
M otivated  Inductive D iscovery

M ichael M ord echai Luck

A dissertation subm itted in partial fulfillment 

of the requirements for the degree of 

D o c to r  o f  P h ilo so p h y  

of the

U n iv e rs ity  o f  L o n d o n

D epartment of Computer Science 

University College London

1993



ProQuest Number: 10045777

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10045777

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



A bstract

Research, in machine discovery to date has tended to concentrate on the replication 

of particular episodes in the history of science, and more recently on the extraction 

of regularities from IsLTge databases. In this respect, current models of induction and 

discovery concentrate solely on the acquisition of knowledge, and lack the flexibility of 

reasoning tha t is necessary in a real-world changing environment.

Against this backdrop, this dissertation addresses inductive reasoning, specifically 

based eiround the scientific discovery paradigm. A framework for inductive reasoning 

is presented which includes the six stages of prediction, experimentation, observation, 

evaluation, revision and selection. W ithin this framework, different kinds of inductive 

reasoning can be reduced to the same basic component processes. The difference be­

tween the various kinds of reasoning arises not through the use of different mechanisms, 

but through the influence of motivations which bias the application of these mecha­

nisms accordingly. Also within this framework, a model and its implementation as a 

computer program, the MID system, have been developed, concentrating primarily on 

the internal stages of the framework, prediction, evaluation, revision and selection. The 

role of motivations in allowing reasoning for both knowledge and action is investigated 

and implemented in the program. By choosing different internal models of motivation for 

reasoning systems, different behaviours can be achieved from the same basic architecture.

The MID system reasons in simple physical domains, bo th  for knowledge and for 

action. It demonstrates how a basic mechanism can be used to provide an effective means 

for reasoning in a variety of contexts, and also how a simple motivational representation 

can be used as an effective control strategy.
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C hapter 1

Introduction

The unity of all science consists alone in its m ethod, not in its material.

— Karl Pearson, The Grammar o f Science

1.1 Introduction

Throughout history, much of human endeavour has been directed at increasing the knowl­

edge available about the world. An im portant aim  of science is, arguably, to increase our 

understanding of the world in order tha t we may explain and predict events as part of 

an ongoing effort to m itigate the effects of our environment. Such is the importance of 

knowledge emd scientific progress that the nature of science as an activity in itself has 

also been studied extensively. The investigation of scientific reasoning is being pursued 

along a number of fronts, inspired by episodes in the history of science, eind by the re­

wards tha t will be provided by a better understanding. Many different accounts of the 

nature of scientific activity have been suggested, retnging from philosophical attem pts to 

define it logically through to  sociological and historical analyses. More recently, artificial 

inteUigence (AI) has provided techniques tha t allow scientific reasoning to be investigated 

computationally. This thesis is concerned with the development of a com putational ap­

proach to  what we call scientific reasoning.

Scientific reason ing , and in particular induction and discovery, can be apphed not 

only in scientific domains and contexts, but also to  more common situations. This thesis 

claims th a t it is possible to  provide a com m on &amework within which different varieties 

of inductive reasoning are unified, and from which a strong model of inductive reasoning 

can be developed. By breaking down the reasoning procedure into its component parts,
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each component can be investigated separately and its role in the different kinds of 

reasoning considered. In doing this, problems are identified, and a flexible and robust 

model of reasoning tha t allows for these variations can be developed.

This chapter begins by discussing the role of knowledge in artificial intelligence and 

its associated problems, outlining some of the deficiencies of current ‘intelligent’ systems. 

It continues with a clarification of what is meant here by scientific reasoning, discovery, 

induction and other term s which have become confused over time. Some background is 

then introduced to provide a general perspective on the relation between this and other 

work. Finally, the aims and motivations of the work are discussed, and an overview of 

the thesis is presented.

1.2 T he R ole o f K now ledge in Intelligence

The significance of knowledge in intelligence is undeniable. It is widely held tha t knowl­

edge is the primary force behind any system tha t can exhibit intelligent understanding 

and action at a high level of competence (eg. [68]). If it is not the prim ary force, it is 

certainly a necessary force. W ithout knowledge, or even just w ith little or poor knowl­

edge, the capability for intelligence is seriously curtailed. Currently, a number of research 

efforts (such as the CYC project [69]) are directed at encoding a large zind varied body 

of knowledge in the belief th a t this wiU enable the construction of general intelligent 

machines. Expert systems dem onstrate very effectively the capabilities of knowledge- 

based technology at one end of the artificial intelligence spectrum. The knowledge tha t 

is encoded within an expert system is typically limited to a small domain of application, 

however, but provides a useful and effective means for ‘understanding’ tha t domain.

Such knowledge-intensive techniques face many shortcomings, however. No m atter 

how simple the computational machinery involved, the problem of knowledge acquisition 

cannot be avoided, and should not be underestimated. The difflculties of expertise elici­

tation and knowledge trêinsfer, for example, are well known (see Gaines [25]), and suffice 

it to say here tha t knowledge-based systems m ust not only be judged on performance, 

but cdso on the work required to acquire tha t knowledge in  the first instance. In addition, 

acquisition of expert knowledge requires tha t all forms of potential interactions with tha t 

knowledge be anticipated beforehand to ensure a proper functioning of systems tha t use 

it. Furthermore, the explicit encoding of knowledge imposes restrictions upon the con­
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tent of the knowledge base tha t may later prove critical in any one of a number of tasks 

undertaken, including the ability to leam  effectively.

Our understanding of what constitutes knowledge itself is problematic, but whatever 

notion of knowledge we may adopt, knowledge is ultim ately dependent upon the changes 

tha t occur in our environment over time. Knowledge, in mzmy ways, is in flux. In other 

words, what might be correct or consistent at one tim e might not be so at another. The 

world is a dynamic fluid system, which demands th a t any repository of knowledge be 

easily and efflciently modified so tha t it remains consistent w ith a changing reality. In a 

concrete, real world context, we can relate this to the changes in  our environment which 

influence our everyday actions. For example, the knowledge th a t M argaret Thatcher is 

Prime Minister might be encoded, only to  discover some m onths later th a t this is wrong, 

and tha t John M ajor is Prim e Minister instead. (In reality, we know th a t the situation 

of any single person being Prim e Minister is only temporary, so we should allow for the 

modification of th a t knowledge.)

Furthermore, knowledge, in a global sense, is not complete. Continually, we discover 

more and more about the world in which we hve; we discover things th a t were not known 

before. This applies just as equally to scientific research which we can think of as com­

munal knowledge^ as to individual knowledge about our own individual environment. For 

example, advances in medicine (communal, scientific knowledge) have lead to a greatly 

decreased infant m ortality rate. At an individual level, one might ‘discover’ tha t a tube 

of toothpaste is empty. In short, there is always the potential to add to knowledge, 

and we m ust make allowance for the addition of such newly-discovered knowledge to  our 

knowledge bases.

Recent work in AI has begun to address these issues as a result of different lines 

of research. F irst, the problems associated with using static, fixed and rigid knowledge 

bases have been recognised, and the need for more flexible techniques allowing dynamic 

modifications to be made to  such knowledge bases identified. Second, research in the 

philosophy of science, particularly th a t which is concerned with scientific discovery and 

induction, has been given a new impetus with the advent of com putational techniques 

and, consequently, com putational models of discovery are now being developed. Third, 

a move towards consideration of real-world problems and scenarios, and their associated 

variability, has necessitated a reappraisal of knowledge (and belief) as fluid and subject 

to change.
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As progress continues in other areas of research concerned with using explicitly en­

coded knowledge, these issues are becoming ever more im portant, demanding the devel­

opment of systems which are capable of effective knowledge management as an inherent 

part. Such capabilities will enable:

• The autom atic generation of knowledge bases, avoiding the problems of knowledge 

acquisition with hum an experts.

• The speedy construction of prototype domain theories.

• The modification of incorrect or inconsistent knowledge, including the imperfections 

perm itted by rapid prototyping.

• The addition of newly-discovered knowledge to existing domain theories.

• The maintenance of correct knowledge in a rapidly changing environment.

This more closely mirrors the way things work in real world situations, and provides a 

sound basis for learning systems.

1.3 Scientific R easoning

1.3.1 In trod u ction

The above discussion identifies a number of problems th a t remain largely unsolved in 

AI. Classical logically valid reasoning techniques, prim arily deduction (but zdso other 

reasoning methods), while having a definite role to play in artificial intelligence, are 

unsuitable here precisely because of their rigour. Deductive inferences are explicative in 

tha t they reveal the relationships in existing knowledge, and allow for transitions between 

small basic components and large complex structures. By contrast, what might loosely 

be called scientific reasoning^ aims to  create new knowledge, to extend the knowledge 

that may already exist. It is scientific in tha t it follows the aim  of science in increasing 

knowledge about the world. It is complementary to formal logic, but since it does not 

lie in the realm  of formal logic, it is not guaranteed to  be correct or even to draw 

an inference at all. Scientific reasoning broadly encompasses induction and discovery 

techniques. These are considered below.
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1.3 .2  W h a t is ind uction ?

There are m any different concepts of what constitutes induction, and many different levels 

of detail to  th a t understanding. This is, in part, due to  the different emphases th a t have 

been placed on it by a variety of diverse groups and individuals. Philosophical concerns 

with the logical (or otherwise) validity of induction may be different to those of computer 

science interested in achieving certain results, and both  of these will be different from 

psychological concerns w ith induction which stem  from understanding how it is used in 

hum an reasoning processes. Even within the same field, judgements and concepts vary 

to a great degree. A notable example is tha t of Mill who regarded induction as a logical 

procedure analogous to  deduction in contrast to the vast m ajority of the philosophical 

community of the time. The continuing presence of heated debate and disagreement 

over the nature and role of induction is indicative of its significance. The ambiguity 

surrounding it and the lack of a consensus over definition embody the expressiveness 

tha t is inherent. Yet in  order to discuss induction meaningfully, we m ust tie it down to 

definite ideas eind procedures. Here, then, we aim for an informal yet clear description 

of what we m ean by induction.

F irst of all it is im portant to draw the distinction between scientific induction, which 

concerns us here as a means for addressing the above issues, and mathem atical induction, 

which is an entirely different m atter. Scientific induction is so called because of its original 

invocation as a suitable reasoning m ethod for science or for discovering knowledge, and 

because of the now dismissed claim tha t it provided a logically valid complement to 

deduction.

The view th a t science proceeds by inductively inferring laws directly from  observations 

without interm ediate hypotheses was always problematic, and is now discredited. In its 

place has arisen the notion of a methodology or programme for science rather than  a 

rigorous logical procedure. Traditionally, such methods have avoided the problem of the 

creation of hypotheses in the first instance, and instead concentrated on the testing, and 

refutation or revision of hypotheses as appropriate. The hypothetico-deductive method 

which addresses these la ter stages of induction through logical analysis has been subjected 

to much criticism. We take a pragmatic position on this, recognising the role of elements 

of the hypothetico-deductive m ethod in some form in scientific reasoning and also in 

everyday reasoning, and noting the power tha t it brings to  com putational models of such
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reasoning.

A dictionary definition takes induction to  be the process of inferring a general law or 

principle from the observation of instances. This is close, bu t requires a h ttle  modification. 

D efin itio n  Induction is the process of inferring an explicit general conclusion primarily 

from observation of instances.

This allows the notion of inference and the kind of conclusion to  be interpreted in a 

number of ways, but requires tha t the premises of an inductive argument are observations. 

It extends the scope of induction through to all domains and contexts, not just scientific 

ones.

By induction, then, we mean scientific induction as denoting reasoning tha t is based 

on empirical evidence obtained through observation of the world. Induction in this sense 

may thus be harnessed through a methodology for reasoning such as discovery. It can be 

seen to provide constraints on the nature of the reasoning laid out in a more precise and 

well defined system.

1.3 .3  W h at is d iscovery?

As mentioned above, the notion of induction of laws directly from observations is in­

adequate. In response to this, a shift away from the notion of induction as a logical 

procedure introduced the concept of a system of scientific discovery for ‘doing science’. 

Such systems set out rules of procedure for a programme designed to uncover laws and 

principles governing the nature of the world. Many programmes of discovery have been, 

and continue to be devised. Traditionally, these have been inductive, only adm itting 

observations as a basis for reasoning, or at least excluding those parts of the programme 

which may suggest other influences, asserting tha t they are outside science. More re­

cently, work on scientific reasoning has acknowledged the role of other factors, including 

such techniques as analogical reasoning, in the scientific process. Discovery is a broad 

notion tha t admits many factors and influences.

Discovery is usually restricted to science. This is a restriction on the reasoning pro­

cess to the communal knowledge mentioned earlier, but there is no reason why it should 

not also apply to individual or non-scientific knowledge. Discovery is difficult to define 

because of disagreement about what it is th a t constitutes discovery, and how broad its 

scope should be [130]. We can define discovery as follows:

D efin itio n  Discovery is the process of finding out new knowledge.
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This définition applies as easily to  individual knowledge as it does to communal knowl­

edge. W hat is known to one person may yet be discovered by another.

This thesis concentrates on inductive discovery — th a t is to  say it is concerned pri­

marily with discovery tha t is constrained by a reliance on empirical observations. The 

word discovery denotes the nature of the problem or the task at hand, while the word 

inductive denotes the kind of reasoning used to  address it; inductive reasoning as opposed 

to analogical reasoning or any other. Thus we can define inductive discovery: 

D éfin itio n  Inductive discovery is the process of finding out new knowledge &om obser­

vation of instances.

In this thesis, the terms induction, discovery, and inductive discovery wiU all be 

used to denote the same thing, discovery of the inductive kind, unless explicitly stated 

otherwise. Indeed, these terms are usually used to refer to  the same kind of reasoning 

process, but in different contexts.

1.4 P erspectives on Induction  and D iscovery

As with much of AI, scientific reasoning has its roots deep in the history eind philosophy of 

science. An aim  of science can be thought of as the acquisition of knowledge through ex­

perim entation and observation of the world. A ttem pts to  achieve a better understanding 

of nature have thus spawned many methodologies and programmes for science. Psychol­

ogy, too, is intim ately bound up with AI in the investigation of intelligence, with areas 

devoted to  investigating and understanding hum an thought and reasoning processes.

The concern of this thesis is not w ith philosophical or psychological models or the­

ories. Emphasis is placed firmly on a com putational approach. It would be reckless, 

however, to ignore the vast amount of research tha t has been directed at the problems 

considered here from these alternative but complementary points of view. Indeed, the 

advent of the computer has provided a new im petus bo th  to philosophical and psycho­

logical resezirch on discovery and induction (see, for exsunple, [116, 117]) which links up 

strongly with AI. Thus we can look to  psychology, philosophy and other fields for inspira­

tion towards solving many of the problems th a t confront us in AI. We might differentiate 

between philosophy and psychology by saying th a t the concern of psychology is with 

understanding these processes in humans (and animeds) while the concern of philosophy 

is with developing Vcdid and effective processes for achieving greater knowledge of the
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world. The distinction is not Arm, however, and in areas of cognitive science, for exam­

ple, philosophy and psychology merge in some of these points. It can be argued tha t 

much of AI research follows on firom long strands of research in the philosophy of science 

and psychology, and as such it is im portant to provide some background.

1.4 .1  A  P h ilosop h ica l-H istorica l P ersp ec tiv e

Although the discussion and investigation of knowledge, and what is now known as science 

and the philosophy of science can be traced as far back as P lato  and Aristotle, the usual 

starting point for a discussion of the work in this cirea is the Seventeenth Century. This 

is primarily due to  two factors. F irst, the philosophers and scientists of the time believed 

th a t their work was something entirely different from what went before, although as has 

been pointed out [82], there are strong links to Aristotle and Plato. Second, the sudden 

and rapid advance of science in the Seventeenth Century, w ith scientists such as Galileo 

Euid Newton producing remzukable and significant results, provided a new impetus to 

investigating the question of how knowledge, scientific or otherwise, was acquired.

Early Em piricism  and Naive Inductivism

Empiricism is usually defined as, “the thesis th a t all knowledge of m atter of fact as 

distinct from th a t of purely logical relations, is based on experience [21].” Francis Bacon, 

an im portant forerunner of the empiricist tradition, was perhaps the first significant 

contributor to the methodology of science though he made no real contribution to science 

itself. He gave examples of the use of his new methodology which was intended to search 

for the causes of observed effects. Briefly, it involved the formulation of hypotheses, 

the consequences of which were then tested against new data. This would lead to the 

elimination of hypotheses which were incorrect, and eventually to the true explanation of 

the effect. However, it depended for its success on a wide base of empirical information.

The fact tha t Bacon made no significant contribution to science itself is im portant 

because a short while later, Isaac Newton, whose contribution to  science concerning 

mechanics and optics was phenomenal, denied the use of hypotheses in his reasoning. 

He argued tha t certainty was required, and th a t it was to be achieved by reason in g  

inductively from experiments and observations alone. A belief in the uniformity of nature 

allowed the use of experimental ‘proofs’ and the deducibility of general conclusions from 

these observations. W hether or not Newton actually used hypotheses in his own reasoning
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is a m atter for debate. The im portant point here is tha t he claimed tha t hypotheses were 

neither necessary nor desirable for inductive reasoning.

His claim of direct inference of general laws from specific observations which might 

appropriately be called natve inductivism  because of the lack of any intermediate hy­

potheses, became part of the problem of induction. This came to the fore with Hume 

(who formulated it as such) much later. On considering the m atter of causahty [44], 

the question was raised of whether or not it is reasonable to believe in the uniformity of 

nature, or whether there are ever grounds for believing th a t exact conclusions can be a t­

tained by an inductive argument. Hume, however, denied the principle of the uniformity 

of nature, giving a psychological account of our belief in it. Inductive generahzations are 

never justified. Yet Hume provided a set of rules for scientific inquiry, a methodology, 

despite his misgivings over causation and induction, and in other works he recommended 

one of Newton’s rules of reasoning which embodied the essence of naive induction. This 

inconsistency seems to reveal some pragmatism, and an identification of the need to avoid 

parzdysis of action.

Logical P ositiv ism

The empiricism of Hume and more contemporary empiricists provided a foundation for 

the very infiuential school of logical positivism (or logical empiricism) which was estab- 

hshed in the first half of this century. The empirical component maintained tha t all 

knowledge m ust be grounded on experience. This was fixed in the verifiabUity principle 

which stated th a t the meaning of a proposition consists in  the m ethod of its verification, 

which is whatever observations (as experiences) show. Questions of theology and m eta­

physics are thus neither true nor false, but become meaningless and inadmissible as a 

consequence of their unverifiability. The logical aspect of the programme was intended to 

systematize science through the manipulation of empirical propositions using symbolic 

logic in an a ttem pt to  provide a formal rendering of its structure. Any proposition that 

is not observable (ie. theoretical) must thus be indirectly determined via observational 

propositions and the use of logic to specify the relationship between the two.

In the discussion of induction, the Logical Positivists made two im portant contribu­

tions. F irst, they distinguished between the context of discovery in which hypotheses 

were developed, and the context of justification in which they were assessed. The discov­

ery of hypotheses was a problem tha t was left to psychologists to explain, since it was
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considered tha t it m ight well be nonlogical. Second, the emphasis on verification led to 

the development of the notion of confirmation. They m aintained th a t collecting positive 

evidence confirming a hypothesis should increase the confidence in its tru th .

Against Verification

Logical Positivism, in attem pting to  unite the rigour of logic with the epistemology of 

empiricism, adm itted serious flaws. These were most effectively exposed by Karl Popper 

(among others), who proposed an alternative methodology for science [87]. In particular, 

the difficulty tha t general empirical statem ents cannot be verified because of the problem 

of induction was a m ajor concern, and Popper attem pted to  avoid this by replacing the 

traditional concept of confirmation with falsification. Falsificationism  is based on the fact 

tha t logic permits the establishment of the falsity but not the tru th  of theories in the 

light of observations. Science thus begins with problems for which falsifiable hypotheses 

are formulated as solutions. These hypotheses are then subjected to experimentation smd 

criticism in the course of which some will be deductively refuted while others may remain. 

In the course of testing these hypotheses, the data  collected may lead to  new problems 

which win need to  be accommodated. This leads to  the introduction of new hypotheses 

which m ust, in turn , be tested. Popper contends tha t the continual application of this 

method of conjectures and refutations is the basis for the progress of science. A hypothesis 

is never regarded as being true even if it has passed a wide variety of stringent tests, but 

it may be considered superior to  its predecessors.

There are a number of im portant points here. Like the Logical Positivists, Popper 

recognises two distinct phases in science, the imaginative phase as discovery and the 

critical phase as justification. He only considers the critical phase in his programme 

since he regards the invention of hypotheses as being irrational and outside science. 

Fsdsiflability is also used as a criterion for demarcation between science and non-science, 

those systems which «ire unfalsifiable such as astrology being deemed pseudo-science zmd 

unsuitable for reasoning, since they can never be refuted.

1.4 .2  A  P sych o log ica l P ersp ectiv e

Psychological approaches to the problem of scientific discovery have been distinguished 

from others as involving anédyses of the actual behaviour of humans engaged in aspects 

of scientific reasoning [126]. Klahr et al. [49] further divide the psychological approaches
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into those which use a retrospective emalysis of the scientific record of real scientists m ak­

ing real discoveries, and those which recreate simulated laboratory contexts for scientific 

discovery. The first of these can be considered an historiceil approach. The second has 

enabled a detailed analysis of the behaviour of subjects under highly controlled condi­

tions, and an immediate investigation of the thought and reasoning processes involved. 

It does, however, suffer from the drawback tha t it is only analogous to science rather 

them being actual science. Nevertheless, there is a history of solid psychological research 

into induction and discovery, with concerns rangin g from hum an acquisition of sequential 

patterns th irty  years ago (eg. [132], [109],[50]) through to current efforts explicitly con­

cerned with the nature of hum an scientific reason in g in more realistic discovery problems 

(eg. [49], [20], [99]). A recent review of much psychological research on discovery can be 

found in [33].

This work shares a concern with the mcumer in which people actually reason, but 

the emphasis here is not on modelling hum an cognition, but on developing effective 

techniques for scientific reasoning tha t exploit the capabilities of computers.

1.5 A im s and M otivation

Research is currently being carried out on many aspects of discovery in many forms from 

a variety of perspectives. Work is being done on theory revision, theory formation, theory 

choice, numerical discovery, and so on. All of these are relevant, yet the plethora of terms 

and apparently different paradigms has led to a fragmentation resulting in a collection of 

distinct parts. Im portant motivations of this research are the belief th a t these divisions 

have been artificially contrived, the desire to establish not ju st another account, but an 

encompassing framework as a basis for relating differing models, and the construction of 

a sufficiently general model of inductive discovery.

In particular, it is intended to show in this thesis th a t the varieties of induction and 

discovery all involve essentially the same kind of reasoning, but with th a t reasoning being 

controlled and distinguished through different motivations and priorities on the part of 

the reasoning agent. The contributions of this thesis can be stated as follows:

• The development of an encompassing frsunework tha t includes all stages of inductive 

discovery. This will provide a basis for evaluating and comparing different models 

and a mesms for integrating the various component parts. The framework should
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include not just those stages (see Chapter 2) which are immediately obvious and 

lend themselves easily to  computational and psychological models, but also those 

stages which are difficult to address and often ignored because of the limitations of 

current technology and research, and the problems of integration.

• The development of a model of inductive reasoning using this framework based on 

the scientific discovery paradigm. Basing the framework on a particular paradigm 

provides a frame of reference for discussion and debate of the different elements. 

The scientific discovery pziradigm is a view of induction tha t we take to be useful and 

effective because of the emphasis on a methodology and procedures for reasoning 

which allow wide and easy application.

• The extension of the scientific discovery paradigm  of induction to apply both  to 

scientific and non-scientific domains. Most AI (as opposed to  psychological) re­

search on discovery has concentrated on purely scientific domains, much of it with 

assumptions of idealized data tha t are often associated with science. Mechanisms 

of scientific discovery and reasoning should also be capable of use in non-scientific 

domains which more readily admit a less idealized model of the world.

• The extension of the model of induction to  consider the subjective factors such as 

gocds and motivations tha t are necessary for a complete account. Real world prob­

lem solving in both  scientific and non-scientific domsdns involves both objective and 

subjective elements. The richness of scientific reason ing  is due to  the guidance of a 

basic mechanism by the more varied and subtle influences of subjective collective 

and individual factors.

• The construction of an implementation of the interned stages of the model of in­

duction as a demonstration of its capability etnd effectiveness. Although an instan­

tiation of the model as a computational im plem entation unavoidably loses some 

expressiveness for numerous reasons, it is im portant to  dem onstrate its ability, and 

to bring to fight limitations. An im plem entation can be regarded as an experiment 

designed to test the model of induction proposed here leading to  the revision and 

improvement of this model in a continuous process.

The research undertaken in providing this account of induction and discovery was 

guided by a number of operating principles which are of particular significance in terms
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of its development and contribution.

• Simplicity contributes to ease of development, evaluation and refinement. The 

vast amount of research on AI has led to  an ever growing variety of tools, cind 

methodologies for using those tools of ever increasing complexity. Arguments for 

what has been called ‘minimalist AI’ suggest tha t there should be a limited range 

of tools and methodologies which should only be added to  when they can be shown 

to be inadequate [86]. This is based on the premise th a t advances are not made 

by increasing the number or complexity of tools, but from a small range of simpler 

tools applied in useful ways. An im portant consequence of this approach is tha t it 

allows the m erit of such simple tools and methodologies to  be evaluated easily and 

the tools to be revised as appropriate.

• The minimalist approach to  AI is also more intuitive. Simpler theories and models 

are far more easily understood. This thesis does not aim for cognitive validity or 

plausibility, but it is hoped tha t it may suggest avenues to explore and investigate in 

the development of cognitively plausible models of hum an reasoning. The intuitive 

appeal of simpler theories allows a more ready interaction with other theories and 

models, cognitive or otherwise.

• Theoretical frameworks and models should not be tied to a particular discipline. 

The complementary disciplines of artificial intelligence, philosophy, psychology (and 

others) share some common goals but are subject to  different traditions and em­

phases. AJthough research in a particular discipline m ust work to  its own strengths, 

concerns, and abilities, it should edso be accessible to other relevant fields.

• The preservation of motivations and extemzd influences is importsmt. Any inten­

tional act in the world, physical or mental, is necessarily the result of the interaction 

of goals, motivations and other external influences. Any theory or model of reason­

ing must consider the role tha t such factors play in the larger picture.

1.6 T hesis O verview

More attention is being paid to the possibility and potential of autom ated discovery pre­

cisely because of recent progress. The significance of computer programs is also having 

an im pact on the philosophy of science (eg. [58]), practical results being used effectively
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to demonstrate certain capabilities. Much work remains, however. The next chapter 

discusses induction and discovery in more detail, stating more precisely how it is viewed, 

what it offers, and the role it has to play in reasoning. It describes a new six-stage frzune- 

work for inductive discovery which encompasses prediction, experimentation, observation, 

evaluation, revision and selection, and which provides a viewpoint from which to  consider 

related work and to  identify problems and deficiencies. A brief overview of some related 

work is also given, providing a base for more detailed discussion subsequently.

In Chapter 3, the notion of motivation is introduced, first in general term s, and then 

with regard to its use in providing a control strategy for a reasoning system. A model of 

motivations is described and its application to different stages of discovery is discussed. 

Chapter 4 outlines the MED system for m otivated inductive discovery. Based on the 

six-stage framework, a model of inductive discovery and an instantiation of tha t model 

are constructed in parallel. MED is a reasoning system th a t operates in the world of 

simple physical processes. The chapter provides an overview of the system, describing 

the knowledge representations, the mzdn control strategy and the structure.

Subsequent chapters are concerned with the investigation of the individual stages of 

the framework. The la tter stages are considered in depth, w ith significant details of the 

model and implementation being described. Chapter 5 addresses the first three stages of 

the framework — prediction, experimentation and observation. In the MID system, these 

stages are limited. The chapter discusses the role of the different stages, and considers the 

problems raised by each. Chapters 6, 7 and 8 address the stages of evaluation, revision 

and selection respectively. Finally, the results of the implem entation are presented, and 

conclusions offered, evaluating the contribution tha t this work has made.
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C hapter 2

Six-Stage Inductive D iscovery

To be able to give attention to  something, it is first necessary to  abstract 
or isolate its main features £rom all the infinite, fluctuating complexity of its 
background.

— David Bohm and F. David Peat, Science, Order and Creativity

2.1 Introduction

Induction has been considered to  be very many different things. This thesis is concerned 

with induction as a form of scientific discovery for two reasons. F irst, scientific discovery 

is a process that occurs in the real world. Many examples of actual discovery have been 

observed and recorded, and these provide a basis for analyses of the reasoning methods 

used by real scientists. This has led to the identification of temporally and physically 

distinct elements in the discovery process which strongly support the notion of inductive 

discovery as a methodology for reasoning rather than  a single ‘magical’ process. Second, 

the underlying motivation behind scientific reason ing  (eind discovery) is one of increasing 

knowledge, u n d erstanding and awareness of a natura l external environm ent in order to be 

able to explain, predict and possibly m anipulate tha t environment. The second of these 

provides us with a large part of what we want to achieve in AI — to explain, predict and 

m anipulate our environment. The first, if the notion of a methodology for discovery is 

even partly  correct, provides us with a suitable means (in AI) for achieving it.

This chapter begins by discussing just what might be expected from the investigation 

of inductive discovery in the context of AI, and stating a position on the possibility 

and potential of autom ating discovery. Then follows the description of a framework
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for a methodology of inductive reasoning which is based around notions of scientific 

discovery, but which subsumes other models of inductive reasoning. A brief and selective 

introduction to related work is then given, outlining the structure of other systems, and 

finding points of correspondence between them  and the framework.

2.2 T he P ossib ility  o f A utom ating  Scientific D iscovery

Exactly which elements of scientific discovery, if any, are rational or susceptible to rational 

enquiry, is the subject of a continued and heated debate. Views held range over the entire 

spectrum of opinion [58]. If we are to attem pt to  autom ate the process of discovery, 

however, we m ust be clear about what it is th a t we hope to  achieve, and must therefore 

decide whether it is at all possible and if so, in precisely which parts and how.

The traditional view of scientific discovery holds th a t there is a clean and simple 

division between the contexts of discovery and justification. The context of discovery 

is concerned with the creation of hypotheses and theories, while tha t of justification is 

concerned with the testing of those theories and their subsequent refutation or contin­

ued use (at least temporarily). Discovery is deemed irrational and outside the scope of 

theories of scientific discovery, while the logical procedures of justification are capable of 

rational investigation (and by extension, autom ation). There are arguments against the 

rationality of justification, but these are limited and narrow, and shall not be considered 

here. The context of discovery is particularly problem atic because it lies outside rigorous 

logiccd procedures, and is often explained by reference to  insight, intuition, creativity, 

emd a host of sociological and psychological factors. It has consequently been referred to 

as the 'A ha reaction’. Certainly, hypothesis formation has a richness tha t is due to an ex­

tensive range of experience, but to exclude it from the bounds of possibility is prem ature. 

Work on einalogy, for exzunple, focuses on just this problem in finding suitable analogical 

mappings for solving problems. Recent research in AI has dem onstrated the effectiveness 

of reasoning by analogy in hypothesis formation for problem solving (see, for example, 

[47], [134]). Though still limited, it offers proof of the possibility of methods for discovery. 

Yet such methods of hypothesis formation lie outside the scope of induction, since they 

rely on substantial amounts of existing knowledge rather than empirical observations. 

Given some initial theory, however, the task of theory formation is transformed to one 

of theory revision of an incorrect theory based on observations. This is an altogether
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different problem, and if the lack of a theory is treated  as a null theory, then the theory 

formation problem is avoided entirely. A methodology for scientific discovery based on 

theory revision can as easily accommodate theories generated by other techniques (such 

as analogy) as it can theories revised on the basis of observation, and has the potential for 

the combination of such complementary techniques in a unified and integrated approach 

to scientific reasoning. This thesis, however, is confined to  inductive discovery.

2.3 A  Six Stage Framework for In du ctive D iscovery

2.3.1 In trod u ction

In response to  the fragmentation of induction and discovery tha t has occurred over recent 

years as noted in the previous chapter, a new unifying framework for inductive discovery 

is proposed [72]. It entails six stages:

1 . P re d ic t io n . Deductively generating predictions from a domain theory and sce­

nario.

2. E x p e r im e n ta tio n . Testing the predictions (and hence the domain theory) by 

constructing appropriate experiments.

3. O b se rv a tio n . Observing the results of experiments.

4. E v a lu a tio n . Comparing and evaluating observations and predictions to determine 

if the domain theory has been deductively refuted.

5. R ev isio n . Revising the domain theory to  account for anomalies.

6 . S e lec tion . Choosing the best resulting revised domain theory.

The &2unework is a cyclical one, repeating until stability is achieved with a consistent 

domain theory. It begins with prediction which entails generating predictions for a given 

scenario, and then subjecting these to some kind of experimentation. Through observation 

and evaluation^ the results of the experiment are compared with the predictions and, 

in the event tha t they are consistent with each other, no action is necessary. If the 

observations and predictions cire cinomalous, however, the domain theory m ust be revised, 

and a suitable revision selected to  be passed through to the beginning of the cycle for use
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in generating new predictions. Even when no failure occurs, the domain theory is still 

liable to provide anomalies at a later stage.

The framework is shown in Figure 2.1. Theories are represented by small thick- 

edged boxes. The original domain theory in the top left-hand comer is the input to the 

framework which may be a null theory if the domain is new. Shown in the figure are

Domain
Background
Knowledge

Domain
Theory Scenario

Domain
Independent
^KnowledM

Prediction
Experimentation

Empirical
Evidence

Selection Goals,
Motivations,
Priorities Observation

Multiple
Theories

EvaluationRevision

Figure 2 .1 : The progress of theories under the six-stage framework of inductive discovery

the different kinds of information tha t the framework requires in addition to the domain 

theory. In order to  be able to design and carry out experiments, for example, substantial 

eunounts of domain background knowledge as well as domain independent knowledge are 

required. Thin arrows indicate the flow of knowledge and information involved in each
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stage. Thick black arrows indicate the direction of the cycle.

2.3 .2  P red iction

Perhaps the least troublesome part of the cycle is prediction. This is a simple deductive 

procedure th a t draws logical inferences from a domain theory and background knowledge 

given a description of a particular scenario. In order to mzdce sense of our environment, 

we continually anticipate the effects of our actions, and of external factors — we make 

predictions about what will happen next. Usually, our predictions are correct and we 

anticipate well, but there are instances when the predictions fail, and we must deal with 

these failures later on in the cycle.

Generating predictions can be an expensive procedure, however, demanding time and 

resources which m ay not be available. We might for example be able to predict first, 

second and third places in an election, yet if we are only interested in who wins, only 

one of the predictions needs to be generated. This is related to the motivations of the 

reasoning agent, in the context of which the relevance of predictions can be assessed.

It is not necessary even to have an initial domain theory here. However, if we lack a 

theory, then we cannot generate predictions and must experience some kind of prediction 

failure when we observe events not anticipated. This will lead to the gradual construction 

of a new theory directly from observations.

In term s of the hypothetico-deductive model, the domain theory is the hypothesis 

from which we draw deductive inferences which are then subjected to  experimentation.

2.3 .3  E x p erim en ta tion

Once predictions have been generated, they may be empirically tested, and the results 

of these experiments can be compared with the predictions to determine if the domain 

theory (or indeed background knowledge) is, as much as possible, correct and consistent. 

This implies a certain requirement on domain theories th a t has not yet been mentioned 

— tha t they be refutable, or falsifiable. According to  Popper [87], we may consider as 

scientific, only those theories which are falsifiable. Anything else, he instructs, including 

such diverse fields as astrology, Freudian psychology and so on, m ust not be considered, 

and m ust be relegated to non-science. Our position is pragmatic; in such a programme of 

inductive reasoning, unfalsihable theories cannot be the subject of inference because the 

programme proceeds through experimentation and subsequent refutation. Moreover, an
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im portant aim of this thesis is to show tha t induction and discovery do indeed apply to  a 

broad range of domains, without regard to what is or is not scientific. Our requirement of 

falsifiability is necessarily independent of domain, and independent of concerns with the 

demarcation of science. Furthermore, in a com putational implementation, we implicitly 

impose the restriction of falsifiability through the representation of the theory. The 

constraint of falsifiability constrains the kind of theory th a t we can reason about.

We can think of experimentation as being one of two kinds. F irst, there are active 

experiments in which the experimenter carefully constructs apparatus, or forces controlled 

environmental conditions with the aim  of testing a particular characteristic or condition 

of a theory. Included in these are typical laboratory experiments. Alternatively, and 

more commonly, there are passive experiments which include smy situation for which an 

expectation is generated, but for which there is no explicit theory. For example, squeezing 

a tube of toothpaste when brushing teeth is a passive experiment which has no controlled 

conditions, but which will determine if the expectation of producing toothpaste is correct 

or not. Both of these are im portant. When concerned with the problem of specificzdly 

acquiring knowledge in narrow domains, active experiments are prevalent. In normal 

everyday affairs, passive experiments are the norm  unless they meet with a prediction 

failure. In this case, it is typical to switch to  active experiments to  find the reason for 

the failure, if necessary.

Thus experim entation is responsible for designing and constructing experiments in 

order tha t imperfections in the theory may be detected and corrected. This leads to 

observation, an im portant but often neglected stage in the inductive reasoning cycle.

2 .3 .4  O bservation

We intend this to  be a complete and encompassing framework. Were we to exclude ob­

servation, it would not be so. Although observation immediately appears transparently 

simple, requiring merely tha t changes in the environment be observed and recorded for 

future reference, it is a little more complicated. (It should be noted tha t observations 

may be forced by the use of controlled experiments, or may occur independently.) Obser­

vations are compared w ith predictions and used to  decide whether the domain theory is 

acceptable, or whether it needs to be revised. We shall see la ter tha t recording the results 

of experiments is im portant in order to avoid oscillation in revising domain theories. In 

addition, there have been criteria proposed for evaluating theories, such as confirmation,
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corroboration, etc., tha t may make use of this observational data.

Ideally, we would want an independent observer, a system capable of perceiving the 

external world, filtering out irrelevant information, and providing observations as input 

to the reasoning system. This is some way away. Even if  it was possible to provide such 

an observer, there are definite difEculties, and some suggest th a t observation cannot be 

objective zmd can only be possible in the context of some existing domain theory. In other 

words, it is suggested tha t observations are interpreted before they enter the reasoning 

system^. For the moment, this is irrelevant since the point at which we can construct 

such a system has not yet arrived, and it is beyond the scope of the current research. 

Nevertheless, an appreciation of the difficulties ahead is im portant to this framework.

2.3 .5  E valuation

At this point, the experiment has been carried out, the observations have been recorded, 

but it remains to  decide whether or not the domain theory has been falsified, whether 

or not it is acceptable. To make this decision, we need to  be aware of a number of 

infiuential factors and to evaluate the evidence in this light. Principally, this is concerned 

with the quality of the evidence. If an inductive reasoning system is to be of value, then 

it must be able to  cope with both  experimental and observational error, and must be 

able to evaluate them  in an appropriate context. Little needs to  be said about the 

occurrence of errors, for it is undeniable that they are always present to some degree. It 

is, however, unacceptable to pretend to cope with them  by introducing simple tolerance 

levels. Experim ental evidence must be evaluated relative to  the current motivations of a 

system, taking into account the implications of success or failure. In medical domains, 

for example, even a small degree of error may be unacceptable if it would lead to the loss 

of a pa tien t’s life, while weather prediction systems may, in certain circumstances, allow 

a far greater error tolerance.

2.3 .6  R ev ision

If it is decided th a t the domain theory has been falsified, then it must be revised so 

tha t it is consistent with the falsifying observations. Alternatively, new theories may 

be introduced or generated by another reasoning technique such as analogy, case-based

^This is a contentious issue, and the subject of much debate. Hacking [34], for example, argues against 

this.
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reasoning, etc. The problem of creating new theories beyond direct observation is outside 

of this framework. Yet we do allow for their introduction into the inductive cycle, and 

in addition we allow for new theories based solely upon direct observation.

Revisions to the domain theory should include all those possible within the restrictions 

of the knowledge representation used tha t are consistent with the observations. This leads 

to the problem of combinatorial explosion, however, and the revision process should 

therefore be additionally constrained by heuristic search, the search heuristics being 

considered in the next and final stage. Allowing all revisions, potentially at least, is 

im portant in order tha t they are not pre-judged out of context.

2 .3 .7  Selection

As mentioned above, this is not really a separate stage, and proceeds in tandem  with 

revision, but the task is distinct. Since the number of possible revisions to a given 

domain theory is extremely large, there must be criteria for selecting those theories 

which are better than others. Many criteria for rating theories have been proposed, such 

as simplicity, predictive power, modesty, conservatism and corroboration.

However, selection of theories must be in context. This means th a t the goals and 

motivations of a system are relevant to  the task of judging which criteria are more 

im portant in evaluating a theory. The way in which these criteria are applied depends 

upon the context in which they are used and the need for which they are used. For 

appropriateness of use in many situations, we may prefer Newton’s laws to Einstein’s, 

but in other circumstances, only Einstein’s may be acceptable.

2.3 .8  Sum m ary

In these six stages lies our framework for inductive reasoning. We reflect Lakatos’ m ethod 

of proof cind refutation [57], proposing, refuting and revising theories as necessary and 

appropriate until we arrive at a theory which sufflces for the particular purpose at hand. 

More than tha t, we see this as a continuing process, always waiting to  be invoked at the 

next inconsistency which is unlikely to be far away.

