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Background: Hypoxic-ischemic (HI) encephalopathy is a major cause of neonatal

mortality and morbidity, with a global incidence of 3 per 1,000 live births. Intrauterine

or perinatal complications, including maternal infection, constitute a major risk for the

development of neonatal HI brain damage. During HI, inflammatory response and

oxidative stress occur, causing subsequent cell death. The presence of an infection

sensitizes the neonatal brain, making it more vulnerable to the HI damage. Currently,

therapeutic hypothermia is the only clinically approved treatment available for HI

encephalopathy, however it is only partially effective in HI alone and its application in

infection-sensitized HI is debatable. Therefore, there is an unmet clinical need for the

development of novel therapeutic interventions for the treatment of HI. Such an alternative

is targeting the complement system. Properdin, which is involved in stabilization of

the alternative pathway convertases, is the only known positive regulator of alternative

complement activation. Absence of the classical pathway in the neonatal HI brain is

neuroprotective. However, there is a paucity of data on the participation of the alternative

pathway and in particular the role of properdin in HI brain damage.

Objectives: Our study aimed to validate the effect of global properdin deletion in

two mouse models: HI alone and LPS-sensitized HI, thus addressing two different

clinical scenarios.

Results: Our results indicate that global properdin deletion in a Rice-Vannucci model

of neonatal HI and LPS-sensitized HI brain damage, in the short term, clearly reduced

forebrain cell death and microglial activation, as well as tissue loss. In HI alone, deletion

of properdin reduced TUNEL+ cell death and microglial post-HI response at 48 h post

insult. Under the conditions of LPS-sensitized HI, properdin deletion diminished TUNEL+

cell death, tissue loss and microglial activation at 48 h post-HI.

Conclusion: Overall, our data suggests a critical role for properdin, and possibly also

a contribution in neonatal HI alone and in infection-sensitized HI brain damage. Thus,

properdin can be considered a novel target for treatment of neonatal HI brain damage.
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INTRODUCTION

Oxygen deprivation around the time of birth is a major cause of
neonatal hypoxic ischemic (HI) brain damage affecting 1–3 per
1,000 live births in developed countries and increasing to 26 per
1,000 in the developing world (1). Of the affected neonates, 15–
25% die during the neonatal period and 25% of the survivors
develop neurological sequelae such as epilepsy, cerebral palsy
and cognitive defects (2), resulting in significant psychological
and socioeconomic burden on the patient, family and healthcare
system (1).

The pathophysiology of HI brain damage involves
inflammation, oxidative stress, excito-toxicity and cell
death (3–6).

Pre-exposure of the preterm infant to a bacterial infection
sensitizes the brain, making it more susceptible to the HI insult.
Bacterial lipopolysaccharide (LPS)—the major component of the
outer membrane of most Gram-negative bacteria—is a strong
immune stimulator and enhances cerebral damage and lesions in
HI brain injury (7, 8).

Therapeutic hypothermia (TH) is the standard clinical care
for moderate to severe HI injury, however it is effective in
only 55% of cases, while the remaining 45% of treated infants
still develop neurological deficits (9). Thus, further studies on
improving the success of TH and finding therapeutic alternatives
are urgently required.

The effect of TH in infection-sensitized HI conditions is
pathogen dependent (10). In a rat model of LPS-sensitized
HI, TH failed to reduce mortality and tissue damage (11). In
clinical studies looking at the effect of TH on neonates exposed
to intrauterine infection, TH treatment did not counteract
inflammation (12).

The lack of effect of TH in LPS-sensitized HI could be
attributed to inter-individual variability (7). Additionally,
body cooling following HI alone is suggested to be
immunosuppressive (13, 14), therefore counteracting the
physiological attempt of the immune system in fighting
bacterial infection.

The inability of TH to protect the neonatal brain in LPS-
sensitized HI, and its limited outcome in treatment of HI alone,
support the urge to investigate new therapeutic alternatives or
augmentation strategies for TH.

Such an alternative is targeting the complement system,
a cascade of over 30 proteins critically involved in innate
immunity. The activated complement promotes inflammation
and anaphylatoxin release and comprises three pathways—
classical, lectin, and alternative. While the classical pathway
(CP) is mainly activated by external pathogens, the alternative
one (AP) is spontaneously active and also amplifies the other
two pathways (15). Properdin is a plasma glycoprotein released
mainly by leukocytes in response to pro-inflammatory stimuli
(16). It is the only known positive regulator of the AP; in
fact, properdin facilitates the constitutively active AP either
by stabilizing the C3 convertase C3bBb or by binding to
susceptible surfaces, thus serving as a platform for de novo
C3bBb assembly (17, 18). This causes opsonization of target
molecules through C3b and further activation of the complement

cascade, culminating in the formation of the membrane attack
complex (C5b-C9).

