in positional memory, we created a surrogate distribution to compare the distance 

estimation difference observed between the trapezoid halves to the square by shuffling across 

participants which half of the square was to serve as the minuend and subtrahend for the distance 

difference in each of 10000 permutations. The distance difference observed in the trapezoid was 

more extreme than the 2.5th and 97.5th percentiles (two-tailed test) of this surrogate distribution 

(Extended Data Figure 8E). The shape of the surrogate distribution did not differ statistically from 

normality (Kolmogorov-Smirnov test, D=0.01, p=0.200). 
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Computer monitor 

Afterwards, participants were instructed to estimate distances between object pairs on a desktop 

computer setup. Images of objects on a white background, as well as an adjustable horizontal bar 

with the labels ‘close together’ on the left and ‘far apart’ on the right were presented on a computer 

screen (Figure 3C). Again, participants were instructed to estimate how far objects were apart during 

the object location memory task. Here, they indicated their response by adjusting the horizontal bar 

with a computer mouse, after which a grey screen was shown for 500 milliseconds. All possible 

combinations of distances were probed, i.e. also comparisons across triplets, yielding subjective 

distances between all pairs of object positions in an environment. Each of the 15 combinations of 

object pairs per environment was probed twice, resulting in a total of 60 trials. Trial order was 

randomized with the constraint that each possible pair of objects was sampled before any object 

combination was sampled for the second time. Each object was shown once on the left and once on 

the right side of the screen in the two trials sampling a given object pair. This distance estimation 

task as well as the time estimation task was presented using the Psychophysics Toolbox73 for Matlab 

(Release 2016a). General performance in this task was assessed by calculating Spearman 

correlations between the estimated distances and the respective true distances (Extended Data 

Figure 8B). Further, the distance estimates were contrasted between environments and between 

the narrow and broad part of the trapezoid in the same way as described above. The surrogate 

distribution obtained for comparison to the square did not differ statistically from normality 

(Kolmogorov-Smirnov test, D=0.01, p=0.167). 

Reconstructing remembered positions 

To reconstruct remembered object positions in the trapezoid from distance estimates, 

multidimensional scaling (MDS) was applied to the distance estimates obtained in the desktop 

version of the task as only here distances between all pairs of positions were estimated. Estimated 

distances were normalized to a range from 0 to 1 and averaged across the two repetitions of each 

object pair and subjected to MDS to recover coordinates reflecting this distance structure using 

metric stress as the cost function and a random initial configuration of points. Our approach 

assumes that two dimensions underlie the object location memory formed during the navigation 

task. To assess whether this assumption holds, we compared the model deviance of general linear 

models predicting the distances between true positions from the positions recovered from MDS for 

different numbers of dimensions. As expected, unexplained variance was substantially decreased 

when using two instead of one dimension, but no clear improvement resulted from a larger number 

of dimensions (Extended Data Figure 9). 

To match the coordinates resulting from MDS to the original positions in the virtual environment we 

used Procrustes analysis allowing translation, scaling, reflection and rotation (see Bellmund et al.74 

for an application of the combination of multidimensional scaling and Procrustes analysis to fMRI 

data). The goodness of fit, the Procrustes distance, was quantified by the normalized sum of squared 

errors between reconstructed and true coordinates and was compared to Procrustes distances 

resulting from Procrustes analyses of the MDS coordinates and sets of coordinates in which the 

assignment of object identity to position was shuffled, yielding a surrogate distribution from all 720 

possible permutations. Specifically, we tested on the group level whether the fits between 

reconstructed coordinates and true coordinates were better than the fits constituting the 5th 

percentile (reflecting the threshold for statistical significance at an alpha-level of 0.05) of each 
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participant’s surrogate distribution (Figure 4BC). The reconstructed coordinates are visualized as 

heatmaps in Extended Data Figure 9B following the same procedure as described above.  