It should be pointed out tha t the tem poral ordering on stages is not strict, and tha t 

a degree of interaction between stages is possible and sometimes necessary as will be 

discussed later. Briefly, though, there are three m ain times when this occurs. Prediction 

and experimentation are intim ately related, since predictions are m ade in the context
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of some situation or experiment. Evaluation and observation (and to some degree ex­

perim entation) are also linked in tha t evidence judged to be inadequate may require 

re-observation (or re-experimentation). Finally, part of the selection stage occurs in 

tandem  with revision, constraining the space of revisions tha t can be generated.

2.4 R elated  Work

There has been, over recent years, a dram atic increase in the amount of research concen­

trating on aspects of discovery. In general, although m any systems have been developed, 

little effort has been made to develop domain and implementation independent, gen­

eral frameworks in which particular models or implementations can be viewed. The six 

stages proposed here identify those elements tha t are necessary for an effective system 

for inductive discovery. It is not the intention of this thesis to give yet another general 

review of existing systems. In later chapters, however, related work will be drawn on to 

justify and compare with this research. Below, therefore, a brief introduction to various 

systems is given, primarily intending to  show the diversity of structure and relation to 

the six stage framework. It is not intended to be complete, and other systems will be dis­

cussed in other chapters as appropriate. Nevertheless, those considered here span a wide 

range, covering numerical (or quantitative) discovery (BACON), quzditative discovery 

(COAST), integrated discovery (HDD and STERN), historical discovery (KEKADA), 

and psychological discovery (SDDS). We begin with GUI which is used mainly to intro­

duce the notion of dual search spaces, used by a number of other systems below.

2.4 .1  T h e G eneral R u le Indu cer

An early attem pt at unifying diverse approaches was Simon and Lea’s General Rule 

Induction (GUI) program [1 1 0 ] which brought together problem-solving and concept 

formation (or rule induction) tasks. Both are information-gathering tasks, and employ 

guided search processes. The difference between the two is tha t rule induction requires 

search in two problem spaces — a space of rules or patterns and a space of instances or 

data — while problem solving requires ju st one — a space of rules.

In norm al problem solving, the goal state is known in advance. New states are 

generated through a search of the rule space, and these are tested by checking to see 

if the goal sta te  is a member of these. Since the goal state is part of the rule space, a
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second space is unnecessary. In rule induction, on the other hand, no goal state is known 

ahead of time. Hypothesized rules cannot be tested directly, but only by applying them  

to instances, and then checking to see whether these applications give the correct result. 

These instances form a separate space complementary to the rule space. If the two spaces 

are connected, however, information from each can be used to  guide the search in the 

other, allowing m utual heuristic search.

2.4 .2  K E K A D A

The KEKADA system described by Kulkami and Simon [53, 54, 55] is a simulation of 

historical discovery. It models Krebs’ discovery of the urea cycle, and draws on detailed 

analyses of the actual manner in which the work was carried out. The system is based on 

the two-space model of learning with an experiment space and a rule space. KEKADA is 

a production system which uses sixty-four heuristics divided into roughly equal groups of 

domédn specific and domain independent productions. There are nine classes of produc­

tion which are the basic components of the system, the first two below used for sezirch in 

the experiment space, the others in the hypothesis space:

E x p e r im e n t-p ro p o se rs  propose experiments.

E x p e r im e n te rs  carry out experiments.

H y p o th e s is  o r  s tr a te g y  p ro p o se rs  decide which hypothesis or strategy to focus on. 

P ro b le m -g e n e ra to rs  propose new problems for the focus of attention. 

P ro b le m -c h o o se rs  choose the next task to be tackled.

E x p e c ta t io n -s e tte rs  determine expected results.

H y p o tb e s is -g e n e ra to rs  generate new hypotheses about unknow n  phenomena. 

H y p o th e s is -m o d iû e rs  modify existing hypotheses.

C o n fid en ce-m o d ifie rs  modify confidences in hypotheses based on experimental results.

KEKADA effectively simulates the discovery of the urea cycle, including the pursuit 

of unproductive paths on the way. The concentration on the single historical episode 

of discovery undoubtedly limits the system, yet it is a significant contribution to the 

wider field. In relation to the framework proposed here, we can group the heuristics as
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follows: prediction in expectation setters; experim entation in experiment proposers and 

experimenters; evaluation in confidence-modifiers; revision in hypothesis-generators and 

hypothesis-modiAers; and selection in decision-makers which are used by hypothesis or 

strategy proposers.

2.4 .3  S D D S

Klahr and Dunbar in extending GRI, view scientific discovery as dual search (SDDS) 

through a space of hypotheses and a space of experiments [48]. They carried out exper­

iments simulating scientific discovery (using a programmable vehicle) in which subjects 

were required to  discover new functions as program  commands for the vehicle. Results 

led to the identification of two groups of subjects w ith distinct strategies: theorists who 

proposed theories zind then tested them; and experimenters who carried out experiments 

and used the results to infer theories.

Based on their findings, Klahr and Dunbar constructed a model comprising three 

main components.

S earch  h y p o th e s is  space . This generates a fully specified hypothesis which may then 

be used in the next stage.

T est H y p o th e s is . In order to test the hypothesis, an appropriate experiment is gener­

ated, a prediction made, and the results observed. This produces a description of 

evidence for or against the current hypothesis.

E v a lu a te  E v id en ce . The cumulative evidence is evaluated to determine whether the 

hypothesis should be accepted or rejected.

Although the model is quite detailed at a number of lower levels, it was not im­

plemented in a computer program, but was intended as a specification of the control 

structure for one yet to be built. At this highest level, these components exclude many 

stages of the six-stage framework, but at lower levels some are revealed. Prediction Eind 

observation are subprocesses of experimentation (test hypothesis). Revision and selection 

can be taken together to be equivalent to the search of the hypothesis space, but they 

are not explicitly identified.
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2.4 .4  H D D

Reimann [99] investigates scientific discovery learning processes in the context of exper­

iments with refraction. He uses an analysis of experiments w ith novice hum an subjects 

attem pting to leam  about refraction as a basis for developing a program  (with a series 

of extensions) to model these processes. HDD, the Hypothesis Driven Discoverer^ is for­

m ulated as an extension to  and in terms of GRI which views discovery as a search in 

two problem spaces, one for experiments and one for hypotheses. It is intended not as 

a simulation of any particular subject, but as an abstract prototype learner which is 

effective at problem solving for the task at hand. The program  is based on a production 

system shell with rules having condition parts on the right-hand side, and equation parts 

on the left-hand side.

The task is to find quantitative rules which characterize the relationship between an­

gles and distances of objects and light rays so tha t the direction of refracted rays may 

be predicted. It is said to be a problem of descriptive generalization or function induc­

tion. Since the problem in HDD involves the incremental introduction of instances and 

does not have all the data  available immediately, the generalizations must be augmented 

with other processes for modifying them  in the event of inconsistencies. These include 

condition induction for modifying the condition part of the rules. More general rules are 

generated first so tha t only discrimination (specialization) is necessary in modifying rules. 

Differences between HDD and GRI include the induction of equations rather than  rules, 

the attachm ent of conditions to these equations, the selection of appropriate attributes 

(in determining which features of an experiment are relevant), the use of multivalued 

feedback, and the construction of experiments. In actuality, HDD does not address some 

of these issues.

Reimann provides a model description for HDD which involves five steps:

S tep  1  D esig n in g  a n  e x p e r im e n t. An experiment design is provided to  the system.

S tep  2  M ak in g  a  p re d ic tio n . One prediction is derived from applicable hypotheses.

S tep  3 E v a lu a tin g  th e  p re d ic tio n . The prediction is compared with the actual result 

(the ray path) provided to the system, and either a description of the difference 

between prediction cmd result, or a statem ent tha t no difference was found is pro­

duced. No distinction is made between approximately correct predictions and wrong 

predictions.
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s te p  4 E v a lu a tin g  a n d  m od ify in g  th e  h y p o th e s is . If a hypothesis is wrong, a dis­

crimination process is triggered to attach new conditions to it using information 

about the failure so that it is corrected.

S tep  5 G e n e ra tin g  new  h y p o th e se s . If the current hypothesis is incorrect (resulted 

in a wrong prediction), then new hypotheses (rules) are created through trend- 

detection and function induction.

The breakdown of the model into stages shows a strong correlation with our frame­

work. Experimentation and prediction almost directly correspond to steps 1  and 2 . 

Evaluation of evidence is identified in step 3, but ignores im portant aspects. Steps 4 and 

5 both  deal with revision, but in different ways, depending on the kind of fedlure.

2.4 .5  B A C O N

BACON, developed by Langley et al. [59], [61], [60], is really a suite of programs, most 

of which are strongly related. The BACON system searches for regularities in data  in an 

effort to discover numeric laws. It is based around three m ain processes:

G a th e r in g  d a ta . Given a set of dependent and independent variables, BACON or­

ganizes the data by varying appropriate independent variables and recording the 

values supplied by the user.

D isco v erin g  re g u la r itie s . From the data supplied, BACON looks for constant, linear, 

and monotoniccdly increasing and decreasing relations between variables.

D efin ing  te rm s  a n d  c o m p u tin g  va lues. Once BACON has found a relation between 

variables, and depending on the relation found, it forms new terms and computes 

new values for them  from existing terms. This is designed to produce new terms 

which have constant values.

Among the accomplishments claimed for BACON, are the discovery of Boyle’s Law, the 

Law of Universal Acceleration, Ohm’s Law and Kepler’s Third Law.

The search through the data  space is exhaustive, and all values are supplied by the 

programmer. In the different versions of BACON, the search through the law space is 

different. The initial version searches through the data  space, instantiating all indepen­

dent and dependent variables, and only when all of the da ta  has been gathered does it
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search through the space of laws, looking for constant or linear relations, or defining new 

terms when discovering non-hnear increasing or decreasing relations and then searching 

further. Other versions search for laws as the search through the data space progresses, 

using the laws discovered at lower levels as data  for the laws at higher levels, and using 

the search through the data  to guide the search through the space of laws.

BACON, as recognised by its creators, is a very simple and restricted system. It is 

capable of noting regularities in data at a number of levels, and thus ‘discovering’ scientific 

laws. Observation comes under data-gathering, but the system is closed to external 

influences and all raw data  is explicitly provided. There is a limited role for evaluation 

(and selection), involving a simple check on whether values deviate from those required 

by more than an acceptable amount. Prediction and experimentation are implicit in the 

formation of equations through trend detection. Finally, revision of theories is achieved 

through defining new terms gind postulating new relationships. In fairness, BACON’s 

designers recognise its limitations to some degree, and advocate its use in parallel with 

other, complementary systems as part of a whole.

2 .4 .6  B L A G D E N

B l a g d e n  is a system tha t is based on an architecture for theory-driven numerical dis­

covery [1 1 2 ]. It models a particular episode of discovery from 18th and 19th Century 

chemistry. In this architecture, different levels of knowledge are used as the process of 

discovery progresses. Discovery begins with a weak theory which is derived from a core 

theory by instantiation or specialization. Sometimes, a wezik theory already exists and 

this czm be used to  generate a more specific weak theory. Core theories are theories tha t 

are assumed to be true and are retained when a succession of related theories are devel­

oped and refined. Weak theories describe the relationship between variables tha t allow 

predictions to be made. They specify the factors involved, and the type of function, but 

do not allow precise calculations.

This weak theory is then adapted to account for the current situation by proposing 

informal qualitative models (IQM) which provide structural descriptions of the situation. 

The degree of precision and completeness of an IQM depends on the nature of the domain 

and the amount of knowledge available, zind several IQMs may be compatible with a 

single weak theory. These are then used to  construct law frameworks which specify the 

set of independent variables and describe the function relating them  to  the dependent
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variable. They delimit the space of laws. After designing experiments, actual input data 

is used to infer predictive laws in the final step. Throughout the process, different kinds 

of knowledge are used, including the core theory, met a knowledge, background knowledge 

and heuristic knowledge.

Prediction here is imphcit in the architecture as the goal of the system. Although 

there is no experimental component in the B l a g d e n  system, the role of experimentation 

is acknowledged. Furthermore, the difhculties tha t can eirise in the evaluation of evidence 

in real world domains are also recognised. Selection can be seen to occur throughout the 

discovery process as the space of theories and laws is gradually constrained until finally a 

predictive law is generated. The architecture provides a good and im portant framework 

for B l a g d e n ,  but assumes a correct initial core theory which may not always be justified.

2.4 .7  C O A ST

Rajamoney proposes a system based on the hypothetico-deductive model for induction 

[91, 92]. The system is divided up into five distinct stages.

D e te c tio n  o f  p ro b le m s  From the existing domain theory and a description of a sce­

nario, COAST generates predictions and an explanation for those predictions. Ra­

jam oney’s first stage compares these predictions w ith the associated observations 

and in the case of a failure, moves to the body of the system.

H y p o th e s is  g e n e ra tio n  This involves analysing the failure, determining the compo­

nents of the domain theory tha t led to  tha t failure, and hypothesising revisions to 

the theory to correct it. There is a finite set of possible causes for failure, and a 

finite set of revision operators, so tha t the revision is relatively straightforward.

E x p e r im e n ta tio n -b a se d  h y p o th e s is  r e fu ta t io n  This comprises three parts: obtain­

ing predictions £rom the revised domain theory, designing experiments to test the 

proposed hypotheses, and refuting hypotheses when positive results are obtained.

E x e m p la r-b a se d  th e o ry  re je c tio n  In order to ensure th a t previously refuted theo­

ries are not reintroduced, the system then uses a m aintained history of observed 

phenomena to  refute any rem ain ing hypotheses not consistent w ith past events.

S e lec tio n  o f  a  th e o ry  Finally, in the event th a t multiple hypotheses still remain, it 

uses criteria of structural simplicity, simplicity of explanations, and predictive power
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to select one.

Like HDD, COAST is divided up into different stages, and takes a somewhat global 

view of the process. The first three stages can be identified as prediction, revision and 

experimentation respectively. The fifth stage is explicit selection, and the fourth is a 

kind of selection tha t is characterized rather differently. COAST has been demonstrated 

on examples of evaporation of liquids, flow of a fluid, the dissolving of a substance in a 

liquid, and osmosis.

2.4 .8  S T E R N

Cheng [6 ] characterizes scientific discovery as based around a scientific research pro­

gramme involving the investigation of a delimited set of phenomena through theory smd 

experimentation. He proposes a framework which serves as a basis for his STERN pro­

gram, and which comprises three main aspects.

T h e o ry  o r T h e o re tic a l K now ledge  is regarded as sets of transformation functions 

which characterize the behaviour of phenomena or events. Three levels of abstrac­

tion for theories are identified: hypotheses, models and instances. This component 

also involves criteria for determining the adequacy of theoretical knowledge.

E x p e r im e n ts  are considered to be ‘black boxes’ with input and output parameters 

corresponding to manipulated and controlled variables, and observations and mea­

surements respectively. Like theory, experiments have three levels of abstraction: 

experimental paradigms, experimental setups and experimental tests. The reliabil­

ity  of experiments is considered here, too.

C o m m u n ic a tio n  between theory and experiment for information transfer makes up the 

final component.

STERN itself uses a number of classes of domain independent and domain specific rules. 

The domain independent rules include those for the following: strategy chooser, hypothe­

sis testing, model testing, instance testing, models into hypotheses, instances into models, 

and tests into instances. Domain specific rules include: generate models, generate in­

stances, compare instances and tests, generalize models, generalize instances, interpret 

results into instances, new paradigms, new hypotheses, experimenter. These are similar

43



to the heuristics used by KEKADA. Prediction is covered by generate models and in­

stances; experimentation by experimenter; evaluation by compare; revision by generalize 

models and instances and new hypotheses; and selection is addressed by some of the 

hypothesis and model testing rules.

2.4 .9  Sum m ary

Each of the above systems is different, yet aU possess some of the elements of the frame­

work to a greater or lesser degree. The six stages are qualitatively distinct, yet they can 

be found in the above systems both combined together, and separated into a number of 

parts. Some of these systems provide a cleaner and stronger identification of the tasks 

necessary for discovery and induction than others. Some research addresses wider issues 

than just those included in the associated im plem entation (eg. HDD, STERN). All of 

these systems have inadequacies, however, which the six-stage framework exposes, and 

which will be investigated in the following chapters.

In developing a model of inductive discovery, it is im portant to build on solid founda­

tions. The framework discussed here provides such a foundation upon which the model 

and implementation described in the next chapters are based. Over the course of these 

coming chapters, elements of the work outlined above will be described in more detail 

and placed in relation to the model and implementation.

2.5 D iscussion

This thesis is intended not only to develop a model of inductive discovery th a t serves 

as a basis for effective reasoning spanning a variety of domains, but also to provide a 

solid foundation for inductive reasoning in general. Such a foundation in the form of the 

six-stage framework presented here, serves to identify those components of the reasoning 

process tha t are necessary in all complete models, and in so doing provides a base for 

development of the model of inductive discovery in subsequent chapters.

In this chapter, the six-stage framework has been described in broad term s, and 

each of the stages identified and outlined. A brief introduction to  related work has 

illustrated the diversity of structure of existing systems, and has attem pted to note 

points of correspondence between them  and the framework. It thus gives a perspective 

on these systems which can be used to facilitate a stronger evaluation in comparison to
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the model that is developed next.

External Stages

Internal Stages

Selection

Prediction

Experimentation

Evaluation

Revision

Observation

Figure 2 .2 : The External and Internal Stages of Inductive Discovery

The six stages of inductive discovery can be divided into two groups as shown in 

Figure 2.2: internal stages comprising prediction, evaluation, revision and selection; and 

external stages comprising experimentation and observation. This thesis concentrates on 

the internal stages of the framework. If experiments are to  be designed and constructed, 

then a great deal of extra knowledge must be available. This will include knowledge of 

experimental procedures and apparatus, knowledge of the domain, and so on. In non- 

scientific domains in particuleu^, the kind of experimentation possible may be severely 

limited, allowing h ttle  oportunity for directed experiments. Observation, while requiring 

no extra knowledge, is concerned primarily with the acquisition of evidence from an 

external world. In a division of the framework into internal and extemzd stages, both  

of these can be considered to be external stages, while prediction, evaluation, revision 

cind selection can be considered internal since the interaction with the outside world is 

minimal. In the following chapters, attention is thus focussed on developing a detailed 

model of the intemzd stages.

The model tha t is developed in the following chapters is in accordance with the 

stated aim  of developing a model of inductive discovery th a t is not confined to scientific 

or otherwise restricted domains. It can be regarded as a model of qualitative discovery 

as opposed to numerical discovery, for example. Although it is scientific reasoning and 

is developed within the six-stage framework, it is not referred to  as scientific discovery 

because of the restrictive sense of the word. The following chapters, therefore, describe 

a model of inductive discovery which more accurately expresses the sense of reasoning.
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C hapter 3

M otivated  R easoning

Knowledge for the sake of understanding, not merely to  prevail, tha t is the 
essence of being.

— Vannevar Bush, Science Is Not Enough

3.1 Introduction

Although there has been substantial progress in artificial intelligence over the last twenty 

years or so, research has tended to focus on reasoning techniques which solve problems 

without regard to any real external environment or to the notion of a reasoning agent. 

In other words, the problems and their solutions, while significant and im portant, have 

been limited in tha t they are divorced from real world situations. More recently, however, 

the importance of these issues of situatedness and embodiment has been recognised, and 

they cire currently being actively addressed by a number of research efforts (concentrating 

mostly on building autonomous artificial creatures and agents, eg. [3, 2 ]). In considering 

aspects of intelligence, an agent’s goals have been recognised as being im port2int in di­

recting reasoning mechcinisms. Yet these goals have traditionally been in the framework 

of independently posed problems that are divorced from the problems of an agent in the 

real world. Motivations, which can loosely be regarded as higher level goals, provide a 

bridge between traditional lower level goals and reasoning mechanisms on the one hand, 

and real world problems facing artificial agents on the other.

Models of scientific discovery and induction to date lack a consideration of such issues, 

and as such have suffered from an inabihty to  provide a fuller range of expressiveness 

of reasoning. Motivations provide a control strategy for reasoners, enabling such expres­
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siveness through application to both scientific and non-scientific domains in a variety of 

contexts. This research tackles the problems of scientific induction and discovery from 

this perspective.

In this chapter, we consider the role of motivations in scientific reasoning. First, 

we introduce motivations in general and discuss the different kinds of motivation tha t 

exist. Then we consider how motivations may be modelled and represented in MID, and 

how they affect inductive reasoning. Finally, some related work involving motivations is 

described.

3.2 M otivated  R easoning

3.2 .1  W h at are M otivation s?

Research on motivation is currently being pursued &om a variety of perspectives includ­

ing psychology and ethology (eg. [128], [40]). Our concern, however, is with providing an 

effective control mechanism for governing reasoning in inductive discovery through the 

use of higher level goals or motivations. Though we focus on a com putational approach, 

we win discuss related work when relevant. Some psychological research in particular, 

however, has recognised the role of motivations in reasoning in a similar way to tha t 

suggested here. Kunda [56] informally defines motivation to  be, "any wish, desire, or 

preference tha t concerns the outcome of a given reasoning task" and suggests tha t mo­

tivation affects reasoning in a variety of ways including the accessing, constructing and 

evaluating of beliefs and evidence, and decision making. Such arguments are supported 

by a large body of experimental research, but no attem pt is made to address the issue of 

how motivations might be represented.

Computational work has also recognised the role of motivations. Simon [107] takes 

motivation to be "that which controls attention at any given time," and explores the 

relation of motivation to information-processing behaviour, but from a cognitive per­

spective. Sloman [114, 113] has elaborated on Simon’s work, showing how motivations 

are relevant to emotions and the development of a com putational theory of mind. The 

current research addresses some of the issues addressed by Sloman, but in a different 

light. Our interest stems from a concern with discovery rather than  motivation, but we 

recognise the releveince of motivations. Thus the ideas developed here are not aimed 

at cognitive modelling, but at the development of an effective com putational system.
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extending previous work in a new direction.

Problem solving can be considered to be the task of finding actions th a t achieve the 

current goals. Typically, goals are presented to  systems without regard to  the problem­

solving agent so tha t the reasoning process is divorced &om the reality of an agent in the 

world. Clearly, this is inadequate for research concentrating on modelling autonomous 

agents and creatures, which requires an understanding of how such goals are generated 

and selected [17]. Additionally, it is inadequate for research th a t aims to  provide flexibility 

of reasoning in a vziriety of contexts, regardless of concerns with modelling artificial 

agents. Such flexibflity can be achieved through the use of motivations which can lead 

to  different results even when goals remain the same [73].

Consider the example of crossing a river. The goal is to  get to the other side of the 

river, but the way in which tha t goal will be achieved depends on the motivations tha t 

generated the goal. In normal circumstzmces, one would look for a bridge or a boat to 

get across. Though this may involve more effort than swimming across immediately, 

it is preferable because it is more comfortable. If there are urgent reasons for crossing 

the river, however, such as being pursued by a wild animal, then it might be better to 

jum p into the river and swim across instead despite the discomfort this may cause. In 

both  cases, the motivations are different and their strengths are different, but the goal 

remains the same. Motivations act as a control strategy for achieving the goal, directing 

reasoning, and providing it with the flexibility and strength tha t is often lacking.

This applies equally to discovery. We might want knowledge simply to increase our 

understanding of the world, or we might want it so tha t we can achieve desired results 

and take actions. This is examined below.

3.2 .2  C lasses o f M otivation

Much of the psychological literature stresses the distinction between two kinds of mo­

tivated reasoning phenomena (see [56] for a review). These are reasoning in which the 

motivation is to  arrive at cin accurate conclusion, and reasoning in which the motivation 

is to arrive at a particular directed conclusion. Kunda [56] suggests th a t both  kinds of 

motivation aflect reasoning by influencing the choice of beliefs and strategies applied to 

a given problem, but tha t they differ in the following respect: accuracy goals lead to 

the use of those beliefs and strategies tha t are considered most appropriate in getting 

the correct result, while directional goals lead to the use of those tha t are most likely to
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give the desired though perhaps inaccurate result. According to Kunda, accuracy goals 

thus demand greater (cognitive) effort on reasoning, more careful attendance to relevant 

information, and its deeper processing with more complex reasoning strategies. Direc­

tional goals impose constraints on "search and belief construction" tha t lead to support 

for the desired conclusion.

Similar distinctions have also been noted by other researchers. In AI, Ram  emd Leake 

[98] describe two classes of goals motivating explanation at a lower level: knowledge 

goals which reflect an internal need for information, and goals based on accomplishing 

tasks in the external world. In psychology, Barsalou has distinguished between explicit 

problem solving goals and implicit orientation goals for maintaining a world model [63]. In 

education, Ng has distinguished task completion goals (such as completing an assignment) 

&om instructional goals (what the assignment is intended to  teach,) and knowledge- 

building goals, which relate to a student’s own purposes and agenda for learning [63]. 

Yet another formulation of this distinction is characterized as exploration (knowledge, 

accuracy goals) versus exploitation (directional, task-based goals) in a number of domains. 

All these are m irrored in the division of motivations below into knowledge motivations 

and action motivations.

M otivations for knowledge

In the context of the work here, the most im portant motivation is tha t relating to  the 

discovery of knowledge. This can be found everywhere, even in very limited models of 

simple creatures, either explicitly, or by a different nam e such as curiosity (eg. [104], 

[77]). Any motivation which leads to the exploration of environment to discover more 

can be regarded as a motivation for knowledge. The desire for knowledge is relatively 

constant — even when action is taken to achieve some unrelated goal (to satisfy an 

unrelated motivation), it provides information tha t may be used to update a repository 

of knowledge. Consider, for example, eating a green banana because of hunger. Eating 

the banana not only satisfies the hunger motivation, but it also provides the knowledge 

tha t green bananas are not sweet. Such knowledge is always of interest and we are 

always motivated to acquire new knowledge even if it results from other actions. This is 

particularly true when considering the kind of reason in g addressed in this thesis.
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M otivations for action

Other motivations can be said to come under the broad heading of motivations for action. 

In this case, the motivations lead to the execution of certain actions and consequently 

to the manipulation of the environment in order to  achieve goals. Traditional planning 

systems, for example, are motivated for action in th a t they generate plans for effecting 

changes in the world. These remaining motivations are thus action motivations, and 

include motivations such as hunger, laziness and pleasure tha t lead to  the taking of 

particular actions (or exhibition of behaviour). This set is not exhaustive. Action mo­

tivations vary in strength depending on circumstances; their strength may increase to  a 

point at which they demand satisfaction, and also decrease once they have been satisfied. 

In the example of crossing the river when being chased by a wild zmimal, the strength 

of the fear motivation, say, caused the immediate action of swimming across the river. 

After having satisfied the motivation by fleeing across the river, the relative safety might 

lead to the strength of the fear motivation decreasing substantially. The different kinds 

of action motivation are not im portant here. W hat is im portant is to note the difference 

between motivations for action and motivations for knowledge.

An example more relevant to discovery illustrating the difference between motivations 

for knowledge and those for action is Crick and W atson’s discovery of the double helix 

of DNA. In attem pting to become the first to discover the structure of DNA, they used 

'quick and d irty ’ rather than the most reliable methods. Their first attem pt at a model 

was a fiasco, according to Crick [13], partly because of "ignorance” on his part, and "mis­

understanding” on W atson’s. By contrast, work by Wilkes and Franklin was progressing 

slowly as they concentrated on using their experimental data  as fully as possible, and 

avoided resorting to guessing the structure by trying various models. Crick states tha t 

Franklin’s experimental work was first class and could not be bettered, while W atson 

simply wanted to get at the answer as quickly as possible by sound methods or flashy 

ones. While the actual motivations of the individual researchers cannot be known, their 

apparent motivations can be characterized as motivations for knowledge which demand 

accuracy and reliability, and motivations for action, which demand whatever behaviour 

will lead to the desired result.
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3.2 .3  M otivation s versus G oals

It is im portant to establish why the use of motivations in providing a control strategy 

is justified. It was stated earlier tha t motivations can be considered to be higher level 

goals. If this is so, then it is not necessary to model motivations, since goals can be 

modelled instead. (For Sloman [113], goals are conversely considered to be motivators, 

but derivative and nonderivative motivators cein be distinguished, corresponding to our 

distinction of goals and motivations respectively.) Indeed, goals are used to direct reason­

ing in a number of other systems. The distinction is, however, significant in the context 

considered here, because of the nature of the system we etre considering.

In considering inductive discovery, we are concerned with finding out new knowledge, 

and correcting any errors in existing knowledge. However, the need for which the knowl­

edge m ust be acquired is also im portant. Normally this need is for knowledge for its 

own sake in much the same way as other knowledge acquisition systems. At other times, 

though, there is a need for knowledge in order to take a particular action or achieve a 

certain result. W hether the action is brushing teeth or writing a program, the need is 

qualitatively different from needs with no associated actions. In both cases, however, 

knowledge is required and the goal of the reasoning system is the same — to acquire 

knowledge. The difference lies in the motivation of the system, in what motivates this 

goal of acquiring knowledge.

We win not address the issues of performing actions. Our goals, therefore, are always 

the same — they are knowledge goals, aimed at eliminating the error or inadequacy that 

has arisen in our knowledge. The difference between the kinds of inductive reasoning 

that can be undertedcen is in how these goals are generated, in what motivates them. 

One might be motivated to  take a particulsir action, to  eat, to fight, or to do anything 

else, apart from simply acquiring knowledge. In all these cases, there may be a need 

for the knowledge tha t will allow the action to be taken and the desired effect to  be 

achieved. There may also be goals generated in addition to the knowledge goals, but 

these lie outside the scope of the current research. Some work has been directed towards 

understanding how goals are generated from motivations (eg. [17]) but since we are 

concerned solely w ith the acquisition of correct and consistent knowledge, this does not 

demand consideration. The modelling and use of motivations is thus necessary so tha t 

the reasoning may be controlled appropriately despite the homogeneity of the knowledge-
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acquisition goals of discovery. The relation of goals to motivations is shown in Figure 3.1. 

The arrows indicate the direction of goal generation. Note th a t action motivations are 

abstracted to a single class, with dashed zirrows indicating goal generation links tha t are 

abstracted out. This is discussed later.

ActionsAction 1 Action!Knowledge

Motivations

Goals
Knowledge-
Acquisition

Figure 3.1: A hierarchy of motivations and goals

3.3 M otivation  R epresentation

3.3 .1  M otivation  and B ehaviour

Recent research into robotics, artificial life, euid autonomous agents zuid creatures has 

provided the impetus for a growth of interest in modelling motivations computationally, 

and a number of different representations for motivations and mechanisms for m anipulat­

ing them  have been developed at both subsymbolic and symbohc levels (eg. by Schnepf 

[105], Maes [77] and Halperin [35]). This section begins with a short introduction to 

the modelling of motivations and continues with the development of a representation for 

motivations in MID.

A given stimulus does not always evoke the same response. If the external situation 

is constant, differences in response must be ascribed to  changes in the interned state of 

the responding creature. These differences are said to  be due to the motivations of the 

creature.

A creature or agent possesses a fixed range of identifiable motivations of varying 

strength. These motivations can be regarded as being innate, and certain behaviours may 

be associated with one or more motivations. For example, the behaviour of feeding is 

associated with the motivation of obtaining food, or hunger. In most cases, the execution
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of such, a behaviour reduces the strength of the associated motivations, so tha t in the 

case of feeding, the motivation to obtain food is reduced. These behaviours are known as 

consummaiory behaviours] other behaviours which are not associated with any particular 

motivation, but which make the conditions of a consummatory behaviour come true are 

known as appetitive behaviours. For example, a go-to-food behaviour might make the 

conditions (tha t there is food within reach) of the feeding behaviour become true.

This view of motivation is somewhat simplified, and although much behaviour occurs 

in functional sequences with appetitive behaviours leading to consummatory ones, com­

plex interactions between motivations and behaviours are possible [40]. For example, a 

single factor could directly cause many activities, or cause an action which in tu rn  leads 

to other behaviours, or even cause some motivations to decrease so th a t others would 

increase in turn. In addition there are inhibitory relationships between behaviours in 

an im als and also relationships tha t increase the strength of other behaviours. Moreover, 

the combination of motivations may lead to different or variable behaviours.

These are all difficult issues which must be addressed in attem pting to construct accu­

rate behavioural models of real and artificial creatures. Our work, however, is concerned 

not with behaviour, but with a prototypical reasoning agent which needs to function ef­

fectively. We can therefore ignore these more subtle issues, and concentrate on developing 

a simple model as appropriate.

3 .3 .2  M od ellin g  M otivation s

The specific motivations tha t a particuleir agent or creature possesses will necessarily 

depend on the particular kind of creature or agent being considered. Our concern here 

is not with modelling the motivations of any particular agent, but with providing a 

model of motivation that enables sufficient control to be exerted through its use over 

the reasoning procedures of six-stage inductive discovery. As such, we can consider a 

prototype autonomous reasoning agent (ARA) which we will assume can act zmd reason 

in a variety of domains and contexts. It is autonomous because it operates under its own 

motivations, and not under the direct control of someone else.

Two kinds of motivation are possible: those with constant strengths, and those with 

strengths tha t vary over time. In the creature discussed in [77], for example, the curiosity 

motivation specifically is constant, while others are variable. This constant curiosity 

motivation fits in well with a constant desire for knowledge tha t we intend for our ARA.
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motivation status m-triple
curiosity constant < m i ,5 0 ,True >
laziness variable < m 2 ,4 0 ,False >
hunger variable < m 3 ,197 ,False >
thirst variable < m 4 , 45, False >
aggression variable < m g ,90 ,False >
fear variable < mg, 80, False >
safety constant < my, 1 0 0 , True >

Table 3.1: Motivation representation in MID.

The first motivation then, of the prototype ARA, is the motivation for knowledge (which 

encompasses such desires as curiosity, discovery), which we will fix at some constant level. 

The other motivations will be motivations for action, which m ust be specified according 

to the kind of agent or creature tha t we wish to  design. These might include hunger, fear, 

safety, aggression, self-indulgence, and so on, and will vary over time according to the 

internal state of the agent. For example, if the agent spends a long time without food, 

then the hunger motivation will increase. When the agent feeds, the hunger motivation 

will decrease.

Each motivation has a strength associated with it, either variable depending on ex­

ternal and internal factors, or fixed at some constant value. A motivation can thus be 

represented by a triple, < m ,v , 6  > known as an m-triple where m  is the kind of m oti­

vation, r  is a real number, the strength (or intensity [113]) value associated with that 

motivation, and 6  is a boolean variable taking the Vcdue True when the strength value, 

V, is fixed, and False when it is variable.

An ARA can be regarded as embodying a set of n  motivations, M , which comprises 

the m-triples, < m i, v, 6  > . . .  < m„, v , b>.  Thus the set of motivations, M , is a function 

of the kind of agent being considered, while each motivation in this set at a particular 

point in time is a function of zin instance of a particular kind of agent and its environment 

together.

Using this model, we can specify a class of agents with the motivations of curiosity, 

laziness, hunger, thirst, aggression, fear, safety. Table 3.1 shows an instantiation of this 

class as a particular agent at a particular point in time^. It gives the motivations, whether 

they are fixed or variable, and their associated m-triples. Curiosity and safety are both

^This agent is based on an example creature specified by Maes in [77].
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fixed at strengths of 50 and 100 respectively. The other motivations all have varying 

strengths.

3.3 .3  M otivation s for In d u ctive  D iscovery

The model described above, and based on Maes’ work, is implemented in the MID system 

for Motivated Inductive Discovery (described in the next chapter) in a limited way. In 

the case of the prototype ARA tha t characterizes the MID system, we might have an 

agent. A, whose motivations, are defined to be the set

{^  “̂knowledgei True ^ ^  TTI2 j ^2, False ^ , . . . ,  ^  , Vfi, False ^ }

Here, rriknowiedge is the knowledge motivation (a stronger form of the above agent’s cu­

riosity) that provides the impetus for the discovery of new knowledge, and m 2 . . .  rrin are 

the rem ain ing action motivations which include the motivations eat, sleep, drink, safety, 

fezir, aggression, preservation of others, self indulgence, etc. as appropriate. MID is not 

capable of perform ing actions, however, so it does not need to distinguish between the 

different kinds of action motivation. It does need to distinguish between the different 

classes of motivation tha t generate knowledge-acquisition goals, though. In MID, there­

fore, the action motivations are abstracted to a class, and MID can be regarded as having 

two abstract motivations: knowledge and action. This was shown in Figure 3.1. For our 

purpose of knowledge acquisition, these will suffice.

We will not consider how the motivations are affected by reasoning and acting in 

the world, but conversely how reasoning in the world is affected by the motivations. In 

this respect, the work here is somewhat complementary to other work tha t addresses 

these issues in the context of designing and modelling behaviour in artificial agents and 

creatures.

W hat is im portant in MID is to note the difference between motivations for action 

and motivations for knowledge, and the fact tha t motivations for knowledge are fixed 

while motivations for action Ccin vary. This reflects a constant desire for knowledge, but 

also a recognition of the need to respond to circumstances as appropriate. Thus MID 

only needs to know when it is reasoning for knowledge and when it is doing so for action. 

Moreover, since MED does not perform actions, it has no effect on the external world. 

In addition, much of its information from the external world through experimentation 

and observation is explicitly provided. It would thus be difficult, even if included in the
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model above, to show how MID’s motivations would be affected by reasoning and acting 

in the world. For these reasons, we assume tha t MID is provided with a set of motivation 

strength values at the point of reasoning.

3 .3 .4  D im ensions o f M otivation

The model of motivations described above has two principal dimensions, range and 

strength. The range of motivations refers to  the variety of motivations tha t are ascribed 

to the ARA, and can be divided into two groups, knowledge motivations and action 

motivations. The knowledge motivation expresses a continual need for new information; 

it may be ignored if there are more pressing concerns demanding immediate attention 

through action motivations, but it is zdways present and comes to the fore in the absence 

of high action motivations. There is thus an im portant qualitative difference between 

knowledge and action motivations in terms of range.

The second dimension is tha t of strength. As mentioned earlier, each motivation has 

associated with it a strength value indicating its current significance. Some motivations 

may be fixed, especially the knowledge motivation, and these are determined by the 

ARA concerned. Since the strength values of other motivations are continually changing, 

it is im portant tha t the level at which the knowledge motivation strength, (r, is fixed is 

carefuUy chosen so tha t it edlows an appropriate mix of reasoning for action and reasoning 

for knowledge. If (T is set too high, then the reasoning will be too strongly biased towards 

knowledge and will not be able to react to im portant events; if it is too low, then reasoning 

will focus on action zmd will not allow any generally applicable knowledge to be acquired.

Figure 3.2 shows the two dimensions of motivation for the motivations described by 

Table 3.1. The verticsd bars on the histogram correspond to each of the motivations 

specified, and are marked by the initial letter. In order to  act or reason based on mo­

tivations, a threshold value for strength may be necessary, which m ust be exceeded to 

force action. Alternatively, the highest strength value m ay be used to determine the mo­

tivation currently in control. In our model we shall assume the la tter, tha t the strongest 

motivation, the salient motivation, determines the nature of the reasoning. In the case 

depicted here, the hunger motivation is salient, and thus controls action. The actual 

way in which motivations control scientific reasoning is introduced below, and wiU be 

described in detail in later chapters which address the specifics of the different stages.
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C ' L H T A F S Motivation

Figure 3.2: The two dimensions of motivation

3.4 H ow M otivations Affect D iscovery

We have now seen how motivations may be modelled in term s of a representation and 

the param eters tha t affect the relative merits of reasoning for action and reasoning for 

knowledge. It still remains, however, to show how this relates to scientific reasoning, at 

which points in the six-stage framework it is relevant, and how so. This section provides a 

brief overview of the use of motivations as a control strategy in the inductive frznnework.

While motivation affects the design, construction and observation of experiments, 

we will restrict consideration to the internal parts of the framework, specifically the 

evaluation of evidence, and the revision and selection of theories.

3.4 .1  E valuation

In evaluating evidence, we want to be able to  judge not only the accuracy of data, but 

also the validity of such data. Criticisms of a naive falsihcationist approach to scientific 

discovery include precisely this point — tha t the evidence may be inadequate, insufficient 

or even plainly wrong. Consider, for example, testing the hypothesis that ‘aU swans are 

white’, cind coming across a black swan. The hypothesis can be refuted. However, it 

might be the case tha t the swan was rezilly white and the black swan was a hallucination, 

or tha t the light was bad and what appeared to  be a black swan was in fact white, or tha t
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it was not a swan at all, but a duck. This com m on example is somewhat contrived, but 

there are real instances in which the initial scenario or observations must be modified 

or rejected. Karp [46], for example, notes tha t biologists studying attenuation often 

rejected evidence of the initial conditions of an experiment because of the uncertainty of 

their knowledge of these conditions. Indeed, we assert th a t the ability to recognise and 

reject inadequate evidence is necessary for a full account of reasoning.

The rejection or acceptance of evidence is tied intim ately to the motivation that guides 

the reasoning process. Highly motivated reasoning implies tha t a successful outcome is 

strongly desired, and tha t the consequences of failure would be severe given such a high 

level of motivation. Clearly, in order to achieve a successful result, the evidence must 

be sufficiently good to enable accurate and effective reasoning, and thus the validity of 

the evidence used for the reasoning process acquires greater importance. Alternatively, if 

the reasoning is not strongly motivated, then the consequences of an inappropriate result 

are less severe, perhaps negligible, and less effort is demanded in evaluating evidence. 

Motivations determine the level of acceptability demanded of evidence according to the 

purposes of the ARA.

3.4 .2  R ev ision  and Selection

Given an inconsistency between the predictions and subsequent observations, the domain 

theory m ust be revised. There are infinitely many revised theories th a t can be generated 

that are consistent with the observations. In order to constrain the revision process, a 

number of selection criteria are provided tha t give grounds for preferring some revisions 

over others. However, the kinds of revisions th a t are preferred are dependent on the 

circumstances. In particular instances where the current situation demands immediate 

response such as in medical emergencies, it is im portant to  generate a theory which can 

account for the immediate situation regeirdless of how well it applies to  others. It may 

subsequently be possible to generate a more generally applicable theory, but this must 

be edter the immediate problem situation has passed. In circumstances which are not 

critical, and which do not demand immediate action, more generally applicable theories 

can be generated at the first attem pt.