Clinical data associates neonatal HI with depleted C3
expression (19) and increased serum levels of C3a and C5a
following fetal acidosis (20). While the role of properdin in
inflammation has been widely studied (21, 22), there is a paucity
of data surrounding the role of properdin in neonatal HI. It could
be speculated that HI upregulates properdin levels and leads
to increased anaphylatoxin production and pro-inflammatory
activation of microglia and astrocytes. This study aims to
elucidate the role of properdin in neonatal HI alone and in
LPS-sensitized HI in the short term. Our data demonstrate
the neuroprotective effect of global properdin deletion in both
HI alone and LPS-sensitized HI at 48 h post-HI, suggesting
this complement regulator as an attractive therapeutic target in
neonatal HI and LPS-sensitized HI.

MATERIALS AND METHODS

Animal Use
Properdin-deficient mice were generated by site-specific genetic
engineering, rendering mice deficient of the serum protein
properdin and thereby lacking the amplification loop of
complement activation (23). They have been maintained by
crossing heterozygous properdin deficient female mice with wild
typemale C57Bl/6mice and were obtained from the University of
Leicester. Genotyping was performed on animals after treatment.

All animal experiments and care protocols were approved
by the Home Office (PPL70/8784) and UCL Animal Welfare
and Ethical Review Body. All procedures were carried out in
accordance with the UK Animals (Scientific Procedures) Act
1986 and the ARRIVE guidelines. All experiments involved
postnatal day 7 mice (P7) bred in house. At P7, the neonatal
mouse brain development is comparable to a mid-third-trimester
human fetus or newborn infant, with complete cortical neuronal
layering, an involuted germinal matrix, and slightly myelinated
white matter (24). Although slightly preterm, the murine P7
model of HI presents phenotypical similarities to the gray and
white matter injury observed in humans, including tissue loss,
cell-death, microglia-mediated immune response and astrogliosis
as well as changes in neurological behavior (24).

Because properdin is located on the X-chromosome, mating
of heterozygous properdin deficient females with wild type males
yields male hemizygous, properdin-deficient and wild type mice
(as well as female heterozygous and wild type mice). Therefore,
only male pups were used in the experiments and were ideally
controlled as littermates. According to clinical and experimental
evidence, malemicemay express a worse phenotype post-HI than
female mice, with increased loss of male hippocampal volume
after chronic postnatal hypoxia (25). All the assessments were
performed blindly to the genotype.

HI Insult
The surgical procedures, a variation of the Rice-Vannucci rodent
HI model, were performed as previously described (7, 26–30).
Briefly, a total of 30 P7 male mice, both wild type (n = 15) and
with global properdin deletion (n= 15), were anesthetized using
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isoflurane (5% induction, 1.5% maintenance). The left carotid
artery was permanently occluded (8/0 propylene suture) and
the wound was closed with tissue glue. The mice were left to
recover at 36◦C and returned to the dam for 2 h. They were
then moved to a hypoxia chamber and exposed to humidified
8% oxygen, 92% nitrogen (3 L/min) for 60min (HI alone) or
30min (LPS-sensitized HI) at 36◦C (27), resulting in moderate to
severe brain damage (27, 29, 30). In the infection-sensitized HI
insult, 55 P6 pups from both genotypes were injected with E. coli
lipopolysaccharide (LPS; 0.6µg/g, serotype 055:B5; Fluka, UK)
(n = 13 WT, n = 13 KO) or saline 12 h prior to surgery (n = 15
WT, n= 15 KO) (7, 29). The contralateral side of the brain served
as an intra-animal control reference for ipsilateral damage.

Tissue Sample Preparation
The animals were sacrificed at 48 h following the HI insult using
intraperitoneally delivered pentobarbitone. They were perfused
with 30mL 4% paraformaldehyde (PFA) in phosphate-buffered
saline (PBS). The brains were then extracted, post-fixed for
1 h in 4% PFA/0.1M phosphate buffer (PB) at 4◦C, before
being cryoprotected in 30% sucrose/PB solution for 24 h. The
cerebellum was removed from each brain. The forebrains were
frozen on dry ice, cut into 50 sequential 40µm coronal sections
starting from the fusion of corpus callosum, and the slices were
stored at−80◦C (7, 27, 29, 30).