To test whether the reconstructed positions indeed reflected participants’ memory in the object 

position memory task, we re-calculated the memory scores as described above but with the 

coordinates resulting from the Procrustes analysis instead of the true object positions as goal 

positions (Figure 4D). To rule out that objects whose positions were reconstructed to be 

remembered outside of the environment were driving the effect, we excluded all affected trials from 

the memory score calculation in an additional control analysis. To describe the overlap between 

positions reconstructed from distance estimates and performance in the object position memory 

task, we calculated error vectors based on the true object positions for both the reconstructed 

positions and the response positions from the object position memory task. Specifically, we tested 

whether error vectors were of a similar length and had a similar orientation to demonstrate that 

positions were shifted by a similar distance and in a similar direction. We quantified the match 

between average error vectors of response and reconstructed positions by correlating their lengths 

using Pearson correlation (Figure 4E). We further probed these error vectors’ similarity in orientation 

by averaging the angular differences between vectors from the correct to the respective response 

and reconstructed positions for each participant and testing the resulting circular means for a 

clustering around 0° using a V-test (Figure 4F). 

Time estimation task 

To probe whether attentional demands differed between environments we included a secondary 

task while participants performed the object position memory task. If attentional demand differed 

across environments, we would expect to see differences in the secondary task performance. In the 

sky above each arena a ring was presented, which changed color four times during the object 

position memory task per environment. The ring remained in a given color for an interval between 2 

and 6 minutes and participants indicated color changes via button presses and were instructed to 

remember the order of colors and the duration for which each color was presented. While different 

colors were presented in the two environments, the intervals between color changes were constant 

across environments allowing for a comparison of temporal memory between square and trapezoid.  

After completing the object position memory task in an environment, participants were placed in 

front of a computer screen to estimate the time between color changes before continuing with the 

next part of the experiment (Figure 1A). On a white screen, two pairs of consecutive colors were 

shown and participants indicated the time interval they remembered to separate the two color 

changes in minutes and seconds, e.g. how much time passed between the ring changing color from 

blue to yellow and changing from yellow to green. Participants were cued to estimate the time 

between all six possible combinations of color changes per environment. To ensure full 

understanding of this task, participants estimated intervals between color changes occurring at 

random times between every 30 and 120 seconds during the familiarization phase prior to the object 

position memory task. Overall performance in this task was quantified using Spearman correlations 

between the correct and estimated time intervals before specifically comparing average estimation 

errors, absolute estimation errors and the standard deviation of estimation errors across 

environments (Extended Data Figure 10). 
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Successor representation grid patterns 

Following Stachenfeld et al.32, simulated grid cells were generated using the first 50 non-constant 

eigenvectors of the successor representation (SR) matrix under a uniform random walk policy for a 

square (90x90cm) and a trapezoid (length 187cm, parallel walls 90cm and 20cm, based on Krupic et 

al.10). Eigenvectors were thresholded at zero and scaled to a peak firing rate of 30Hz. To assess the 

distortion of SR grid fields within the trapezoidal environment, we divided the square and trapezoid 

environments into halves across the longest axis and computed the spatial autocorrelation of the SR 

grid rate maps on each half. Grid similarity was then calculated by taking the Pearson correlation 

between the autocorrelations from each half of the environment (Figure 1F). Since the shortest 

dimension of the trapezoid was 20 spatial bins, a circular window of radius 40 spatial bins was used 

to compare the autocorrelations ensuring the window for comparison never went off the 

autocorrelation map.  

The decoding analysis sampled each spatial bin (1 cm square) of the environment 30 times. On each 

occasion, for each of the 50 cells, spikes were randomly generated for a 100 ms time window 

according to a Poisson process with rate parameters equal to the SR grids’ firing rates in that bin. 

Locations were then decoded using the maximum likelihood estimate of all 50 SR grid spike counts 

and errors were calculated as the Euclidean distance between the true and decoded locations 

(Figure 1GH)36,75. Decoding errors were normalized so that errors in the square and broad part of the 

trapezoid had a mean of 1 for the comparison between environments and trapezoid halves, 

respectively. 