The motivations of the ARA provide a measure of the kind of theory tha t is required. 

Strong knowledge motivation suggests tha t more effort Ccin be spent on developing more 

general theories, while strong action motivations demand more specific theories which
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address the immediate problem. The possibility of more variations than  these are con­

sidered in Chapter 8 when discussing selection. Thus motivations determine the relative 

merit of the various selection criteria that are used to  constrain the revision process. 

Existing selection mechanisms pay little if any attention to  such controls, and as such are 

lacking in an im portant way. More recently, however, the role of goals and motivations 

in selection has been recognised (eg. [56], [98]), although much remains to be done. In 

Chapters 7 and 8 we show how the model of motivations specified here can be used to 

control the revision and selection processes.

3.5 D iscussion

3.5 .1  R ela ted  W ork

Behaviour Selection through M otivation

In computationally modelling the behaviour of an artificial creature, Maes has developed 

a mechanism which enables both action selection [75, 76] through goals, and behaviour 

selection through motivations [77]. Actions and behaviours are essentially the same, 

while motivations are higher level goals. A creature is viewed as consisting of a set of 

behaviours such as feeding, sleeping, drinking, fighting, etc. Significantly, the behaviour 

selection mechanism relies not only on the internal motivational sta te  of the creature 

but also on the external circumstances so th a t the creature can respond to changes in 

the external environment in addition to  changes in motivations. At any moment, the 

creature is motivated towards a variety of behaviours.

Each behaviour has an associated activation level which is a real number, and a set 

of conditions which must be observed in order to be ‘executable’. In addition, there is 

also a threshold which must be exceeded by the activation level when the behaviour is 

executable. If the threshold is passed, then the executable behaviour becomes active, 

and a set of processes which realize the behaviour start running. Each motivation has 

a strength value at a particular moment in time. The creature also has a set of sensor 

readings or observations which indicate its perception of the environment.

Behaviours aie connected in a network with different links between them  which propa­

gate activations as appropriate amongst them. Activation energy is derived from observa­

tions of the current situation, motivation levels, and other behaviours through inhibiting
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behaviour type behaviour motivation
consummatory avoid-obstacle safety
consummatory explore curiosity
consummatory fight aggression
appetitive go-to-creature
consummatory fiee-from- creature fear
consummatory eat hunger
appetitive go-to-food
consummatory drink thirst
appetitive go-to-drink
consummatory sleep laziness

Table 3.2: The behaviours and motivations of M aes’ example creature.

and exciting links (see [77] for details). At each timestep, the overall im pact of the cur­

rent situation and motivations is determined. If there is a behaviour which is executable, 

has an activation level above the threshold and has the highest such activation level then 

it becomes active. If none become active, then the threshold is reduced by a percentage. 

Once a behaviour is activated, its activation level is reset to  0. An example creature with 

seven motivations and ten behaviours is shown in Table 3.2.

The work has demonstrated meiny im portant points. In particular, it has shown 

the effectiveness of motivations as a controlling  strategy in directing the behaviour of a 

creature, and it has provided a simple but elegant means for modelling those motivations. 

Underlying this work is the seune basic structure as is used in MID, but it is used primarily 

to model behaviour in artificial creatures, and lies firmly in the robotics and autonomous 

agent czmips. It is somewhat complementary to MID in this respect.

M otivated Reasoning

Apart from the work discussed above, very little work has addressed the issues of m oti­

vated reasoning from a computationed perspective. A notable exception is Thagard and 

Kimda’s Motiv-PI [124], based on the P I system developed by HoUeind et al [41]. P I is a 

system for problem-solving and learning based around the use of rules. Four mechanisms 

underlying motivated inference were suggested:

• A representation of the self. This includes motivations and attributes (or be­

haviours).
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• A mechanism for evaluating the relevance of a potential conclusion to the motives 

of the self.

• Mechanisms for motivated memory search.

• Mechanisms for adjusting the param eters of inference rules.

M otiv-PI provides a similar representation for motivations as tha t used here, in listing a 

set of specified motivations and associated strengths. The relevance of conclusions is thus 

determined in relation to these motivations. The m otivated memory search mechanism 

does not merely provide a bias, but a distortion in retrieving only those instances from 

memory which satisfy the appropriate motivations, thus potentially generating incorrect 

conclusions. So too with adjusting the param eters of inference rules which is manipulated 

so as to generate only desirable conclusions. The system is designed from a psychological 

perspective, and attem pts to provide a descriptive account of inference rather than a 

normative one, and suffers from being based around a system designed without the notion 

of motivation in mind. Moreover, the notion of motivation here is primarily concerned 

with supporting a set of beHefs about the self in term s of personality traits, and does 

not direct the inferencing itself. Furthermore, some elements of P I are not addressed 

com putationally, particularly in the selection of theories, an im portant part of the PI 

system. Though lim ited and motivated by psychological concerns, Motiv-PI shows the 

potential for m otivated reasoning. Many of its limitations Eire addressed in this thesis.

More recent research has noted the im portance of motivations, but not exphcitly 

addressed the issues. Thagard [119, 123], in response to  criticisms by O’Rorke [83] 

proposes developing m o t i v - e c h o ,  a motivated version of e c h o  [118], a system for theory 

selection. ECHO is discussed further when we consider selection in more detail.

3 .5 .2  C on clu sions

The motivations of independent reasoners is of particular relevance and significance to 

reasoning in general. In scientific reasoning, we assert th a t motivations are used to  control 

the basic reasoning strategy in order tha t it may apply to a large variety of domcdns and 

contexts. There is much psychologiced evidence to support this view [56]. (Moreover, 

it has specifically been proposed tha t motivations m ay have an effect on the various 

stages of the hypothesis-testing sequence — tha t is, on the generation and evaluation of 

hypotheses, of inference rules, and of evidence.) Using motivations to provide a control
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strategy for reasoning is an approach which has not been seriously considered previously 

in the development of computer programs. Although motivations occupy a position at a 

higher level than goals, they are in a sense complementary to  goals, providing a means 

for directing reasoning when the goals tha t they generate are inadequate for doing so.

Motivations thus provide a new and valuable way of controlling and directing rea­

soning. It is interesting to note that motivations also provide an entry point into the 

system for subjective factors. (This has also been recognised by Thagard [123].) These 

are subjective in tha t they depend entirely on the nature of the reasoning agent. One of 

the m ajor criticisms of much work on scientific discovery in both philosophy of science 

and artificial intelligence is tha t it fails to take account of sociological and other factors 

relevant to the process of discovery [8]. Although the model of motivations developed 

here is very simple, there appears to be some potential for incorporating these sociolog­

ical factors into the model. Furthermore, it is possible to  model the motivations of a 

group of researchers rather than one individual. These issues clearly demand much more 

work cind a more detailed investigation of the use of motivations in these contexts, but it 

seems tha t such work may allow the development of more complete models of scientific 

(and other) discovery.

This chapter has set the scene for the development of a model of motivated induc­

tive discovery and its implementation as a computer program. It introduced the role 

of motivations in inductive discovery with a preliminziry discussion, and continued by 

specifying a representation for motivations, and considering how they might be used in 

the evaluation, revision and selection stages of the six-stage framework.
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C hapter 4

M ID: A  System  for M otivated  

Inductive D iscovery

The only thing tha t counts is the abihty to link this piece to other pieces . . .

— Georges Perec, Life: A User’s Manual

4.1 Introduction

Chapter 2 described a six-stage framework for inductive discovery. Many different models 

can be characterized within that framework, and it therefore provides a useful means for 

comparisons between such models. However, although it provides a sound conceptual 

base from which to work, it does not provide a model in itself. Models can be considered 

to be instantiations of the framework, 2ind implementations as computer programs can 

be considered instantiations of models. Such instantiations are im portant in providing 

an. adequate account of the procedures of inductive discovery.

The remainder of this thesis is concerned with precisely that: the development of a 

model within the six-stage framework, and its instantiation as a computer program. We 

have already introduced the notion of motivated reasoning. In this chapter, we introduce 

the MID system for Motivated Inductive Discovery. The chapter begins with an overview 

of the system. Then, we discuss some of the problems w ith representation formahsms in 

discovery, and continue by specifying the knowledge representations th a t MID uses for 

its different components. Finally, we consider the relation of motivations to the rest of 

the system.
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1. Given a domain theory, background knowledge, and a scenario description, generate 
predictions.

2. Bring about the initial conditions o f the scenario and also o f other directed exper­
iments to test the predictions through experiment design, construction and perfor­
mance.

3. Observe and record the results of experimentation.

4. Evaluate the observations with respect to

# the adequacy of the evidence for the problem at hand through situation context 
and motivations of the reasoning agent,

• and the predictions generated earlier.

5. If there are anomalies, then revise the domain theory so tha t it is consistent with 
the observations.

6. Select the best revised theory.

Table 4.1: The m ain control strategy in MID.

4.2 M ain control strategy o f M ID

4.2 .1  O verview

The central control strategy of MID is a simple (mostly) sequential procedure which 

involves each of the stages of the framework introduced and described in Chapter 2. 

Each of the internal stages of the framework — prediction, evaluation, revision and 

selection — is implemented in MID, while the extemad stages — experimentation and 

observation — are largely omitted. Nevertheless, the structure of MID acknowledges the 

role and position of these. Table 4.1 gives the algorithm  for the m ain control strategy 

which serves as an overview of the entire system. Parts which are not implemented are 

itzdicized.

There is a one-to-one correspondence here w ith the six-stage framework. As noted in 

Chapter 2, there is some interaction between these elements, particularly with observation 

and evaluation when inadequate evidence may require further observation, and with 

revision and selection where revision is constrained by selection. This is discussed further 

in subsequent chapters.
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4.2.2 Structure of M ID

The main functional components of the MID program  are shown in Figure 4.1. Broadly, 

we can divide the program into three main areas: prediction, search of the data  space, 

and search of the hypothesis space. The dashed boxes are not implemented in MED.

MED is provided with a domain theory which encodes its current knowledge about 

the world — the world of simple physical processes. In norm al operation, the prediction 

component of MID generates inferences about the future state of the world given some 

initial conditions describing a particular setup. Once the initial conditions are brought 

about by physical experimentation, the results of the experiment, as changes to objects 

or quantities in the world, are observed. (Predictions are used to focus attention on 

those changes tha t are expected.) Before making a comparison of the observations with 

the predictions, MED evaluates the adequacy of the observations with respect to its 

motivations (higher-level goals), and rejects them  if they are unacceptable in this regsird 

(if its confidence is too low). If the evidence is rejected, MED requests a re-observation 

of the results of the experiment. If the evidence is still inadequate when MID specifies 

the required degree of accuracy, then MID requests a new set of initial conditions (a new 

experiment scenario) in which the param eters of uncertainty eire sufficiently good. When 

observations are finally accepted, they are compared w ith the predictions, emd if there 

are any anomalies, then MID attem pts to revise its domain theory.

In revising the theory, MED considers all possible legal revisions tha t cem be made 

according to a set of revision operators and the constraints imposed by the observations 

and initial conditions. For each anomaly, MED generates an appropriate revision and ends 

when all of the einomalies have been resolved. However, the number of revisions th a t can 

be generated in this way is excessive, and the search space of revised theories must be 

constrained further by use of other criteria for theory selection. Through applying criteria 

on revision operators, and also criteria on states in the search space, an ordered set of 

revisions can be generated. Thus the ‘best’ revision is generated and used as the new 

domain theory for subsequent prediction. Finally, depending on the kind of revision, 

MED may also mzdce some changes to its record of the history of events.
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Figure 4.1: The main functional structure of the MID system
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4.3 K now ledge R epresentation

4.3 .1  P rob lem s w ith  R ep resen tation

Representation issues are very im portant. Selecting a fixed knowledge representation 

for use in any implementation imposes constraints which restrict the applicability and 

expressive power tha t a more general model may possess, but cannot be avoided. Different 

formalisms are useful for different purposes, and zire appropriate with respect to these. 

It seems unlikely tha t ‘unified’ representations will be developed which are suited to all 

purposes, and we must therefore adopt a particular approach. Fixing representations 

does, however, have certain imphcations which we consider here.

In the exploration of large search spaces, for example, the constraints imposed by 

the representation can act as strong heuristics if the representation cannot express forms 

which are inadmissible anyway. The structure of a representation may also facilitate the 

use of simple algorithms. Roman numerals, for example, sire good for addition^. Provided 

tha t the numbers to tal no more than HI, the algorithm simply involves concatenation. In 

inductive learning tasks in particular, the representation language used is directly relevant 

to the space of hypotheses tha t can be formed. The language provides a bias on learning 

which is significant, and is increasingly being addressed (eg. [129]). More work remains 

to be done, especially on finding a strong and correct initial bias for representations.

In scientific discovery, the question must be raised of how an appropriate represen­

tation is developed or selected. The representation of a problem is necessarily related 

to the ways in which it might be solved, and the choice of representation itself is a sig­

nificant part of the discovery process [11], [27], [39], [133]. Kepler for example, had to 

make the shift away from the representation of a law in term s of circular motion to one 

in terms of elliptical motion [27]. Such a shift may seem simple in retrospect, but it was 

a significemt break with the established view of the time, and contradicted two thousand 

years of astronomical tradition. In addition, Cheng [10, 9] has examined the psirticular 

case of discovering the law of conservation of momentum using two different representa­

tions, m athem atical sentences eind diagrams. His work has shown tha t the discovery is 

‘unlikely’ in the mathem atical approach, but feasible under the diagrammatic approach. 

Though it has been claimed tha t finding an appropriate representation might be reduced 

to ordinary problem-solving tasks [108], it remains a difRcult but im portant problem.

^Example given by Aaron Sloman
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The issue of finding representations, however, lies beyond the scope of the research 

described in this thesis, and we shall adopt a particular fixed representation scheme 

described below, while being aware of the limitations imposed by it.

4 .3 .2  A  R ep resen tation  Schem e

The domain that was chosen for use in the MID system was the simple world of physical 

processes represented in a version of Qualitative Process Theory [22]. The domzdn has 

already been used a number of times previously in work on inductive reasoning, most 

notably by Rajamoney [91] and O’Rorke et al. [84], and this should allow an easier 

yet stronger comparison to be made between alternative models. The domain includes 

knowledge of processes such as absorption, evaporation, fluid-flow and solution. Although 

it is limited, it allows us to reason in the context of simple scientific experiments in a 

clear and effective manner.

Qualitative Process Theory (QPT) [22] provides a language for describing qualitative 

chzinges due to processes acting on quantities, and is well suited to such domains as 

this. In keeping with the principle of minimalist AI, we prefer to use a version of a 

widely-used and recognised knowledge representation th a t is suitable not just for the 

kind of reasoning undertaken here, but also for other purposes. The continuing research 

on qualitative reasoning in general and QPT in particular ensures tha t ezu’ly redundancy 

of work based on it will be avoided, and tha t the work will be applicable in a wide variety 

of possible situations.

The motivation behind QPT is to represent the commonsense knowledge tha t people 

have about the physical world. According to Forbus [23], qualitative physics strives to 

create wide-coverage, multi-purpose domain models which transcend the limitations of 

current expert systems knowledge bases of domain and purpose-specific representations. 

(It is not primarily intended to  model cognitive processes or representations. This is in 

keeping with our own aim of providing a general-purpose reasoning mechanism, though 

not restricting it necessarily to  one which is cognitively valid.) In QPT, changes in the 

world axe characterized as being due to processes of which domain theories and models 

are comprised. Rather than use numerical values for qucintities as a basis for reasoning 

about change, QPT uses qualitative values such as an increase or decrease in the value 

of a quantity.

MID uses a simplified version of QPT, with only processes to represent distinct physi-
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Process Name: heat-flow
Individuals : object ?source

object ?destination
heat-path ?path

Preconditions : heat-connection ?source ?destination ?path
flow-aligned ?path

Quant ityCondit ions : greater-than (a (temperature ?source))
(a (temperature ?destination))

Relations: Q+ heat-flow-rate (temperature ?source)
Q- heat-flow-rate (temperature ?destination)

Influences: 1+ (heat ?destination) (a (heat-flow-rate))
I- (heat ?source) (a (heat-flow-rate))

Figure 4.2: A qualitative process description of heat-flow

cal changes in the world. We exclude individual views which are used to represent objects 

in a similar way to processes but without an influences slot (see below), and simply re­

place the individual view representation with a process representation. In fact, these are 

equivalent, but their different status is something tha t we wish to avoid because both are 

elements of the domain theory.

In addition to the domain theory, we have added a qualitatively different represen­

tation to  encode background knowledge about the domain. This background knowledge 

has a different status to the domain theory, for it is accepted with a greater certainty, 

smd contains information about the classes of objects and predicates. The Background 

Knowledge Rule Base (BKRB) is represented as a collection of imphcation rules.

4 .3 .3  D om ain  T heory

The domain theory consists of a collection of distinct processes corresponding to distinct 

kinds of change in the physical world. A process is represented as a frame which contains 

different slots to encode different kinds of knowledge. Specifically, the components of a 

frame are the name of the process, the individuals (variables) tha t participate in it, the 

conditions which are both preconditions and quantity conditions, and the effects which 

are divided into direct effects as influences and indirect effects as relations. Figure 4.2 

shows the frame for the heat-flow process.

Individuals are objects that m ust exist so th a t a process is applicable. They are 

specified by an associated predicate tha t acts as a type constraint. Their form is as 

follows

individual = =  <type-predicate, variable>
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Variables are indicated by an initial ?. A process is active when it satisfies the individuals, 

preconditions and quantity conditions slots. Preconditions are predicates which specify 

requirements tha t are outside QPT in tha t they allow the process or activity to occur, 

like the requirement of a heat-connection in Figure 4.2. Their form follows.

precondition = =  < predicate, [variable] >

Quantity conditions are requirements tha t are expressed within the language of the rep­

resentation as quantitative relations between bodies. The general form is as follows.

quantity condition = =  <quantity-predicate, quantity, quantity> 

quantity-predicate = =  <greater-than | equal-to | less-than>

In Figure 4.2, the quantity condition requires tha t the tem perature of the source object be 

greater than  the tem perature of the destination object. The a  in each of the two quantities 

indicates the amount of those quantities. (It is really a function from a quantity to an 

amount, but we wiU not get involved in the subtleties of QPT here.) Relations specify 

the indirect effects of the process through relationships between the objects on which it 

acts. They are of the form below.

relation = =  < rel-proportionality, quantity, quantity> 

rel-proportionaUty = =  <Q4- | Q ->

The proportionciUty indicates whether the two quantities are inversely or directly pro­

portional, Q-f- indicating a direct proportionaUty, and Q - indicating an inverse propor­

tionality. In the example, the rate of heat flow of the process is said to increase as the 

tem perature of the source object increases, and decrease as the tem perature of the des­

tination increases. FinaUy, influences specify what directly causes a quantity to  change.

influence = =  <inf-proportionaUty, quantity, n>  

inf-proportionaUty = =  <I-|- | I ->

The number n is a direct cause of the change in the quantity, and th a t change is either 

positive or negative (1+ or I-) as for relations. In Figure 4.2, the heat of the destination 

object is specified to increase with the rate of activity (heat flow) of the process, while 

the heat of the source decreases accordingly.
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Scenario Name: heat-flow-works-scenario
Individuals : std-obj ectl

std-object2 
std-patbl 

Facts: object std-objectl
object std-object2 
heat-path std-pathl
heat-connection std-objectl std-object2 std-pathl
heat-flow-aligned std-pathl
greater-than (a (temperature std-objectl)

(a (temperature std-object2))

Figure 4.3: A scenario description in which heat-flow occurs

flow-aligned —» aligned
fluid-flow-edigned — » flow-aligned 
heat-flow-aligned — » flow-aligned

Figure 4.4: An example Background Knowledge Rule Base.

4 .3 .4  Scenarios

A scenario is simply a description of an external situation which is used as input to 

the system, encoding the initial conditions of the world, and against which the domain 

theory is matched to generate active processes and hence predictions. Figure 4.3 shows 

an exsunple scenario in which the heat-flow process above is active. The slots are sim ilar 

to those for processes. The individuals slot specifles the participants in the scenario, 

while the facts slot simply lists all known facts about the scenario. (In MED, facts are 

further divided into q-facts — facts with quantity predicates — and p-facts -  the rest.)

4.3 .5  B ackground K now ledge

As mentioned above, background knowledge is represented as a collection of implica­

tion rules. In MED, the background knowledge provides taxonomical and classificatory 

information about object types and predicates. It is held with a stronger degree of con­

fidence than  the domain theory which is the prim ary subject of reasoning. Background 

knowledge can be regarded as a set of auxiliary assumptions tha t facilitate the use of the 

domain theory. Rules in the BKRB are of the form

antecedent consequent

meaning tha t the antecedent implies the consequent, or tha t the antecedent is a sub­

class of the consequent. Figure 4.4 shows an example BKRB. The first rule states tha t
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f lo w -a lig n e d  is a sub-class of a lig n ed . The second and third rules state tha t the 

predicates f lu id - f lo w -a lig n e d  and h e a t- f lo w -a lig n e d  respectively are sub-classes of 

flo w -a lig n e d . Thus we can generalize from h e a t- f lo w -a lig n e d  to f lo w -a lig n e d  and 

further to  a lig n ed , and speciahze by traversing the rules in the opposite direction.

4.4 Sum m ary

Motivations

Pred: Prediction 

Eval: Evaluation 

Exp: Experimentation 

Obs: Observation 

Rev: Revision 

Sel: Selection

Knowledge Structures

Figure 4.5: Motivations in the MED program

In the previous chapter, we discussed the representation of motivations in MED. Here 

we show their relation to the rest of the system. As we have seen, motivations provide 

an appropriate control mechanism for the reasoning process. Figure 4.5 illustrates the 

organisation of the MED system. At the top are the motivations of the reasoning agent, 

MED, which direct the application of the actual reasoning components of the system which 

are shown in the large box in the centre. At the bottom  of the picture Eire the knowledge 

structures which MED operates on, including the domain theory, the scenario description, 

background knowledge and so on. D otted lines and arrows indicate a part of the system
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tha t has not been implemented. The thick arrows show the interaction between the 

motivations and the reasoning elements: motivations control the reasoning and are also 

affected by the outcome of tha t reasoning, successful or otherwise (although MID does 

not address the la tter of these). The thin cirrows indicate the interaction between the 

knowledge structures and the reasoning elements: the reasoning demands knowledge to 

operate, and the knowledge is manipulated by tha t reasoning. Revision and selection 

Eire grouped together because they proceed in parallel. Evaluation, experimentation and 

observation are grouped together because they cire related, eveduation having the ability 

to require further experimentation and observation.

The motivations control these groups somewhat as a whole. Prediction can also 

be controlled by motivation; this is related to issues of relevance which MID does not 

address. MED assumes tha t all predictions tha t can be generated are equally relevant.

4.5 D iscussion

As we have already noted, the representation of problems imposes constrêiints on the 

nature of the problem-solving process. A representation scheme suitable in all circum­

stances is not available, nor is a means for selecting between different representations 

dynamically as appropriate as an integral part of reasoning. Accepting tha t a single 

fixed representation scheme must be adopted, we have chosen to use a variant of Quali­

tative Process Theory, augmented with a background knowledge imphcation rule base.

All of these forms of representation are used elsewhere, and have not been specially 

developed for use in this research. This is significant. In keeping with our stated aim 

of minimalist AI, we avoid using special tools, preferring instead to  use tools zJready 

developed, albeit with some modification. Not only does this minimize the complexity 

of the system, but it also mzikes it more widely apphcable. The representations used 

here he within weh-defined and understood paradigms, and are supported by a sohd base 

of existing and continuing research. There is an analogy between the methodological 

principles of the research described here, and what is traditionaUy cahed ‘good science’ 

in the avoidance of ad-Aoc hypotheses. These are auxhiary hypotheses tha t «ire introduced 

into a theory in order to patch up a particulzu" inadequacy with no regard to the overaU 

plausibihty of the theory. This research also seeks to  avoid the introduction of ad-hoc 

hypotheses through avoiding the development of speciêd formahsms for representation.
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C hapter 5

Prediction , E xperim entation  and  

O bservation in M ID

.. .a ll scientific work of an experimental or exploratory character starts with 
some expectation about the outcome of the inquiry. This expectation one 
starts with, this hypothesis one formulates, provides the initiative and in­
centive for the inquiry and governs its actual form. It is in the hght of this 
expectation tha t some observations are held relevant and others not; that 
some methods are chosen, others discarded; tha t some experiments are done 
rather than others.

— Peter Medawar, Is the scientific paper a fraud?

5.1 Introduction

The six-stage framework described in Chapter 2 is an encompassing conceptual one de­

signed to include the different stages of inductive discovery. The framework is im portant 

for a number of reasons. As we have cJready noted, it provides a sound base from which 

to investigate the elements of inductive discovery in more detail. Moreover, within the 

structure of th a t fiamework, we can develop a model for inductive discovery and con­

struct cin implementation. There cire, however, stages in the framework which are not 

modelled in the same detail as the other stages, nor are they implemented in the MID 

program. As we noted in Chapter 2, the stages of experimentation and observation are 

external stages, and eu‘e not addressed in the seime way as the internal stages. Providing a 

framework allows inductive discovery to  be viewed as a complete reasoning methodology 

that does not arbitrarily exclude these external stages. Nevertheless, there are elements
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of experimentation and observation tha t are not considered in detail here because of their 

external nature.

In this chapter, we consider the first three stages of the framework — prediction, 

experimentation and observation — discussing them  in general terms at first, and sub­

sequently in relation to the MID program. It is worth reiterating the point here that 

our concern is with computational discovery, and though some philosophical problems 

are mentioned, they are not of direct interest in themselves. We begin with prediction, 

discussing its significance, and then how it is implemented in MID. Then we consider 

experimentation, outlining some of the difficulties and discussing what can be achieved. 

We describe the very limited way in which experimentation manifests itself in MID, and 

finally consider related work and what it has to offer. The last section addresses obser­

vation, again beginning with a discussion of some of the problems facing attem pts at 

automation, and continuing with a description of observation in MID.

5.2 P rediction

Prediction is perhaps the most im portant stage in the framework. A significant goal is 

to be able to m itigate the effects of our environment, and tha t can only be done if we 

are able to predict what will happen in it. Moreover, in our attem pt to increase and 

improve our knowledge on the basis of inductive discovery, we need predictions to test 

against observations in order tha t inadequacies and inconsistencies can be exposed. The 

fundamental purpose of science according to Ziman [137] is to acquire the means for 

reliable prediction, and tha t is achieved by using prediction itself.

Note tha t prediction is similar to some concepts of explanation. This is sometimes 

considered to be the mechanism underlying discovery and science, but this implies that 

the results of the experiment are known. In the view of some, explanation consists of 

providing a trace of the reasoning process that shows why the observations occurred. 

According to Shoham [106], for example, explanation produces a description of the world 

at some earlier time given a description of the world at a later time, whereas prediction 

produces a description of the world at a later time based on the description of the world at 

an earlier time. If no explanation can be constructed, then there is a failure of the theory, 

and it m ust be revised. Since we must justify the predictions tha t Eire generated, there 

is little if einy com putational distinction between the two. However, at a more abstract
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level, the choice of prediction or explanation takes on significant meaning. Prediction 

implies the ability to mitigate the effects of the environment about us. It subsumes 

explanation, for if we are able to predict the future, then we can explain the past. 

Explanation, however, seems to refer to events which m ust have occurred previously, and 

while it serves to increase our understanding of the world, it implies a subservience to 

tha t world. Computationally, the prediction stage provides explanations of its inferences 

as any sensible system must.

The relevance of predictions, too, can be im portant. Generating predictions can 

be an expensive procedure, demanding time and resources which may not be available. 

This is related to the motivations of the reasoning agent. If motivations gire to arrive 

at a particular directed conclusion, then the issue of relevance is critical, for effort may 

unnecesssirily be spent on making redundant inferences. We might, for example, be able 

to predict first, second and third places in an election, yet if we are only interested in 

who wins, only one of the predictions is relevant, and the others should be disceurded. If 

the agent is motivated for accurate conclusions, then sill predictions may be relevant.

In the sense that MID is interested in detecting and correcting all errors in its domain 

theory, it regards all predictions as equally relevant. Relevance is thus not an issue in MID 

which is concerned with acquiring knowledge. (However, some form of relevance might 

be im portant if the knowledge base grows extensively, and this could be implemented by 

use of motivations.) Prediction in MID is discussed below.

5.2 .1  P red iction  in M ID

Prediction occurs either explicitly when we try  to establish what might happen as a 

result of effecting certain events or conditions, or implicitly when our expectations in a 

particular situation are not fulfilled. In both cases, we can assume some description of 

the situation and some knowledge about the world which leads us to believe tha t certain 

effects will result. These correspond to the scenario and domain theory described in the 

previous chapter. Figure 5.1 illustrates the inference engine tha t provides the prediction 

mechanism. The domain theory (augmented by the background knowledge) is matched 

against the scencu-io description in order to  generate predictions.

The generation of predictions is a relatively standard procedure. In MED, the system 

is provided with a scenario description and a domedn theory, and predictions are generated 

(or inferences made) based on these. (MID is also provided with background knowledge
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Figure 5.1: Prediction in MID

in the form of the BKRB described earlier, which augments the domain theory.) Each 

process in the domain theory is matched against the facts in the scenario description to 

determine which processes are active. F irst, individuals are matched against the facts 

in the scenario to check that the appropriate objects (quantities) exist, and to generate 

initial bindings for variables. In the event tha t individuals can be bound, the process 

is instantiated accordingly, and preconditions and quantity conditions eire then matched 

against the facts of the scenario. The BKRB allows different classes of predicates in 

both individuals and preconditions to be used by traversing a class hierarchy along the 

implication rules. The process in Figure 4.1, for example, can be matched against the 

scenario in Figure 4.2, satisfying all of its individual, precondition and quantity condition 

slots. All of these conditions occur in the scencirio description except for the precondition, 

f lo w -a lig n e d , but this can be satisfied by using the rules of the BKRB in Figure 4.3 

which state tha t h e a t- f lo w -a lig n e d  implies f lo w -a lig n e d . If the preconditions and 

quantity conditions Eire satisfied, then the process is active, and the instantiated relation 

and influence slots (instantiated with bindings tha t make the process active) Eire advanced 

as predictions. All possible bindings Eind predictions are generated, Eind these Eire then 

fed through to the other stages in the framework.

In the case of the example scenario description, process (as domEiin theory) and 

BKRB given in Chapter 4, the predictions of Figure 5.2 Eire generated. MID generates 

aU predictions first, Emd then proceeds to justify or explEdn each of these predictions. 

Here, there Eu*e two predictions, both in direct correspondence to the two influences o f the 

h e a t-f  low process. (The relations in the process specify effects which Eire not directly 

observable since they are intemEil to the process. Consequently, they are not counted
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Predictions: increase (heat std-object2)
decrease (heat std-objectl)

1+ (heat std-object2) (a (heat-flow-rate))
I- (heat std-objectl) (a (heat-flow-rate))

Active: heat-flow std-objectl std-object2 std-pathl
heat-connection std-pathl std-objectl std-object2 
flow-aligned std-pathl
greater-than (a (temperature std-objectl)) (a (temperature std-object2)) 

Figure 5.2: Sample predictions generated by MID

as predictions.) The explanation consists of tracing the inference process through the 

instantiation of variables as s td - o b je c t l  s td -o b je c t2  s td - p a th l ,  and satisfaction of 

conditions. The conditions specified in the explanation are those tha t must be satisfied 

for the process to be active, and can all be found in the facts of the scenario of Figure 4.2.

The output of the prediction stage is a hst of the predictions tha t can be generated 

from the input knowledge comprising domain theory, background knowledge and scenario 

description. These predictions must then be tested against actual experimental results 

or observations to determine the adequacy of the domain knowledge.

5 .2 .2  R ela ted  W ork

Inference mechanisms for prediction are standard. However, work by desJardins [16, 15] 

has addressed the utility of predictions in the context of an autonomous agent exploring 

and learning about its environment. Implementing a theory of Goal-Directed Lesuning 

(GDL), the PAGODA system determines which features of the world are most useful to 

leam. It appHes a decision-theoretical technique to maximize the u tüity  of learning goals 

(features) eind in so doing, improves the performance of the system.

PAGODA is an im portant first step in considering some of the issues involved in 

determining the relevance of different aspects of the environment. It is, however, limited 

in a number of ways. In particular, utility values are fixed according to the predetermined 

goals of the system so tha t no variation is possible. Maximizing utility, therefore, will 

always result in the szime features being learned. Although MID regards all predictions 

as equally relevant and attem pts to correct all anomalies, it allows different motivations 

to determine different reasoning strategies. Further work might usefully combine the two 

approaches so tha t a representation of the internal motivations of the reasoning agent

78



could determine the expected utility of different features and predictions.

5.3 E xperim entation

In a very general sense, any interaction with the outside world can be characterized as an 

experiment. Striking the keys of a keyboard can be considered to  be an experiment testing 

numerous hypotheses such as tha t pressing the keys leads to characters being displayed 

on the screen, that there is a correlation between the keys pressed and the displayed 

chzwacters, that the characters will be stored in a hie, th a t the keys can be pressed, 

and so on^. In addition, there are semi-explicit experiments in which, for example, the 

tem perature of bath  water is tested with a toe before fully getting in, cartons of milk are 

smelled (and colour checked) before drinking, and so on. Finally, there are those which are 

experiments in the traditional scientific sense, undertaken in a controlled environment. 

All are experiments, and are a necessary part of the reasoning processes which govern 

our actions.

The term  experimentation, however, seems to imply a directed effort at designing, 

constructing and performing experiments with the specific aim of falsifying or attem pting 

to falsify theories. Indeed, it is precisely these attem pts at falsihcation tha t provide the 

information necessary to improve and increase our knowledge about the world. Thus 

it is through active directed experimentation tha t knowledge is tested eind regarded as 

inadequate and in need of revision. The first two kinds of experiment described above 

are passive experiments to a greater or lesser degree, not directed ones, and consequently 

require no effort of design or construction. The third kind is active and directed, and it 

is this kind of experiment that is considered here. There are a number of purposes to 

which experiments can be put: they can be used in an exploratory way to  gather data for 

guiding the formation of hypotheses; they can be used in a directed way to test for the 

falsity or adequacy of a psirticular hypothesis; or they can be used in a discriminatory 

way to distinguish between multiple incompatible hypotheses.

Experimentation can be divided into the three tasks mentioned above: design, con­

struction, and performance. Performance of experiments requires a physical interaction 

with the world. Construction of experiments requires not only physical interaction as

^Note that experiments are not always directed at testing particular hypotheses, and that some are 

purely exploratory as Hacking [34], for example, points out. He claims tha t it is not necessary to have 

an existing theory in relation to which the experiment is ûamed.
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in performance, but also highly developed tools and abilities in order to build the ap­

propriate appziratus. The problem of design is especially difficult, requiring extensive 

background and domain specific knowledge which m ust be applied in an appropriate 

way. It shares some characteristics with the discovery process, in tha t generating designs 

is similar to generating hypotheses [14].

An im portant difficulty with experimentation is the need for a significant amount of 

knowledge to be effective and competent. W ithout using excessive domain knowledge, 

there are severe limitations on the kinds of things th a t can be done. However, there are 

factors involved in experimentation over which we do have influence, and which we can 

control to  direct the experiment design process. These include the potential to:

• determine measurements tha t should be made.

• suggest values for variables (eg. mass of lOg.)

• suggest variations in values (eg. increase in steps of 5g.)

• suggest quantitative changes in experiment design (eg. minimize surface area)

However, such mémipulation is superficial, ignoring the signiflczmt aspects of experiment 

design, but still requiring substantial domain knowledge.

5.3 .1  E xp erim en tation  in M ID

The research described in this thesis focusses strongly on the internal stages of the six- 

stage framework. Because of the limitations described above and the external nature of 

the experimental stage, an experimentation component to the model and implementation 

have not been developed. This is not to say tha t experiments are not used, but th a t their 

design and construction lie outside the scope of the current research. Experimentation is 

necessary, and experiments are used, but they are presented to the system by the user. 

The scenarios described above provide the means for describing an experimental set-up, 

specifying the current world situation. Clearly, this limits the autonomy of the MID 

system in a signiflczint way. However, some argue tha t experimentation is not always 

possible, and tha t reasoning should also proceed in its absence. Lamb [58] notes that:

“Although it is generally advisable to test a theory wherever possible, . . . i t  
is not unscientific to adopt a theory without a test. Scientists just have to 
adopt theories without detailed tests. . . .  This necessitates tha t many short
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cuts have to be taken, tha t many theories have to  be taken for granted. This 
naturally adds to the risk tha t many adopted theories wiU be mistaken. But 
even the most direct knowledge claims are fallible.”

Moreover, in non-scientihc contexts, the empahasis on experimentation is less pro­

nounced. We might distinguish between scientific zmd non-scientific discovery by con­

sidering the effort tha t is necessary or even possible in pursuing experimentation. Ex­

perim entation justifiably occupies an im portant role in science, but in more common 

everyday situations, the same need for designing smd performing directed experiments, 

or the ability to do so, may not exist.

Despite some recent work on experimentation discussed below, the difficult problems 

of directed and controlled experimentation remain, and demand much future work.

5.3 .2  R ela ted  W ork

Rajzunoney’s COAST program [93, 94, 91] does provide an experimentation component. 

It is primarily intended as a mechanism to distinguish between multiple incompatible 

hypotheses or explanations through experimentation-based hypothesis refutation. Three 

strategies for experimentation are used: elaboration, discrimination and transformation. 

Elaboration simply entciils selecting a quantity based on its ease of measurement, and 

refuting hypotheses which do not agree with it. AU the hypotheses may, however, agree 

with the value of the quantity. This is not reaUy experimentation but 2in evaluation of 

the observations with the predictions. Discrimination involves the selection of a quantity 

based on its ability to discriminate between hypotheses. In other words, if two hypothe­

ses do not agree on the predicted value of a quantity, then it should be measured. Agzdn, 

this is evaluation. Only the third strategy, transformation, provides any effective exper­

imentation. If elaboration and discrimination are not sufficient to identify the correct 

hypothesis, then the scenario description can be transformed so tha t elaboration and 

discrimination may again be used in new circumstances. Transformation involves the 

modification of the scenario using a set of trzinsfbrmation operators tha t can modify 

the pcirameters of the scenario so tha t rates of change are different, previously satisfied 

conditions are no longer satisfied, or unsatisfied conditions are newly satisfied. This is 

very limited, éind very knowledge intensive. The basic scenario must be provided to  the 

system explicitly, and in the description of the scenario, extensive domain-dependent 

knowledge is required, specifying those param eters which are easily measurable, discrim-
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inable, and transformable, and other specific knowledge. As a simple measure, the size of 

a description of a small scenario is almost trebled by the addition of the extra information 

needed for experimentation (see [91] for details). Furthermore, this only allows minor 

modifications to a basic design to be made.

Cheng’s STERN program [6, 7], which simulates Galileo’s reasoning strategies, also 

provides an experimentation component. He introduces a framework that character­

izes experiments at three levels of generality: experimental paradigms, experimental 

setups and experimental tests. Paradigms are the m ost general, and involve different 

ways of investigating a phenomenon (eg. the inclined plane paradigm and the pendulum 

paradigm). Setups are instcintiated paradigms with particular experimental apparatus 

and instrum ents. Tests are the most specific, and are instantiations of setups, involving 

precise arrangements of the peirticular apparatus. Each level of experiment is represented 

by a frame with slots for the particular characteristics and param eters of the experiment. 

Four strategies are identified: using experiments to (dis)confirm theories; experiment-led 

generalization to hypotheses; controlling the availability of experiments; and constructing 

new experiments. The (dis)confirmation process entails selecting an experiment, gener­

ating predictions, and comparing the results of the observations with the predictions. 

Alternatively, STERN uses experiments to generate results which are then generalized in 

a similar way to BACON. Controlling the availability of experiments is achieved through 

measures of ease of manufacture associated with each experiment «ind the number of se­

tups. STERN can thus restrict the number of experiments according to how practicable it 

is to do so. Finally, STERN constructs new experiments if existing ones cannot generate 

the necessary data. This is achieved through the combination of existing experiments to 

produce a new integrated experiment such as a combined inclined-plane and projectile 

experiment. The representation of experiments includes input and output param eters 

which are matched when combining experiments. The combination is, however, limited 

in tha t all legal combinations are explicitly specified. STERN’s abilities lie in deciding 

when to  construct a new experiment, and then producing the appropriate frames for it. 

STERN also varies the values of parameters in generating experimental tests.

The lULIAN system for Exploratory Discovery developed by Oehlmann et al. [81] in­

tegrate machine discovery and case-based reasoning techniques in revising causal models 

by means of self-questioning, experimentation, and generation of explanations. Experi­

m entation in lULIAN comprises three phases: design of an experiment, execution of an
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experiment, and evaluation of the experimental result. Experimental design involves the 

utihsation of previous successful designs, and improving a design on the basis of previous 

design experience by using case-based planning. The experiments are stored as cases de­

scribing the problem description and the experimental result. Expectation failures and 

information supplied in response to questions are used to  retrieve stored cases, which can 

be adapted in ways determined by additional questions.

Like COAST and STERN, lULIAN provides useful but definitely limited abilities. 

They Eire capable of limited manipulation of experiment descriptions which allows suf­

ficient variation to  be introduced for their particular purposes. However, much more is 

needed if true design and construction of useful and effective experiments is to be possi­

ble. In particular, the design of experiments in the first instance is im portant if we are 

to progress beyond the limited manipulation currently available.