Immunohistochemistry and Histological
Analysis
Five sections from each brain (400µm apart) were rehydrated
in distilled water and stained using immunohistochemistry as
previously described (7, 27, 29, 30). Briefly, the sections were
incubated overnight with rat anti-CD11b αM integrin subunit
(1:5,000, Serotec, UK) or rabbit polyclonal anti-glial fibrillary
acidic protein (GFAP) (1:6,000, DAKO, UK), primary antibodies,
for 1 h with biotinylated goat anti-rat or -rabbit (1:100, Vector,
UK) secondary antibodies, followed by incubation with Avidin-
Biotinylated horseradish peroxidase Complex (Vector, UK) and
visualization with diaminobenzidine/H2O2 (Fisher Scientific,
UK) (7, 27, 29, 30).

Five further sections from each brain with the same spacing
were stained using Terminal transferase mediated d-UTP nick
end labeling (TUNEL) (Roche, UK). The staining procedure
followed the manufacturer protocol with Co/Ni enhancement
(7, 27, 29, 30).

Five more sections per brain with the same spacing were
stained with Cresyl-Violet (Nissl).

AlphaM Score
Assessment for αM integrin immunoreactivity as a marker
for early microglial activation (7, 26–30) was performed as
previously described (7, 27, 30). Two independent observers
blinded to the genotype and treatment of the groups allocated
semi-quantitative scores to each brain region, i.e., cortex,
pyriform cortex, hippocampus, striatum, thalamus, and
external capsule.

Optical Luminosity
The central cytoskeletal framework of astroglia comprises GFAP,
a type III intermediate filament found only in glial cells in the
CNS. GFAP upregulation is seen during HI-triggered reactive
gliosis (31). In order to quantify the intensity of the GFAP
staining, we used optical luminosity values (OLV) as a well-
established technique (7, 26–30). Images for ipsilateral and
contralateral sides were captured with a Sony AVT-Horn 3CCD
color video camera (24 bit RGB, 760 × 570 pixel resolution)
in three different optical fields in cortex, pyriform cortex,
hippocampus, striatum, thalamus and external capsule. We used
Optimas 6.5 software to obtain the mean and standard deviation
(SD) for OLVs. SD was subtracted from the mean for each image,
and the resulting value was subtracted from the values acquired
for the surrounding glass.

TUNEL Assessment
As a measure of cell death at 48 h post-HI, the number of
TUNEL + cells was counted in three different optical fields at
×20 magnification. The cortex, pyriform cortex, hippocampus,
striatum, thalamus and external capsule were assessed. The
counts were averaged per animal and per group.

Infarct Volume Measurement
Cresyl violet dye stains Nissl bodies present in the cytoplasm
of neurons. In this study we used Nissl stain to measure tissue
loss in the cortex, pyriform cortex, hippocampus, striatum and
thalamus. Nissl-stained brain sections were imaged with Sony
AVT-Horn 3CCD color video camera (24 bit RGB, 760 × 570
pixel resolution) at×1 magnification. The images were imported
in Fiji Image J (NIH, USA), and the areas of intact staining in all
6 regions were outlined and bilaterally measured. The percentage
tissue loss was then calculated by converting the measured
uninjured areas into square millimeters and then transformed to
a volume through multiplication by 400µm. The sum of these
volumes was then used to calculate the percentage of surviving
brain tissue as ipsilateral/contralateral× 100 (32).

Statistics
GraphPad Prism 8 (La Jolla, CA, United States) and SPSS
25.0 (IBM, USA) were used to perform all statistical analyses.
The same six forebrain regions (cortex, pyriform cortex,
hippocampus, striatum, thalamus, external capsule) were used
for each outcome and each assay.

As the data from the Rice-Vannucci model are mostly non-
normally distributed, we performed non-parametric Mann-
Whitney test (HI alone set of experiments) to compare the effect
of global properdin deletion in each brain region separately, and
a two-tailed p-value was assumed. As the number of groups in
the LPS-sensitized HI set of experiments was larger than two,
we performed the non-parametric Kruskal-Wallis test followed
by Bonferroni-corrected pairwise-contrasts. Alpha was set to
0.05. All data are graphically presented as Median ± IQR
(interquartile range, presented as error bars). All hypotheses were
two-tailed and all data illustrate the response in the ipsilateral
(experimental) hemisphere. In our data, a main effect is the
effect of an independent variable (treatment) on a dependent
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variable (damage marker) averaged across the levels of any other
independent variables (brain regions).