To analyze differences in the spatial frequencies of the SR grids, we calculated the 2D fast Fourier 

transform (FFT) for each rate map and reparametrized the FFT into polar coordinates. Power spectra 

were then considered solely as a function of radial frequency by averaging across the angular 

component of the FFT (Extended Data Figure 3). Finally, we calculated the mean radial frequency of 

each SR grid and compared these across and within environments (Figure 1IJ). Statistical significance 

of all SR grid pattern analyses was assessed using standard two-sample t-tests. The bias-corrected 

difference between means divided by the pooled standard deviation served as the effect size and is 

reported with bootstrapped 95% confidence intervals70. 

Likelihood analyses were carried out separately for both the positional memory and distance 

estimation tasks. For each task, the proportional differences in participants’ responses from the 

square-trapezoid and within-trapezoid contrasts were compared to the distribution of proportional 

differences expected by the SR model. The same was done for a null model using the same 

distribution of proportional differences as the SR, but with a shifted mean to predict no overall 

difference in the square-trapezoid and within-trapezoid contrasts. Likelihoods from the square-

trapezoid and within-trapezoid contrasts were combined within tasks to give the likelihood of the 

human responses given each of the models for both the positional memory and distance estimation 

tasks. The Bayes factor B10 was calculated as the ratio between the two model likelihoods. We report 

twice the natural logarithm of the Bayes Factor (2ln(B10)) as it has a similar scale to familiar 

likelihood ratio test statistics76. According to the conventions by Kass and Raftery76, 2ln(BF10)>10 

constitutes very strong evidence for the alternative over the null model.  
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Data availability  

The data that support the findings of this study are available from the corresponding authors upon 

request.  

Code availability  

Custom code that supports the findings of this study is available from the corresponding authors 

upon request.  
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Figure legends 

Figure 1. Task design and SR grid patterns. A. Experimental timeline. Participants were (I) 

familiarized with the VR setup before completing the (II & IV) object position memory task followed 

by (III & V) time estimates in the two environments. Afterwards (VI & VII) participants estimated 

pairwise distances between learned positions in VR and on a computer screen. Headset and screen 

icon indicate whether individual tasks took place in VR or on a computer screen, respectively. B. 

Schematic of immersive VR setup with head mounted display and motion platform translating 

physical steps and rotations into virtual movement. C. Circles illustrate an exemplary configuration 

of object positions. Two triplets of objects were positioned in each environment with one triplet in 

each half of each environment, yielding four triplets with matched distances between positions. D. 

To commence a test trial in the object position memory task, participants walked to a start position 

marked by a pylon where they were cued with the image of an object. Subsequently, they navigated 

to the object’s remembered position, which they indicated via button press, and received feedback. 

E. Example eigenvector grid patterns of the successor representation for a trapezoid (top) and a 

square (bottom) environment (Extended Data Figure 1). F. SR grid patterns are distorted in the 

trapezoid resulting in reduced correlation coefficients of spatial autocorrelations between the two 

trapezoid halves compared to the halves of the square. G, H. Position decoding errors based on 

spikes sampled from SR grid patterns are (G) larger in the trapezoid than in the square and (H) larger 

in the narrow than the broad part of the trapezoid, demonstrating that distorted grid patterns carry 

less positional information (Extended Data Figure 2). I, J. Mean radial frequencies of SR grid patterns 

are (I) lower in the trapezoid than in the square and (J) higher in the narrow than the broad part of 

the trapezoid (Extended Data Figure 3). Bars in F-J show mean and SEM. Individual data points 

reflect iterations (G, H) or SR grid patterns (F, I, J). 

Figure 2. Distorted positional memory in the trapezoid. A. Positional memory errors in virtual 

meters (vm), measured as the Euclidean distance between the correct and remembered position, 

were larger for object positions in the trapezoid than in the square. B. Similarly, memory scores were 

lower in the trapezoid than in the square environment. Y-axis thresholded at chance level of 0.5. C. 