5.4 O bservation

Once experiments have been designed, constructed and carried out, the results m ust be 

observed. Naturally occurring phenomena must also be observed, as in implicit passive 

experiments mentioned above. On first consideration, it seems tha t observation is simple 

and straightforward, requiring merely tha t the appropriate events be recorded. This is 

naive. Paradoxically, observation is the simplest and the most difficult of the stages in 

the framework. At the naive level, observation simply involves waiting and watching. 

However, there are two kinds of objection to this view which we can call technological 

and theoretical objections.

Technological objections are im portant but straightforward. Observation of the world 

by a machine observer is possible, but still very limited. Although the term  observation 

implies just vision, observation in a broad scientific sense applies to  all perceptual abilities, 

including vision, smell, sound, and so on. The problem of integrating these different 

capabilities, each at an adequate level of efficiency and accuracy is a separate and difficult 

research area of its own, but one which has an im portant bearing on the possibility for 

independent observation as part of a complete architecture. Technological observations 

apply also to hum an observers, in the ability of the actual perceptual organs, and there 

are grounds for questioning the observations of such observers. Humans are also subject 

to limitations and deficiencies in their perceptual abilities. (W hat is or is not observable
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is a related but difficult question [1 2 ], which will not be considered here.)

This is related to the second kind of objection, theoretical objections, so called because 

they refer to the role of the theory in the process of observation. Two observers of equal 

perceptual ability may provide different observation statem ents of the same phenomenon 

depending on their prior experience. Many exzunples are available where the image seen 

by two people is the séime, but their interpretation of it is different (eg. [5]). It is argued 

tha t observation is possible only in the light of some theory, and tha t the observations 

will be expressed (and interpreted) according to  tha t theory. Others such as Hacking [34], 

however, claim tha t theory is not necessary for observation. We will not dwell on the 

issue of the theory dependence of observations, but recognise tha t there is a contentious 

issue here tha t may not be resolved, and which causes difficulties in any discussion of 

observation.

5 .4 .1  O bservation  in M ID

Like experimentation, observation is an external stage in the six-stage framework. In 

MID, observation is modelled by the explicit provision by the user of observation state­

ments to the system as input. (Observation cannot be entirely divorced from the eval­

uation stage, since they are to some extent interdependent, but the distinction is clear 

enough for them  to be treated separately.) After the stages of prediction and experimen­

tation, the observations are provided and then compared with the generated predictions.

Observational 
Data >

□ □
Predictions Observation

Recorded
Data

Observationso o o

Figure 5.3: Observation in MID 

In the event tha t there «ire predictions without corresponding observations (evaluated
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Enter observations (end with return alone):
> increase (heat std-object2)
>
Is the following prediction observed?: decrease (heat std-objectl)

Figure 5.4: Checking observations through prediction in MID

appropriately), however, MID will attem pt to  re-observe by prompting the user for the 

appropriate observations. This allows observation to  be directed in the way th a t it is 

in real world scenarios, where expectation failures often ensure a more accurate check 

on observations. Moreover, it introduces the notion of relevance^ sdbeit in a limited and 

incomplete way. Although the external observer is prim arily responsible for determining 

which events are relevant to the phenomenon under investigation, this demands tha t 

all predictions are regarded as relevant. Thus MID provides two kinds of observation: 

observation of naturally occurring phenomena, and observation of controlled phenomena. 

Figure 5.3 illustrates MID’s observation mechanism.

In the example introduced earlier, two predictions were generated. Now, if only one 

of the corresponding events in the world is observed, say, then the user (observer) is 

prompted for the missing observation. This is shown in Figure 5.4.

The observation stage also entails recording the details of the observations for subse­

quent use in providing a measure of the evidential support of theories, and in maintaining 

historical consistency (see Chapter 8 ). In practically all other work on autom ated dis­

covery, observation is implicit, and no distinct consideration of observation is typically 

given. This may not be a problem in the short term  when the role of observation will be 

limited by technology. However, it fails to recognise the distinct role of observation (or 

data-gathering) in the real world, and thus lacks completeness. In addition, it ignores the 

potential of future development which may allow the integration of separate observation 

components into other systems.

5.5 D iscussion

Note th a t use of the scenario description for prediction implies the existence of an ex­

periment at this initial point. Particular predicted effects are generated in the context 

of an experiment. Thus the stages of prediction and experimentation are connected, and 

their ordering is not strict. In the implementation of MID, the ordering might be differ-
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eut, and prediction might be delayed until the point of observation when a comparison 

with predictions needs to be made. The six-stage framework, however, in considering 

issues beyond this particular implementation, establishes a basis for this ordering. Con­

ceptually, predictions follow from a theory, and it is those predictions tha t are tested 

by experimentation. When implicit passive experiments take place, the prediction (or 

expectation) exists before the experiment is performed.

The consideration here given to the first three stages of the framework has taken 

an external and empirical viewpoint. It should be apparent, however, tha t the stages 

of prediction, experimentation and observation are ju st as suited to systems where the 

stages are not external, nor explicit. In concept formation, for example, the prediction 

that each new instance presented will be accounted for by the current concept descriptions 

is implicit. Experimentation and observation involve the generation and presentation of 

the instance to the system.

In this chapter, we have discussed the first three stages of the six-stage framework in 

some detail, and described their instantiation in MID. Prediction and lim ited observation 

capabilities have been implemented, but experimentation has been om itted due to prob­

lems of excessive amounts of knowledge tha t would be required for an effective system. 

This concept of experimentation is, however, limited. P ro v id in g directed and controlled 

design and construction of experiments restricts the possibilities substantially. By leav­

ing this stage open, many options are available, including the observation of naturally 

occurring phenomena and other alternatives which allow the acquisition of experimental 

data from different sources.

Although the focus of the research described in this thesis is not centred around exper­

im entation, its relevance and significance is appreciated. Indeed, the six-stage framework 

shows the relation of the experimentation stage to the rest of the inductive programme. 

Work addressing the design and construction of experiments is progressing, and the 

framework provides a basis for the integration of this and subsequent work. Thus al­

though experimentation is not addressed in detail here, there is an awareness of the 

‘bigger picture’, smd the current work has been undertsdcen with tha t in mind.
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C hapter 6

Evaluation o f E vidence

Our Nature of Scientific Activity teacher explzdned 
tha t with scientific theories 
NEAR is
sometimes close enough. . . .
. . .  Applying this idea
to what is printed here
adequacy might say
‘I t ’s there in black and white’,
whereas I think the tru th  would rather say
two shades of grey
of which one’s extremely light.

— John Hegley, The Difference Between Truth and Adequacy

6.1 Introduction

The role of the evaluation stage in the framework is essentially to determine whether 

or not the current theory or hypothesis under consideration is refuted by the observed 

evidence. At the most basic level, the decision is simple: if the evidence supports the 

theory, then there is no refutation; if the evidence contradicts the the theory, then the 

theory is refuted. In the vast majority of existing com putational models of scientific 

discovery, this is the norm. Yet this notion of evaluation with a decision between the 

falsification of a theory and its continued use, is naive [5]. I t ignores the possibility of error 

which is prevalent in most real world domains, and which can have a serious detrimental 

effect on the reasoning process. We identify two distinct problems: evaluation of evidence 

with respect to the possible error, and evaluation of theory in relation to  th a t evidence 

through evaluation of prediction and observation. We refer to the evaluation of evidence
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in order to avoid confusion with the theory selection stage (sometimes labelled evaluation) 

which is discussed in Chapter 8 . Thus there are actually two m ain parts to evaluation:

• The evaluation of evidence.

• The evaluation of prediction.

There are many reasons why incorrect or inconsistent knowledge may be encoded in 

a domain theory. A number of alternative classifications of defective theories have been 

proposed by Rajamoney and DeJong [89], Mitchell et al. [80], Ellman [18], and others. 

There are three m ain kinds of problem: completeness, correctness, and intractability. A 

domain theory is incomplete if it fails to  explain or predict observations. The theory 

might be correct as far it goes, but lacks some knowledge which results in an inability 

to generate the appropriate predictions. A domain theory is incorrect if it leads to the 

generation of incorrect predictions or multiple inconsistent predictions. It is intractable 

if it cannot generate predictions without consuming inordinate com putational resources. 

The distinctions between these problems can often become blurred. In some systems, a 

theory missing some knowledge may generate predictions tha t would be considered incor­

rect in the presence of tha t knowledge. Intractability might manifest itself in the same 

way as incompleteness problems if no predictions can be generated. It m ight manifest 

itself as incorrectness if assumptions are used to  simplify the theory. Thus we have a 

whole range of theory problems which are identified through comparison of predictions 

and observations.

We are only able to correctly identify and address these problems, however, given an 

appropriate evaluation of evidence. In considering the evaluation of evidence through 

analysis of error and uncertainty, it is clear tha t inadequate evidence can lead to the 

incorrect identification of faults in the domain theory. The need for the possibility of 

the rejection of evidence is thus im portant. It can be seen in the common practice of 

experimenters who often need to reject some of their da ta  because of unreliability. In 

any real situation, the possibility of error in a variety of forms arises, and has im portant 

consequences for the rest of the inductive programme.

This chapter addresses the issues involved in the evaluation of evidence which deter­

mines the input to  the subsequent stages of the framework. We begin by considering the 

kinds of error tha t can arise in the process of acquiring data, and establish a classification 

tha t entails four dimensions of uncertainty as a result. Next, the notion of acceptabil­
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ity  of evidence is introduced, and the relation of acceptance to im portance is discussed. 

This leads to the development of a model of evidence evaluation, which is specified using 

the previously introduced ideas. Finally, we discuss how the evaluation of evidence is 

influenced by motivations, and show how motivations can control the entire evaluation 

procedure through a simple mechanism.

6.2 Error and U ncertainty

As we have seen, the six stages of induction can be split in to  two groups:

• External stages entailing experimentation and observation

• Internal stages entailing prediction, evaluation, revision and selection

Expenm entation involves the manipulation of real world scenarios through the design and 

construction of controlled experiments in a suitable environment. Observation^ though 

somewhat more passive, is also involved in interacting with the external world and serves 

as an entry point for evidence into the system. Any interaction w ith real-world scenarios 

m ust adm it the inherent uncertainty (in a broad sense) th a t pervades experimentation 

and observation. Hon [42, 43], locates four sources of error: laying down the theoretical 

framework of the experiment; constructing the apparatus smd making it work; tsdcing 

observations or readings; and processing the recorded data  and interpreting them. We 

have already noted some of these in the previous chapter. Problems with the theoretical 

framework involve background theory rather than  the object domain theory. We can 

reduce these kinds of error from the broader classification of uncertainty as experimental 

error and observational error to  more definite dimensions which we examine below.

6 .2 .1  R eliab ility

Evidence m ust be observed (or perceived in some way), and it must be observed (or 

perceived) by a source. Reliability is a measure of the ability of a particular source of 

evidence as the interpreter and recorder of th a t evidence to  provide correct observation 

statem ents. Any source of observations, be it a hum an observer or a machine, is nec­

essarily imperfect, resulting in some degree of variation in the reliability of tha t source. 

Reliability here is used in a very specific sense, referring only to the ability of a named
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source in a particular situation to provide accurate observation statements of the phe­

nomenon under investigation. The reliability of a source is in  question for many reasons 

at different levels. A hum an observer, for example, may have poor eyesight which could 

result in the introduction of doubt into observations. In the case of a machine observer, 

analogous dif&culties arise with considerations of the equipment used, such as the quality 

of lenses, and so on. The raw data of observation m ust also be interpreted and recorded 

to produce comprehensible evidence, and this conversion firom sense perceptions to  ob­

servation statem ents is another process susceptible to  unreliability. Reliability is thus 

related to  the objective abilities of a particular source independent of the status of the 

observed evidence.

6.2 .2  T ru stw orth iness

Trustworthiness can be defined as a measure of malicious intent on the part of the in­

formation source. A source of information, even if it is absolutely reliable in terms of 

its ability to observe, might still provide uncertain evidence because of an intention to 

mislead. An independent agent acting as observer and providing input to a system in 

the form of observation statements has its own gocds and motivations which do not nec­

essarily correspond to  those of the reasoner. Garigliano et al. [26], for example, use the 

case of buying a second-hand motor-bike to illustrate this. A used-bike dealer has a 

definite financial advantage in selling a bike and will therefore present it as favourably as 

possible. He might try  to sell it without taking on any responsibilities but alternatively, 

if he is concerned for his reputation, he might give a guarantee. The evidence tha t he 

provides in attem pting to sell a bike thus comes into question given his aim of getting a 

good deal. Buyers would only accept his evidence if confident tha t the dealer does not 

intend to cheat them. The problem of judging the dealer’s trustworthiness is independent 

of problems of his reliability, since one might believe th a t he is fully aware of the true 

state of a particular bike, but is not inclined to  share th a t knowledge. This is related 

to and also provides a way of dealing with the notion of bluff [67] which is prevalent in 

domains of game-playing and military strategy where agents also intentionally mislead 

others. Trustworthiness is thus an evaluation of the motives of an observing agent which 

are not necessarily the same as one’s own.
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6 .2 .3  A ccu racy

Accuracy is a measure of the uncertainty arising through the evidence itself or in the 

m ethod of obtaining tha t evidence, independent of any problems associated w ith an ob­

server. In addition to the difficulties arising from the abilities and the nature of the 

observer, we can consider the phenomenon itself under investigation through experimen­

ta tion  in some form. Direct sense-perception in many instances is inadequate, especially 

in scientific domains, and phenomena m ust be observed and quantities measured using 

a variety of instrum ents and devices of varying accuracy. Microscopes, telescopes, rulers 

and other such tools are commonplace and provide the basis for observation, yet they 

all have limits to their accuracy. A microscope for example, has a finite degree of mag­

nification beyond which things cannot be observed, and it also adm its the possibility of 

inaccuracy due to faults in the lenses and so on. This kind of error occurs at a different 

conceptual level to th a t described above to illustrate the reliability of a  machine observer. 

Here, the lens contributes to  the accuracy of the data  itself. As an alternative example, 

consider standing at a bus-stop and looking at the front of a bus as it approaches to  see 

what number it is. While the observer may be perfectly reliable and trustworthy, the 

number of the bus may be partially obscured so th a t only the top part of it is showing. 

It then becomes very difficult to distinguish between a number 19 or a number 18 or a 

number 1 0 , for example. Here again, the evidence th a t is available is itself insufficient. 

Accuracy is the traditional dimension of uncertainty th a t is considered in evaluating 

evidence, and is most usually addressed by the provision of simple error tolerances.

6 .2 .4  C red ib ility

Credibility is a measure of the uncertainty tha t arises through conflict with established 

constraints and prior beliefs. Although the observer m ay be reliable and trustworthy, and 

the data  accurate, this does not deal with the case of exceptional circumstances when 

the evidence violates normal constraints. These violations include problems caused by 

such things as hallucinations, mirages, optical illusions and so on. W hat is needed is a 

measure of the degree of credibility associated with such observations. For example, the 

degree of credibility associated with the observation th a t John is flying around his office 

is very low (since this is more likely to be an hallucination). Alternatively, when watching 

a magician, the observation tha t a lady has been sawn in  half is also not very credible. To
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some extent, credibility is dependent on the expectations tha t are derived &om existing 

theories, and acts as a form of conservatism. The degree of credibility will also depend on 

the strength with which these theories are held. Strongly held theories which conflict with 

observations will produce low credibility, while weak conflicting theories (including the 

current theory) will not affect credibility as greatly. In this respect, it reflects concerns 

with the theoretical firamework noted earlier. Measures of credibility thus reduce the 

value of evidence tha t is highly suspect through tricks of nature.

6 .2 .5  Sum m ary

Simple numerical measures of accuracy alone provide no information as to the circum- 

stcinces in which error has originated. Our concern is w ith the acquisition of knowledge. 

As such, it is im portant to locate sources of error so th a t confidence in those sources 

in future situations may be adjusted in the light of the results of the current reasoning 

process, as well as coping with the uncertainty th a t currently exists. This contrasts with 

the use of simple error tolerances which assume a Gaussian distribution of results, an 

assumption which may not be justified, and which provides no useful information about 

the uncertainty itself.

Because of the different kinds of error and uncertainty th a t can arise, evidence cannot 

simply be accepted and used to refute or support a theory. An evaluation of observa­

tions received as evidence is necessary in order tha t the character of the evidence can 

be assessed and accepted or rejected as the situation demands. The following section 

addresses the issue of how to use these four dimensions to  determine whether or not a 

theory or hypothesis is refuted by the observations.

6.3 A cceptab le E vidence

Although we have identified four dimensions of uncertainty in evidence, the question 

of how reliable, trustworthy, accurate and credible evidence must be before it can be 

accepted and used to reason about the world remains to  be answered.

On considering this issue, Levi [71] suggests a strong concept of acceptability:

“Our beliefs guide our conduct by furnish ing a criterion for distinguishing 
between logical possibilities which for all practical and theoretical purposes 
may be utterly  ignored. In ignoring such logical possibilities, we set the risk 
of error involved in acting as though they were false at 0 . In this sense, we 
cire certain tha t they are false.”
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Although this is part of a larger debate concerning other issues, Levi’s point is cer­

tainly valid here. The acceptance of observations as a  basis for reasoning confers upon 

them  a status beyond a mere value of likelihood or certainty; they are accepted as being 

true. Similsirly with the rejection of observations, which to  aU intents and purposes are 

false rather than  merely very unlikely or uncertain.

6.3 .1  C onfidence

The notion of the acceptance of evidence leads to  a two-way split of evidence into that 

which is sufSciently good to  be used, and th a t which m ust be rejected. Suppose th a t the 

four dimensions described above can be combined in some way to form a single measure 

for evidence, confidence. Now it can be said th a t if we have sufficient confidence in 

some evidence then th a t evidence is acceptable and m ay be adm itted. If not, then the 

evidence m ust be rejected outright and re-observed (possibly involving a new or repeated 

experimental set-up). This means tha t there is a point of commitment to evidence beyond 

which observations are accepted in full and before which they are rejected outright so 

th a t the need to m aintain large amounts of da ta  on the certainty of propositions (theories 

and data) throughout the reasoning process is avoided.

We define C(e), the confidence in a piece of evidence, e, to  be a function on reliability, 

r , trustworthiness, t, accuracy, a and credibility, c, as follows:

^(«) = /(r ,^ o ,c )

6 .3 .2  A ccep ta n ce  T hresholds

Now, in order tha t a piece of evidence, e, may be considered acceptable, the confidence in 

it, C (e), m ust exceed some limit, the acceptance threshold, Caaxpti which marks the degree 

of confidence tha t is required for acceptance. However, this threshold value cannot be an 

objective quantity since the degree of confidence required in any given situation is clearly 

dependent on the motivations of a reasoner w ith reference to  possible consequences of 

incorrect decisions based on the acceptance of faulty evidence. Consider taking a tra in  to 

Scotlzmd today for a business meeting. Since the meeting is very im portant, a high degree 

of confidence in the acquired evidence is necessary in order not to  be late. This might 

mean rejecting the evidence provided by a co-worker, bu t accepting the evidence provided 

by the railway authorities about the times of trains. Alternatively, if there is a party  

rather than  a  business meeting, it is more reasonable to  accept the evidence of a &iend,
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since even if tha t evidence is incorrect, being late for a party  is not very im portant. These 

examples illustrate the relation between the im portance of the situation and the degree 

of confidence required. Consideration of motivations can provide a simple measure of the 

im portance of any given situation which can then be used to  determine the appropriate 

acceptance threshold value.

Confidence
Threshold

Confidence Limit

Importance

Figure 6 .1 : The relationship between confidence thresholds and im portance

Figure 6.1 shows the relationship between im portance and acceptance threshold values 

of confidence. W ith low importance, the acceptance threshold is also low since evidence 

with a lower degree of confidence is acceptable in such cases as in  the party  scenario 

above. As im portance increases, so does the acceptance threshold in a uniform way 

up to  a point when a confidence limit is reached where confidence increases very little 

if at all. Total confidence in empirical evidence is impossible due to the various ways 

in which im certainty may be introduced as discussed earlier. Although confidence may 

be improved by using more reliable observers and tools, the possibility of error cannot 

be entirely eliminated. The confidence limit on the graph acknowledges some degree of 

uncertainty while avoiding the problem of paralysis of action. W ith high importance, 

therefore, the acceptance threshold tails off into a plateau so tha t the evidence can be 

accepted in order to continue to the other stages in the reasoning process. W ith  low 

importance, there is another plateau, this tim e to  avoid the case of reasoning based on 

evidence with no confidence despite the lack of im portance. The points on the graph at
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which the limits meet the m ain slope are sharp, allowing a  simple model to be constructed. 

An alternative view could have the slope curve smoothly into the limits.

6 .3 .3  A ction  P o in ts

Although the upper confidence limit above prevents a paralysis of action in  situations of 

high importance, this fails to  consider issues of urgency. Time is often a factor in  critical 

situations of importance, and it may not be reasonable to  reject evidence th a t falls short 

of the threshold with such time constraints. Examples might include the systems in 

a nuclear power plant, or in an aeroplane which has experienced some sort of failure, 

and so on. In these cases, importance is high, but tim e is also severely limited, and 

the confidence plateau may still be too high for the available evidence. To deal with 

this, there must be an action point which is determined by the urgency of the situation, 

and which allows reasoning to  be based on evidence w ith a low degree of confidence 

— lower than the acceptance threshold for confidence. This action point is usually the 

same as the acceptance threshold because if there is no (or low) urgency, then there is 

no need to accept suitably uncertain evidence. As urgency increases and approaches a 

critical level, the action point decreases so th a t less and less confident evidence may be 

accepted in order to act. Note tha t a (high) degree of urgency implies tha t the reasoning 

is motivated for action. In fact there will always be urgency to a greater or lesser extent 

when reasoning to satisfy action motivations.

(The roles of im portance and urgency have also been recognised by Sloman [113] in 

developing a computational theory of mind, but they are more thoroughly developed 

below.)

Whenever evidence is accepted, the m anner of its acceptance is relevant to determin­

ing how it may be used. If poor evidence is accepted when reasoning for action, then 

it is used to provide a locai update to the domain theory for the current situation only. 

It is used for temporary revision rather than  perm anent revision so th a t the need for 

action can be satisfied, but w ithout compromising the need to m aintain a correct and 

consistent domain theory. Further or better evidence m ay subsequently be obtained for 

use in generating a permanent revision. This is discussed in greater detail in Chapter 8  

on selection.
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6.4 A  M odel o f Evaluation

The requirements of a system for evaluation have been discussed in general term s above. 

This section provides a more formal model of evaluation. F irst, it is necessary to  specify 

the four param eters of uncertainty: reliability, trustworthiness, accuracy and credibility. 

Reliability, r ,  and trustworthiness, t, are defined to take values in the interval between 0  

and 1 .
r e  [0,1]
«6  [0, 1]

The upper lim it of 1  denotes perfect evidence without any possibility of error, while 

the lower limit of 0 denotes evidence th a t is perfectly incorrect. 0.5 indicates evidence 

which there is no reason to believe or disbelieve in terms of its reliability or trustw orthi­

ness. Thus values ranging from 0.5 to  1  indicate increasing degrees of support for the 

evidence, while values ranging from 0.5 to 0 indicate increasing degrees of support against 

the evidence. These lower values provide strong reasons for the rejection of evidence since 

the evidence is judged to  be not merely uncertain, but misleading.

Reliability and trustworthiness are both  attributes of a source of observations, smd 

allow the possibility not only of uncertainty of their correctness, but edso of uncertainty 

in their incorrectness. In other words, the observations provided may not merely be 

approximate, but deliberately m islead in g  as discussed earlier. It is easy to see this in the 

case of trustworthiness, for it might be expected tha t a source will attem pt to  mislead, 

in which case the param eter value will be below 0.5. W ith reliability, however, this 

is less obvious, since it is a measure of the ability of a source. Consider, though, an 

observer who has no medicious intent (so tha t trustworthiness takes a high value), but 

who provides evidence with no basis in observation. Instances of this will be rare, but 

are nevertheless plausible. For example, in response to requests for information (such as 

the time of the last train  to  Scotland), people often guess answers. Mostly, there is some 

basis in experience for this, but sometimes there is none, or the experience may be so far 

removed and irrelevant tha t the evidence m ay be judged to  be not so much approximate 

as incorrect. This is exacerbated in extreme cases, such as m ental disorder, for example, 

where sources are trustworthy (in the sense of no malicious intent), but are unreliable to 

the point of providing totally false information.

Thus in evaluating binary evidence, very low values for trustworthiness and reliability 

may also provide a basis for acceptance, since the opposing evidence m ay be assumed
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to  hold. This work does not consider binary evidence, however, and the issue is not 

addressed further.

Accuracy, a, and credibility, c, as attributes of the phenomenon itself take vsdues &om 

the interval between 0  and 1 .
a €[0,1] 
c € [ 0 , l ]

The upper limit of 1  denotes perfectly accurate or credible evidence, while the lower limit 

of 0 denotes no degree of accuracy or credibility at aU. Note tha t these are attributes of 

the phenomenon, not of its m anner of observation.

Note th a t the meaning of the values for each of the param eters of uncertainty is 

relative and lies in  its comparison with other vzilues. Thus a  value of 0.5 for accuracy, for 

example, means only tha t it is more accurate than  a value of 0.4, and less accurate than 

a value of 0.6. It is possible however, to use a  particular interpretation of these values, 

and treat them  as probabilities, say, so tha t a value of 0.5 for accuracy would take on the 

meaning of a 0.5 probability of perfect accuracy. In the current work, however, no such 

interpretation is used. The only significance of the values is in the ordering they impose 

on the associated evidence.

Given values for each of the four param eters of uncertainty, we can define confidence 

by some function which combines them. The confidence, C , in a piece of evidence, e, is 

defined below, where /  is a function tha t combines positive values into a single measure 

for confidence. Note tha t if reliability or trustworthiness have values less than  0.5, then 

the confidence is zero. By leaving the function /  unspecified, different ways of combining 

the values of uncertainty are possible.

p /  X _  f 0 , if  r  <
\  others

0.5 o i t < 0.5 
otherwise

Now we can define an acceptance threshold^ Caccepu which is the amount of confidence 

required for acceptance of the evidence in order to  be able to  act on it. This is proportional 

to the importance of the current situation, denoted by the importance indeXj X. However, 

w ith high importance, confidence will not increase proportionately. Similarly, w ith very 

low importance, some TniniTmim degree of confidence is necessary. Thus we have:

^accept
^ m a x i  ^  ^  ^ m a x  
^ m im  ^  ^  ^ m in
J ,  otherwise

The im portance index, J ,  is drawn from the interval 0  to  1 . 2 ” € [0 , Ij. The upper limit of 

1 denotes supreme im port since, while 0  denotes no im portance at all. Particular values
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used derive their significsmce from comparison with other values of im portance in the 

same way as for the dimensions of uncertainty. Thus a value of 0.5 indicates greater 

importance than a value of 0.4, but less im portance than  a value of 0 .6 . Importance is 

calibrated by reference to  confidence and the dimensions of uncertainty. The value of the 

importance index is significant in the level of confidence demanded, and by extension in 

the degree of uncertainty perm itted.

Finally, an action point can be defined by introducing the urgency U associated with 

the scenario which is also drawn from the intervsd 0 to  1. ZY € [0 , 1 ]. The upper limit of 

1  denotes maximum urgency, and demands immediate attention, while the lower limit of 

0  denotes minmum or no urgency. Uum, is a lim iting value for urgency below which no 

reduction to  the acceptance threshold is necessary.

p   ̂   \  ^accept > i f  14 K. t4lim
action -  ^ Caccep(.(l -ZY), otherwise

Acceptance thresholds and action points bear some similarity to  M arsh’s cooperation 

thresholds which also use importance in deciding when an agent should cooperate with 

another in order to  achieve its goals [78]. However, it is not clear how measures of 

importance in his model are derived. In the discussion of an implementation below, the 

origin of im portance is addressed through the use of motivations in the reasoning agent.

6.5 E valuation in M ID

The model presented here is implemented in MID. W hen evidence is supplied to  the 

system, it is evaluated according to the specification above. If it is deemed acceptable, 

MID uses it as appropriate. If not, then MED needs better evidence. Details of the 

instantiation of the model in MID are given below. The organisation of evaluation in 

MID is summarized in Table 6 .1 .

6.5 .1  Sources o f  U n certa in ty

Accuracy and credibility are dimensions th a t are associated with a particular scenario 

experiment. This m ay be because of the instrum ents th a t are used in the scenario, or 

because of the nature of the scenario (a magician’s stage performance, for example,) 

as described above. In both  cases, accuracy and credibility are by definition factors of 

the scenario, and do not vary within tha t scenario. Their values are obtained w ith the 

scenario description.
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Input includes domain values, <  A, Cmo*, > (where A is the domain theory),
and a scenario, < 5,a,c,ZY > (where S  is the scenario, a the accuracy, c the credibility, 
and U the urgency).

1. Obtain a set of observations, < O i , r , f  > where Oi are the observations, r  is the 
reliability of the observer and t the trustworthiness of the observer.

2. Calculate the acceptance threshold, the action point and the confidence in  the 
evidence for those observations.

3. If the evidence is acceptable, then compare the observations with the predictions 
and proceed to  the other stages of reasoning.

4. If the confidence does not exceed the action point, then:

• Get new observations with acceptable values for reliability and trustw orthi­
ness, <  C?2 , r , t  >.

• Calculate the acceptance threshold, the action point and the confidence in the 
evidence for those observations.

• If the evidence is acceptable, then compare the observations with the predic­
tions and proceed to the other stages of reasoning.

• If the confidence does not exceed the action point, then request a new scenario 
with new values of accuracy and credibility, and go to  step 1.

Table 6 .1 : Algorithm for evaluation of evidence

Reliability and trustworthiness differ in tha t they are factors of the observer, (again 

as described above,) and as such are associated with the observations themselves. In 

the real world, a whole set of observations will usually come &om the same observer 

at once, and can therefore be evaluated at once without needing to  consider individual 

observations. Grouping observations together strengthens the concept of an observing 

agent in comparison to  the idea of multiple independent observations which is a less 

natural view of the world. An observation itself, being a record of the interaction of 

an observer w ith an uncertain world, has no special characteristics th a t can identify it 

as inadequate. It is only by evaluating the observer and the world th a t the resultant 

observations can be assessed. Thus, when we reject observations, we actually reject the 

observer responsible as the source of the inadequacy, and perhaps also the scenario as 

the environment responsible for the inadequacy.

The replacement of an observer entails new values for reliability and trustworthiness. 

An observer m ust be replaced when low values of reliability or trustworthiness contribute 

to an unacceptable level of confidence in the evidence. Similarly, the rejection of one
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origin parameter
scenario Accuracy

Credibility
observer Reliability

Trustworthiness
domain Confidence limits

Urgency limit
motivations Importance
scenario Urgency

Table 6.2: Param eters of evaluation and their origin.

scenario and its replacement by another involves the replacement of values of accuracy 

and credibility, and only when existing values cause inadequate levels of confidence.

Maximum and miniTmim degrees of confidence sure fixed by the domain under inves­

tigation, defining the practical limits of acceptability of evidence. Theoretical absolutes 

csumot be attained in real world scenarios, and these delimiting degrees of confidence as 

parameters of a particular domain, serve to  avoid paralysis of action in extreme cases. 

In addition, the domain also specifies a lim it for urgency, Uumt above which urgency is 

introduced into the requirements for acceptability.

Table 6 . 2  summarizes the origins of uncertainty, confidence limits and motivational 

values. Note tha t the scenario is shown in the table twice; first as determining values of 

accuracy and credibility, and second as determining a value for urgency.

6 .5 .2  Im p ortan ce and M otiva tion

The im portance tha t is attached to particular circumstances is responsible for determin­

ing the required level of confidence for acceptance of evidence. Importance is a  subjective 

factor. W hat is very im portant to  one person is not as im portant to another in the same 

situation. In the train  tim etable example given earlier, it is clearly less im portant to 

one’s colleague than  to oneself to catch the train  on time. At the same time, there is 

an independent factor which affects such considerations, namely urgency which can be 

considered as a param eter of the scenario itself.

Although variable, importance is strongly related to  the goals th a t demand action 

and reasoning, and by extension, to  the motivations th a t specify goals. Regardless of 

the kind of situation (the domain theory, scenario, etc.), the im portance is a function
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of the strength of motivation to act (or reason) in th a t situation. Thus the stronger 

the motivation, the greater the importance, and the more confidence is necessary for 

acceptance of evidence.

Now, as defined in Chapter 3, motivations are represented as a  set of m-triples of the 

form < m, Vf b >  where m  is the motivation, v is its strength value, and 6  is True if the 

strength is fixed (and False otherwise). We define the importance indeXj J ,  as follows:

X =  hVffifxt t

where & i s a  proportionality constant, and Vmas is the salient motivation in M  for the 

given autonomous reasoning agent or ARA (in this case, for MID). (Recall th a t the salient 

motivation is the motivation with the highest strength value. Thus Vmnn is the maximum 

value of V in M .) The ARA can be said to  be reasoning under this motivation and, 

consequently, its strength is representative of the im portance attached to  the reasoning 

undertaken in order to satisfy th a t motivation. The stronger the motivation, the more 

tha t motivation needs to  be satisfied (for unsatisfied motivations grow stronger and will 

subsequently demand stronger and possibly greater action) and the more im portant it is 

tha t the reasoning process should be successful. This requires greater effort in term s of 

time and resources to  be spent on evaluation in order to  avoid the consequences of an 

undesirable failure. Thus motivation determines im portance, im portance determines the 

acceptance threshold, and the acceptance threshold determines whether or not evidence 

is acceptable.

In MED, the vzdues of the motivations are normalized so tha t the value of k is 1 , and 

the im portance index can be derived directly from the salient motivation.

Urgency, by contrast, is related to  the situation itself, regardless of the im portance 

tha t any individual attaches to it. In situations tha t demand immediate attention, the 

need to act is very strong. This is because urgency is related to action motivations which 

are high when salient. It is also related to  im portance, because urgent situations will 

increase the im portance through heightened motivations. Importance and urgency each 

provide a complement to the other, one deriving its significance from the motivations 

of the ARA in a particular situation, the other fiom  the situation itself. This notion 

of im portance and urgency is similar to the idea of Maes [77] in which behaviour is 

determined both  by motivations and goals on the one hand and by external observation 

on the other. It provides for the ability to respond based on both internal and external 

considerations.
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importance urgency ^action ^  ^action
high high mid-range reject observations
high low high reject observations 

and scenario
low high low not possible
low low low reject observations

Table 6.3: Summary of rejection of evidence behaviour 

6 .5 .3  R ejec tin g  E v iden ce

In MID, the function, / ,  for combining the different param eters of uncertainty to  

obtain a value for con^dence involves the multiplication of the four dimensions reliability, 

r , trustworthiness, t, accuracy, a and credibility, c:

/(r ,f ,a ,c )  = r x t x a x c

(Other functions are possible, but this is chosen for simplicity.) The values for confidence 

resulting from this function may be relatively low at an intuitive level. It should be 

stressed tha t the value itself is m eaningful only so far as it determines whether or not 

evidence is acceptable, by comparison with the acceptance threshold and action point. 

Thus it would not be correct to say tha t a confidence value of 0.2 is low or th a t a value 

of 0.7 is high, but only tha t they are or are not acceptable. The meaning of the values is 

determined in relation to  the motivations of the reasoning agent, and is high or low only 

in tha t respect.

Using the above function, MID determines whether the supplied evidence is acceptable 

or not. If MID finds tha t the evidence is not acceptable under the circumstances, then 

some element of it may be rejected. The rejection of evidence is strongly dependent 

upon im portance and urgency. In situations with some urgency, only observations can 

be rejected, since the urgency of the situation demands th a t th a t particulzu situation be 

addressed. If urgency is not high, then with high im portance, the scenario itself can be 

rejected if necessary. Rejection of the scenario is not usual, and is only allowed if  there is 

no sufhciently reliable and trustw orthy observer in the original scenario. MID’s behaviour 

is summarized in Table 6.3. Note tha t when rejecting a scenario, the observations are also 

rejected. Note zdso tha t in  the case of low im portance and high urgency (higher than  

the lim it for action thresholds), the confidence level cannot be lower than the action 

threshold value. Once MID finds tha t the evidence is acceptable it is used to  reason 

about the current phenomenon.

102



6.5.4 An Exam ple

Suppose we have a domain, < A, 0 .9 ,0 .1 ,0.7 > so tha t values of Cmaa and are 0.9 

and 0.1 respectively, and Unm is 0.7. Now, given a scenario in which relatively accu­

ra te  evidence can be observed, and which has no special features reducing its credibility, 

<  5 ,0 .8 ,0 .9 ,0 .4  > , (accuracy is 0.8, credibility is 0.9 and urgency is 0.4), and an observer 

who is relatively reliable but less trustw orthy (values for reliability and trustworthiness 

of 0.9 and 0.8), we can calculate the confidence in the evidence. Using the simple m ulti­

plication function in MID, this is (0.9 X 0.8 x  0.8 X 0.9) =  0.52.

The urgency of the situation (0.4) is below the limit for the domain (0.7), so the action 

point reduces to the acceptance threshold. Now, suppose tha t the salient motivation 

in MID has a moderately high strength value of 0 . 6  which determines the importance 

index. This lies between the confidence limits, so the acceptance threshold is simply the 

im portance index which is 0 .6 . At this point, we know th a t the observations are not 

acceptable since the confidence (0.52) is below the acceptance threshold.

New observations are needed, and we can specify a requirement on the acceptable 

level of uncertsdnty tha t is introduced because of the observer. We know th a t accuracy 

and credibility are 0.8 and 0.9, and the acceptance threshold is 0.6, so we can require 

a combined value of not less than 0 .6/(0 . 8  x  0.9) =  0.83 for the uncertainty due to 

the observer. Subsequent evidence is provided by a completely trusted observer with 

values of 0.9 for reliability and 1.0 for trustworthiness, giving a value of 0.9 for observer 

uncertainty, and 0.65 for combined confidence. The observations are therefore accepted. 

If it was not possible to exceed the threshold, then the scenario would have to  be rejected 

and replaced with one whose values for accuracy and credibility would allow acceptance.

Note th a t the numbers themselves have no inherent meaning. They are significant 

only in determining whether evidence is acceptable, and whether action can be taken.

6.6 D iscussion

6 .6 .1  R e la ted  W ork

Most work on scientific discovery has considered the evaluation stage only implicitly. 

W hen it has been recognised, attention has been focussed merely on the simple compari­

son of observations with predictions in order to  determine whether a failure has occurred
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by simple matching. We will briefly consider how the systems described in Chapter 2  

address evaluation. Rajamoney's COAST has no explicit evaluation component at all, 

and ignores the issues addressed here. The BACON systems by Langley et al. incorporate 

a m in im al recognition of the im portance of evsduation by using a simple flxed percent­

age error tolerance on the numerical data  tha t is used. Also, BACON’s architecture 

constrains the nature of the hypotheses tha t can be generated, so tha t no comparison 

of predictions and observations need be made, because only consistent hypotheses are 

considered. In Klahr and D unbar’s SDDS one of the three components of the top level 

architecture is devoted to evaluating evidence. They consider the rejection of the hy­

pothesis, acceptance, or as a th ird  possibility, the need to acquire more evidence and 

reassess the situation due to the current evidence being inconclusive. There is however, 

no elaboration as to what amounts to inconclusive evidence, and as mentioned earlier, no 

implementation. Reimann’s HDD, while acknowledging the role of evaluation as one of 

his flve steps, makes no distinction between approximately correct and wrong predictions, 

so tha t evaluation is again reduced to a simple comparison process.

The KEKADA system of Kulkami and Simon, in attem pting an accurate construc­

tion of historical discovery, allows a slightly more flexible evaluation. In the confidence 

measure tha t is attached to hypotheses, it includes the success and failure of the hypoth­

esis as the number of experiments tha t verify or falsify  it, and also the implied-success 

and implied-failure as the number of experiments which provide positive or negative in­

dications but which are nevertheless inconclusive. The clear division of evidence into 

adequate and inadequate evidence in this way is attractive, bu t it is used in a rather dif­

ferent way to th a t proposed here. Measures of confidence are used to suggest promising 

hypotheses to explore or unpromising ones to discard.

Thagard’s ECH O  [118], a system which judges competing explanatory hypotheses 

on the basis of their coherence through a connectionist network, prim arily addresses 

the problem of theory selection, and will be considered extensively in Chapter 8 . In 

addition, however, it also relates data  propositions to  the hypotheses, and judges the 

coherence of the entire structure of data  and hypothesis. Here, an evaluation of evidence 

is addressed. One of the principles on which the system is based, the principle of data 

priority^ states tha t a proposition describing the results of observation has a degree of 

acceptability of its own. This seems to imply th a t evidence provided to  the system is 

guaranteed to  be true, and indeed, Thagsurd [118] explains th a t, “from past experience.
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we know our observations are likely to be true .” But, we also know th a t there are 

instances when our observations are not true, and we m ust address these. Although this 

is recognised through the deactivation of data  units or propositions which cohere poorly 

with other propositions, it is an evaluation of evidence after the fact, and in relation to  the 

hypothesis, not independently. As such, faulty data  which coheres well w ith a hypothesis 

may be accepted. Callen [4], particularly with regard to  legal reasoning, argues that 

e c h o ’s handling of evidence is thus inadequate, since it neither addresses seriously the 

possibility of the rejection of evidence, nor the possibility of gathering further evidence, 

a point made also by O’Rorke [83].