RESULTS

Global Properdin Deletion Reduces Cell
Death and Microglial Activation Following
Neonatal HI-Insult
Global deletion of properdin significantly reduced brain damage
markers (cell death and microglial activation) compared to
wild type control animals at 48 h post-HI. As shown in
Figures 1A–C, global properdin deletion significantly reduced
the number of TUNEL+ cells compared to wild type controls,
with individual significant decrease of 20–38% in pyriform
cortex, hippocampus, striatum, thalamus and overall (p < 0.05,
Mann-Whitney test). The TUNEL+ cells displayed the typical
pyknotic nuclear morphology and high density in the control
group (Figure 1B—insert, ipsilateral hippocampus) compared to
the reduced number of such cells in the properdin KO brains
(Figure 1C—insert, ipsilateral hippocampus).

The regional assessment presented in Figure 1D revealed
slight decrease of ipsilateral brain tissue volume loss in the
pyriform cortex and thalamus in the global properdin deletion
group (Figure 1F) compared to wild type controls (Figure 1E),
however the data did not reach significant values.

Assessment of ipsilateral astrogliosis through GFAP
immunoreactivity (Figure 1G) showed that compared to
wild type controls (Figure 1H), global properdin deletion had no
effect on reactive astrogliosis (Figure 1I) following neonatal HI.

In addition to cell death, global properdin deletion
had a significant effect on ipsilateral microglia activation
score (Figure 1J) based on αM integrin immunoreactivity
(Figures 1K,L). Regional assessment shown in Figure 1J revealed
a reduction in activation score in the properdin KO group, with
individual decrease of 21–76% in pyriform cortex, hippocampus,
striatum, thalamus and overall (p < 0.05, Mann-Whitney test).
At high magnification, the αM+ cells in the wild type control
group showed phagocytic morphology (Figure 1K—insert,
ipsilateral hippocampus) compared to the ramified phenotype
of these cells observed in the animals with global properdin
deletion (Figure 1L—insert, ipsilateral hippocampus).

Global Properdin Deletion Reduces Brain
Damage Following LPS-Sensitized
Neonatal HI-Insult
Global deletion of properdin significantly reduced brain damage
markers (cell death, tissue loss and microglial activation)
compared to wild type control animals at 48 h post LPS-sensitized
neonatal HI. As shown in Figures 2A–D, global properdin
deletion significantly reduced the number of TUNEL+ cells
compared to LPS-treated wild type controls (main effect, p <

0.05, Kruskal-Wallis test), with individual decrease of 50–76% in
all 6 regions, but reaching significance in cortex, pyriform cortex,
hippocampus and overall (Bonferroni correction, p < 0.05). The
saline-treated wild type controls showed very low number of
TUNEL+ cells (Figures 2A,B), and global properdin deletion did

not affect those numbers (Figure 2A). LPS-sensitization resulted
in a substantial increase of TUNEL+ cell death observed in
the wild type LPS-treated group (Figure 2C) compared to saline
treated wild types (Figure 2B). The TUNEL+ cells displayed
the typical pyknotic nuclear morphology and high density in
the LPS-treated wild type group (Figure 1C—insert, ipsilateral
hippocampus) compared to the reduced number of such cells
in the LPS-treated properdin KO brains (Figure 1D—insert,
ipsilateral hippocampus).

Regional assessment presented in Figure 2E revealed very
low levels of ipsilateral tissue loss in the saline-treated wild
type animals (Figure 2F), and global properdin deletion did
not affect these levels (Figure 2E). LPS-sensitization resulted
in an extensive increase of tissue loss observed in the LPS-
treated wild type group (Figure 2G) compared to the saline
treated wild type controls (Figure 2F). We observed an overall
trend toward reduction of ipsilateral brain tissue volume
loss of 13–66% across all 6 forebrain regions in the LPS-
treated global properdin deletion group (Figure 2H) compared
to LPS-treated wild type controls (Figure 2G) (main effect,
p < 0.05, Kruskal-Wallis test), however the data reached
significant values only in cortex and pyriform cortex (Bonferroni
correction, p < 0.05).