Schematics illustrate the expression of positional memory using memory scores to control for 
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differences in distributions of possible errors for two hypothetical trials. For both environments, a 

chance distribution of positions uniformly covering the available space was generated (top, colored 

dots). We quantified the cumulative probability of the chance distribution as a function of distance 

to target object positions (bottom). Positional memory performance of a given trial was then 

expressed as 1-the cumulative probability at the error distance between the true and response 

position, resulting in memory scores ranging from 0-1, where 0.5 constitutes chance level and 1 

perfect performance. Conceptually, this corresponds to the proportion of the chance distribution 

further away from the correct position than the remembered position (shaded areas). D. Raw 

positional memory errors were larger in the narrow compared to the broad part of the trapezoid. 5 

participants were excluded due to differences between broad and narrow part more than 1.5 times 

the interquartile range above or below the upper and lower quartile of differences respectively. See 

Extended Data Figure 4B for full dataset. E. Likewise, memory scores were lower in the narrow than 

the broad part of the trapezoid. Y-axis thresholded to illustrate the difference between conditions. 

All bars show mean±SEM, grey circles indicate individual subject data with lines connecting data 

points from the same participant. * p<0.05, *** p<0.001 

Figure 3. Distortion of distance estimates. A. Participants were cued to estimate and walk distances 

between the remembered positions of object pairs in a circular virtual environment.  B. In the 

desktop version of the task, participants adjusted a slider to estimate the distance between object 

pairs on a subjective scale from close together to far apart. C, D. Taking advantage of matched 

distances between object positions, estimated distances were averaged and compared between 

environments. Distances were estimated to be shorter in the trapezoid than in the square in both 

the (C) VR and (D) desktop version of the task; in line with lower radial frequencies of SR grid 

patterns in the trapezoid (Figure 1I, Extended Data Figure 3A). E, F. Identical distances were 

estimated to be longer in the narrow than in the broad part of the trapezoid for judgments done in 

(E) VR and (F) on a computer screen; consistent with more tightly packed SR grid patterns in the 

narrow part of the trapezoid (Figure 1J, Extended Data Figure 3B). All bars show mean±SEM and grey 

circles indicate individual subject data. * p<0.05, ** p<0.01, *** p<0.001 

Figure 4. Reconstruction of remembered positions. A. Using multidimensional scaling (MDS), 

coordinates along two underlying dimensions were extracted from pairwise distance estimates. The 

resulting coordinates were mapped to the original object positions in the trapezoid using Procrustes 

analysis (see Methods). Color bar indicates estimated distances. Data shown for a randomly selected 

participant in top panel. Bottom row shows five participants chosen to illustrate reconstruction 

accuracy across the sample based on the spread of Procrustes distances (data shown for participants 

at percent ranks 1, 21, 41, 61 and 81 from left to right). Colored circles indicate correct positions and 

crosses the respective reconstructed positions. B. The Procrustes distance quantifies the deviation 

between true and reconstructed positions as the normalized sum of squared error distances (mean 

across participants shown by dashed vertical line). For each participant, a surrogate distribution of 

Procrustes distances was obtained from fitting the coordinates from MDS to coordinate sets with 

shuffled object identities (solid line). Dotted vertical line indicates the averaged critical Procrustes 

distance defined as the 5th percentile of the respective surrogate distributions. Shaded areas show 

SEM across participants. C. The Procrustes distances from fitting to true coordinates were 

significantly smaller than the critical distances of the surrogate distributions. D. Memory scores 

quantifying positional memory within the environment were significantly higher when calculated 

with respect to the reconstructed rather than the true object positions. E. The average error vector 
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lengths from the object position memory task correlate across participants with error vector lengths 

of the positions reconstructed from distance estimates. Circles show individual participant data; 

solid line is the least squares line; dashed lines and shaded region highlight bootstrapped confidence 

intervals. F. The angular differences in orientation between the two sets of error vectors cluster 

around 0°, indicating that errors were shifted in the same direction. Bars in C and D show mean±SEM 

and grey circles indicate individual subject data. *** p<0.001  
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