More recently, Zytkow’s FAHRENHEIT system for integrated numerical discovery 

has been reorganised to  include measuring instrum ents which can be used to  investi­

gate repeatability of results and measurement of error [135, 139]. By focussing initially 

on error determination through repeated base data, numerical error can be found and 

used to  provide an error tolerance for the m ain experiments. The work is limited to 

numerical discovery, however, and the kind of error considered is limited to only one of 

the pzirameters of uncertzdnty discussed ezirlier, accuracy. Nevertheless, it provides an 

acknowledgement of the significance of error in machine discovery, and brings closer the 

possibility of applying discovery systems to real-world discovery problems.

In using testimonial evidence, Thost [127] has undertaken work on the combination 

of multiple, diverging evidence of testimony from different sources. This amounts to the 

attem pted extraction of information from contradictory opinions by maintaining detzdled 

knowledge of the factors determining the credibility of sources. The knowledge takes the 

form of Information Source Models (ISM) and includes details of competence, power 

(influence) and goals which are used to  determine a source’s credibility. Competence 

is similar to reliability discussed above, while goals encode a strength th a t approaches 

the notion of trustworthiness. Different modes provide different ways of com bin in g  the 

components of the ISM. Primarily, the ISM provides a  way of representing a system ’s 

knowledge of its social context. Currently, MID does not m aintain such knowledge, and 

relies on the source information to be provided w ith observations. Information Source 

Models could prove to be very useful if it was extended to do so, however.

Finally, it is worth noting tha t related research is being undertaken in modelling 

cooperation for autonomous agents. Marsh [78], for example, has developed a  model 

for trust and reliance that is not d issim ilar to  the model described here for evidence
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evaluation. Although the intention and application area are both  different, the underlying 

concerns are with reasoning and acting effectively in an uncertain world.

6.6 .2  C onclusions

More and more, as the difhculties of reasoning in the real world come to be appreciated, 

attention is turning to the evaluation of evidence in order to  cope with noise and uncer­

tainty. Reasoning systems, if they are to be considered effective, m ust be able not only 

to reason on the basis of supplied evidence, but also to  reject evidence supphed to  them 

if that evidence is inadequate. This is an im portant requirement, but one which has been 

neglected in  the past. Moreover, the evaluation of evidence m ust consider, in addition to 

the evidence itself, an evaluation of the supplier or source of tha t evidence.

This chapter has described a model for evaluation which uses four param eters of 

uncertainty: accuracy, credibility, reliability and trustworthiness. The question of when 

evidence is acceptable has also been addressed, not in the form of a static, fixed rating of 

evidence, but by considering the evidence in the light of the motivations of the reasoning 

agent, and defining a variable measure for acceptability. The distinction between the 

model itself and its use in the MID system is deliberate, allowing other interactions with 

different implementations. Although the question of how importance m ay be defined is 

open, the role of importance is fixed. The decision to use a single salient motivation to 

determine im portance rather than com bin ing the complete set of motivations was taken 

for the sake of simplicity. Enhancements of this work may subsequently investigate other 

such possibilities, but the model holds regardless. Further work might extend the model 

by specifying the way in which the param eters of uncertainty can be updated based on 

the results of the reasoning or action tha t arises out of the use of accepted evidence.

The model provides a means of addressing the problem of evidence evaluation, which 

applies to  reasoning in both centralized and distributed domains, and in both scientific 

and everyday contexts. It also relates to the problems associated with distributed sources 

of information which are increasingly being used in a variety of areas, and also to  the 

modelling of autonomous agents in multi-agent environments. This is already the subject 

of investigation [78], and it seems tha t there is much benefit to  be gained in attem pting to 

combine the various approaches. The im portant point is th a t all evidence is susceptible to 

error and uncertainty. It must be evaluated in relation to  the need for which it is obtained, 

and in such a way th a t allows a complete rejection of th a t evidence if necessary.
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C hapter 7

T heory R evision

. . . t h e  pencil’s graphite is also the ephemeral medium of thinkers, plan­
ners, drafters, architects, and engineers, the medium to be erased, revised, 
smudged, obUterated, lost — or inked over.

— Henry Petroski, The Pencil: A History o f Design and Circumstance

7.1 Introduction

Revision is key to  our model of inductive discovery. Indeed, much research into the 

problems of discovery comes under the heading of theory revision. Given an existing 

theory, new evidence will either be consistent w ith tha t theory or it will be anomalous. If 

it is consistent, then there is no cause for further reasoning since the theory is adequate. 

If the observations Eire anomalous, however, then the theory is refuted and m ust either 

be discarded or revised so tha t the anomaly is removed and the theory is once more 

consistent with observations. In the revision stage can be seen tha t part of the discovery 

cycle which is actually responsible for the construction of new theories. These new 

theories are limited in tha t they are derived solely from observations.

This chapter discusses exactly what revision entails, and examines the different kinds 

of revision tha t are possible. It begins by discussing very generally the problems of theory 

revision. Then it classifies revision into three groups and explains why each is necessary. 

This is followed w ith a more detailed investigation of revision operators, and how higher- 

order operators may be constructed from primitive ones. The next sections consider the 

kinds of knowledge th a t can be revised and the constraints tha t apply to the revision 

procedure. Finally, revision in  MID is discussed, giving details of the revision strategy.
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the order of revision, the revision operators th a t are used, and the algorithms for revision. 

The chapter ends by giving examples of the revision stage in MID, and by considering 

some related work. (Revision in MID is very similar to revision in Rajam oney’s COAST 

system [91] because both use Qualitative Process Theory, though MID is more fully 

specified. The similarities and differences are explored towards the end of the chapter.) 

Further constraints on revision through selection are discussed in the following chapter.

7.2 T he R evision  Problem

Ginsberg [29] formulated the problem of theory revision as follows:

A theory revision problem exists for a theory T  when T  is known to  yield 
incorrect results for given cases in its intended domain of application. The 
goal of theory revision is to find a revision T'  of T  which handles all known 
cases correctly, makes use of the theoretical term s in T , and may, w ith a 
reasonable degree of confidence, be expected to  hzmdle future cases correctly.
In contrast to  pure inductive learning from experience, theory revision is not 
only guided by the information implicit in T , but also attem pts to preserve 
the language and, as much as possible, the structure of T.

He explains how this applies to theory revision in the sciences [30], the prim ary domain 

used as a basis for the model developed here. The given cases discussed above are merely 

associated experiments and observations. The cases tha t a theory handles incorrectly 

are thus instances of observations which cannot be accounted for by the theory. The 

new theory, in handling all known cases correctly, must be consistent with all prior 

observations, so tha t the two theories will be in agreement over th a t part of the domain 

for which the original theory, T , is known to  be accurate. Revising T  to produce T '  

indicates a mapping from the old theory to  the new theory such th a t the old theory 

is subsumed by the new one. This csm be considered as the reduction of one theory 

to another. Making use of the theoretical term s of the old theory is a constraint that 

Ginsberg includes in order to  avoid certain solutions such as the enumeration of cases or 

observations. Yet he acknowledges tha t this restriction must be relsuced at times so tha t 

theoretical terms can be dropped, and so th a t entirely new theories can be adopted.

In considering theory revision, Ginsberg seems to  be addressing a number of issues 

at once without drawing im portant distinctions between the kinds of things to  be done. 

There eire a number of points tha t need to be made.
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• Revision is the only stage of the model which can modify or construct knowledge. 

Any change to what is known can be considered a revision, even if it is not based 

upon previous knowledge. (This is so even if it is a  Kuhnian revolution [51]. Gins­

berg points out th a t the whole edifice of knowledge is never thrown out, even in 

these instances.) Thus new theories &om external sources may be introduced at 

this point, and m ust be.

• Revision is necessary ordy when the theory is dem onstrated to be inadequate in 

some way through failures to predict or explain observations.

• Revision m ust be guided by certain implicit constraints, but these should permit 

only those revisions th a t are warranted by the observations. Revisions which cannot 

be justified by appeal to  observations alone should not be considered.

• Revision must also be guided by certain explicit constraints, but these are consid­

ered separately from the actuzd mechanisms of revision in the selection stage (see 

Chapter 8 ).

• Revision requires a  finite but complete set of revision operators which transform 

an old theory into a new one through the application of these operators to  remove 

anomzdies.

7.3 K inds o f R evision  and W h y T hey are N ecessary

The task of revising a domain theory is often regarded as a relatively straightforward 

operation. Given a domain theory (or any other body of knowledge). A, represented 

in some language, Z , there are only l im ited  kinds of revision th a t can be performed. 

Following Levi [70], we note three kinds of revision to  a body of knowledge th a t can be 

distinguished. These are shown in Table 7.1. (In fact, Levi actually considers a  fourth 

kind of revision, residual shift, but this has received little  attention in the literature, and 

Levi himself says nothing about it other than  th a t it can be reduced to  other kinds of 

revision, in  which case we can ignore it.) Levi’s concern in proposing this classification 

is in asking how it is th a t a revision to a  body of knowledge th a t is considered consistent 

and correct can be justified. In considering this, zm implicit constraint on what revision 

should allow is introduced.
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E x p an sio n : A shift is made from A i to A 3  containing A% obtained by adding a 
sentence e (or a set of sentences) to  A% and forming the deductive closure.

C o n tra c tio n  A shift is made from A i to A 3  where A i is an expansion of A 3 .

R e p la c e m e n t: A shift is made from a consistent A i containing e to a consistent 
A 3  containing -le.

Table 7.1: Three kinds of revision.

7.3 .1  E xpansion

Expansion occurs when a reasoner adds information in the form of observations, laws or 

theories to  a body of knowledge. The reason for doing this is simply th a t of adding new 

information itself. Demands for information will vary in degree and nature depending 

on the kind of reasoning undertaken, whether it is for the resolution of a practical and 

immediate decision or action problem, or is relevant to  scientific reasoning aimed at 

explaining or predicting a particular phenomenon. The problem with expansion is tha t 

it introduces new information which may not be true into the body of knowledge which 

is considered correct and consistent at least so far as it is used for practical purposes^. 

Nevertheless, expansion is justified if any progress is to  be made in the pursuit of satisfying 

goals which demand more or increasing knowledge, zmd if  a paralysis of action is to be 

avoided.

7.3 .2  C ontraction

Contraction occurs when a reasoner removes information in some form from th a t body 

of knowledge. It is the inverse of expansion. The problem with this is th a t it deliberately 

decreases knowledge and, if there is a concern to obtain knowledge, then this is counter­

productive. The justification for contraction can be seen in considering the nature of the 

real world when inconsistencies arise through errors in observation and experimentation, 

for example, despite strong efforts against this (see Chapter 6 ). Observations will thus 

sometimes contradict existing theories and may require the contraction of knowledge.

^This is a  moot point. Philosophers such as Popper would disagree here, but effectively, acting on 

such knowledge can be regarded as an implicit acceptance of tha t knowledge (see earlier discussion in 

Chapter 6).
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Contraction m ust aim  to  minimize the loss of information subject to  the constraint that 

the inconsistency which demanded the contraction be removed.

7.3 .3  R ep lacem en t

Replacement sometimes refers to  the activity tha t Kuhn called a scientific revolution 

[51]. In this case, a theory (or part of a theory) is replaced by another which contradicts 

it. This is easily reduced to the first two kinds of revision by considering it simply as a 

contraction followed by an expansion. First, T\ is removed &om the body of knowledge, 

contracting, and then subsequent investigation leads to  the addition of T2 , thus expanding 

the knowledge. The net result of the two revisions is replacement.

The role o f observations

The classification of the different kinds of revision together w ith justifications reveals that 

observations are vital in constraining revision, both  in the kind of revision to  be used, 

and in the elements of knowledge tha t ought to  be revised. If there is no inconsistency 

or incompleteness, then there is no need to revise. If there is a need to  revise, then the 

revision m ust be constrained by the observations. This is not always the case, and it 

may certainly be legitimate to  make revisions at least tentatively (this might be termed 

proposing hypotheses) based on factors other than  observations alone, such as the use 

of analogy, for example (eg. [19]), but again this is outside the ability and scope of our 

concern here w ith reasoning in inductive discovery. The constraint of revising knowledge 

only as demanded by observations has been referred to  as the scenario constraint [91] 

elsewhere and will be discussed further later.

7.4 R evision  O perators

Revision operators are operators tha t can be applied to  a body of knowledge (in this case 

a domain theory) to produce revised theories. If it is accepted th a t there are only two 

most basic kinds of revision and tha t all other kinds of revision can be reduced to  some 

combination of them , then only two revision operators, corresponding to the two revision 

strategies of expansion and contraction, are needed. W ith  little or no prior knowledge, 

these may be considered sufficient to  achieve the appropriate results. It is unlikely that 

no applicable background knowledge will be available, however. Moreover, if none is
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immediately available, then it is likely tha t some useful knowledge will be forthcoming 

over tim e through interactions in the relevant domain. This is im portant, for a lack of 

prior knowledge provides no useful constraints on the space of revisions th a t might be 

generated, and leads to blind explorations of the theory space. (Russell [1 0 2 ] discusses 

the different kinds of inductive learning possible, and the implications of reasoning with 

and without prior knowledge.) The benefit of prior knowledge is tha t more constraints 

on theory generation are available, and more sophisticated revision operators derived by 

combining the basic operators with this knowledge can be used.

7 .4 .1  P r im itiv e  O perators

At the most basic level, theories are either expanded or contracted. If they are expanded, 

then components are added. If  they are contracted, components are deleted. We can 

therefore define two revision operators which revise a domain theory A to produce A :̂

A d d itio n  Some component x is added to the domain theory.

A ' =  A U {*}

D e le tio n  Some component x is deleted from the theory.

A ' =  A \{ * }

Thus expansions and contractions are achieved by applying the addition and deletion op­

erators to a component and things th a t follow from or imply tha t component respectively. 

(Note tha t the set notation is used here in a liberal way. A theory is more than  just a 

collection of components, but the notation expresses the concepts of expansion and con­

traction through addition and deletion clearly and concisely. W ith stronger knowledge 

representation formalisms, these operators m ust be developed further.)

AU possible revisions can thus be generated by using combinations of these operators 

alone. However, with appropriate background knowledge, we can go on to develop more 

sophisticated and potentiedly more powerful operators.

7 .4 .2  H igher-O rder O perators

If existing knowledge can be brought to bear in  choosing what to revise and how to 

revise it, then not only can blind revision be avoided in tha t the use of prior knowl­

edge advances revision beyond mere syntactic m anipulation, but a more complete and
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coherent model of theory development arises th a t includes reference to  a core of back­

ground knowledge (auxiliary assumptions, hypotheses and so on,) as well as the more 

immediately concerning object knowledge.

Typically, such background knowledge will be met a knowledge which relates different 

levels of description of objects in hierarchical structures emd the like. Such knowledge 

allows the introduction of more revision operators, derived from the primitive opera­

tors, but which use this knowledge in proposing revisions which would not necessarily 

be possible from immediate empirical data  alone. In particular, revision operators for 

specialization and generalization are highly desirable, commonly used, and facilitated by 

the use of background knowledge.

First though, it is im portant to consider one other revision operator which relies on 

background knowledge but less explicitly. Logical negation can be implemented using 

addition and deletion with background knowledge, but it is in some sense primitive, 

the background knowledge relevant here being tha t of logic. Negation indicates not 

merely a replacement, but the strong connection of opposition to  what went before. 

The combination of addition and deletion according to observations does not adequately 

express the semantically significant change th a t would be made in such circumstances.

N e g a tio n  Some component x in the theory A is negated.

A' = (A \{x})u{- .x}

S p ec ia liza tio n  Some component x in the theory A is specialized.

A' = (A\{*})U{S(*)}

G e n e ra liz a tio n  Some component x in the theory A is generalized.

A' = (A \  {*}) U {G(*)}

More higher order operators are still possible through combining lower level operators 

in various ways, and through introducing more zmd more varied knowledge. Yet the op­

erators considered here of addition, deletion, negation, specialization and generalization 

provide a limited, commonly used set of operators which are unlikely to require much 

combination and allow for simple revisions in most cases.
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7.5 W hat to  R evise

An im portant and relevant criticism of some of the more dogmatic proponents of falsihca- 

tionism is tha t it is difficult to  know exactly what has been falsified. Typically, a theory 

under investigation is subjected to experimentation so th a t inadequacies are revealed and 

the theory refuted and subsequently revised to  be consistent with the new observations. 

This ignores the possibility th a t the error leading to  the falsification is not in the theory 

itself (or tha t part of the theory under investigation), but in the background knowledge or 

auxiliary assumptions zind hypotheses, the tru th  (or at least adequacy) of which is taken 

for granted. This is similar to  the problem associated with observation. Observations 

cannot be relied upon without sufficient grounds for doing so, yet many accounts of the 

discovery process unquestioningly assume ideal observations and initial conditions. For 

the same reasons th a t ideal observations are denied, so is perfect background knowledge. 

In order to  deal w ith this, background knowledge itself m ust be made amenable to revi­

sion. Yet if there is no distinction between background knowledge and object knowledge, 

then the the focus of the investigation is lost, distinctions between what is known and 

what is not are blurred, and everything loses certainty leading to a paralysis of action. 

This is unreasonable.

Background knowledge is knowledge th a t has been accepted as being adequate for 

using in reasoning processes with conviction, unless there are grounds for questioning it. 

There may be grounds for questioning it if no revisions can be found to accommodate 

anomalous observations, or perhaps if only poor revisions can be found. In this event, 

background knowledge may be revised. This might be considered a form of exception 

handling in th a t attention is turned away &om the m ain theory only when no good 

solution (revision) is available.

This revision of background knowledge allows blame to be assigned outside the main 

theory causing erroneous revision to be avoided, and it also allows the further develop­

ment of background knowledge as more information becomes available tha t is not part 

of the theory. There is however, no consensus over when it is acceptable for background 

knowledge to be revised, and it remains a difficult question.
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7.6 C onstraints on R evision

The number of possible revisions to  a theory is huge. W ithout constraining the space 

of revisions, the problem of revision becomes intractable. In revising a theory, therefore, 

we must place m any constraints on the revisions tha t can be generated, and these come 

in two forms which we can consider as implicit and explicit. Implicit constraints are 

constraints th a t cannot be varied in the course of the revision process. They are fixed 

and implicit in the sense tha t they are hard constraints which are used in order to  make 

the space of revisions manageable and sensible in the light of observation. They are not 

addressed as part of the selection process, but are considered below. Explicit constraints 

are constraints which are explicitly specified and which are used to  order the generation 

and subsequent selection of revisions. As such they will be considered in the next chapter 

on theory selection.

O b se rv a tio n  C o n s tra in t The observation constraint is the most im portant, and most 

implicit constraint. It is designed to  ensure tha t any revision th a t is generated must 

be sensible in term s of accounting for the observations th a t led to the failure of the 

domain theory. If there is no failure, then no revision is necessary. It is obvious 

tha t the observation constraint is necessary, but it is im portant to  state explicitly 

as determining the kinds of revisions allowed.

S cenario  C o n s tra in t The scenario constraint restricts the space of revisions th a t can 

be generated according to  the context in which a failure is encountered, by requiring 

tha t only those revisions which are relevant to the current (failure) scenario are 

proposed [91]. This is a form of simplicity constraint which is considered further 

in Chapter 8 . Of the many theories th a t can be generated, the sceneirio constraint 

prefers the simplest theories as those which involve only necesseiry modifications as 

demanded by the fcdlure.

A ccu racy  C o n s tra in t Accuracy is problematic. (Here accuracy refers to the fit of 

the theory to the accepted evidence.) It is not always desirable to enforce the 

requirement of accuracy on the revision of theories since we may want to  generate 

theories which are at most only approximately correct. Indeed, many of the theories 

which we commonly use sue not accurate, but they provide an acceptable and 

effective means for dealing with our environ m en t. Accuracy to  some degree or
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other, however, is ultim ately necessary if we are to  adhere both  to  the observation 

constraint and the scenario constrzdnt above, for if there was no requirement of 

accuracy, then these constraints lose their strength and permit the generation of 

all manner of revisions.

S e lec tio n  C o n s tra in ts  The selection constraints are the explicit constraints mentioned 

above. They serve to order the generation of revisions perm itted by the above three 

constraints, and to  select appropriate theories &om those so generated. Selection 

constraints are considered in  the next chapter.

7.7 R evision  in M ID

Let us now tu rn  to  how revision is implemented in MID. This section gives a brief review 

of the knowledge structures used in the system, and then moves on to specify the revision 

operators tha t may be used to modify them.

7.7 .1  R ev iew  o f K now ledge S tru ctu res

There are two m ain knowledge structures th a t MID is could revise: the domain theory 

tha t is the repository for explicit knowledge of the phenomena under investigation and 

the background knowledge tha t is used in tandem  with the domain theory in order to 

draw inferences. The domain theory is represented in  a variant of Forbus’ Qualitative 

Process Theory (QPT) [2 2 ], while the background knowledge is represented in the form 

of implication rules.

D o m ain  T h e o ry

Figure 7.1 shows the contents of an example domain theory, together with an expanded 

process. In revising the domain theory, we can identify two main components: conditions 

and effects. Using this distinction allows strong parallels to  be drawn between this system 

and others based on zdtemative representations. At a lower level, the conditions include 

the slots of individuals^ preconditions and quantity conditions. The effects include the 

slots of relations and influences. Each of these slots can be revised as described below.
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Process: solution
Process : evaporation
Process : condensation
Process : absorption
Process : release

Process Name: fluid-1low
Individuals : contained-fluid ?source

contained-fluid ?destination
path ?path

Preconditions : path-connection ?source ?destination ?path
flow-aligned ?path

Quant ityCondit ions : greater-than (a (pressure Tsource))
(a (pressure ?destination))

Relations: Q + fluid-flow-rate (pressure Tsource)
Q -  fluid-flow-rate (pressure îdestination)

Influences : I + (amount-of Tdestination) (a (fluid-flow-rate))
I - (amount-of Tsource) (a (fluid-flow-rate))

Process: add-solute

Figure 7.1: An abbreviated Qualitative Process domain theory for MID

flow-aligned -* aligned
fluid-flow-aligned —* flow-aligned
heat-flow-aligned —» flow-aligned

Figure 7.2: An example background knowledge rule base.

Background K nowledge

Figure 7.2 shows a very restricted example background knowledge rule base. Each rule 

has an antecedent and consequent, and represents the implication of the consequent 

by the antecedent. Either part of the rule could be revised, but it should again be 

noted th a t revisions to the background knowledge should only be possible in exceptional 

circumstances.

7.7 .2  K inds o f  A nom aly

Evaluation involves the comparison of predictions generated from the domain theory with 

observations provided from outside the system. In the case of a successful prediction 

when an observation is expected, no further work is necessary. If, however, an anomaly 

results, then the domain theory must be revised accordingly. This requires tha t the cause 

of the failure be identified in order tha t it may be corrected. We note three possible
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Case 1: O =  {oi}, P  =  {pi}, o\ =  p% No failure
Case 2: O =  {oi}, P  =  {pi , . . .  ,Pn}, 0 \ ^  P  Anomalous Observation
Case 3: O = {oi, . .  .,On}, P  = {pi}, P i ^  O Anomalous Prediction

Table 7.2: Three possible results of evaluation.

cases: no failure, emomalous observation, and anomalous prediction. In the first case, the 

predictions are consistent with the observations and no failure results. The two kinds of 

anomaly are as follows:

Anom alous Observation An observation tha t was observed was not predicted. This 

is sometimes referred to as an unexpected observation.

Anom alous Prediction A prediction tha t was generated by the inference mechanism 

was not observed. It is sometimes referred to  as a failed prediction.

All three cases are specified in Table 7.2, where O is the set of observations, and P is the 

set of predictions.

For a set of observations and predictions, we m ust address all of the anomalies. MID 

considers all of the anomalous observations first, and then the anomalous predictions. For 

each observation in turn, the domain theory. A, is revised accordingly. So for exsunple, 

say we have O =  {oi, 0 2 , 0 3 } and P =  {pi,P 2 ,P 3 }» and 0 \ =  P2 , 0 2  0  P, and 0 3  0  P, then 

revision is performed as follows:

1 . 0  =  { o i,0 2 , 0 3 } ,P  =  {pi,P 2 >P3 } I 0 2  ^  P  Anomalous Observation (Case 2 )

Revise the domain theory.

2. O =  { o i,0 2 | 0 3 } ,P  =  {pi,P 2 ,P 3 iP4 } I 0 2  =  P4 , 0 3  ^  P  Anomolous Observation (2 ) 

Revise domain theory.

3. O =  {0 1 , 0 2 , 0 3 }, P = {pi;P2 ,P3 ,P4 ,Ps} I 0 3  = P b, P i  0  O Anomalous Prediction (3) 
Revise domain theory.

4. O = {oi, 0 2 , 0 3 }, P = {p2 ,P3 ,P4 ,Ps} I  P3 0 O Anomalous Prediction (3)

Revise domain theory.

5 . 0  =  (o i, 0 2 , 0 3 }, P  =  {p2 ,P 4 iPb} I  O =  P  N o failure ( 1 )

No action.
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However, the resolution of one anomaly m ay lead to  the possibility of causing a new 

anomaly to be introduced or, alternatively, the resolution of a later anomaly may cause an 

earlier anomaly (already eliminated) to be re-introduced. If we regard each anomaly as a 

goal tha t m ust be achieved, then the revision procedure is analogous to the generation of 

plans. Just as the interactions between goals can cause problems in the planning process, 

so too can the anomalies in the revision process here. By constraining the revision process 

so that we generate only those revisions which can be consistent with all of the current 

observations, the consistency of the revised theories is assured. This is possible because 

there is no tem poral ordering on anomalies, and we know exactly what the final revised 

theory m ust allow.

In fact, this requirement could be relaxed, because through further revision, anomedies 

that were introduced as part of the revision process could subsequently be eliminated. 

This would, however, lead to the possibility of infinite recursion with new anomalies being 

introduced at each stage of revision. The constraint also enforces a degree of conservatism  

(discussed in the next chapter) tha t prefers revisions w ith fewer individual modifications 

to those which require many modifications to be consistent.

The Grouping Heuristic

The view of revision described here is somewhat simplified. In attem pting to m in im ize 

the amount of effort devoted to  revision, MID groups observations together and tries 

to perform revisions based on the group as a whole. If  a single revision can account 

for a group of three anomalous observations, for example, as opposed to  three separate 

revisions if they were addressed individually, then the saving is substantial. If it cannot 

account for them , then progressively smaller groups of observations are used until the 

base case of individual observations is used. This also implements a form of conservatism 

by which the simplest revisions are attem pted first, and more complicated revisions are 

tried only if necessary. W ith increasingly large numbers of observations, this strategy 

offers considerable benefit.

MID groups observations in the order in which they are presented to  it, and uses suc­

cessively smaller groups. This excludes groups of certain combinations of observations, 

but it reduces the number of groups tha t must be tested, so tha t attem pts to optimize 

performance are not compromised by exhausting each possiblility. More complete combi­

nations are possible by specifying different groupings, the most complete being achieved
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by using the power set of observations as input for revision. (Appendix A gives an 

example showing how MID generates revisions with and without the grouping hem istic.)

7 .7 .3  R ev ision  O perators

The observation constraint requires tha t all revisions m ust be directed at eliminating 

the anomalies tha t can arise. In the case of anomalous prediction, this means tha t 

either an active process which caused the prediction to be generated m ust be made to be 

inactive by modifying its conditions, or the effects of an active process which caused the 

prediction must be modified so tha t the rogue predictions are not generated. In the case of 

anomalous observation, the converse is true: either an inactive process which would have 

generated the predictions m ust be made active through modification of its conditions, 

or an active process m ust be made to predict the observations through modification of 

its effects. An extra possibility is tha t a new process can be created which predicts the 

observations.

Below we specify the revision operators tha t are required in MID. Most of the oper­

ators function as expected (eg., addition and deletion), but where they do not they are 

illustrated with examples.

It is im port2int to  note th a t while all of these revision operators can be reduced to 

the different kinds of revision considered earlier, the relation between them  m ay not 

be obvious. Because of the frame structure of the knowledge representation, adding a 

condition will have the effect of reducing the scope of a process, resulting in a  contraction^ 

and not an expansion as might be expected. Similarly for deleting a condition, the results 

may be counter intuitive.

R evise Individuals

Individuals specify the type of the variable concerned. They can be considered to  be 

conditions because they provide constraints on the applicability of a process in th a t they 

require instantiation as participants, w ithout which a process cannot be activated. How­

ever, they have a very different status from the other kinds of condition. The predicates 

which specify type values cannot be negated. Individuals are only revised if this is needed 

by revisions to  other components of a process. They cannot be revised independently^.

^Currently, the revision of individuals in MID is limited. In particular, specialization and general­

ization of individuals are not implemented because of the distinct type  nature of the predicates. These
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A d d -In d iv id u a l This adds an individual to  a process. Individuals are added only if 

they are needed in  other parts of the process through the addition of other kinds 

of conditions or effects.

D e le te -In d iv id u a l This deletes an individual from a process. Individuals are deleted 

only if they are not required in other parts of the process.

S p ec ia liz e -In d iv id u a l This uses the background knowledge to find an appropriate spe­

cialization of the individual predicate. Individuals can only be specialized if  they 

are appropriate to the corresponding conditions and effects. It is used in the same 

way as S p ec ia lize -P co n d itio n , for which an example is given below.

G e n e ra liz e -In d iv id u a l This finds an appropriate generalization of the individual pred­

icate. Again, the generalization must be appropriate in light of the corresponding 

conditions and effects. See below for an example of generalization.

R ev ise  C o n d itio n s

There are two kinds of condition slot: preconditions and quantity conditions, and we will 

consider these in turn.

P re c o n d itio n s

Preconditions specify qualitative conditions on the applicability of a process through 

predicates and variables. They allow more scope for revision than individuals because 

the predicates are not simply type declarations as they are for individuals. (We abbreviate 

to  Pcondition.)

A d d -P c o n d itio n  This adds a new precondition predicate together with its associated 

variables to  the precondition slot.

D e le te -P c o n d itio n  This deletes a precondition.

N e g a te -P c o n d itio n  This negates the predicate of a precondition. Negation involves 

adding a n o t, so tha t we might modify the first precondition of Figure 7.1, giving:

not-path-connection Tsource îdestination ?path 
flow-aligned ?path

predicates are held to be primitive. Specialization and generalization are possible, however, by moving 

relevant predicates to the preconditions slot. The extra operators are specified here for completeness.
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S p ec ia liz e -P co n d itio n  This uses the background knowledge to find an appropriate spe­

cialization of the precondition predicate by traversing the rules in the background 

knowledge rule base. For example, we might specialize the second precondition of 

Figure 7.1, using the second rule in Figure 7.2:

p a th -c o n n e c tio n  ?source îd e s t in a t io n  ?p a th  
f lu id - f lo w -a l ig n e d  ?pa th

G en e ra lize -P  co n d it ion  This uses the background knowledge to  find an appropriate 

generalization. For example, we might generalize from Figure 7.1 using the first 

rule, giving:

p a th -c o n n e c tio n  Tsource îd e s t in a t io n  îp a th  
a l ig n e d  îp a th

Q u a n ti ty  c o n d itio n s

Quantity conditions specify quantitative conditions on the applicability of a process 

through g re a te r - th a n ,  le s s - th a n  and e q u a l- to  predicates. Quantity conditions can­

not be generalized or specialized. (We abbreviate here to Qcondition.)

A dd-Q  co n d it ion  This adds a new quantity condition comprising a quantitative predi­

cate and a pair of variables expressing a quantitative constraint to  a process. Two 

kinds of quantity condition are possible: quantity conditions which specify maxi­

m um  limit points on increasing quantities and m i n i i m i T T i  limit points on decreasing 

quantities; zmd quantity conditions which specify relationships between quantities 

which move in opposite directions. To Figure 7.1 we can add :

g r e a te r - th a n  (a  (am ount-of îs o u rc e ) )
(a  (m inim um -am ount-of-point îs o u rc e ) )  

le s s - th a n  (a  (am ount-of îd e s t i n a t io n ) )
(a  (maximum -amount-of-point îd e s t in a t io n ) )

in the first case, and in  the second case we add:

le s s - th a n  (a  (am ount-of î d e s t i n a t i o n ) ) (a  (am ount-of îs o u rc e ) )  

D e le te -Q co n d itio n  This deletes a quantity condition.

N egate -Q  co n d it io n  This negates the predicate of a quantity condition in the expected 

way, by replacing g r e a te r - th a n  w ith le s s - th a n  and e q u a l- to , and so on. Negat­

ing the quantity condition of Figure 7.1, for example, gives two possible revisions:
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le ss-th a n  (a (pressure îsource)) (a (pressure îd estin a tio n ))  
and
equal-to (a (pressure îso u rce)) (a (pressure îd e s tin a t io n )) 

R evise Effects

There are two effects slots which can be modified, direct effects as influences, and indirect 

effects as relations.

R e la tio n s

Relations specify indirect effects of a process. These are effects which specify relationships 

between quantities, bu t which are not influences^.

A d d -R e la tio n  This adds a new relation to a process.

D e le te -R e la tio n  This deletes a relation from a process.

In v e r t-R e la tio n  This is analogous to negating the relation. It modifies it so tha t the 

predicted effect is the inverse (or opposite) of the original effect. See In v e r t-  

In flu en ce  for an example.

S p ec ia lize -R e la tio n  This narrows the scope of an influence by replacing the whole of 

a quantity by a part of it. See S p ecia lize-In fluence  below.

G e n e ra liz e -R e la tio n  This replaces a part of a quantity by the whole quantity. 

In fluences

Influences specify effects which are direct results of the process. They specify relationships 

between quantities and the process itself.

A d d -In flu en ce  This adds an influence to  a process.

D ele te -In flu en ce  This deletes an influence from a process.

In v e rt-In flu e n c e  This inverts the influence so tha t the modified influence is the inverse 

of the original influence. If we were to invert the second influence above, we would 

get both  source and destination increasing:

^Relation revision operators have not been implemented in the current version of MID.
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1+ (amount-of ?destination) (a (f lu id -flo w -ra te ))
1+ (amount-of ?source) (a (f lu id -flo w -ra te ))

S pecia lize-In fluence This narrows the scope of an influence by replacing the whole of 

a quantity by a part of it^. For example we could introduce the notion of solutes 

into the previous case, and could get:

I + (amount-of îd estin a tio n ) (a (f lu id -flo w -r a te ))
I + (amount-of: so lu te -o f îsource) (a (f lu id -f lo w -r a te ))

G en era lize -In flu en ce  This replaces a part of a quantity w ith the whole quantity. Gen­

eralization would simply reverse the specialization.

C re a tin g  a  N ew  P ro cess

A new process can be created which instantiates each slot according to  the current 

situation. The individuals slot is filled with variables th a t are used elsewhere in the 

process, the precondition slot is filled with a predicate tha t characterizes the current 

situation, the influence slot is filled with the observations. All other slots are left empty.

A ssessm en t

Rajamoney [91] defines a taxonomy of operators for COAST tha t is similar to th a t de­

scribed here. This departs from his in a number of ways, however, through aU levels. At 

the topmost level, Rajamoney has a third possibility, namely inverse behaviour, but in 

MID this reduces to a combination of anomalous observation and anomalous prediction 

failures. At the lower levels, many operators are the same since the representation is 

largely the same, but they are developed further in MID. In particular, it is not clear 

how specizdization and generalization take place, since no mention is made of background 

knowledge tha t might be used to  provide the classiflcatory information necessary. Fur­

thermore, individuals cannot be added or deleted from processes. COAST is discussed 

further in the section on related work at the end of this chapter.

Tables 7.3 and 7.4 specify which operators may be used in the case of anomalous 

predictions and anomalous observation failures respectively. Note th a t operators on

^Currently, MID does not hold knowledge of the part to whole structure of objects and quantities. 

The specialize and generalize operators for influences are consequently not implemented in the current 

version. They are included here for completeness of specdflcation, however.
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Anomalous Prediction
revise conditions revise effects
Add-Pcondition Delete-Influence
Negate-Pcondition Invert-Influence
Specialize-Pcondition Specialize-Influence
Add- Q condition Delete-Relation
Negat e- Q condition Invert-Relation

Speciahze-Relation

Table 7.3: Revision operators for anomalous prediction failures.

Anomalous Observation
revise conditions revise effects new process
Delete-Pcondition Add-lnfluence New-Process
N egate-P condition Invert-Influence
Generalize-Pcondition Generalize-Influence
Delete-Qcondition Add-Relation
N egate-Q condition Invert-Relation

Generalize-Relation

Table 7.4: Revision operators for anomalous observation failures.

individuals are not included since they are used to facilitate the application of another 

operator on some other element of the process.

R ev isin g  B a c k g ro u n d  K now ledge

By making the background knowledge structures explicit smd accessible, the rules in the 

background knowledge base can be revised. No prior knowledge can be used when revising 

the rule base. Moreover, because it is held with a greater confidence than  the domain 

theory, the revisions tha t can be made to the rule base may be limited in allowing only 

one revision at a time. This enforces a conservatism constraint reflecting the status of 

the strength and confidence of the BKRB. Consequently, we consider only two operators.

A d d -R u le  This adds a rule to the background knowledge base in attem pting to  sdlow 

a generalization of a precondition to  be made.

D e le te -R u le  This deletes a rule from the background knowledge in attem pting to pre­

vent a generalization from being made.
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Thus rules would be added in the case of an anomalous observation failure, and rules 

would be deleted in the case of an anomalous prediction.

Revising background knowledge (theory) is, however, as mentioned earlier, a very 

radical step to take. If background knowledge is revised, then the basis on which the 

development of the theory takes place is brought into question. It might be argued tha t 

the revision of background knowledge invalidates the existing theory entirely, so th a t new 

background knowledge may require a new theory to  be constructed from the beginning. 

(This could be seen as a revolution in K uhn’s term s.) Moreover, in the MID system, 

the background knowledge rule base is used in a definitional way, grounding high level 

predicates in lower level ones. Changes to  such knowledge are thus much harder to 

justify because the implications of these changes can be very significant for the existing 

domain theory. At an implementation level, modifying a rule-base is a difficult task. If 

the rule-base is to be useful, then any change m ust ensure th a t consistency is preserved 

throughout its deductive closure. In general, with large background knowledge rule bases, 

ensuring consistency may demand excessive resources, and be intractable. Because of 

these difficulties, the BKRB revision operators are not currently implemented.

Circumstances when revision of the background knowledge m ay be an acceptable 

solution are discussed further in the next chapter.

7.7 .4  A lgorith m s for R evision

This section presents details of the algorithms of the revision process. Since all but one 

(New-Process) of the different kinds of revision are similcir, an abstract algorithm is given 

first, followed by details of each of the separate cases of revision. In order to specify the 

separate cases, we need to introduce some more notation. The notation used in algorithm 

specifications th a t follow is summarized in Table 7.5.

The basic algorithm for revision has three m ain parts. These are enumerated in 

Table 7.6. For each class of revision the algorithm is elaborated subsequently.

A n o m alo u s  P re d ic t io n

There are two possibilities for anomalous prediction: condition revision and effect revi­

sion. Table 7.7 specifies the instantiation of the abstract algorithm for both of these.

In the case of condition revision, a process th a t caused the failed predictions to be 

generated is revised so that it is no longer active in the current scenario, thus retracting
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A is the domain theory — the set of all processes in the theory.
A* is the revised domain theory.
X  is the set of anomalies currently being addressed.
H  is the set of processes (hypotheses) applicable to the revision.
H ' is the set of revised processes.
Ph is the set of predictions tha t can be generated from the process h. 
TZ is the set of revision operators applicable.
Ap  is the set of anomzdous predictions.
Ao  is the set of anomalous observations.
Ap^ and Ao* are the sets of anomzdies updated zifter revision.

Table 7.5: Notation used in this section.

Basic Revision Algorithm

1. Retrieve zdl of the processes in the domzdn theory to which the current kind of 
revision czin apply. This entails specifying H .

2 . For each such process, generate zdl possible revisions tha t zire wzirranted by the 
observations zmd the scenzirio description. Here, the set of revised processes is 
determined by specifying the set of operators, TZ used to  produce revised processes, 
TZh. H* is defined as follows:

H* = {h' \ 3 h e H e ph)

3. Update accordingly the lists of zmomzdies still to be resolved.

4. Update the domzdn theory by replacing modified processes so that

A'  = ( A \  {h}) U ph

Table 7.6: The specification of the abstract revision zdgorithm.
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Condition R evision

1 . H = {h \ active(^) A Wx e X  • x e Ph A PhÇ Ap}

2. TZ = {Add-Pcondition, N egate-Pcondition, Specialize-Pcondition, Add- 
Qcondition, Negate-Qcondition}

3. Apf = Ap\Ph

Effect Revision

1. H  = {h \ active(/i) A V® G X  • ® €  P h }

2. 1Z = {D elete-Effect, Invert-Effect, Specialize-Effect}

3. Af/ =  Ap \  X

Table 7.7: Révision algorithm for anomalous prediction failures.

the predictions. Condition revision can apply to  all processes which cause the current 

anomaly, and which do not cause correct predictions. The operators are applied to 

generate revisions TZh so th a t only one condition is unsatisfied. (This could be more 

than  one, but conservatism and simplicity counsel revision only as much as necessary.)

W ith effect revision, the effects of a process tha t caused the failed prediction are 

revised so tha t the failure is avoided. Effect revision applies to  all active processes which 

cause the current anomaly.

Anom alous Observation

There are three possiblities for anomalous observation: condition revision, effect revision, 

and new process. Table 7.8 specifies the instantiation of the abstract algorithm for the 

condition and effect revisions.

In the case of condition revision, the conditions of a process tha t prevented it from 

being active are revised so th a t it can predict the observations. Condition revision applies 

to processes which could prevent the anomaly if they were active. The operators are 

combined appropriately so th a t all of the conditions are satisfied.