Similarly, regional assessment of ipsilateral astrogliosis
through GFAP immunoreactivity (Figure 2I) showed very
low levels of reactive astrogliosis in saline-treated wild type
controls (Figure 2J), and global properdin deletion did not
affect those levels (Figure 2I). LPS-sensitization resulted in a
considerable increase of astroglial activation observed in the
LPS-treated wild type group (Figure 2K) compared to the
saline treated wild type controls (Figure 2J). We observed an
overall trend toward reduction of ipsilateral reactive astrogliosis
of 27% across all 6 forebrain regions in the LPS-treated
global properdin deletion group (Figure 2L) compared to LPS-
treated wild type controls (Figure 2K) (main effect, p <

0.05, Kruskal-Wallis test), however the data did not reach
significant values.

Additionally, assessment of microglial activation based on
αM integrin immunoreactivity (Figure 2M) showed very low
levels of αM+ microglia in saline-treated wild type controls
(Figure 2N), and global properdin deletion did not affect those
levels (Figure 2M). LPS-sensitization resulted in a substantial
increase of microglial activation observed in the LPS-treated
wild type group (Figure 2O) compared to the saline treated
wild type controls (Figure 2M). Regional assessment shown
in Figure 2M revealed a reduction in activation score of 31–
66% in all 6 individual ipsilateral brain regions in the LPS-
treated global properdin deletion group compared to the LPS-
treated wild type controls (main effect, p < 0.05, Kruskal-Wallis
test), however significance was reached only in hippocampus
(Bonferroni correction, p < 0.05). At high magnification the
αM+ cells in the LPS-treated wild type control group showed
phagocytic morphology and high density (Figure 2O—insert,
ipsilateral hippocampus) compared to the ramified resting
phenotype and low density of these cells observed in the LPS-
treated global properdin deletion animals (Figure 2P—insert,
ipsilateral hippocampus).
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FIGURE 1 | Global deletion of properdin in P7 mice significantly reduces cell death and microglial response at 48 h post-HI. (A–C) TUNEL+ staining of dying brain

cells with fragmented DNA—Quantification (A) (number of TUNEL+ cells per 20× eye-field, Median ± IQR) and histochemical overview of the ipsilateral forebrain in

wild type control (B) and animals with global properdin deletion (C). Note the typical pyknotic nuclear morphology of the TUNEL+ cells, as well as their high density

(Continued)
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FIGURE 1 | observed in the controls (B—insert, hippocampus) compared to the reduced number of such cells in the properdin KO group (C—insert, hippocampus).

Compared to wild type controls, properdin deletion resulted in reduced TUNEL+ cell death across all 6 examined forebrain regions, with significant, individual

decrease (Mann-Whitney test) in the pyriform cortex (p = 0.0004), hippocampus (p = 0.0008), striatum (p < 0.0001), thalamus (p = 0.0034) and overall (p < 0.0001).

(D–F) Ipsilateral forebrain Nissl staining (Cresyl-Violet, at rostral parietal level)—Quantification of percentage of ipsilateral brain tissue volume loss (D, Median ± IQR) of

wild type control (E) and properdin KO (F) animals. Compared to wild type controls global properdin deletion resulted in slight decrease of volume loss following

neonatal HI, however the data did not reach significant values. (G–I) GFAP immunoreactivity—Quantification of ipsilateral reactive astrogliosis (G) in optical luminosity

values (OLV, Median ± IQR), and low magnification ipsilateral overview in wild type control (H) and animals with global properdin deletion (I). The inserts in H and I

show higher magnification of the dotted regions in hippocampus. Global properdin deletion did not have an effect on astroglial activation following neonatal HI. (J–L)

Activation of αM+ microglia—Ipsilateral αM microglial activation score (J, Median ± IQR) and low magnification ipsilateral overview in wild type control (K) and animals

with global properdin deletion (L). Note the strong microglial activation in the control wild type group with αM+ cells showing phagocytic morphology at high

magnification (K—insert, hippocampus), compared to the properdin KO brains exhibiting a ramified phenotype (L—insert). Global properdin deletion reduced αM+

microglial activation across all 6 examined forebrain regions apart from cortex, with significant, individual decrease (Mann-Whitney test) in pyriform cortex (p = 0.008),

hippocampus (p = 0.05), striatum (p = 0.02), thalamus (p = 0.04), and overall (p = 0.01). Wild type (n = 14) and global properdin deletion (n = 16) in all assessments.

(*p < 0.05). CTX, cerebral cortex; PYR, pyriform cortex; HIP, hippocampus; STR, striatum; THAL, thalamus; EC, external capsule. Scale bars: (E,F) = 1,200µm;

(B,C,H,I,K,L) = 600µm. inserts = 30µm.

DISCUSSION

Lack of oxygen to the fetal brain around the time of birth
is a major cause of neonatal HI brain damage, triggering
neurological sequelae such as cerebral palsy, epilepsy and mental
retardation. Intrauterine or perinatal complications, including
maternal infection, constitute a major risk for the development
of neonatal HI brain damage. The mechanisms underlying the
trigger of brain damage under the conditions of HI alone and
LPS-sensitized HI overlap, but also differ (7, 29). Therefore, our
study aimed to validate the effect of global properdin deletion in
twomodels: HI alone and LPS-sensitized HI, thus addressing two
different clinical scenarios.

In the current study, C57/Bl6 background was chosen as
a result of the high severity of HI injury incurred following
prolonged hypoxic exposure (7, 33).

Additionally, global properdin deletion reduced forebrain
cell death and microglial activation, as well as tissue loss in
a Rice-Vannucci model of neonatal HI and LPS-sensitized HI
brain damage.

In the model of HI alone, deletion of properdin reduced
brain damage based on evidence for TUNEL+ cell death
and microglial post-HI response, which in both assessments
reached significance.

Under the conditions of LPS-sensitized HI, properdin
deletion reduced brain injury based on evidence of significantly
diminished cell death, tissue loss and post-HI microglial
activation. Overall, our data suggests a critical role for properdin,
and possibly also a contribution in neonatal HI alone, as well as
in infection-sensitized HI brain damage.

Complement is an essential part of innate immunity and
participates not only in normal brain physiology, but also under
pathological conditions, including ischemia (34). Absence of
the CP in the neonatal HI brain is neuroprotective (35, 36).
Despite the long history of research on the role of complement in
neonatal HI (35, 36), there is a paucity of data on the participation
of the AP in post-HI brain damage (34), in particular the role
of properdin.

Our data shows that in HI alone and in LPS-sensitized
HI, properdin deficiency reduced TUNEL+ cell death with
significant differences in pyriform cortex, hippocampus,

striatum, thalamus and overall in the HI alone set of experiments
(Figure 1A), and in cortex, pyriform cortex and hippocampus
in the LPS-sensitized HI (Figure 2A). Additionally, tissue loss
was significantly reduced in the thalamus in the HI alone set
of experiments (Figure 1D) and in the cortex and pyriform
cortex in the LPS-sensitized HI (Figure 2B). Sub-regional
differences in the vulnerability of the different brain regions to
HI damage exist based on metabolic rate and energy demand
(6). HI insult around term, as modeled in this study, damages
predominantly gray matter in the cortex, hippocampus and/or
thalamus (37). In animal models, damage in the cortex, thalamus
and striatum has been associated with sensorimotor impairment
(38–41). Interestingly, as the hippocampus is one of the regions
with the highest metabolic rate in the developing brain and
therefore highly susceptible to HI injury, damage to it and to
the cortico-hippocampal projections causes memory and spatial
processing dysfunction (42). Additionally, HI-induced reduction
in hippocampal volume has been associated with impaired
long-term reference memory, short-term working memory
(43), as well as spatial navigation and recollection (44, 45).
We observed reduced cell death in striatum of animals with
global properdin deletion following neonatal HI (Figure 1A).
As damage to the striatum, in particular to nucleus accumbens
may have an impact on non-spatial navigation and learning
(45, 46) and might explain non-spatial memory deficits in
neonatal HI rats (37), protection of that region is essential.
Neonatal HI is considered a major risk factor for psychiatric
diseases including attention-deficit hyperactivity disorder
(ADHD), autism, psychosis and schizophrenia (47–51). The
main regions associated with related cognitive functions are
the hippocampus and striatum as well as cortico-hippocampal
and cortico-striatal projections. As global properdin deletion
provides neuroprotection for these regions, it is likely that it
would reduce the risk of development of later life psychological
and behavioral complications, however that would require
additional long-term behavioral studies.