In effect revision, the effects of active processes are revised so th a t they cause the 

anomalous observation. Effect revision applies to active processes w ith variable bindings 

tha t include the anomalous observation quantities.

128



Condition Revision

1. H  = {h \ inactive(/i) A V® G X  • ® G P/i A (Ph Ç Ao)}

2. 1Z = {D elete-Pcondition, D elete-Q condition, N egate-Pcondition, 
Negate- Q condit ion. Generalize- P condit ion}

3. Ao' =  Ao \  Ph

Effect R evision

1. H  = {h \ active(/i) A V® G % - ® 0 A vars(®) Ç vars(/i)}

2. TZ= {Add-Effect, Generalize-Effect, Invert-Effect}

3. Ao' =  Ao \  X

Table 7.8: Effect and Condition revision algorithms for anomalous observation failures.

The new-process revision is somewhat different. Here, a new process is created tha t 

accounts for the anomalous observations. This is specified in Table 7.9.

N ew  Process

1 . One new process only, h, is created tha t accounts for all anomalous observations.

2. All remaining anomalous observations are removed, so tha t Ao' =  0

3. The new process is added to the domain theory: A ' =  A U A

Table 7.9: The new-process algorithm for anomalous observation failures.

7.7 .5  A  Sim ple E xam ple

To illustrate the revision procedure, consider the domain theory specified by Figure 7 .3 . 

The theory contains knowledge about only one process, heat-flow, suid there is no back­

ground knowledge. If the conditions are satisfied, then the theory predicts th a t the 

tem perature of the destination object will increase. The theory is erroneous in th a t it 

does not know about the other effect of heat flow, th a t the tem perature of the source 

will decrease. Now, say MID is provided with the scenario description of Figure 7.4, then 

the heat-flow process will be active since all of the conditions are satisfied. Accordingly,
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Process Name: heat-llov
Individuals: object ?source

object ?destination 
heat-path ?path

Preconditions: heat-connection ?source ?destination ?path
heat-flow-aligned ?path 

QuantityConditions: greater-than (a (temperature ?source))
(a (temperature ?destination)) 

Relations: Q+ heat-flow-rate (temperature ?source)
Q- heat-flow-rate (temperature ?destination) 

Influences: 1+ (heat ?destination) (a (heat-flow-rate))

Figure 7.3: An erroneous domain theory concerning heat flow

Scenario Name: heat-flow-works-scenario
Individuals : std-objectl

std-obj ect2
std-pathl

Facts: object std-objectl
object std-object2
heat-path std-pathl
heat-connection std-objectl std-object2 std-pathl
heat-flow-aligned std-pathl
greater-than (a (temperature std-objectl))

(a (temperature std-object2))

Figure 7.4: A scenario description in which heat flow occurs 

MID makes the appropriate prediction shown in Figure 7.5.

Anomalous Observations

If MID is presented with the observations:

> increase (heat std -ob ject2)

> decrease (heat s td -o b jec tl)

then there is an anomalous observation because MED did not predict the la tter. MID 

therefore attem pts to  revise its domain theory. There are two possibilities. F irst, the 

effects of active processes can be modified so tha t the unexpected observation is included.

Predictions: increase (heat std-object2)

1+ (heat std-object2) (a (heat-flow-rate))
Active: heat-flow std-objectl std-object2 std-pathl

heat-connection std-objectl std-object2 std-pathl 
heat-flow-aligned std-pathl
greater-than (a (temperature std-objectl)) (a (temperature std-object2)) 

Figure 7.5: The predictions generated by MED
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PROCESS: heat-flow
Variables: ?source

Tdestination
?path

Individuals: object ?source
object ?destination 
heat-path ?path 

Pconditions: heat-connection ?source ?destination ?path
heat-flow-aligned ?path 

Pconditions: greater-than (a (temperature ?source))
(a (temperature ?destination)) 

Relations: Q+ (heat-flow-rate) (temperature ?source)
Q- (heat-flow-rate) (temperature ?destination) 

Influences : 1+ (heat ?destination) (a (heat-flow-rate))
I- (heat ?source) (a (heat-flow-rate)) 

Revision Log: 1 add influences
No change: heat-flow

PROCESS : process2
Variables: ?var-4
Individuals :
Pconditions: precondition-heat-flow-works-scenario ?var-4
Pconditions:
Relations :
Influences: I- (heat ?var-4) (a (process2-rate))
RevisionLog: 1 new-process

Figure 7.6: The revisions generated by MID for the anomalous observation example

Second, a new process tha t accounts for the unexpected observation can be added. These 

revisions are shown in Figure 7.6.

Anom alous Predictions

Alternatively, if we have the same theory, the same scenario, and the same predictions, 

but cannot observe any changes in the world, then we get an anomalous prediction failure. 

In this case, we can either revise the process in the theory by modifying its conditions 

so tha t it is not active, or we modify its effects so th a t it does not cause unobserved 

predictions. Figure 7.7 shows the revisions tha t MID generates here.

The first revised theory is given completely, but due to space constraints, subsequent 

revisions are specified only by the slots tha t have changed from the original. Although the 

second example here is somewhat contrived, it illustrates the nature of the revision pro­

cedure, and the kind of revisions tha t MED generates in  the appropriate circumstances. 

Even with such a small domain theory comprising only a single process definition, the 

number of revisions tha t can be generated is sizeable, and some means of choosing be-
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PROCESS : heat-flow
Variables : ?source

?destination
?path

Individuals: object ?source
object ?destination 
heat-path ?path 

Pconditions: heat-connection ?source ?destination ?path
heat-flow-aligned ?path 
precondition-3 ?source Tdestination ?path 

Qconditions: greater-than (a (temperature ?source))
(a (temperature Tdestination)) 

Relations: Q+ (heat-flow-rate) (temperature Tsource)
q- (heat-flow-rate) (temperature Tdestination) 

Influences : 1+ (heat Tdestination) (a (heat-flow-rate))
Revision Log: 1 add preconditions
PROCESS:
Pconditions:

Revision Log:

heat-flow
not-heat-connection Tsource Tdestination Tpath 
heat-flow-aligned Tpath 
1 negate preconditions

PROCESS : heat-flow
Pconditions: heat-connection Tsource Tdestination Tpath 

not-heat-flow-aligned Tpath
Revision Log: 1 negate preconditions
PROCESS: heat-flow
Qconditions: greater-than (a (temperature Tsource)) 

(a (temperature Tdestination)) 
greater-than (a ((heat Tdestination))) 
(a (minimum-heat-point Tdestination))

Revision Log: 1 add quantityconditions
PROCESS : heat-flow
Qconditions: equal-to (a (temperature Tsource)) 

(a (temperature Tdestination))
Revision Log: 1 negate quantityconditions
PROCESS : heat-flow
Qconditions: less-than (a (temperature Tsource)) 

(a (temperature Tdestination))
Revision Log: 1 negate quantityconditions
PROCESS: 
Influences :

heat-flow

Revision Log: 1 delete influences

Figure 7.7: Revisions generated by MID for the anomalous prediction example
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tween the different revisions is required. W ith increasing numbers of processes in the 

domain theory, the number of potential revisions will increase proportionately. It is un­

likely th a t empirical evidence will always be available to  discriminate between competing 

theories, and we m ust therefore look to  other criteria for selecting one appropriately.

7.8 D iscussion

7.8 .1  R e la ted  W ork

Most of the systems introduced in Chapter 2 have only limited revision abilities. This is 

particularly true for BACON, STERN and HDD which concentrate on trend detection in 

the discovery of numerical laws. HDD does have a  mechanism for attaching conditions to 

hypotheses in the event of failure, but this is very limited. There are a couple of systems, 

however, which do address revision in a similar way.

Rajam oney’s work on COAST in pzirticular [91] is very closely related to the work 

here since it also uses Qualitative Process Theory to represent its domain theory. He 

uses a scheme of abstraction in revision by which groups of proposed revisions are ab­

stracted at a high level so tha t they may be subject to experimentation collectively. This 

allows the refutation of many revised theories before they are completely generated, and 

relies heavily on the experimentation component of the system. Abstract revisions which 

cannot be differentiated on the basis of experiments are then refined to  concrete theo­

ries. The set of revision operators th a t is used by COAST, however, is not complete. It 

does not allow individuals to be added or deleted firom processes, and it does not allow 

individuals to  be modified in any way either.

Furthermore, the revision strategy adopted by COAST is very restricted and this 

also constrains the potential revisions so tha t only a subset can be generated. COAST 

groups observations together and considers only revisions which can account for the 

whole group at once, ignoring revisions tha t involve multiple individual revision operator 

applications. By contrast, MED groups observations together in order to simplify the 

revision procedure, and to conserve resources. If no revision can be generated, MID 

progressively considers more complicated revisions all the way through to those using 

observations individually. Thus we have considered a complete set of revision operators, 

constrained only by what is syntactically and semantically acceptable.

Finally, it should be noted tha t Rajamoney does not allow the possibility of modifi-
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cation of background knowledge.

K arp’s Hypgene program [46], which reasons in the held of molecular biology, also 

uses a qualitative representation to model the domain theory, and provides a similar 

set of operators to those described here. He also mentions the possibility of including 

operators for modifying the class knowledge base of the system (similar to the background 

knowledge base here), but provides no details of how this might be implemented.

An zmalogous problem to theory revision is th a t of knowledge base refinement which 

involves the modihcation of a knowledge base as opposed to a (scientihc) domain theory 

(see, for example, [28, 31]). Ginsberg [30] points out th a t much of this work on theory 

revision applies equally to knowledge base refinement. Both involve the modihcation of 

a repository of knowledge in response to failures or inadequacies of some kind. We wiU 

not attem pt a detailed analysis of the similarities or differences here, however.

7.8 .2  C onclusions

Theory revision is a systematic process. W ithout the use of selection criteria to constrain 

the space of revisions (which we consider in the next chapter), it is reduced to the syntactic 

m anipulation of domain theories. This in itself requires th a t a complete set of revision 

operators exists, something which has been lacking in some previous systems. There 

are, however, constraints. Revised theories m ust be consistent with the observations and 

scenario tha t caused the theory failure to arise, and the revision operators must therefore 

be appropriately applied. Furthermore, the use of background knowledge in some form in 

order to facilitate the revision of theories, provides other requirements. The background 

knowledge itself should be capable of being revised, a t least in principle, for it is not 

inviolable, merely accepted with a greater certainty. Thus it should be more difficult to 

revise background knowledge, but not necesseirily impossible.

M H ) provides a facility tha t allows effective and efficient theory revision. It is sim ilar 

to the revision procedures in other systems th a t use sim ilar knowledge representations, 

but offers significant advances. By grouping observation, revisions are generated in a 

progressively more complicated way, so th a t the simplest revisions are considered first, 

and complicated revisions later. While other systems consider only simple revisions, 

M H) retains this advantage in terms of resources, but makes the procedure complete by 

considering more complicated revisions as and when necessary.
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C hapter 8

T heory Selection

. . .  there is trouble in store for anyone who surrenders to the tem ptation of 
mistaking an elegant hypothesis for a certainty . . .

— Prim o Levi, The Periodic Tablej Chromium

8.1 Introduction

Theory selection is the problem of choosing a ‘best* theory from a large number of theories 

or potential theories. There are inhnitely many theories th a t can be constructed to 

explain a particular observed phenomenon, and some mezms is required for discriminating 

between them. This entails the use of various criteria by which the m erit of theories can 

be judged. Through these criteria, a bias (in a broad sense) on theories can be imposed, 

resulting in useful and effective theories which satisfy needs for generalization.

Biases may be imposed in many ways. The bias imposed by the representation lan­

guage used to express theories has already been discussed, and provides a significant 

restriction on the space of potential theories. Chapter 7 introduced a number of other 

impUcit biases which cannot be zdtered in the MID system. These are imposed to  restrict 

the space of allowable theories to  those which address the requirements of the system of 

accounting for observations and allowing predictions to be made. Many theories m ay still 

be generated, however, and it is not necessarily possible, solely on the basis of experiment 

and observation, on the basis of empirical evidence, th a t a unique theory choice may be 

made. MID uses heuristic search through the space of revisions to impose a bias that 

informs this choice. These heuristics are criteria for the virtue and acceptance of theories. 

Many such criteria have been proposed, mostly in the field of the philosophy of science.
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but some have been extended to a computational context. In abduction, which can be 

considered to be inference to the best explanation [36], can be seen similar concerns. Just 

as the theory is selected according to  certain criteria, so is the explanation derived from 

tha t theory. We note the relevance of work on abduction, but do not explicitly consider it 

further. Much of this chapter, however, is equally applicable and relevant to  abduction.

In addressing the problems of selection, the following points m ust be considered:

• Theory selection is not an independent process. It is intim ately connected to the 

process of generation or revision of theories, zmd an adequate account of selection 

must consider not only the selection of theories tha t are supplied by an outside 

source, but also using selection to  guide and constrain the generation or revision 

process tha t provides the theories in the first place.

• Selection is dependent on the motivations of the reasoner. W hat might be ap­

propriate for one reasoner may not be so for another w ith different motivations 

and priorities. Selection must address the issues of variation of criteria through 

a consideration of motivations. Thus motivations serve as a control strategy for 

selection.

• Selection is based upon both implicit and explicit criteria. The implicit criteria are 

used to make the potential space of revisions sensible and manageable by constrain­

ing the revision space. A complete account of selection must consider and specify 

both  kinds of selection criterion.

This chapter addresses the problem of theory selection, of choosing one theory from 

amongst many based on an evaluation according to certain selection criteria. It begins 

with a broad survey of selection criteria and justifications for their use in a general 

context, and continues by noting some of the difficulties tha t arise. The next sections 

consider the different demands made of selection depending on the motivations of the 

reasoner, and how different kinds of selection are possible. Then a proposal is made 

for concrete com putational implementations of appropriate selection criteria in the MED 

system, and for the mechanisms tha t m anipulate them. Finally, related work is discussed.
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8.2 Selection  Criteria

In appraising what is commonly known as the scientific acceptability or credibility of 

a hypothesis, it is nsnal to  consider the extent and character of the relevant evidence 

available in support of th a t hypothesis. (This has already been addressed in part in 

Chapter 6 .) In addition, a variety of further criteria for theory acceptability have been 

proposed. Despite the debate over the use and value of different criteria [52], [79], the 

need for selection criteria in some form is generally accepted. McAllister [79] has divided 

selection criteria into two groups which he describes as indicators of truth and indicators 

of beauty. We shall not distinguish here between classes of selection criteria, for they are 

too strongly related to do so, but discuss them  on equal m erit. Quine and UUian [8 8 ], for 

example, list a number of virtues of a hypothesis th a t make it more acceptable, regarding 

both  tru th  and beauty in McAllister’s terms. The following discussion introduces many 

of the general criteria tha t have been proposed for theory selection from a number of 

different perspectives. It draws examples from m any sources including [8 8 ], and uses them  

to illustrate the use of selection criteria in both  scientific and non-scientific contexts. It 

will subsequently be shown how these criteria can be accommodated in the MED system.

8.2 .1  A ccu racy

Accuracy is perhaps an obvious requirement of a theory, because the power to  predict and 

explain are necessarily dependent on it. Typically, accuracy is an implicit consideration, 

ruling out any theories tha t do not submit to its requirements immediately, before any 

other judgements may be made. Accuracy was already mentioned in the previous chapter 

as being implicit, but is included here for completeness as there are varying degrees and 

forms. As Kuhn [52] points out, competing theories m ay display accuracy in different 

areas. He contrasts the oxygen theory which accounted for observed weight relations in 

chemical reactions with the phlogiston theory which accounted for m etals being much 

more alike than  the ones from which they were formed. The theories are incompatible, 

yet one matched experience better in one area, while the other was better in another. 

In such cases, a decision on the basis of accuracy would require a recognition of the 

area in which accuracy was more significant. By itself, accuracy is rarely a sufficient 

criterion for theory choice, for there may be innumerable accurate theories which explain 

the phenomenon under investigation.
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8.2 .2  In ternal C on sisten cy

A theory must not contain internal contradictions or inconsistencies. This is a logical 

requirement. If a theory is not internally consistent, then it wiU simultaneously predict 

mutually exclusive events as a consequence. McAllister [79] gives the exeunple of the 

Aristotelian theory of free fall which asserted th a t heavier bodies fell faster than  lighter 

ones. In envisaging a heavy body attached by a cord to  a lighter one, Galileo was able 

to infer opposing conclusions: tha t the light body would slow the heavy one making the 

composite slower than  the heavy body alone; and th a t since the composite was heavier 

than the heavy body alone, it should be quicker. Internal consistency is closely related 

to the observation constraint discussed in the previous chapter. In revising a theory, only 

those theories which are consistent with observations, and thus internally consistent, 

should be generated.

8 .2 .3  H istorica l C on sisten cy

Historical consistency is closely related to accuracy, but it extends backwards over all 

previous experience, requiring tha t a theory is accurate for each instance. This, too, is 

an obvious requirement, but in the absence of a suitable theory, it may be relaxed. Our 

knowledge of the world changes over time, sometimes through a better understanding of 

the world, but more commonly through a changing reality. Depending on the kind of 

reasoning and the domain, we may be prepared to  accept the possibility of historically 

inconsistent knowledge to a greater or lesser degree. Historical consistency, as will be 

shown later on in this chapter, is particularly significant.

8.2 .4  C onservatism

It is quite likely th a t a new hypothesis or theory will conflict with prior knowledge or 

beliefs, but the fewer conflicts the better. If a theory conflicts with no prior beliefs 

then it is preferable since it is reconciled with what is already known. Conservatism is 

particularly useful, however, in dealing with irreconcilable differences.

It was, for example, thought tha t the plzinets revolved in circles around the sun. 

Tycho Brahe’s observations, however, suggested otherwise, tha t their motion was not 

circular. Though the subsequent model of the planets was extremely revolutionary, it 

used the virtue of conservatism in tha t it retained the model of the sun being at the
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focus, while altering the idea of circular planetary motion to  elliptical planetary motion. 

Alternatively, consider the case of a magician telling us what card we have drawn from 

a pack. We might hypothesize tha t he is telepathic or is well-versed in ancient occult 

arts, but this conflicts drzunaticaHy with our prior beliefs. We might hypothesize tha t 

the magician used sleight-of-hand, and although this might conflict w ith our belief in our 

perceptiveness (since we didn't notice it), it is a far more conservative theory which is 

more plausible for being so. (In the fleld of m athem atics, Imre Lakatos [57] illustrates 

conservatism very effectively in the form of a  discussion between a teacher and a group 

of students.)

Conservatism sacrifices as little as possible of the evidential support th a t has been 

used to  construct the knowledge tha t we have so far. Although this knowledge may be 

incorrect, conservatism forces a series of small revisions minimizing the error a t each step, 

rather than a single large revision which may be entirely erroneous.

8.2 .5  S im p lic ity

Simplicity is probably the most interesting of the criteria considered here, and has re­

ceived most attention in the literature. It is also particularly difflcult to  characterize and 

justify. Simplicity is based on the principle of Occam’s Razor which states th a t entities 

should not be multiplied beyond necessity. The best illustration of simplicity is in  plot­

ting points on a graph and then drawing a curve through them. Although there are an 

infinite number of curves tha t can be drawn, we will choose the simplest one which passes 

through or reasonably close to all the plotted points. The simplest curve, in geometric 

terms, is the one whose curvature changes most gradually from point to point. This 

represents a generalization tha t allows us to extrapolate through to untested points.

Simplicity demands context, however, and thus we may consider simplicity of a part 

compared to  simplicity of the whole. Commonly, simplicity of the part is sacrificed for the 

greater unifying simplicity of the whole whenever possible. Consider Newton’s hypothesis 

of universal gravitation stating tha t all bodies a ttrac t each other in direct proportion to 

mass, and inversely proportional to  the square of the distance. In comparison to  the 

intuitively simple hypothesis tha t heavy objects tend downwards, Newton’s is far more 

complicated. It was, however, simpler in a greater sense, since it applied to  a far wider 

range of phenomena, and allowed him to propose his unified system of terrestrial and 

celestial mechanics which had previously been explained by separate systems.
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A m ajor difEcnlty with the idea of simplicity lies in finding some way of measuring 

it. In the case of theories, it has been suggested tha t the number of basic assumptions or 

auxiliary statements might be used, but there is a problem in counting them . Consider 

the statem ent tha t for any two points there is exactly one straight line containing them. 

This might be counted as two statements — th a t there is at least one such line, and tha t 

there is at most one such line — rather than  as one. Even if the count could be agreed, 

different basic assumptions might have different degrees of simplicity, requiring th a t they 

in tu rn  would have to be evaluated. This problem with counting statem ents is one that 

detracts from many accounts of simplicity.

In itself, it is difficult to justify the m erit of simplicity, since complicated theories 

are often formulated and used to accommodate new data. Yet just as conservatism was 

justified on the grounds tha t smaller leaps are better than larger ones, so simplicity 

is justified on the grounds of less complicated leaps. The more complex and intricate 

the hypothesis, the more ways of erring there m ust be, since there are more and wilder 

alternatives to choose between. Although the theory may need to  be complicated, it is 

better to complicate the theory gradually, preferring the simplest theory possible at each 

step, in order to limit liability.

8 .2 .6  G enerality

A hypothesis, if it is to be tested, m ust at least be sufficiently general to apply to  more 

than  just a single instance of the phenomenon under investigation. When we find a piece 

of copper wire tha t conducts electricity, we expect all copper to  conduct electricity rather 

than just long thin copper wire. Generality is related to simplicity — it is simpler to 

believe tha t the observation tha t the copper wire conducts electricity is not a special case. 

The example given to illustrate simplicity will thus also serve for generality. If we take the 

two systems of terrestrial and celestial mechanics and compare them  as a b ipartite  system 

to Newton’s hypothesis of universal gravitation, then if the two taken together cover all 

tha t Newton’s unified laws cover, there is no reason to  prefer either on the grounds of 

generality. But the greater simplicity of Newton’s system suggests a preference for the 

single system. Thus we may consider simplicity and generzdity together, complementing 

each other, and when we can maximize generality with little loss of simplicity, or gain 

simplicity with little loss of generality, then we have desirable properties in a theory.
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8 .2 .7  M o d esty

One hypothesis is more modest than another if it is weaker in a logical sense — if it is 

implied by the other without implying it. It contrasts w ith generality, and is motivated 

by diiferent concerns. The hypothesis tha t birds fly w ith the exception of some such as 

penguins, for example, is more modest than  the hypothesis tha t all birds fly. Modesty 

features in avoiding extravagant hypotheses which are relatively implausible in the normal 

course of events. It is closely related to conservatism, yet provides a basis for selection 

even when hypotheses are compatible with previous beliefs.

8 .2 .8  R efu tab ility

If a theory is not refutable by any observation, then it is of no value in making predictions 

since these can never be tested. Popper claims tha t refutability is of param ount impor­

tance, and refuses even to consider any hypothesis tha t is not refutable or falsiflable [87]. 

An example of this is astrology. The vagueness of predictions and descriptions derived 

from the positions of the stars rule in too much as being possible, yet even if a prediction 

fails, it can be claimed tha t there is some item  of information such as a p lanet’s position 

at some tim e in the distant past tha t has been overlooked. Thus, any inadequacy is 

smoothed over, and conflict with other beliefs is avoided. This work does not share the 

same agenda as Popper; our concern with refutability is pragmatic. In the programme for 

reasoning described here entailing experimentation, refutation and revision, only those 

theories which are refutable can take part. Those which are not refutable are simply not 

susceptible to this kind of reasoning.

8 .2 .9  C onfirm ation and C orroboration

Many methods for suggesting greater or lesser degrees of support for a theory in the light 

of evidence have been suggested. This support, or confirmation o f a hypothesis is trad i­

tionally considered to  increase with the number of favourable test results. However, the 

increase in confirmation resulting from a single favourable instance will become smaller 

with an increased number of previous favourable instances. Thus if a Icirge number of 

confirming test results already exists, one more confirmation will make little difference 

to the overall degree of confirmation.

In addition to the quantity of confirming instances, the diversity of confirming in-
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stances is also im portant, since the greater the variety, the stronger the resulting sup­

port. Hempel [38] cites the example of Newton’s theory of gravitation and motion which 

is supported by confirming instances from the experimental and observational findings 

for the laws for free fall, for the simple pendulum, for the motion of the moon about the 

earth and of the planets about the sun, for the orbits of comets and man-made satellites, 

for tidal phenomena, and so on. All of these laws were implied by Newton’s theory, hence 

providing confirmational support for it.

Another dimension involves the stringency of the tests th a t provide the confirming 

instances. If a test can be made more precise through better experimental, observa­

tional and measurement procedures, then its results carry greater weight. Thus with 

greater number, variety and stringency of tests, the degree of confirmation accorded to 

a particular hypothesis increases.

Various systems for wrapping up the notion of confirmation in formal theories based 

on confirmation as probability have been proposed which make it possible to determine 

certain probabilities provided that others are already knowri}-. The notion of confirma­

tion, however is contentious. W ithout going into any detail, it should be noted that 

it admits paradox (for example, Goodman’s paradox [32] and Hempel’s paradox [37].) 

Furthermore, some philosophers deny tha t experience ever confirms hypotheses. Popper 

in particular proposes instead the notion of corroboration which is based on the idea of 

falsification rather than verification. According to  Popper [87], a theory of high corrob- 

orability is one tha t is highly testable and of high content, and hence of low probability. 

The higher the content of the theory, the greater the opportunity to  falsify it, and accord­

ingly the lower the probability of it surviving. This illustrates the difhculty surrounding 

the issue. The use of evidence in defining a measure for the degree of corroboration of a 

theory is thus problematic.

8.3 Interaction  and O verdeterm ination in Selection

There is much debate as to whether a complete list of criteria to be used in algorithms 

able to  make an unequivoccd choice exists, and whether it will ever exist. Two main prob­

lems arise: first, all of the individual criteria of choice m ust be unambiguously stated; and 

second, if such a thing is possible, then an appropriate weight function for the joint appli-

^Hempel's italics [38]. This will be discussed in more detail later on.
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cation of the relevant criteria m ust be found. K uhn [52], while accepting the possibility 

tha t notions of acceptance criteria may be broadly the same, rejects the possibility of a 

unanimous algorithm for theory choice by virtue of the subjective considerations which 

any individual uses to deal with these difficulties. These factors are said to be dependent 

on individual biography and personality. The signfficzmce of these claims to  our work 

lies not in an historical critique, but in the recognition th a t there eire external factors 

upon which the construction of an algorithm for theory choice and acceptance relies. 

Clearly, the criteria considered here for evaluating theories are strongly inter related. In 

evaluating and selecting a theory, they must be considered together, as a whole, rather 

than as an amalgamation of separate parts. Generality, for example, is of little value if 

simplicity is sacrificed, and if there is no generality then simplicity is useless. In addition, 

modesty opposes the generality, and conservatism constrains simplicity, and they must 

be balanced against each other.

The use of a number of criteria in theory selection also leads to a different yet re­

lated problem. If the various criteria prefer alternative theories, then the problem of 

overdetermination arises where no unique theory can be selected [79]. This demands 

tha t some sort of conffict-resolution procedure be found, which can distinguish between 

rival choices. The problems of interaction and overdetermination are both  serious ones 

which must be addressed, but which are often neglected in accounts of theory selection.

In considering these issues, Kuhn suggests th a t the criteria used be renamed values, 

since values provide effective guidance in the presence of conffict and equivocation without 

specifying the decisions to be taken. For example, freedom of speech is a value, but so 

is preservation of life and property. However, these two values often conffict so tha t a 

compromise between the two must be reached in order to prevent violent conffict yet allow 

progress. In the same way, the criteria used for theory selection are used as values rather 

than as rules. Values such as conservatism, modesty, simplicity and generality may 

prove ambiguous in application, but they do specify the factors inhuentizd in m aking  

a decision. Such an approach allows for the different aspects of scientific behaviour 

which may have been seen as irrational, and perhaps more im portantly, acknowledges 

the different emphases placed on theory choice at different stages in the development of 

a theory. We shcdl see later how these subjective influences may be incorporated into 

a model of inductive discovery guid ing  the application of selection criteria so tha t the 

problems of interaction and overdetermination can be resolved.
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8.4 M otivated  Selection  for K now ledge and A ction

Existing systems th a t address theory selection are prim arily designed for scientific discov­

ery in some form (see section on related work). Their domains are, in the main, scientific 

domains — phlogiston theory, osmosis, etc — but if not scientific, they are still concerned 

with the discovery or evaluation of knowledge, e c h o  [118], for example, has also been 

applied to cases of legal reasoning, but its motivations remain the same. These systems 

are geared to the acquisition of knowledge, not to  the application of tha t knowledge. If 

we consider such systems to  be autonomous reasoning agents, then their motivations are 

pre-determined and fixed, and very narrow. T hat is, the reasoning is designed to acquire 

knowledge rather than use knowledge. Because of this, there is a distinct bias to the 

kinds of revisions th a t are preferred in term s of the relative significance of the various 

selection criteria used. In particular, the m erit of consistency, generality and simplicity 

is very im portant, and they are valued much more highly than  modesty.

If we consider the motivations of a system th a t reasons on the basis of a need to take 

action, then we look at these criteria from an alternative point of view. The motivation 

for action implies an immediate need which m ust be satisfied in order to  prevent the 

motivation from growing stronger, and a corresponding greater need to act.

In reasoning under knowledge motivations, the traditional path  of maximizing con­

sistency, simplicity and generality is followed. In reasoning under action motivations, 

however, efforts directed at increasing generality and simplicity are misspent, for the 

future applicability of the theory is not at issue. W hat is at issue is the ability of the 

system to reason correctly and adequately in the current situation only, to  which mod­

esty (and to some degree conservatism) are better suited. The prim ary consideration 

in reasoning under action motivations is precisely the need to t«ike action. Concerns of 

historical consistency with previous episodes impose time and resource constraints which 

may be unacceptable. Historical consistency is im portant for it ensures th a t evidence 

already accumulated is used in the construction of new theories, and serves to rule out 

those revisions which cannot account for certain instances. However, the extra reasoning 

(processing) involved in such checks cannot be accommodated, particularly if the event 

histories are large, without violating the need to take action. Furthermore, in allowing 

the possibility of accepting poor quality evidence to  be used in revision and selection, 

it is not unlikely tha t an inconsistency m ay result. There is little point in checking for
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consistency with evidence tha t may, in different circumstances, be deemed inadmissible. 

Modesty limits the scope of the theory to the current scenario, thus ensuring the least 

possibility of error. Conservatism keeps the revision as close as possible to  the original 

theory, minimizing the risk of faulty revision by keeping differences small. The need for 

action thus rules out a concern for generality and simplicity, for they increase the pos­

sibility of error in a specific situation. The need for action demands only th a t we take 

the correct action in order to  satisfy our im mediate needs whatever they may be (though 

we may subsequently generate a more generally applicable solution once the im m ediate  

need has passed, as we discuss later).

It could be argued th a t it is urgency th a t demands the different biases in selection 

rather than the kind of motivation. The consideration of reasoning for action presupposes 

the existence of a degree of urgency^ however, while reasoning for knowledge excludes this. 

Though some needs may be less pressing than  others, the desire for action necessarily 

implies a time lim it of some sort. Thus urgency is implicit in reasoning for action.

The split between knowledge zmd action is, to  some degree, contrived. In the dis­

cussion of motivations in Chapter 3, we noted the interaction between the two, and the 

need to address them  together. There may be more subtle variations on the combination 

and use of selection criteria than these two, but the traditional uses for com putational 

systems suggest only these immediately. Moreover, this distinction is widely held and is 

supported by a variety of research (eg. [56], [98], [63]).

Just as Kuhn points out the unknown subjective influences in the m anipulation of his 

criteria as values in his historical (and philosophical) approach, so too such factors should 

be considered in a com putational approach th a t seeks to  provide a general mechanism 

for theory selection. In contrast to Kuhn, however, we assert tha t these influences may 

be explicitly modelled as motivations, with the knowledge-action distinction being seen 

as a top level characterization. A set of criteria or values for theory choice must be 

balanced in a way specified by the motivations of the reasoning agent. A lim ited model 

of motivations has already been developed in Chapter 3, and it now remains to  develop 

a mechanism for allowing these motivations to serve as a control strategy for selection.

8 .4 .1  T h e M od ifica tion  o f a D om ain  T h eo ry  under M otiva tion

The use of different selection criteria depending on whether the motivations are biased 

towards knowledge or action implies th a t different domain theories will be constructed
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as a consequence. But if a theory is to be modihed, and if it is to  be of subsequent use 

in reasoning about the world, then tha t modification m ust be one tha t is effected under 

motivations for knowledge.

If the intention is to  take some particular action, however, so tha t modification occurs 

under motivations to accomplish tasks, then a theory will be constructed which is de­

signed to  apply specifically to  the goal tha t action is designed to satisfy. In other words, 

the new theory will be valid for exactly the same kinds of situation as th a t in which the 

modification occurred, but will not necessarily be valid for any other. This contrasts 

with the case of reasoning for knowledge when the revised theory m ust be applicable to 

aU other instances.

In between the two extremes lies a range of other situations in which motivations 

may be differently balanced. Accordingly, a whole series of different theories may be 

constructed in the course of reasoning under these different motivations. In situations 

in which the prim ary motivation is not th a t of knowledge, the benefit tha t may be 

gained from reasoning inductively is destroyed, since for each situation encountered, a 

new domain theory will need to  be constructed, tailored to the requirements of that 

particular situation. This serves no purpose, for not only does such a system not leam  

from experience, it also requires far greater use of resources by reasoning in each situation. 

Furthermore, the lack of a sufEciently general theory from which to  derive more specific 

theories may negate the possibility of generating those specific theories, and the only 

justification for this approach is compromised. On this premise, the m erit of the entire 

programme proposed here is in doubt. Clearly, this is an unreasonable way to proceed. 

Below, we propose a m ethod of temporary revision to  address this.

8 .4 .2  P erm an en t and T em porary R ev ision

When a system reasons with the aim of inductively acquiring knowledge, it attem pts to 

construct sufficiently general theories that may be used subsequently. Reasoning with 

the 2um of taking action requires a more specialized domain theory. This specialized 

theory, however, is only appropriate for the immediate circumstances, first because of 

the bias imposed, and second because of the possibility of poor quality evidence as we 

have noted above, and is of no use in subsequent situations. Thus we may consider it to 

be a tem porary theory, derived &om the more general theory tha t is applicable in other 

situations, and discarded when it is no longer of use. Consequently, we have two different
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kinds of revision which occur at different times, depending on the motivation.

Reasoning to acquire knowledge permanently revises a  theory to  produce ever more 

genersd and accurate theories. It is on the basis of these theories th a t we sire able to reason 

effectively and leam  from experience. Moreover, it is on the basis of these theories tha t 

we are able to derive the temporary theories which apply to  specific situations.

Reasoning to take action, on the other hand, revises a  domain theory when the general 

theory is inadequate for the particular task at hand, bu t it just produces a temporary 

theory which is discarded after use (or after the current situation has passed).

As was pointed out in Chapter 3, however, even when we reason under action m oti­

vations, we are still able to  add to our knowledge. New knowledge tha t is discovered in 

the course of reasoning for action may also be used in a  subsequent permanent revision. 

Thus tem porary revision is only one part of the revision process, for there may also be 

an associated permanent revision with a different bias th a t attem pts to  incorporate new 

knowledge into the underlying general theory. (This is possible only when the evidence 

is of sufficient quality to be used for a permanent revision, however.) In this way, the 

domain theory retained is a global general version, w ith local specialized versions being 

constructed from it at appropriate times. This satisfies the need for generality by default, 

and also the need for localization when confronted w ith situations in which the general 

theory is inadequate, but avoids the problem of m aintaining multiple domain theories.

Although it might be argued tha t there are finer distinctions to be made than that 

simply between knowledge zmd action, this still holds. The different kinds of motivations 

tha t lead to inductive reasoning can be regarded as a hierarchy at the top of which lie the 

twin motivations of knowledge and action. Lower levels, while differing from the higher 

levels, are more refined instances which are, nevertheless, subsumed in the higher levels.

8.5 Selection  in M ID

8.5 .1  D iscovery  and Justification

The distinction between discovery and justification has been widely recognised, but is 

increasingly being disputed (eg. [138], [58]). Discovery is concerned with the formation of 

hypotheses to  account for observations and to make new predictions, while justification is 

concerned with the issues of theory selection and acceptance. The use of selection criteria 

is usually confined to the context of justification in bo th  philosophical computational
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accounts. The potential use of selection criteria in the context of discovery, however, 

has been noted. Achinstein [1], for example, suggests th a t selection criteria are also 

suitable for applying constraints to the kinds of hypotheses tha t are proposed in the first 

instance. Their use is most apparent when considering revisions to  hypotheses, since the 

hypotheses are created from a base hypothesis, albeit zm incorrect one.

We assert th a t the use of selection criteria in the context of discovery or in the 

generation (revision) of theories is not only possible or desirable, but necessary. I t is not 

possible to generate every possible revision tha t may be consistent with the observations, 

particularly w ith large and complicated theories. Any attem pt to do so would lead 

to the problems of combinatorial explosion. Even if it was possible to generate every 

possible revision, this would take an inordinate amount of time, in  both  generation and 

discrimination, so th a t in cases with action motivations the reasoning agent m ay not be 

well served. It is necessary therefore, to have some means for providing constraints on 

the revision space through the use of selection criteria [83].

Selection criteria may thus be used in two ways. F irst, they constrain the kinds of 

revisions tha t are generated, or at least order the revisions so tha t better ones are ranked 

higher and considered earlier. Second, given a set of competing theories, selection criteria 

provide a basis for discriminating between them. In both  cases, application of the criteria 

is guided by the biases produced from a consideration of the relevant motivations.

8.5 .2  O verview

We can define selection criteria in terms of preferences for revision operators which con­

strain the generation of revisions corresponding to  the context of discovery, and in  terms 

of judgements on candidate revisions through the numbers of components once they 

have been generated, corresponding to  the context of justification. We refer to these as 

dynamic and static selection criteria respectively.

Figure 8.1 shows the two levels of selection in  MID. At the top, the dynamic selection 

determines the order in which the different revision operators should be applied. An 

operator may produce more than  one revision, in which case these must be further dis­

criminated by the second static selection mechanism which evcduates candidate theories 

after revision. Thus dynamic selection imposes a rough ordering on the revision space, 

and static selection refines this by ordering subclasses of revision. Each revision tha t is 

generated is checked, in order, for historical consistency to  the required level. If it is not
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consistent, then the next revised theory is checked, until the current subset of revisions is 

exhausted, at which point the next revision operator is applied to generate a new subset 

of revisions. When a  consistent theory is found, it is accepted, and no further search of 

the revision space is necessary. The thick black arrow indicates the direction of search 

through the space of revisions. The th in  arrows indicate the revisions after they have 

been checked for consistency with prior episodes. Those with dashed lines are rejected 

as inconsistent, while the longer solid surow represents the final consistent theory.

Dynamic
Revision

Static Static StaticStatic

Temporal Consistency Checks

V V V V V V
Inconsistent Revisions ' '□Final Revised Theory

Figure 8.1: Dynamic and Static Selection in MID

The selection stage in MID is summarized in the Table 8.1. It is discussed in  detail 

over the course of the following sections.

8 .5 .3  Specification  o f S election  C riteria

In discussions of selection criteria, it is common for the different concepts to  be very vague 

and not well defined. This is partly  due to the difhculty of adequately capturing a  precise

149



Input: X j  a list of interm ediate revisions initialized w ith the original domain theory, A, 
and the anomalies arising.
Output: a revised theory A '
Algorithm :

• Rgmk the revision operators according to the values determined by motivations 
(dynamic selection)

• Get the next state from X

— If more anomalies remain, get the next anomaly.

* Get the next unused operator applicable to  the current anomaly.
* Generate the next revision(s) state.
* Order the resulting revision(s) according to  the values determined by the 

motivations (static selection).
* Add the new (ordered) revisions to  X .

— If no anomalies remain in the current state, then the revision is completed.

* Check the consistency of the completed revision.
* If the revision is consistent with past experience:

-  re turn  first completed revised theory
-  if  it is a permanent revision (m otivated for knowledge) update the do­
m ain theory to  get A '

* If the revision is not consistent, then remove the current state firom X

Table 8.1: The algorithm for selection in MID.

definition tha t is generally applicable. In work on artificial intelligence where knowledge 

must be explicitly represented in some language, this is even more of a problem. Any 

specification of criteria tha t is tied to a particular knowledge representation cannot but 

suffer from a lack of expressiveness. Nevertheless, this m ust be done, and an operational 

specification of the individual criteria for Qualitative Process Theory is developed below.

Accuracy

Accuracy is an im portant requirement of this system. The space of revised theories is 

constrained by the observations tha t are provided as input so tha t all are consistent. It 

is 2U1  implicit constraint on revision. In part, accuracy was considered previously in the 

evaluation stage.
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R e fu ta b ili ty

Refutability, too, is implicit, and is demanded by pragm atic considerations. Since this 

is an empirical programme for reason in g  which proceeds by conjecture and refutation, 

irrefutable theories cannot be considered. In adopting this requirement on theories, the 

concern is not w ith what is or is not science, but what can be effectively reasoned about. 

The fixed representation of theories enforces this constraint, and it does not play a role 

in the selection of alternative theories.

C o n se rv a tism

Conservatism involves the least conflict with prior beliefs. It suggests scope changes, 

re tain ing the underlying structure, but making a process more accurate. It also prefers 

adding components, retaining beliefs from previous observations, suggesting th a t some 

things may have been missed, but tha t no observations th a t were made were incorrect.

D y n a m ic  Operators tha t have positive effects on conservatism are: Specialize- Com­

ponent, Generalize-Component, Add-Component. Operators making a negative 

contribution are: Negate-Component, New-Process, Delete-Component.

S ta tic  Conservatism prefers the smallest possible change in numbers of components. 