Although there is no data on the effect of global properdin
deletion on neonatal HI brain damage, our results are in line with
previous studies looking at the role of the AP in murine models
of stroke. In an adult mouse study of middle cerebral artery
occlusion (MCAO), C3 deficiency and site-targeted inhibition
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FIGURE 2 | Global deletion of properdin in P7 mice significantly reduces cell death tissue loss and microglial response at 48 h post LPS-sensitized HI. (A–D) TUNEL+

staining of dying brain cells with fragmented DNA—Quantification (A) (number of TUNEL+ cells per 20× eye-field, Median ± IQR) and histochemical overview of the

ipsilateral forebrain in saline-treated wild type (B), LPS-treated wild type controls (C) and LPS-treated animals with global properdin deletion (D). The saline-treated

wild type animals showed a very low number of TUNEL+ cells (B). Note the typical pyknotic nuclear morphology of the TUNEL+ cells as well as their high density

observed in the LPS-treated wild type controls (C—insert, hippocampus) compared to the reduced number of such cells in the LPS-treated properdin KO group

(D—insert, hippocampus). Compared to the wild type controls, properdin deletion resulted in reduced TUNEL+ cell death with a significant main effect (Kruskal-Wallis

test, p = 0.007), and significant, individual decrease (Bonferroni correction) in cortex (p = 0.04), pyriform cortex (p = 0.03), hippocampus (p = 0.02) and overall

(p = 0.05). (E–H) Ipsilateral forebrain Nissl staining (Cresyl-Violet, at rostral parietal level, Median ± IQR)—Quantification of ipsilateral brain tissue volume loss (E) of

saline-treated wild type (F), LPS-treated wild type controls (G), and LPS-treated animals with global properdin deletion (H). The saline-treated wild type animals

showed very low levels of ipsilateral tissue loss (F). Compared to wild type controls, global properdin deletion resulted in a decrease of volume loss following

LPS-sensitized neonatal HI with a significant main effect (Kruskal-Wallis test, p = 0.0001) and significant individual decrease (Bonferroni correction) in cortex

(p = 0.044) and pyriform cortex (p = 0.009). (I–L) GFAP immunoreactivity—Quantification of ipsilateral reactive astrogliosis (G) in optical luminosity values (OLV, Median

± IQR) and low magnification ipsilateral overview in saline-treated wild type (J), LPS-treated wild type controls (K) and LPS-treated animals with global properdin

deletion (L). The saline-treated wild type animals showed very low levels of ipsilateral GFAP immunoreactivity (J). The inserts (K,L) show higher magnification of the

dotted regions in hippocampus. Compared to wild type controls, global properdin deletion decreased reactive astrogliosis with a significant main effect (Kruskal-Wallis

test, p = 0.0001), however the sub-regional differences did not reach significant values. (M–P) Activation of αM+ microglia—Ipsilateral αM microglial activation score

(Continued)
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FIGURE 2 | (M, Median ± IQR) and low magnification ipsilateral overview in saline-treated wild type (N), LPS-treated wild type controls (O), and LPS-treated animals

with global properdin deletion (P). The saline-treated wild type controls showed very low levels of αM+ microglia (N). Note the strong microglial activation in the

LPS-treated wild type control group with αM+ cells showing phagocytic morphology at high magnification (O—insert, hippocampus), compared to the LPS-treated

properdin KO brains exhibiting a ramified phenotype (P—insert, hippocampus). Global properdin deletion reduced αM+ microglial activation with a significant main

effect (Kruskal-Wallis test, p = 0.0001) and significant, individual decrease (Bonferroni correction) in hippocampus (p = 0.05). Saline wild type (n = 12), saline

properdin KO (n = 14), LPS-treated wild type (n = 15) and LPS-treated properdin KO (n = 14) in all assessments. (*p < 0.05). CTX, cerebral cortex; PYR, pyriform

cortex; HIP, hippocampus; STR, striatum; THAL, thalamus; EC, external capsule. Scale bars: (F–H) = 1,200µm; (B–D,J–L,N,O), p = 600µm. inserts = 30µm.

with either CR2-Crry (inhibiting all pathways) or CR2-fH
(inhibiting AP) significantly reduced infarct size, reduced
apoptotic cell death, and improved neurological deficit score
in the acute phase after stroke, but only CR2-fH provided
sustained protection with no further development of injury in
the subacute phase (52). Similarly, Ten et al. (36) demonstrated
that C3 deficiency provided protection against MCAO as well
as against neonatal HI. Additionally, intranasal C3a treatment
ameliorated cognitive impairment in a mouse model of HI
brain injury (35). However, C3 deficiency takes away the
component central to all three complement pathways compared
to properdin deficiency, which reduces these activities. Similarly,
factor B-deficiency or CR2-fH treatment improved neurological
function and reduced cerebral infarct, demyelination, P-selectin
expression and neutrophil infiltration following MCAO in
adult mice (52). Although the model of injury in MCAO
is technically different than neonatal HI, both models share
similarities, including oxygen deprivation and reperfusion, thus
effects observed in MCAO could be plausible in neonatal HI and
vice versa.