S im p lic ity

Simplicity is related to the structure of a theory, but also to  the degree of unification. It 

prefers fewer processes, unifying the theory into a coherent whole, and fewer conditions 

and disjunctions of conditions, simplifying the structure of the theory. It serves to avoid 

the excesses th a t may arise through generality.

D y n a m ic  Operators tha t have a positive effect on simplicity are: Delete-Condition, 

Specialize-Condition. Operators tha t have negative effects are: New-Process, Add- 

Condition, Generalize-Condition.

S ta tic  Simplicity prefers minimizing the number of processes, the number of conditions 

and the number of disjunctions of conditions.
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G e n e ra lity

Generality is vited if we are to  be able to predict future events. A more general theory is 

one which entails more predictions. In part, generality is demanded by the scenario and 

observation constraints on revision, and the consistency criterion here. These require 

tha t revisions are consistent with the current evidence and, as far as possible, consistent 

with previous observations. There is still scope for preferences on operators, however.

D y n am ic  Operators having a positive effect on generality are: Generalize-Component, 

Delete-Condition, Add-Effect. Operators tha t make a negative contribution are: 

Specialize-Component, Add-Condition, Delete-Effect.

S ta tic  Generality prefers minimizing the number of conditions and maximizing the num­

ber of disjunctions of conditions, and effects.

M odesty

W ith motivations to  take action, modesty is used to  find a more specific theory. It is the 

exact opposite of generality. Thus it prefers revisions which entail smaller applicability.

D y n am ic  Operators tha t make a positive contribution to  modesty are: Add-Condition, 

Specialize-Component, Delete-Effect. Operators th a t mzdce a negative contribution 

are: Generalize-Component, Delete-Condition, Add-Effect.

S ta tic  Modesty prefers maximizing the number of conditions and minimizing the number 

of disjunctions of conditions, and effects.

E v id e n tia l S u p p o r t

Due to the difficulties with confirmation and corroboration, a naive notion of evidential 

support is used, simply considering the time since the last revision of each process. (This 

is a rough heuristic bearing some similarity to the confidence measures of KEKADA [53] 

noted in Chapter 6, which direct attention towards more promising possibilities for ex­

ploration.) Processes th a t have received more support than  others (have not been revised 

recently) are preferred for revision over processes w ith less support (have been revised 

recently). This involves maintaining a revision history for each process in the domain. It 

should be apparent th a t a measure of evidential support relies upon comparison. There 

is no obvious way of using this notion in selecting operators for revision independently,
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only in evEiluating the domain theory first and then using operators appropriately. This, 

however, negates the advantage to  be gained by the two step selection process, since it 

requires both  a pre-evaluation and a post-evaluation of domain theories. Consequently, 

the evidential support criterion is used only in the second, static step of evaluating can­

didate revisions. Evidential support is used to  direct attention towards theories which 

are more likely to  contain errors through recent revision.

H istorical Consistency

The requirement of historical consistency enforces consistency with previous scenarios 

and observations. It is needed to  avoid oscillation in revision by which a revision is 

made on the basis of one set of observations, but is retracted through a subsequent set of 

observations with inverse effects. It may happen th a t a domain theory A i is revised as a 

result of a set of observations to  produce Ag. After more observations, the domain theory 

may subsequently be revised, but this time back to  the original A i . Checking consistency 

with previous cases would avoid such problems. This requires tha t a history of previous 

scenarios and observations is maintained so tha t revisions which are selected on the basis 

of other criteria can be subjected to  a final check on the basis of historical consistency. 

The historical consistency criterion addresses the experience consistency problem which 

has been treated as a separate stage in discovery by other work [90]. However, the 

requirement on historical consistency is a  selection criterion, and is accorded the same 

status in this model. Furthermore, it is subject to  the same variation in importance as 

other criteria, and can be overridden. As stated earlier, knowledge is not static in that 

our understanding of the world chsmges, and the world itself changes. An awareness of 

this gives licence to relaxing the historical consistency requirement, since a theory need 

not be consistent with experience when th a t experience is redundant.

In MID, historical consistency is achieved by rejecting revisions which are not consis­

tent with the history of previous events. This creates a  substantied overhead in storage 

and computation, since each revised theory must be used to  generate predictions which 

are compared against the cases in the history. There are, however, ways to minimize this 

overhead. F irst, we can limit the history to the n  most recent scenarios, where n  is a 

system param eter. Second, in the case of reasoning under knowledge motivations, if no 

candidate revisions are consistent with the history of events, then it may be desirable to 

discard a set of scenarios from the maintained history. These scenarios would be only
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those prior to scenarios which are consistent w ith the current scenario. This is justified if 

the state of the world is known to change such th a t certain results may become redundant 

at some point in the future. Third, we can try  to  compress the number of scenarios in the 

history through various techniques such as the use of exemplars [90]. A fourth possibility 

is to  m aintain a record of the critical points in the development of the theory — only 

those episodes tha t involved revisions — but this assumes tha t the theory will always be 

built up from nothing. This assumption will not always be valid, for we want to  be able 

to reason in cases where a possibly faulty domain theory already exists. In such cases, it 

is also im portant to m aintain records of episodes th a t do not involve revisions.

Currently, MID implements the first strategy, keeping a limited number of scenarios 

in the history, for the sake of simplicity. This is also augmented w ith the second strategy, 

using information about changes in the world to  discard redundant scenarios.

The assumption implicit in aU of this is th a t changes in the world are static rather 

than continuous. T hat is to say tha t certain periodic phenomena lie beyond the abilities 

of the existing system. In considering tides, for example, repeated observations will 

give evidence of the tide being in, say. Now when the tide changes, the system notes 

an inconsistency with previous instances in the history and m ust resolve it. (Although 

multiple processes in the QPT formalism can be used to  represent this behaviour by 

having one process to  represent the tide coming in and another to represent the tide going 

out, for example [22], there are limits to the expressiveness of this.) The available options 

ignore the possibility of continual periodic changes, 2tnd offer ways only of eliminating the 

inconsistency. Thus a restricted view of the world is assumed. MID could, however, be 

enhanced to incorporate ways of reasoning about such periodic phenomena by including 

tem poral information. At points of disagreement between observations and the history, 

the time difference could be used to  hypothesize possible periodic relationships which 

could then be tested against subsequent observation. This would, however, place even 

greater demands on the history of events in  term s of space requirements in order to 

m aintain sufficient details to entertain periodicity hypotheses.

8 .5 .4  C om bin ing S election  C riteria

To recap on the model of motivations described in Chapter 3, we have, for any reasoner, 

a set of motivations, Af, each motivation being an m~triple <  m, u,6 > The set of 

motivations cam be broadly divided into knowledge motivations and action motivations.
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As we have seen, knowledge motivations provide the im petus to acquiring knowledge 

while action motivations demand the taking of actions for particular needs.

According to this model, the motivation with the highest strength value, the salient 

motivation^ determines the nature of the reasoning. Normally, this will be the knowledge 

motivation, because it is h ie d  at a level th a t reflects our desire for knowledge, while 

the other motivations, the action motivations, are not as high. However, in certain 

circumstances, a pcirticular action motivation will surpass the knowledge motivation and 

become salient. This indicates a greater im portance, and a greater need to satisfy tha t 

motivation, resulting in a switch &om the broad demands of acquiring knowledge, to 

speciflc focussed task requirements. In this way, the level of strength of the knowledge 

motivation acts as a threshold above which action is demanded. Thus, ju st as the level 

of the salient motivation determines the im portance and the need to accept evidence, so 

it determines the relative importance of the selection criteria used in judging theories. 

A high salient motivation demands a strongly focussed theory through minimal use of 

resources, while a lower motivation, relaies this requirement.

As discussed earlier, in reasoning under knowledge motivations, the traditional path  of 

m aiim izing consistency, simplicity and generality is followed. In reasoning under action 

motivations, however, concerns with increasing generality and simplicity are replaced 

with concerns of modesty and conservatism to ensure th a t the system reasons correctly 

and adequately in the current situation only. This is related to the need for adequate 

evidence. If information is necessary in order to act, and if action is required urgently, 

then the acceptance threshold of evidence is reduced, edlowing action on the basis of 

inadequate evidence. Poor quality evidence accepted in this way m ust not, however, 

be used to  construct a permanent revision. Moreover, when the desire for action is 

strong, available resources may be limited leading to  inadequate consistency checking, 

and resulting in a sub-optimzd solution. Revising knowledge in accordance with this 

(though it may be acceptable in the circumstances,) demands tha t the revision (even a 

tem porary one) be kept as local and speciflc as possible, and close to  what was known 

previously.

W eightings

As has been consistently emphasised, the weightings on the various selection criteria are 

determined by the underlying motivations of the reasoner. They are considered to  be
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values rather than weights because they are not devoid of meaning, but embody particular 

motivations. Broadly, the two kinds of motivations for reasoning can be associated with 

two specific value schemes: one tha t highly values consistency, generality and simplicity, 

the other tha t values conservatism and modesty.

It seems tha t further variations are possible. If  the salient motivation is close to  the 

knowledge motivation, then the relative im portance of acquiring knowledge is still high, 

and can be incorporated into the values of the selection criteria. As the action m otivation 

increases and the gap between the two grows, the values move towards the absolute values 

for action accordingly. In this case, we need to  state explicitly the m anner in which the 

criteria relate to  each other through rules or equations:

^m odesty  “  ( l  ~  ^genera lity )

where ^criterion is the value weight asociated with th a t criterion. Thus as modesty is 

valued more, so generality is valued less, and vice versa. Similar relationships can also 

be specified, and the strength of the motivation used to determine a m in im al set of 

weightings with the remainder being derived from tha t set through these equations.

However, this adm its a serious fiaw. If action motivations are salient, by however 

small a margin over knowledge motivations, then some distortion on the revision th a t 

would be preferred by knowledge motivations alone m ust occur. In this case, there 

must be a second revision later anyway to avoid tha t distortion being carried through 

permanently. Consequently, any compromise tha t is made between the two extreme cases 

is redundant. There is no point in compromising action motivations by balancing weaker 

knowledge motivations, since this will just result in a less directed revision. There is 

no point in compromising knowledge motivations, since any compromise will dem and a 

second revision making no concessions to action motivations. Apparently, a two-way split 

in motivations is necessary, at least at the level being considered here.

Therefore, MID uses such a split between values, having one set for knowledge m oti­

vations and another for action. Its values for knowledge, Wknowledget and action, Wactiom 

where W  < ^conservatiami^timplicityi^generalityi^mode§tyi^§upportt^conaistency are:

"^^knowledge ~  ^  0 .8 , 0 .8 , 0 .8 , 0 .2 , 0 .1, 1.0 ^

y^actian =  <  0.4, 0.2, 0.1, 0.9, 0.1, 0.0 >

The earlier equation relating modesty to generality is used here, too, since the oppos­

ing nature of the criteria cannot be accommodated otherwise. These are defaults which
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aa’e determined based on the motivations of the reasoner. In the case of knowledge mo­

tivation, these will be high for simplicity, generzdity and consistency, while w ith action 

motivations, modesty is valued much higher and conservatism relatively higher, and the 

traditional virtues are valued less.

The values themselves are meaningful in imposing an ordering on the space of revi­

sions. A value of 0 denotes no signihcance to the ordering, while a value of 1 denotes 

utm ost significance. The values in between these limits denote greater or lesser signif­

icance. Thus a value of 0.4 for modesty means only th a t it has lower significance than 

0.5, and greater significance them 0.3.

The values specified above eue estim ated vedues in the prototype ARA th a t MID 

represents. They eue not necesseuily the best vedues, but have been chosen to  represent 

the biases imposed by the relevant motivations as discussed above. The justification for 

their use lies in the aim  of MED to achieve certedn results. Note th a t for the consistency 

criterion, the value is either 1 or 0 implying th a t consistency is switched on and off under 

different motivations. Potential variations in which degrees of consistency are specified 

are possible, but it is not clear how selective consistency checking might be done. The 

decision to  have a binary switch was made for the sake of simplicity.

It is recognised tha t further investigation of the relationship between the motivations 

of an ARA and these value sets is appropriate.

8.5 .5  D ynam ic Selection

In order to  avoid the problems of intractability discussed earlier, we m ust provide a means 

of using these criteria to guide the application of revision operators. We can do this 

through an informed depth-first search with backtracking using the selection criteria as 

heuristics on revision operators themselves [85]. This requires tha t each revision operator 

has associated with it some indication of m erit as d eterm in ed by the appropriate criteria. 

In MID, the operators can be pre-evaluated in term s of the contribution they make to 

each criterion, and an appropriate weight function used. As the relative im portance of 

the various selection criteria changes with changes in motivations, so the weight function 

must change.
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revision operator selection vector
Add-Condition < 1, —1, —1,1 >
Delete-Condition < —1,1 ,1 , —1 >
Negate-Condition < - 1 ,0 ,0 ,0 >
Specialize-Condition < 1 ,1 , - 1 ,1 >
Generalize-Condition < 1, —1,1, —1 >
Add-Effect < 1 ,0 ,1 ,- 1 >
Delete-Effect < - 1 ,0 , - 1 ,1  >
Invert Effect < —1 ,0 ,0 ,0  >
Specialize-Effect < 1 ,0 , - 1 ,1 >
Generalize Effect < 1 ,0 ,1 , - 1 >
New-Process < —1, —1)0,1 >

Table 8.2: Selection vectors for all classes of revision operator.

Selection Vectors

The evaluation of the contribution made by individual revision operators to each criterion 

can be found in the operational specification of the criteria above. We define a criterion 

in term s of the revisions tha t it prefers, and by extension in terms of the revision oper­

ators th a t it prefers. Thus we can define a selection vector for each operator, where the 

selection vector, Sopcraton is an zirray of integer values, one for each selection criterion, 

positive, negative or zero. Positive zind negative values indicate positive and negative 

contributions, while zero indicates no effect. Note tha t only four of the criteria specified 

earlier are suitable for use in this dynamic selection.

^ o p e ra to r —^  ^coniervatiim ) ^•im plicity) ^generality) ^ ^ o d e s ty  ^

where Ccriterion is the contribution made to the criterion.

Given the weights and the selection vectors, it is possible to  determine a partial 

ordering on the revision operators simply by multiplying the two together. The ordering 

is only partial, because we may not be able to  choose between two or more operators. 

This requires the second stage to select revisions after generation, making use of the 

complementary static criteria as well as consistency and evidential support.

Table 8.2 gives a selection vector for all revision operators. There is no need to 

distinguish between the various conditions or effects, because they are treated as classes.
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flow-aligned —» aligned
fInid-flow-aligned —» flow-aligned 
heat-flow-aligned —♦ flow-aligned

Figure 8.2: An example background knowledge rule base.

8 .5 .6  S ta tic  S election

The use of selection criteria in justification is different. It evaluates candidate revisions 

once they have been generated, and is centred around the structure of the theories through 

counts of processes and components in processes.

Granularity

This, however, leads to the problem tha t was identified in the original discussion of sim­

plicity: the granularity of individual predicates is unknown. If predicates are abstracted 

to different levels, then it is not clear how we can count the number of components in a 

process, for some predicates may entail multiple predicates a t a finer granularity.

Using the background knowledge, however, we can reduce the different levels of ab­

straction to  the same one, and can then proceed to  count components in the desired 

manner. Consider again the background knowledge rule base (BKRB) which represents 

knowledge about abstraction hierarchies in the form of implication rules (eg. Figure 8.2). 

Higher levels of the hierarchy involve more disjunctions of predicates than lower levels. 

By tracing through the rules, an approximation of the granularity of a predicate can be 

estimated. Suppose for example that f lo w -a lig n e d  is a condition in a process. If we 

trace a chcdn from flo w -a lig n e d  to its end at f lu id - f lo w -a lig n e d ,  we can use the 

links in the chain to  estim ate the number of disjunctions. The end of the chain must 

be observable, and is thus primitive. Consequently, we can weight the condition with 

granularity giving, in the case of f  l u i d - f  low, a weight of 2 (the number of links -f 1). 

Similarly, if the predicate was a lig n ed , then the weight would be 3.

This allows a static structural evaluation of candidate theories based on the counting 

of components which is not compromised by the use of varying levels of abstraction in 

representing predicates. Thus we avoid the unstated and mistaken, though prevalent, 

assumption th a t all predicates have the same granuleirity. This m ethod does require, 

however, tha t all abstractions are grounded in primitive predicates.
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Comparison o f Candidate Theories

A static structural evaluation also allows the introduction of new theories th a t have 

not resulted &om the revision process. Theories tha t are generated by other reasoning 

techniques (such as analogy) czui enter the system here and be compared with existing 

theories on the basis of the static structural evaluation. Since they take no p art in 

revision, they cannot be selected through the constraints on revision operators. We can 

define an evaluation selection function on a theory, A, as follows:

/(A )  =  ^  X
e£criteria

where Wg is the value weight associated with the criterion c, and ric is the score of the 

criterion c defined below.

The selection criteria for this second part of selection are also defined operationally. 

That is, the criteria are described by their specifications for counting components above. 

Specifically, we define the criteria according to Table 8.3. The selection function above 

can be used very easily by adding together the relevant counts for each criterion zmd mul­

tiplying the result by the value weight. An alternative selection function might exclude 

the evidential support criterion and use it subsequently. T hat is, the other criteria would 

be used as above, and then if  no unique choice could be made, groups of theories could 

be assessed by using evidential support to impose a further sub-ordering. This avoids 

undue weight being given to  evidential support in cases where competing theories have 

radically different times since the last revision. The disadvantage of this approach is that 

evidential support is not balanced against the other criteria in an even way. Moreover, 

the first approach zdlows a simple and elegant combination mechanism. (Note th a t al­

though consistency is included as a static selection criterion in the table, it is not used 

in the evaluation selection function, but is used separately. Consistency is discussed in 

the next section.)

In fact, revisions are not scored in isolation according to  the various counts of their 

components, but in relation to  each other. The counts of the different components may 

be of varying magnitudes, and the product of these would not provide an effective evalu­

ation. Instead, the counts th a t are generated for each revision are compared against the 

limit values for the set of revisions being compared, and the difference between particular 

revisions and the limiting revision for each criterion is used instead of the origincd count. 

Thus when preferring smzdler counts, if one of the generated revisions had a lower compo-
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criterion count preference
Conservatism change in no. of components minimize
Simplicity no. of processes

no. of conditions
no. of disjunctions of conditions

m in im ize
minimize
m in im ize

Generality no. of conditions
no. of disjunctions of conditions
no. of effects

minimize
m axim ize
m axim ize

Modesty no. of conditions
no. of disjunctions of conditions
no. of effects

maximize
minimize
m in im ize

Support time since last revision maximize
Consistency no. of inconsistent prior episodes m in im ize

Table 8.3: Specification of static selection criteria.

nent count than edl of the others, then the scores used in  the selection evaluation function 

for these component counts would be the difference between this minimum value and the 

component counts in all the other theories. Similarly when preferring greater numbers of 

components, the difference between the highest count for a component and the counts for 

other theories is used. In this way, by using differences rather than  absolute values, the 

selection function provides a more balanced combination of the selection criteria. An al­

ternative would be to  use proportions rather than differences between the particular and 

limiting counts. However, with very large theories and small changes, all of these ratios 

would be similar, and the weighted products would be dominated by the weight values 

rather than  a more equal division between the weights and the counts themselves. Using 

the difference instead ensures tha t this division of responsibility between the weights and 

counts is kept constant even with very large numbers.

8 .5 .7  C on sisten cy

Each revision tha t is generated is checked, in order, for historical consistency to  the 

required level (which may be minimal in the case of reasoning for action)^. If it is not 

consistent, then the next revised theory is checked, until the current subset of revisions is 

exhausted, at which point the next revision operator is applied to generate a new subset 

of revisions. When a consistent theory is found, it is accepted, and no further search of

^MID imposes an all or nothing requirement on consistency, so that a revision must either be entirely 

consistent, or need not be at all consistent.
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the revision space is necessary.

If, after checking each possible revision against the m aintained history of previous 

instances, no consistent revision remains, then there are a number of alternative strategies 

th a t can be pursued. Some of these have already been mentioned. It is im portant to  note 

th a t these cases of inconsistency will be rare, and will arise through a serious problem, 

either an error in the learning process to date, or a fundam ental change in the world tha t 

makes some previous results invalid. This will therefore require some form of exceptional 

repedr to  the current knowledge structures.

If we assume th a t the state of the world changes such th a t certain results may become 

redundant at some point in the future, then the history may be modified to allow a 

consistent revision. This is done by discarding those instances in the history before a 

psirticular episode tha t prevented the generation of a consistent theory. The difhculty 

here is in deciding when such an action is warranted. It m ight be achieved by replicating 

the conditions of the episodes in question, and repeating the experiments to determine 

whether the results are still valid. The disadvantage of this approach is tha t it requires 

substantial extra experimentation. If there were an easier way to  do this, then it would 

be an attractive option, because it would also lim it the number of instances in the history, 

with good justification for doing so, rather than  in an arbitrary way.

Another option is tha t of modifying background knowledge. Previously, the possibil­

ity  of revising background knowledge was mentioned. However, if a consistent revision 

can be generated, then there is no reason to do so, for background knowledge is held with 

a greater certainty than  the domain theory itself, and is not the main subject of consider­

ation. Aj i  inconsistency, however, indicates a serious problem in the existing knowledge 

th a t goes beyond the domain theory itself, and merits investigating the possibility of 

whether a revision to the background knowledge might be an appropriate solution.

Finally, the current episode may be rejected. If sm inconsistency arises, it m ight be 

due to problems with the experimental scenario and observations tha t caused it.

The occurrence of an inconsistency directs attention away from the default revision 

mechanism tha t applies to the domain theory but which cannot account for the observed 

anomaly. Instead, attention is focussed on the other repositories of knowledge th a t are 

used by the system. Each of the three alternatives mentioned here considers revision 

to a different repository of knowledge. However, it is not clear how a choice could or 

should be made between these alternatives in assign in g blame for the inconsistency. MID
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Process Name: heat-flow
Individuals : object ?source

object ?destination
heat-path ?path

Preconditions : aligned ?path
QuantityConditions : greater-than (a (temperature Tsource))

(a (temperature ?destination))
Relations : q+ heat-flow-rate (temperature ?source)

q- heat-flow-rate (temperature ?destination)
Influences : 1+ (heat ?destination) (a (heat-flow-rate))

Figure 8.3: Another erroneous domain theory concerning heat flow

Scenario Name: heat-flow-example2-scenario
Individuals : std-objectl

std-object2
std-pathl

Facts: object std-objectl
object std-object2 
heat-path std-pathl 
aligned etd-pathl
greater-than (a (temperature std-objectl)) 

(a (temperature std-object2))

Figure 8.4; A scenario description in which heat flow occurs

implements a form of the first strategy, discarding currently inconsistent episodes &om 

the history. F irst, MID assumes tha t the world is capable of change. Second, there is 

a practical benefit to  be gained in terms of time and space requirements from a smaller 

history. Third, it seems to offer a compromise between the second option of metking a 

radical change to the background knowledge, and the th ird  option of assuming th a t the 

inconsistency is due to invalid evidence.

8.6 A  Sim ple E xam ple

8.6 .1  D yn a m ic  S election

To illustrate the selection procedure, consider the domain theory specified by Figure 8.3. 

The theory contains knowledge about only one process^ heat-flow. If the conditions are 

satisfied, then the theory predicts tha t the tem perature of the destination object will 

increase. (The theory is erroneous in tha t it does not know about the requirement of a 

heat-connection between the objects involved in the heat-flow process. For the sake of 

clarity and simplicity, the error of the missing effect of heat flow, tha t the tem perature of 

the source will decrease, will be ignored in this example.) Now, suppose MID is provided
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Predictions: increase (heat std-object2)

1+ (heat std-object2) (a (heat-flow-rate))
Active Process: heat-flow std-objectl std-object2 std-pathl

aligned std-pathl
greater-than (a (temperature std-objectl)) 

(a (temperature std-object2))

Figure 8.5: The predictions generated by MID

revision operator selection vector
Add-Condition < 1 , - 1 , 0 ,0 >
N egate- Condition < - 1 ,0 ,0 ,0  >
Delete-Effect < —1,0, —1,1 >

Table 8.4: Selection vectors for excunple revision operators.

with the scenario description of Figure 8.4, then the heat-flow process will be active since 

all of the conditions are satisfied. Accordingly, MID makes the appropriate prediction 

shown in Figure 8.5.

However, there are no observations, and the theory m ust be revised so th a t it is 

consistent with the observations. MID identifies a number of potential revisions that 

come under the headings of revise conditions so th a t the erroneous process is no longer 

active, and revise effects so tha t the erroneous predictions are no longer made. (For 

the sake of simplicity in this example, it is assumed th a t no background knowledge is 

available, limiting the possible revisions.)

Instances of the revisions tha t MID considers are: Delete-Infiuences, Add-Pconditions. 

Add-Qconditions, Negate-Pconditions, and Negate-Qconditions. The dynamic selection 

mechanism in MED orders these revision operators on the basis of motivations. In the 

case of reasoning under knowledge motivations, MID uses the value set knowledge = <  

0.8,0.8,0.8,0.2,0.1,1.0 > . Given the selection vectors specified earlier, a subset of which 

are shown in Table 8.4, MID calculates an ordering on these operators using the first four 

values for conservatism, simplicity, generality and modesty, as follows:

Add -  Condition (1 x 0.8) +  ( - 1  x  0.8) 4- (0 x  0.8) -H (0 x  0.2) =  0.0 

N egate -  Condition ( - 1  x  0.8) +  (0 x 0.8) -(- (0 x  0.8) -f- (0 x  0.2) =  -0 .8  

D elete -  EflTect ( - 1  x 0.8) -h (0 x  0.8) -|- ( - 1  x  0.8) -|- (1 x  0.2) =  -1 .4

Thus MID carries out the Add-Condition revision first, followed by Negate-Condition, 

and then Delete-Effect. Under action motivations,
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PROCESS: heat-flow
Vairiables: ?source

?destination
?path

Individuals: object ?source
object ?destination 
heat-path ?path 

Pconditions: aligned ?path
precondition-2 ?source ?destination ?path 

Qconditions: greater-than (a (temperature ?source)) (a (temperature ?destination))
Relations: Q+ (heat-flow-rate) (temperature ?source)

Q- (heat-flow-rate) (temperature ?destination)
Influences: 1+ (heat ?destination) (a (heat-flow-rate))
Revision Log: 1 add preconditions

Figure 8.6: The revised domain

flow-aligned — ► aligned
heat-flow-aligned — » flow-aligned

Figure 8.7: A background knowledge rule base for the static selection example.

y^aetion =< 0 .4 ,0 .2 ,0 .1 ,0 .9 ,0 .1 ,0 .0  > , and we get:

Add -  Condition (1 x  0 .4) +  ( - 1  x  0.2) 4- (0 X 0.1) +  (0 X 0.9) =  0.2

N egate -  Condition ( - 1  x  0.4) +  (0 X 0.2) +  (0 x  0.1) +  (0 x  0.9) =  - 0 .4

D elete -  Effect ( - 1  X 0.4) +  (0 X 0.2) +  ( - 1  x  0.1) +  (1 X 0.9) =  0.4

In this case, MID carries out Delete-Effect first, then Add-Condition, and then Negate-

Condition. Thus MED searches the space of revisions differently depending on its current 

motivations.

The correct revision is in fact the add-condition revision shown in Figure 8.6. We 

céin see tha t p re c o n d it io n -2 corresponds to  the missing condition, h e a t-c o n n e c tio n  

Tsource ? d e s t in a t io n  ?path , for the process of Figure 8.3.

8 .6 .2  S ta tic  Selection

In a similar scenario but with the heat-connection condition satisfied (not shown), 

MID generates the same prediction, but again no observations are observed. If we add the 

background knowledge contained in the BKRB of Figure 8.7, then MED can apply another 

revision operator, Specialize-Pcondition. In this case, MED constructs two extra possible 

revisions shown in Figure 8.8, one with a l ig n e d  being specialized to f lo w -a lig n e d , 

and another with a lig n e d  being specialized to h e a t- f lo w -a lig n e d . Both of these are
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PROCESS: heat-flow
Variables : ?source

?destination
?path

Individuals : object ?source
object ?destination
heat-path ?path

Pconditions: heat-flow-aligned ?path
Qconditions: greater-than (a (temperature ?source))

(a (temperature ?destination))
Relations : Q+ (heat-flow-rate) (temperature ?source)

Q- (heat-flow-rate) (temperature ?destination)
Influences : 1+ (heat ?destination) (a (heat-flow-rate))
Revision Log: 1 specialize preconditions
PROCESS: 
Variables :

Individuals :

Pconditions: 
Qconditions:

Relations :

Influences : 
Revision Log;

heat-flow
?source
?destination
?path
object ?source 
object ?destination 
heat-path ?path 
flow-aligned ?path
greater-than (a (temperature ?source))
(a (temperature ?destination))
Q+ (heat-flow-rate) (temperature ?source)
Q- (heat-flow-rate) (temperature ?destination) 
1+ (heat Tdestination) (a (heat-flow-rate))
1 specialize preconditions

Figure 8.8: The revisions generated by MID using the BKRB above

preferred to  the others by dynamic selection. Since both  revisions are the result of the 

same single operator application, however, MED uses the static selection mechanism to 

distinguish between them. According to the criteria and weighting described above, MID 

uses conservatism, simplicity, generality, modesty and evidential support to  perform the 

selection.

Details of the scoring in static selection are given in  Table 8.5. Remember th a t the 

difference between the counts tha t are generated for each revision are compared against 

the limit values for the set of revisions being compared, and the difference between par­

ticular revisions and the limiting revision for each criterion is used instead of the original 

count. Here, the revisions differ on counts of disjunctions of predicates. Simplicity and 

modesty both  prefer a smaller count, but generality prefers a larger one. Thus for gener­

ality, the limiting number is the larger one, which is for the h e a t- f lo w -a lig n e d  revision, 

while for modesty and simplicity, the limiting number is the smaller one, which is for the
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flow-aligned heat-flow-aligned
criterion, c weight, ujc difference in count. Tie «C Tic X Wc Tic Tic X Wc

K A K A K A
conservatism 0.8 0.4 no. of changes 0 0 0 1 0.8 0.4
simphcity no. of processes 0 0

0.8 0.2 no. of disjunctions 1 0
no. of conditions 0 0.8 0.2 0 0 0

generality no. of conditions 0 0
0.8 0.1 no. of disjunctions 0 1

no. of effects 0 0 0 0 0.8 0.1
modesty no. of conditions 0 0

0.2 0.9 no. of disjunctions 1 0
no. of effects 0 0.2 0.9 0 0 0

support 0.1 0.1 time since last revision 0 0 0 0 0 0

/(A ) 1.0 1.1 1.6 0.5

Table 8.5: Scores for révisions in static selection.

f lo w -a lig n e d  revision.

Under knowledge motivations, Specialize-Condition: f lo w -a lig n e d  gives 

(0.8 X 0) -t- (0.8 X (0 +  1 -H 0)) -H (0.8 X (0 -|- 0 -f 0)) -f (0.2 x (0 -H 1 +  0)) -}- (0.1 x 0) =  1.0 

in comparison to Specialize-Condition: h e a t- f lo w -a lig n e d

(0.8 X 1)4- (0.8 X (0-1-0-1-0)) 4- (0.8 x (0 -h 1 4- 0)) 4- (0.2 x (0 4-0 4 -0 ))-k (0.1 x 0) =  1.6 

Remember th a t only the difference between the revisions and the minimum count 

values for zmy revision is used, f lo w -a lig n e d  scores better for conservatism since it 

involves only one link by specialization rather than  two, zmd for generality since it has 

more disjunctions of conditions and hence greater coverage) This meéins that it scores 

worse for simplicity and modesty, however. It thus scores 1.0 while h e a t- f lo w -a lig n e d  

scores 1.6. The combined effects of conservatism and generality outweigh the effects of 

simplicity and modesty, and MID prefers the lower value which is associated with the 

specialization to f lo w -a lig n ed . This solution will subsequently need further revision to 

specialize the f lo w -a lig n e d  predicate to h e a t- f lo w -a lig n e d , but it has attem pted to 

maximize the utility  of the theory in maintaining a wide coverage.

Under action motivations, Specialize-Condition: f lo w -a lig n e d  gives 

(0.4 X 0)-k  (0.2 X (0 4-1 +  0)) 4- (0.1 x (0 +  0 +  0 )) +  (0 .9  x (0 +  1 +  0)) +  (0.1 X 0) =  1.1 

in comparison to  the TniniTmiTn values of Specialize-Condition: h e a t- f lo w -a lig n e d  

(0.4 X 1) +  (0.2 X (0 +  0 +  0)) +  (0.1 X (0 +  1 +  0)) +  (0 .9  X (0 +  0 +  0)) +  (0.1 X 0) =  0.5
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Here, f lo w -a lig n e d  scores 1.1 while h e a t- f lo w -a lig n e d  scores 0.5. In this case 

where modesty is valued more highly than generality, the h e a t- f lo w -a lig n e d  revision is 

preferred. Note th a t evidential support is the same for both  cases, since they revise the 

same process. Also, the assumption has been made th a t consistency is not an issue here, 

and it has not been considered. However, we can see th a t the f lo w -a lig n e d  revision 

would be inconsistent with sm appropriate history, and would require further search (or 

revision).

A further extended example is given in Appendix A, giving comparisons for selection 

with and without use of the observation grouping heuristic.

8.7 D iscussion

8.7 .1  R e la ted  W ork

Of the many systems concerned with discovery, only a lim ited consideration has been 

given to selection. This section reviews a number of systems in discovery and other areas 

tha t have been implemented and which use selection criteria in some form or other.

T h a g a rd ’s P I  a n d  e c h o

Thagard [115] identified the im portance of simplicity, consilience and analogy in theory 

evaluation and selection, and went on to  develop com putational models. In PI, a program 

tha t attem pts to  provide a ‘model of problem solving and inductive inference’ [41, 117], 

he provided computationed measures of simplicity and consilience but was unable to 

incorporate analogy in such a way (though still noting its significance). More recently, 

he has developed e c h o , a connectionist program th a t comparatively evaluates theories 

principally on the basis of a Theory of Explanatory Coherence which includes these three 

criteria [118,121]. Thagard’s model requires tha t a set of facts F  be explained by a theory 

T and a set of auxiliary hypotheses A. The auxiliary hypotheses are claimed to  be the 

source of complexity in that they are not part of the original theory, but are introduced 

as assumptions in order to explain some of the facts.

S im p lic ity  In PI, one theory is simpler than another if it has a lower ratio  of cohy­

potheses to facts explained. This ensures th a t a hypothesis th a t does not explain 

anything is not preferred to one tha t does but uses auxiliary hypotheses to  do so.
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e c h o ’s treatm ent is a little different. The Theory of Explanatory Coherence (TEC) 

states th a t the coherence of a theory decreases as the number of propositions in­

creases. The propositions here are the cohypotheses th a t are used to  explain the 

facts, including ad hoc assumptions. Although this mirrors the use of simplicity 

in PI, the connectionist nature of e c h o  avoids the need for explicit values and 

formulae, using instead inhibitory and excitatory links to  adjust coherence levels 

appropriately.

C onsilien ce  Consilience is a form of generality. A theory which explains all the facts is 

maximally consilient, but if this is achieved by means of auxiliary hypotheses, then 

it is unsatisfactory because it adds to  complexity. Here we see the need for simplicity 

and consilience (or generality) to  be taken in tandem  when evaluating theories, with 

a decrease in simplicity — amongst other criteria — being used to offset the increase 

in consilience. In PI, the facts are weighted with associated importance. Thus PI 

considers consilience to  be the sum of all the weights of the facts th a t it explains. 

If all facts are equally im portant, then degree of consilience can be taken to  be just 

the number of facts explained. TEC states tha t what explains coheres w ith what 

is explained, and hence the more th a t is explained, the greater the coherence. In 

addition, TEC undermines the acceptability of hypotheses tha t explain only a small 

part of the relevant data. 'If many results of relevant experimental observations 

are unexplained, then the acceptability of a proposition P  th a t explains only a few 

of them  is reduced.’

A n alo g y  The merits of analogy as a selection criterion are particularly contentious. It is 

clear tha t analogy is significant in the formation of theories, but Thagard contends 

tha t analogy is also im portant in the support of hypotheses already discovered. 

Analogy is not used in PI, but in e c h o  an analogy between two propositions will 

increase their coherence.

C o n se rv a tism  Almost as a side-effect of the implementation of e c h o  as a connectionist 

system, conservatism is tagged on to the three criteria explicitly specified above. 

In justification of this, Thagard suggests tha t conservatism is a consequence of 

explanatory coherence, not a separate factor, e c h o  does not treat new evidence 

tha t does not cohere with existing accepted evidence as equally. For example, if 

a hypothesis H i explains E i and E 2 , and subsequently a new hypothesis H 2 that
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contradicts H i but explains E i and E 2 is advanced, then the system will not resettle 

into a state in which Hi and H 2 receive equal activation, rather one in which Hi 

has a higher activation than H 2 .

From the descriptions above, it should be clear th a t Thagard has considered the use 

of selection criteria in some depth. His system is certainly very attractive, and has been 

dem onstrated in a number of domains including legal reasoning [118], adversarial problem 

solving [120] [122], smd a variety of scientific fields [125] [126], but is also very limited. 

It is only used in the evaluation of competing theories (revisions) which are presented to 

it by some unknown means, and ignores other issues of theory formation and revision. 

The connectionist implementation is immediately attractive, but leads to problems over 

the justification of the weights given to evidence and links in the network. They must 

represent something, but what and why? P art of the problem would seem to lie in the 

nature of the system, tha t it is designed only to  evaluate theories in isolation from the 

rest of a  wider process involving theory formation, revision and so on, which might yield 

some justification for setting weights in any particular way. Another im portant issue is 

tha t the evaluation tha t takes place in e c h o  is not variable, but is designed with some 

vague notion of trying to acquire knowledge. As O’Rorke [83] points out, this evaluation 

should not be fixed, since in any real world problem, an agent’s goals and priorities play 

im portant roles in evaluation.

K EK ADA

KEKAD A uses a variety of ways in which to  select hypotheses. F irst, it selects hypotheses 

on the basis of an associated confidence measure which, as we noted in the discussion on 

evaluation in Chapter 6, is simply a count of the successful smd unsuccessful instances. 

Second, it uses a predefined ordering on hypotheses th a t is cledmed to be on the basis 

of ‘experience’. Third, the user can select the hypothesis. Only the confidence measure 

method provides reasonable autom ated control, and it is analogous to  the evidential 

support criterion used here. Selection is used only to choose between hypotheses, not to 

constrain their generation. Clezirly, the selection mechanism is very weak in KEKADA, 

and lacks any variation in motivation.
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COAST

COAST uses selection criteria to evaluate candidate revisions once they have been gener­

ated. Each criterion has associated with it a weight which allows the relative im portance 

of the criteria to  be varied. Rajamoney is rather vague about the use of this, and chooses 

default values for the context of scientific discovery arbitrarily without any justification. 

No discussion of other issues is provided. The criteria used are:

S im p lic ity  o f  E x p la n a tio n s  This criterion is based on the principle of Occam's Razor. 

It prefers revisions tha t generate simpler explanations. In this case, simplicity is 

defined as the number of links in an explanation for a given set of observations.

S tru c tu ra l  S im p lic ity  (o f D o m a in  T h e o ry )  This is based on the principle of parsi­

mony. It prefers revisions th a t are simpler in term s of the number of components 

in a process, and the number of processes in the domain theory revision.

P re d ic t iv e  P o w e r This is similar to the consilience of Whewell and Thagard in th a t it 

is a measure of how much a theory can account for. It prefers revisions tha t make 

more predictions, and has the merit of increasing refutability.

These criteria correspond to  the simplicity and generality criteria in MID, but ignore 

other dimensions of selection. Also, they are limited to  the second stage in the selection 

procedure, and play no role in constraining the revision space. Although the criteria can 

be weighted, it is not clear how or why they should be.

STAHLp

STAHLp [100] was based on the STAHL program for reasoning about chemical reactions 

and inferring chemical models. In the event of an inconsistency in the premises of a 

model, the system considers revisions to them  th a t would bring the database closer to 

consistency. In STAHLp, the sole selection criterion used was tha t of conservatism. 

This was superseded by REVOLVER [101] which extended STAHLp and used additional 

criteria for selecting between alternative models. Again there is only a m in im al attem pt 

at a serious justification of their use.

M in im u m  M u tila tio n  This is the conservatism principle, and it prefers revisions tha t 

affect the least number of currently held beliefs in the form of chemiccd models.
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C o m p lex ity  Complexity has associated with it a weight th a t allows the preference of 

revisions with either a fewer or greater number of substances in the reaction. Fewer 

substances embodies the principle of parsimony, while more substances implies tha t 

the error was merely omitting something in observation.

M in im u m  R ev is io n  Minimum revision prefers revising premises tha t have been revised 

less often. Its main concern is to avoid cycling in the revision process.

S a m e -ty p e  A ssu m p tio n  This prefers revisions in which the type of substances in the 

premises are the same with the number of instances being diiferent. Its purpose is 

to constrain the space of revisions.

These correspond to  conservatism, simplicity, and criteria for efficiency and control pur­

poses. Again, they apply only to  the the second stage of selection. Both Rose and 

Rajamoney use selection criteria as context-dependent heuristics which, while certainly 

providing a useful mezms for evaluating proposed solutions in their pzuticular systems, 

have little grounding in underlying principles.

Other discovery systems do not address theory selection explicitly. Some research on 

induction and machine learning has considered generality and simplicity in a lim ited way 

in concept learning (eg. [45]), but not with the breadth of dimensions considered here. 

Moreover, there has been little, if any at all, attention paid to  the role of motivations in 

guiding the selection procedure.