Our results show reduced microglial activation in all
studied regions apart from cortex in the properdin deficient
group following neonatal HI alone (Figure 1J). Similarly, in
the LPS-sensitized HI model, we observed a main effect
of the global properdin deletion with significant reduction
observed in hippocampus (Figure 2M). This suggests reduced
inflammatory response and subsequent cell death (Figures 1A,
2A). Inflammation plays a major part in the pathology of
neonatal HI brain damage (6, 34, 53). Cerebral ischemia induces
inflammation in both systemic circulation and the parenchyma.
In an adult brain, this results in increased production of
cytokines, as well as activation and migration of leukocytes to
the injured brain (34, 53). In neonates, however, the result is
an immediate innate immune response following the insult.
The differences in the mechanisms between adult stroke and
neonatal HI are mostly due to the immaturity of the neonatal
CNS, resulting in insufficient ability to overcome excitotoxicity,
oxidative stress and inflammation. HI damage is suggested to
occur because of imbalance between pro- and anti-inflammatory
cytokines, which boosts oligodendrocyte precursors to proliferate
into astrocytes instead of oligodendrocytes, thus impairing
subsequent myelination (54). In some models, presence of
properdin has been associated with increased production of
pro-inflammatory cytokines (TNF-alpha, IL-1b, and IL-6) and
suppressed levels of anti-inflammatory cytokines (IL-10 and
TGFb) (55). Therefore, its presence following HI might be
a contributing factor for the imbalance between pro- and

anti-inflammatory cytokines. We have previously shown that
inhibition of IL-6 downstream products such as phosphorylated
STAT3 is neuroprotective in neonatal HI (27). Hence, the lack
of properdin would prevent IL-6 upregulation and provide
neuroprotection in neonatal HI. Therefore, it can be assumed
that deletion of properdin would exhibit a neuroprotective effect
through reduction of pro-inflammatory cytokine levels, thus
preserving the equilibrium between pro- and anti-inflammatory
cytokines and ensuring subsequent myelination. Additionally,
properdin is required for the AP activation when LPS is
present (56). Thus, deficiency in properdin in the presence of
LPS would prevent AP activation and ensuing inflammatory
response. In addition to the increase of pro-inflammatory
cytokines triggered by HI alone, LPS causes further upregulation
of TNF-alpha, IL-1b, and IL-6. As properdin deletion might
interfere with the execution of IL-6 dependent inflammatory
response, it is possible that inherited properdin deficiency
inhibits LPS sensitivity in neonates. Conversely, in a study
looking at zymosan-induced and LPS-induced septic shock in
adult mice, properdin deletion provides protection only in
the case of zymosan-, but not in LPS-induced septic shock
(57). However, the model of septic shock involves different
mechanisms which can explain the differences in the effects of
global properdin deletion.

Our data did not support an effect of properdin deletion
on astroglial activation in HI alone or in LPS-sensitized HI,
suggesting that the protective role of properdin in both models
is likely due to impairment of the microglia-dependent pro-
inflammatory response post-HI.

As a conclusion, our study provides evidence that properdin
is involved and likely plays a key role in the trigger of neonatal
HI and LPS-sensitized HI brain damage. Although our study
was limited to male gender and the HI insult in the HI alone
set of experiments was moderate rather than severe, global
properdin deletion provides neuroprotection in the short term
(48 h) in both models on the grounds of reduced cell death, tissue
loss and microglial activation. The likely mechanism underlying
these protective effects is impairment of the microglial pro-
inflammatory response, which would prevent imbalance between
pro- and anti-inflammatory cytokines following HI insult and
would preserve subsequent myelination, however that would
require further investigation. Overall our data suggest properdin
as a novel target for treatment in neonatal HI brain damage;
however, a better understanding of the pathway(s) through
which it is involved in HI-brain damage would considerably
improve the therapeutic potential of interfering with it in a
clinical setting.
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