S to ry  C o m p re h e n s io n

In discovery systems, as we have seen, there has been little, if  any, consideration given 

to the motivations of the system in addressing the problem at hand. Some story- 

comprehension problems, however, particularly in explanation construction through ab­

duction, have shown the importance of motivations in  th a t diiferent explanations are 

plausible to  a greater or lesser extent depending on the goals and motivations of the 

agents in the stories (eg. R am ’s AQUA program [96],[95], [97] and Leake’s ACCEPTER 

program [64], [65], [66], [62]). In order to understand a story, systems m ust be aware 

of the motivations of the agents in tha t story, and m ust evaluate or select explanations 

of behaviour th a t are in accordance with them. However, the analysis of motivations is 

of a different kind to  tha t proposed here. The motivations of the system are fixed and 

directed at explaining the behaviour of agents in the story. The motivations th a t are
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addressed are those of the agents about whom the system is trying to construct an expla­

nation from the events in the story, and from its own prior knowledge. Explanations are 

constructed not under motivations, but in a sense, about motivations, a very significant 

difference. Furthermore, in systems such as AQUA which have addressed motivations in 

this way, and for which many heuristics determining what the system should focus on 

exist, the problem of combining these heuristics is not addressed. Although Ram  recog­

nises this problem [97], he seems to be unaware of the implications of ignoring it. AQUA 

suffers in this way from overdeterminism and pursues all the alternatives, regardless of 

the priorities and motivations tha t may exist, leading to  the possibility of intractability. 

Thus, although there is a recognition of the relevance of motivations and their use in 

evaluating explanations and hypotheses, the work is superficial and suffers from prob­

lems of overdeterminism and intractability. As such, it has little im pact on m any of the 

issues addressed in the reasoning and selection task tha t is considered here.

8 .7 .2  C onclusions

The problem of theory selection which is an im portant and significant one in induction 

and discovery, has increasingly been drawing more attention. Work on theory selection 

to date has focussed on the very limited task of choosing a theory from amongst many 

tha t are presented to the system, with no consideration being given to  the generation 

of those theories. While such work is indeed relevant, and while some success has been 

dem onstrated, the artificial limitations imposed on the problem have obscured many 

related issues. How are the theories to  be generated in the first instance? Unconstrained 

hypothesis generation can lead to intractability. How may the use of selection criteria be 

tailored to the particular motivations of the reasoner? Different motivations may lead to 

different requirements on theories.

In this chapter we have considered theory selection as part of a larger model of 

discovery and induction. We have argued tha t selection is necessary in both the context 

of justification and the context of discovery, blurring the traditional distinction between 

the two. We have argued that different kinds of theories, though heavily constrained by 

the requirements of the inductive programme, may be required by reasoners with differing 

motivations. An implementation of these proposals in the MID system was described, 

giving specifications of a set of selection criteria and control strategies for revision and 

selection under different motivations.
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By splitting selection into two parts, dynamic selection which constrains the process 

of revision, and static selection which eveduates candidate revisions once they have been 

generated, MID allows reasoning even when resources are limited. Only as many revisions 

as are necessary are generated at any point (although this can amount to an exhaustive 

search in the worst case). This is im portant because it allows extension to very large 

problems where the number of potential revisions is huge, without invalidating the mech­

anism used. Furthermore, static selection allows the introduction of new theories from 

external sources by alternative reasoning methods.

Necessarily, lim itations exist and some further work would be profitable. In particular, 

the values specified for selection criteria were chosen to  achieve the desired results in terms 

of accuracy and relevance to the problem at hand. The justification for these values was 

functional, but further work investigating these is warranted. It would be valuable to see 

if values for such criteria could be determined for hum an subjects, and how they might 

compzire with those used here. Consistency checking was lim ited  either to a complete 

check on the entire episodic history, or to no check at all. Further work could investigate 

how different degrees of consistency checking might be implemented, and the significance 

of the benefit th a t it might bring. This in tu rn  relates to  the question of how the history 

of events should be maintained so tha t performance may be optimized.

Although the analysis of motivations was necessarily crude, it was sufficient to  show 

tha t motivations are both relevant and significant in  the control of the selection stage. 

Moreover, the use of motivations provides a mechanism for m anipulating selection (and 

other stages in the framework) so tha t reasoning m ay be both general (for knowledge) 

and directed (at tasks).
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C hapter 9

C onclusions

Science is a procedure for testing and rejecting hypotheses, not a compendium 
of certain knowledge.

Stephen Jay Gould, Natural History, Adam ’s Navel

9.1 Introduction

There are three different levels to  the work described in this thesis. F irst, an encompassing 

framework for inductive discovery has been constructed within which a broad range of 

inductive reasoning systems can be unified. Second, a general model has been developed 

within this framework tha t describes principles and m ethods for a motivated inductive 

reasoning system. Finally, an instantiation of th a t model has been implemented as the 

MID system which reasons in simple physical domains, bo th  for knowledge and for action.

In assessing the relevance and contribution of this work, we need to be aware of where 

it stands in relation to  previous work. The most closely related work is Rajam oney’s 

work on COAST. MOD and COAST both use the Q PT representation formalism and 

are therefore relatively similar in the kind of prediction and revision mechanisms used. 

However, MID differs from and improves on COAST in several significant ways. F irst, 

it is based on the six-stage framework so tha t there is a strong conceptual basis for the 

work. This allows the identification of those aspects of discovery not addressed in the 

implementation, and the organisation of the work to facilitate easy integration of those 

aspects at such a time when they are addressed. Second, this thesis explicitly identifies 

the stages of observation and evaluation which etre ignored entirely by COAST, but 

which are addressed and implemented in this work. Third, selection in COAST simply
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takes the form of three ad hoc fixed syntactic criteria for judging candidate theories, 

and does not constrain the generation of those theories. By contrast, MID justifies a 

larger set of selection criteria and provides a mechanism not only for applying them  in 

both the generation and assessment of theories, but also for automatically modifying its 

preferences to  suit the circumstances. Finally, MID provides the control mechanism of 

motivations to  direct the reasoning appropriately, while COAST’s reasoning behaviour 

is fixed.

Existing systems perform limited tasks in limited domains, but provide a demon­

stration of the potential of the rapidly expanding research progrzim. Additional features 

continue to be added to discovery systems, and they continue to  be extended to  new do­

mains. The limitations tha t exist are gradually being eliminated, as research progresses 

in addressing them. This thesis can be viewed in such a way — addressing existing 

limitations, and extending the potential of machine discovery and induction in a number 

of directions. In this chapter we discuss how this thesis may be evaluated, and then 

consider the contribution tha t the thesis makes to AI. Next we discuss the limitations of 

the work, eind finally consider possibilities for further research.

9.2 E valuation o f M ID

There is a clear need to evaluate the contribution of this thesis w ith regard to the field of 

AI and discovery. In attem pting to undertake such an assessment, it is im portant th a t the 

criteria used are not chosen arbitreu’ily to highlight some features rather than others, and 

also tha t the work is evaluated in a context wider than  th a t of any immediate application 

task domain. Machine discovery in particular has suffered from an excessive degree 

of specificity in the development of systems which replicate well-documented historical 

episodes in science. While such work is relevant and necessary, it is recognised th a t it 

m ust be complemented by more generally applicable work [111, 103]. Here, we consider 

the work described in this thesis in this regard.

We shall begin this discussion by considering the generality (and applicability) of the 

techniques and methods described here. There are a number of points where a discussion 

of generality is appropriate: the problem, the representation, the inference mechanism, 

the search and heuristics. F irst, the problems tha t are addressed by this research are not 

isolated examples from the history of science th a t capture a very specific type of solution.
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but are more general problems with knowledge in a variety of contexts limited prim ar­

ily by the manner of its explicit representation for use by computer systems. Thus our 

concern is with knowledge-based systems in the very broadest sense. Although this does 

not ground the work in a well-documented historical episode, the broad context of com­

puter knowledge-based systems provides a more general basis, one which is immediately 

relevant, but which is no less well defined.

Second, the representation of the knowledge tha t is the subject of the investigations 

here, both  in acquisition and revision, sits comfortably in a much larger field tha t is 

concerned with issues of representation per se. Qualitative Process Theory (Q PT) is a 

well-defined formalism on which research is still actively being undertaken, and which 

provides a language suitable for use in qualitative reasoning about physical domains. The 

avoidance of ad hoc representations is not coincidentzd, but a conscious effort to  contribute 

to the generality and applicability of this research as a whole. Nevertheless, translations 

to other fbrmsdisms (such as simple production rules, for example,) zire readily made 

by discussing the Q PT formalism at different levels. The representation formalism was 

discussed at a level of detail necessary for a complete appreciation of the model and its 

implementation, but abstractions to  more general term s (such as conditions and effects) 

were used whenever possible and appropriate. Such abstractions allow the methods and 

main algorithms used here to be modified to cover different formalisms.

Third, the inference mechanisms used here are relatively straightforward, and are 

easily applied to  other representations, domains and contexts. Ranging from the simple 

pattern  matcher used for generating predictions through the methods for evaluating 

evidence to those for revising and selecting theories, the reasoning has been kept as 

general as possible, and when this has not been possible, the discussion in this thesis 

provides a basis for extension and application to other instances. This has been achieved 

by including two levels of description and analysis: one at a general level in terms of 

underlying principles regardless of instantiations in a particular implementation, and the 

other at the specific level of the implementation instantiation itself, showing the path  

from the general to the specific in a particular case.

In line with this, the search control through the use of heuristic selection criteria 

was developed both  in terms of the general underlying principles, and in term s of the 

specifics necessary for an implementation based on Q PT. Thus although some of the 

particular heuristics implemented are based around the structure of the QPT formalism.
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abstraction to higher levels both in an initial discussion and in a subsequent consideration 

of the implemented criteria provides the information necessetry for other instantiations 

of the ssune criteria in different circumstances.

While efforts have been made to  develop general methods, this has not always been 

uniformly possible, and the generality th a t has been possible is unavoidably limited in 

some ways. W hat can be claimed, however, is th a t there is an awareness of the limitations 

of the work described here, and these limitations have been stated (as far as possible). 

Moreover, in developing this work, the use of abstraction provides at least a guide to 

the way in which these limitations may be overcome in contexts th a t have not been 

considered here.

9.3 C ontribution to  A I

9.3 .1  T h e S ix -S tage Fram ew ork

In providing a sound conceptual base from which to work, a framework for induction 

and discovery was developed. The framework, though based on the scientific discovery 

paradigm, identifies the principal stages involved in inductive reasoning of various kinds, 

and not ju st scientific discovery. As AI has developed, a fragmentation has occurred and 

barriers have been created between different subfields. An im portant aim in construct­

ing the framework was to surmount these barriers, and to  allow different models and 

paradigms of reasoning to be unified under a single encompassing structure.

In addition, the framework enables the construction of a model and implementation 

tha t is grounded in a broader and more complete conceptual structure. Six distinct stages 

of the framework were identified: prediction, experimentation, observation, evaluation, 

revision and selection. The model described in this dissertation concentrated on the 

internal stages of the framework, but by being grounded in the conceptual structure of 

the framework, avoided the common pitfall of isolation from those elements not addressed 

in detail. The model was developed within the six-stage framework with an appreciation 

and understanding of the relevance of those other elements.

The six-stage framework provides a clear viewpoint from which to  consider other 

paradigms, models and implementations. It is complementary to  the framework of Cheng 

[6] which proposes a hierarchical structure relating paradigms, setups, and tests in ex­

perim entation, and hypotheses, models and instances in  theory. In this hierarchy, the

178



six-stage framework assumes the most abstract level of paradigm  or hypothesis. Models 

developed within th a t framework thus become setups or models, and implementations 

are tests or instances. In this respect, all of the work described here fits neatly into 

Cheng’s hierarchy.

9.3 .2  M otivation s

Many critics of AI argue tha t the real power of the technology lies in the hands of the 

programmers who m anipulate and tweak their designs to  suit circumstzmces. They argue 

that extensive programmer (or user) intervention invalidates much of the benefit to be 

gained from this work by demanding modifications for each novel situation. One of the 

ways in which this can be countered is by making intelligent systems autonomous, by 

giving them  the power to control themselves. Furtherm ore, it has been suggested that 

the difference between learning and discovery is autonomy. A significant contribution 

of this thesis has been to  show that a degree of autonomy can be achieved through the 

modelling and use of the motivations of a reasoning agent.

A stream  of recent research in AI has focussed on the modelling of autonomous agents 

in distributed problem solving through cooperation, negotiation, and so on. The aim of 

the current research has a different focus th a t is not centred on the m od ellin g  of au­

tonomous agents or their qusdities, but on using aspects of agents to  provide control 

strategies for inductive reasoning . Consequently, in modelling motivations in MID, a 

limited representation was developed, with work directed at showing how these motiva­

tions affect reasoning and action in the world, rather than  how action and reason ing  in 

the world affect motivations. Moreover, the reasoning and action addressed were not the 

simple behavioural-response kind, but of higher level reasoning strategies. In this way, 

the current research complements the related but distinct work on modelling artificial 

agents and creatures.

Despite the simplicity of the model of motivations developed, this work has shown 

that even such a simple model provides an effective means for controlling  the different 

elements in inductive discovery, and for allowing different kinds of reasoning to be derived 

from a single set of components. Clearly, more work remains to be done on motivations, 

but we see in MID a demonstration of the potential gain in flexibility and expressiveness 

tha t can result from their explicit representation and use.
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9.3.3 The M odel

Work on developing a model and implementation concentrated on the internal stages 

of the framework. In particular, the stages of evaluation, revision and selection were 

considered in detail.

Evaluation

Evaluation is an im portant element in all kinds of systems in which an acknowledgement 

is made of the possibility of error or failure. Traditionally, it has received little attention, 

assuming perfect evidence and fixed standards of judgem ent. In inductive reasoning, 

evaluation takes on even greater significance because the evidence is the sole (or prim ary) 

fuel to the reasoning engine. This work makes two m ain contributions tha t can be 

identified: the recognition and evaluation of different dimensions of uncertainty; and the 

variable standards of acceptability according to  the needs of the reasoning agent.

Considerations of error and uncertainty have been lacking in very many systems which 

rely on evidence from an imperfect external world. W hen they have been addressed, 

however, the consideration has usually been restricted to  simple tolerance limits for the 

numerical accuracy of the evidence. This is inadequate for systems which aim  to function 

in any world th a t adm its a greater variety of uncertainty. At a basic level, uncertainty 

can be split into th a t which results from the phenomenon itself, and th a t which results 

from observation of the phenomenon. Often, an external source is needed for observation, 

both in science and in ordinary life. In computing, for example, the issues involved in 

evaluation Eire becoming increasingly im portant as the use of distributed systems of all 

sorts grows rapidly [78].

The acceptance of evidence m ust also be made on the basis of the need for that 

evidence. In situations where the potential consequences of an incorrect inference (due 

to faulty evidence) are serious, high quality evidence is demanded. In situations that 

have little significance, poor quality evidence may be adequate. Through m od ellin g  

motivations, an indication of the importance of the situation to the reasoning agent can 

be derived, allowing the requirements placed on evidence to be tailored to the relevant 

needs. This work proposes a model and implem entation for evaluation incorporating 

these concerns, and shows how motivations provide the necessary guidance.
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Revision

Much research is currently being undertaken into theory revision. This work has empha­

sised the need for clear specification of revision operators, and of revision strategies. In 

particular, it is im portant tha t all revisions are considered, and th a t aU combinations of 

revision operators are considered in generating revisions. Any implicit constraints that 

are imposed on the generation of revisions m ust be clearly stated. We have described 

the requirements of theory revision systems and justified the different revisions th a t are 

possible, explaining why and in what circumstances the various revisions are appropri­

ate. In particular, we have been careful not to  rule out revisions in a prejudiced way, 

but to evaluate each according to  its m erit. In order to  avoid problems of combinatorial 

explosion, however, revision is constrained by selection.

Selection

Traditionally, theory selection has involved the generation of multiple revisions, and then 

their evaluation according to some fixed m etric so tha t the best or most plausible theory 

may be identified. This work departs from tha t view of selection in two significant ways.

F irst, the generation of theories or revisions must be constrained so tha t the process 

is manageable. If all possible revisions are actually to be generated, then the problem 

becomes intractable, particularly in non trivial domains where the number of potential 

revisions can be excessive. Thus much existing work does not extend beyond the imme­

diate experimental domain. In MID, selection is of two kinds: dynamic selection which 

constrains the revision procedure; and static selection which evaluates candidate revi­

sions once they have been generated. Dynamic selection avoids the need to generate all 

revisions since the revision operators themselves are ordered so tha t the best or most 

plausible revisions are generated first. (This can, however, cimount to  an exhaustive 

search in a worst case scenario.) It is im portant because it allows extension to richer 

domains «ind larger theories without invalidating the mechanism used. Static selection is 

used when multiple revisions are generated by a single operator or when multiple opera­

tors are used. This is also im portant if the system is not to  be closed to theories generated 

by external sources using alternative reason ing  methods such as analogy. Static selection 

criteria provide a means of evaluating such candidate revisions relative to each other so 

tha t new theories may be introduced.
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Second, the relative importance of the selection criteria used can be varied to  suit the 

purpose of the reasoner. Theories are valued differently with different motivations, and 

the kind of revision preferred will depend on this. If there is an immediate need for a 

theory so tha t action can be taken, it may not be possible to find the best theory given 

the time constraints. The requirements of such a  theory will be different to those of a 

theory th a t is not subject to such constraints. Such considerations are an im portant part 

of selection. In contrast to existing systems, we explicitly address these issues through 

the use of motivations to  determine vsdue sets for selection criteria.

9 .3 .4  R esou rce  B ound s

An im portant claim of this work is tha t scientific reasoning should apply just as well to 

common everyday situations as to the pursuit of science. Inductive discovery involves rea­

soning th a t is suitable in very many domains and contexts. Clearly, there are differences 

between the special case of science and other less controlled environments, but these are 

increasingly being addressed. Researchers in scientific discovery are turning their atten­

tion to  the problem of knowledge discovery in databases, for example, in which the issues 

are related but not identical (eg. [24], [136], [74], [139]). In scientific discovery, the data 

is typically dense and of high quality, obtained through directed experimentation in a 

well controlled environment. In other domains, however, data  is rarely as good, and the 

reasoning must consequently be biased differently.

In addition, the performance of a  reasoning agent in  science contrasts strongly with 

the responsiveness demanded of reasoning agents in other domains which m ay need to 

react quickly. The lengthy deliberation th a t is required to  reach the best solution may 

be beyond the ability of the agent to perform in a  lim ited time and with lim ited re­

sources. The work described here addresses these issues by using motivations to control 

the amount of inference tha t can be undertaken. W hen resources are limited, 'quick and 

d irty ’ solutions m ay be best, but when they are unconstrained, the optimal reasoning 

strategy can be pursued. Thus MID provides a means for adapting the reasoning so tha t 

it is appropriate for the relevant domeiin, and for the abilities of the reasoning agent in 

tha t domain.

182



9.4 L im itations

Inevitably, there are a number of distinct lim itations to  the work tha t is described here. 

At the broadest level, and within the context of the six-stage framework, the focus of the 

research undertaken has been on the internal stages of the framework. Though external 

issues have been noted, only the internal stages have been considered in detail. Primarily, 

this relates to  the stage of experimentation which has not been modelled here at all, and 

to observation which is considered in a very limited way.

The emphasis on internal factors is also reflected in the modelling of motivations. Our 

concern with motivations is limited to their effect on reasoning, and not with the m od­

elling of artificial agents. Thus this work does not address issues of how motivations vary 

in response to  their environment or to changes in th a t environment. These limitations 

impose a stronger focus because the boundaries are clearly defined and recognised.

In addition, it should be noted that the im plem entation of the MID system is not 

intended to be a fully functional system capable of actual inductive discovery in a real 

world, rather a demonstration tha t the ideas and mechanisms proposed are com puta­

tionally possible and effective. Thus MID is a prototype, lim ited by design and intention 

rather than  lim ited  by inadequacy. W ith further development of the system, however, 

many of these limitations would be removed.

More detailed discussions of the limitations of the different elements of this work can 

be found in the individual chapters.

9.5 Future Work

This research has opened up many avenues for further research, both  in the development 

of the ideas presented, and in their more complete integration with related aspects. We 

identify several m ajor directions tha t such research m ay pursue.

First, we note the boundaries of the current work already discussed, and the restric­

tion to  the internal stages of the framework. Further work could usefully pursue research 

into experimentation strategies, and in integrating existing strategies and systems w ith 

the current work. An interesting problem would be to see how well the methods de­

veloped here for reasoning about theoretical knowledge could be used to  reason about 

experimental knowledge used in the directed design and construction of experiments.

In addition, a much stronger representation of the external environment could be
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developed, together with a more detailed model of motivations specifying the way in 

which motivations respond to  it. Alternatively, the current work could be integrated 

with existing mechanisms for determining m otivational values such as those developed 

by Maes [77]. This would allow motivational strength values to  be determined directly 

rather than  by interface with the programmer.

As it exists currently, MID is designed to acquire knowledge and eliminate errors 

from its domain theory without preference or bias. It is interested in everything that 

satisfies these goals. Further work could extend MED by introducing additional goals to 

be satisfied. This would have implications for a number of elements.

The introduction of these extra goals may constrain prediction, for example, making 

certain predictions more relevant than  others. In such a case, effort would need to  be 

directed a t predicting (and hence reasoning about) those anomalies th a t have greater 

utility, say, than other anomalies.

In selection, too, the introduction of additional goals would be significant. The selec­

tion criteria used are general criteria tha t are intended for use solely in the acquisition 

of knowledge. In order to  satisfy other new goals, the criteria would need to be extended 

to include more domain-specific and context-specific criteria. The story u n d erstanding  

programs of Leake and Ram  discussed in Chapter 8 provide an indication of the direction 

in which MID would need to be extended.

The existing selection criteria cannot be claimed to  be a definitive set of general cri­

teria, but they are sufBcient for the goals of the MED system. Further investigation is 

warranted, however, in the values given to  the criteria when reasoning under knowledge 

and action motivations. Although the values given here are justified by pragmatic con­

cerns, it would be beneficial to see if there is a correlation w ith these value sets in human 

reasoning, and whether alternative value sets are possible.

9.6 Conclusion

In this thesis, a new dimension has been added to com putational discovery systems 

through the use of motivations as a control strategy, providing evidence of the potential 

of such systems, and of their applicability and richness. Despite the simplicity of the 

representational formalism, significant control is exercised, and different modes of induc­

tive reasoning can be derived. Thus a single set of processes is shown to be sufhcient
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to produce a variety of reason in g behaviours as appropriate and necessary according to 

motivations zmd circumstances.

Though situated firmly in the discovery camp, this work is also relevant to  other 

areas of AI. In considering the ability to  deal w ith bounds on resources we note, for 

example, th a t some of the requirements suggested by Waltz [131] for intelligent robots 

are satisfied by the MID system. These include the use of innate drive and evaluation 

systems to provide moment-to-moment guidance for action, and the adoption of the 

best existing alternative without further evaluation in emergencies. Both of these are 

significant aspects of this work, which can be applied to many other areas.

Scientific reasoning provides a basis for predicting and controlling our environment. 

Inductive discovery is a mode of scientific reasoning which has achieved much success 

in the history of science, and which has attracted  efforts by AI researchers to  emulate 

tha t success. In this pursuit, computer programs have been developed th a t attem pt 

to replicate the reported reasoning th a t has led to significant scientific discoveries. The 

concern of this thesis has not been to simulate a particular historical episode, but to  show 

how inductive discovery can be applied to real-world problems tha t arise both in  scientific 

and non-scientific domains. At a m eta level, this research can be regarded as a theory 

tha t has survived our attem pts to refute it through experimentation thus far. Ideally, 

however, we would want to develop a recursive structure with systems reasoning about 

themselves, taking account of success and failure, and playing a part in the never-ending 

struggle for knowledge in the best tradition of scientific progress.
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A ppendix  A

A n E xtended  E xam ple

The example of MID’s operation given here is based on the data  used by Rajamoney [91] 

for his osmosis example. First we give the complete domain theory used.

A .l  D om ain T heory
Process Name: 
Individuals : 
Pconditions: 
Qconditions: 
Relations:

Influences :

Solution
contained-liquid ?solution
soluble (solute-of ?solution) (solvent-of ?solution) 
greater-than (a (amount-of (solute-of ?solution))) 0 
Q+ (concentration ?solution) (amount-of (solute-of ?solution)) 
Q- (concentration ?solution) (amount-of (solvent-of ?solution)) 
Q+ (amount-of ?solution) (amount-of (solvent-of ?solution))

Process Name; 
Individuals :

Pconditions:

Qconditions: 
Relations:

Influences:

Process Name: 
Individuals :

Pconditions:

Qconditions:
Relations:
Influences:

Evaporation
contained-liquid ?liquid 
contained-gas ?vapor 
connection ?liquid ?vapor 
open-container container ?liquid

Q+ (evaporate-rate ?evaporation-rate)
(contact-area ?liquid ?vapor) 

I- (amount-of ?liquid) (a (evaporation-rate))
1+ (amount-of ?vapor) (a (evaporation-rate))

Condensation 
contained-gas ?vapor 
contained-liquid ?liquid 
connection ?liquid ?vapor 
open-container container ?liquid

Q + (condensation-rate) (contact-area ?liquid ?vapor)
1+ (amount-of ?liquid) (a (condensation-rate))
I- (amount-of ?vapor) (a (condensation-rate))
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Process Name: Absorption
Individuals: solid ?solid

contained-liquid ?liquid 
Pconditions: connection ?solid ?liquid

absorbent ?solid 
Qconditions: less-than (a (absorbed-liquid-of ?solid))

(a (maucimum-absorbed-liquid-of-point ?solid)) 
Relations: Q+ (absorption-rate) (contact-area ?solid ?liquid)
Influences : I- (amount-of ?liquid) (a (absorption-rate))

Process lame: Release
Individuals: solid Tsolid

contained-liquid ?liquid 
Pconditions: connection Tsolid Tliquid

absorbent Tsolid 
Qconditions: greater-than (a (absorbed-liquid-of Tsolid))

(a (minimum-absorbed-liquid-of-point Tsolid)) 
Relations: Q+ (release-rate) (contact-area Tsolid Tliquid)
Influences : 1+ (amount-of Tliquid) (a (release-rate))

Process Name: Fluid-flov
Individuals : contained-fluid Tsource

contained-fluid Tdestination 
path Tpath

Pconditions: path-connection Tsource Tdestination Tpath
fluid-flow-aligned Tpath 

Qconditions: greater-than (a (pressure Tsource))
(a (pressure Tdestination)) 

Relations : Q+ fluid-flow-rate (pressure Tsource)
Q- (fluid-flow-rate) (pressure Tdestination)

Influences : 1+ (amount-of Tdestination) (a (fluid-flow-rate))
I- (amount-of Tsource) (a (fluid-flow-rate))

Process Name: 
Individuals :

Pconditions:

Qconditions: 
Relations: 
Influences :

Add-solute
contained-solid Tsolute-source 
contained-solid Tsolute-destination
transfer-connection Tsolute-source Tsolute-destination 
transferableT Tsolute-source Tsolute-destination

I- (amount-of Tsolute-source) (a (add-solute-rate))
1+ (amount-of Tsolute-destination) (a (add-solute-rate))

A .2 Background K now ledge R ule B ase

flow-aligned
fluid-flow-aligned
heat-flow-aligned

aligned
flow-aligned
flow-aligned

A 3 Successful Prediction

MID successfully predicts the effects of the following scenarios. These provide MID with 

a limited though im portant history so tha t historical consistency may be checked.
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Scenario : llnid-llcw-works-scenario
Individuals : std-fluidl 

std-fluid2 
std-pathl

Facts: contained-fluid std-fluidl
contained-fluid std-fluid2 
path std-pathl
path-connection std-fluidl std-fluid2 std-pathl 
fluid-flow-aligned std-pathl
greater-than (a (pressure std-fluidl)) (a (pressure std-fluid2))

MID successfully predicts th a t the f  l u i d - f  low process is active and tha t the amount 

of s td - f lu id 2  increases, while the amount of s t d - f l u i d l  decreases. A trace is not 

shown.

Scenario : fluid-flow-failsl-scenario
Individuals : std-fluidl 

std-fluid2 
std-pathl

Facts: contained-fluid std-fluidl
contained-fluid std-fluid2 
path std-pathl
path-connection std-fluidl std-fluid2 std-pathl 
not-fluid-flow-aligned std-pathl
greater-than (a (pressure std-fluidl)) (a (pressure std-fluid2))

MID makes no predictions. No changes zire observed.

Scenario: absorption-works-scenario
Individuals: solidl 

liquidl 
Facts: solid solidl

contained-liquid liquidl 
connection solidl liquidl 
absorbent solidl
less-than (a (absorbed-liquid-of solidl))

(a (maximum-absorbed-liquid-of-point solidl))

A decrease in the amount of l i q u id l  is observed.

Scenario: absorption-fails-scenaurio
Individuals : solidl 

liquidl 
Facts: solid solidl

contained-liquid liquidl
connection solidl liquidl
less-than (a (absorbed-liquid-of solidl))

(a (maximum-absorbed-liquid-of-point solidl))

No changes are observed.
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Scenario: release-works-scenaurio
Individuals: solidl 

liquidl 
Facts: solid solidl

contained-liquid liquidl 
connection solidl liquidl 
absorbent solidl
greater-than (a (absorbed-liquid-of solidl))

(a (minimum-absorbed-liquid-of-point solidl))

An increase in the amount of l i q u id l  is observed.

Scenario: release-fails-scenario
Individuals : solidl 

liquidl 
Facts: solid solidl

contained-liquid liquidl 
connection solidl liquidl
greater-than (a (absorbed-liquid-of solidl))

(a (minimum-absorbed-liquid-of-point solidl))

No changes are observed.

A .4 Correcting an A nom aly

Now MID is given a much more complicated scenario. This describes a situation in which 

the novel process of osmosis occurs. MID does not know about osmosis and consequently 

does not predict any changes.

Scenario: osmosis-scenariol
Individuals : solutionl 

solutions 
vapor1 
vapors 
wall
peurtition 
wall-path 
partition-path 

Facts : contained-liquid solutionl
contained-liquid solutions 
contained-gas vapor1 
contained-gas vaporS 
contained-fluid solutionl 
contained-fluid solutions 
contained-fluid vapor1 
contained-fluid vaporS 
solid wall 
solid partition 
path wall-path 
path paurt it ion-pat h 
connection solutionl vapor1
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connection solution2 vapor2 
connection wall solutionl 
connection wall solution2 
connection peirtition solutionl 
connection partition solution2
path-connection solutionl solution2 partition-path 
path-connection solutionl solution2 wall-path 
soluble (solute-of solutionl) (solvent-of solutionl) 
soluble (solute-of solution2) (solvent-of solution2) 
greater-than (a (amount-of:solute-of solutionl)) 0 
greater-than (a (amount-of:solute-of solution2)) 0 
greater-than (a (concentration solutionl))

(a (concentration solution2)) 
greater-than (a (absorbed-liquid-of wall))

(a (minimum-absorbed-liquid-of-point wall)) 
less-than (a (absorbed-liquid-of wall))

(a (mazimum-absorbed-liquid-of-point wall))

MID first attem pts to  derive predictions from the domain theory and scenario de­

scription.

Matching domain processes against scenario description ...
PROCESS: solution
Variables: solutionl
Individuals : contained-liquid solutionl
Pconditions: soluble (solute-of solutionl) (solvent-of solutionl)
Qconditions: greater-than (a (amount-of:solute-of solutionl)) 0 
Relations : Q+ (concentration solutionl) (amount-of:solute-of solutionl)

Q- (concentration solutionl) (amount-of:solvent-of solutionl)
Q+ (amount-of solutionl) (amount-of:solvent-of solutionl)

Influences :
Revision Log:

PROCESS: solution
Vauriables : solution2
Individuals : contained-liquid solution2
Pconditions: soluble (solute-of solution2) (solvent-of solution2)
Qconditions: greater-than (a (amount-of:solute-of solution2)) 0 
Relations: Q+ (concentration solution2) (amount-of:solute-of solution2)

Q- (concentration solution2) (amount-of:solvent-of solution2)
Q+ (amount-of solution2) (amount-of:solvent-of solution2)

Influences :
Revision Log:

Inactive: evaporation 
Inactive : condensation 
Inactive: absorption 
Inactive: release 
Inactive: fluid-flow 
Inactive: add-solute

No predictions can be generated!
  Active processes have no influences (effects).

Note tha t although the s o lu t io n  process is active and can be instantiated with both
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s o lu t io n l  and so lu tio n 2 , it has no influences (or direct effects) which can become 

predictions.

MID is now provided with observations of changes to  quantities, resulting in  an 

anomaly. Very different reasoning behaviours are possible here. Below we show M ID’s 

output when reasoning for action and when reasoning for knowledge, with and without 

the grouping heuristic. All possible revisions are given. Those revisions tha t follow the 

first consistent revision do not need to be generated, but are shown for completeness of 

demonstration. In subsequent traces, a condensed trace of output is given, showing only 

relevant details. Revisions tha t are generated after the first consistent revision will be 

condensed.

First, we show MID reasoning for knowledge without the grouping heuristic. Note 

tha t the motivation for knowledge is higher than  the action motivation.

A .4 .1  W ith o u t G rouping O bservations

Current Motivations:
<knowledge,0.6,Fized>
<action,0.4,Variable>

Meucimum confidence: 0.9, and minimum confidence: 0.1 
Importance: 0.6
Urgency: 0.2 with a limit of: 0.7

Accuracy: 0.8 Credibility: 0.9

Enter reliability of observer: .9 
Enter trustworthiness of observer: 1

Acceptance threshold: 0 . 6 ----> Action point : 0.6
Confidence: 0.648

Confidence exceeds action point - observations are accepted!

Enter observations (end with return alone):
> increase (amount-of solution2)
> decrease (amount-of solutionl)
>

Anomalous observations : theory refuted!

The evidence is acceptable, but the observations do not m atch the predictions. The 

theory m ust be revised.

Current Motivations:
<knowledge,0.6,Fixed>
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<action ,0 .4 ,Variable>

Searching for revisions ...

Revision #1
HISTORICALLY INCQISISTEHT --  clash with; flnid-flow-failsl-scenario
No change : solution 
No change: evaporation 
No change : condensation 
No change: absorption 
No change : release 
PROCESS: fluid-flow 
Variables: Tsource

Tdestination
Tpath

Individuals : contained-fluid Tsource
contained-fluid Tdestination 
path Tpath

Pconditions: path-connection Tsource Tdestination Tpath 
Qconditions:
Relations : Q+ (fluid-flow-rate) (pressure Tsource)

q- (fluid-flow-rate) (pressure Tdestination)
Influences : 1+ (amount-of Tdestination) (a (fluid-flow-rate))

I- (amount-of Tsource) (a (fluid-flow-rate))
Revision Log: 8 delete conditions

No change : add-solute

Revision #2
HISTORICALLY INCONSISTENT --- clash with: absorption.fails.scenario
No change : solution 
No change : evaporation 
No change : condensation 
PROCESS : absorption 
Variables : Tsolid

Tliquid 
Individuals : solid Tsolid

contained-liquid Tliquid 
Pconditions: connection Tsolid Tliquid 
Qconditions: less-than (a (absorbed-liquid-of Tsolid))

(a (maximum-absorbed-liquid-of-point Tsolid)) 
Relations: Q+ (absorption-rate) (contact-area Tsolid Tliquid)
Influences : I- (amount-of Tliquid) (a (absorption-rate))
Revision Log: 8 delete conditions

PROCESS : release 
Vauriables : Tsolid

Tliquid 
Individuals : solid Tsolid

contained-liquid Tliquid 
Pconditions: connection Tsolid Tliquid 
Qconditions: greater-than (a (absorbed-liquid-of Tsolid))

(a (minimum-absorbed-liquid-of-point Tsolid)) 
Relations: Q+ (release-rate) (contact-area Tsolid Tliquid)
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Influences : 1+ (amount-of Tliquid) (a (release-rate))
Revision Log: 8 delete conditions

No change : fluid-flov 
No change : add-solute

Revision #3
HISTORICALLY INCONSISTENT clash with: release-fails-scenairio
No change: solution 
No change : evaporation 
No change : condensation 
No change : absorption 
PROCESS: release 
Variables : Tsolid

Tliquid 
Individuals : solid Tsolid

contained-liquid Tliquid 
Pconditions: connection Tsolid Tliquid
Qconditions: greater-than (a (absorbed-liquid-of Tsolid))

(a (minimum-absorbed-liquid-of-point Tsolid)) 
Relations : Q+ (release-rate) (contact-area Tsolid Tliquid)
Influences : 1+ (amount-of Tliquid) (a (release-rate))
Revision Log: 8 delete conditions

No change : fluid-flow
No change : add-solute
PROCESS : process8
Variables : Tvar-16
Individuals : contained-liquid Tvar-15
Pconditions: precondition-osmosis-scenario Tvar-15
Qconditions:
Relations :
Influences : I- (amount-of Tveir-15) (a (process8-rate) )
Revision Log: 8 new.process

Revision #4
HISTORICALLY INCONSISTENT --  clash with: absorption_fails_scenario
No change : solution 
No change : evaporation 
No change : condensation 
PROCESS : absorption 
Variables : Tsolid

Tliquid 
Individuals : solid Tsolid

contained-liquid Tliquid 
Pconditions: connection Tsolid Tliquid 
Qconditions: less-than (a (absorbed-liquid-of Tsolid))

(a (maximum-absorbed-liquid-of-point Tsolid)) 
Relations : Q+ (absorption-rate) (contact-area Tsolid Tliquid)
Influences : I- (amount-of Tliquid) (a (absorption-rate))
Revision Log: 8 delete conditions

No change : release
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Ho change : lluid-llov
Ho change: add-solute
PROCESS: processS
Variables: ?var-15
Individuals: contained-liquid ?var-16
Pconditions: precondition-osmosis-scenario ?var-16
Qconditions:
Relations :
Influences : 1+ (amount-of ?var-lS) (a (process8-rate))
Revision Log: 8 nev.process

Revision #5
Ho change : solution
Ho change : evaporation
Ho change : condensation
Ho change: absorption
Ho change: release
Ho change : fluid-flow
Ho change: add-solute
PROCESS: processS
Variables: ?var-15
Individuals : contained-liquid ?var-16
Pconditions : precondition-osmosis-scenaurio ?vaur-16
Qconditions:
Relations :
Influences : 1+ (amount-of ?var-15) (a (process8-rate))
Revision Log: 8 new.process

PROCESS : process9
Variables : ?var-16
Individuals: contained-liquid ?vaur-16
Pconditions : precondition-osmosis-scenario ?vair-16
Qconditions:
Relations:
Influences : I- (amount-of ?vair-16) (a (process9-rate))
Revision Log: 8 new.process

Revision #6
HISTORICALLY IHCOHSISTEHT --  clash with: fluid-flow-failsl-scenaurio
Ho change : solution 
Ho change : evaporation 
Ho change : condensation 
Ho change : absorption 
Ho change : release 
PROCESS : fluid-flow 
Variables : Tsource

Tdestination
Tpath

Individuals : contained-fluid Tsource
contained-fluid Tdestination 
path Tpath

Pconditions: path-connection Tsource Tdestination Tpath 
Qconditions:
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Relations; Q+ (lluid-llow-rate) (pressure Tsource)
Q- (fluid-flow-rate) (pressure Tdestination)

Influences : 1+ (amount-of Tdestination) (a (fluid-flow-rate))
I- (amount-of Tsource) (a (fluid-flow-rate)) 

Revision Log: 8 delete conditions

lo change : add-solute

Revision #7 
No change : solution 
Ho change : evaporation 
No change : condensation 
No change : absorption 
No change: release 
No change : fluid-flow 
No change : add-solute 
PROCESS: processS 
Variables : Tvar-15

Tvar-16
Individuals : contained-liquid Tvar-15 

contained-liquid Tvar-16 
Pconditions: precondition-osmosis-scenario Tvar-15 Tvair-16 
Qconditions:
Relations :
Influences : 1+ (amount-of Tvar-15) (a (processB-rate))

I- (amount-of Tvaur-16) (a (processB-rate))
Revision Log: B new.process

W ith an anomalous observation failure, we a ttem pt to  revise the theory so th a t the 

observations are caused as a result. This can be done by modifying the effects of active 

processes to include those tha t m atch the observations, modifying the conditions of inac­

tive processes with effects entailing the observations, or creating new processes. The only 

active process is s o lu tio n , which is instantiated separately by both  observed quantities. 

Since the direction of chetnge for each is different, a modification of the s o lu tio n  process 

is not possible. The second possibility is to modify the conditions of inactive processes 

which could cause appropriate predictions. These include the f  l u i d - f  lov , r e le a s e  and 

a b so rp tio n  processes, which demand the modification of preconditions and quantity 

conditions appropriately. The last possible revision is to create new processes. The se­

lection vectors for the operators are shown in Table A .I. The value weights for revision 

when reasoning under knowledge motivations are:

y^knowledge = <  0 .8 ,  0 .8 ,  0 .8 ,0 .2 ,  0 .1 ,1 .0  >

Using the first four of these for dynamic selection, MID calculates an ordering on these 

revision operators shown in Table A .l

The ordering on these operators determines the order of revision. Thus the first to
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revision operator selection vector knowledge action
Delete-Condition < —1,1 ,1 , —1 > 0.6 -1.0
Negate-Condition < - 1 , 0 , 0 , 0 -0.8 -0.4
Generalize-Condition < 1, —1,1, —1 > 0.6 -0.6
Add-Effect < 1 , 0 ,1 , - 1 > 1.4 -0.4
Invert Effect < - 1 ,0 ,0 ,0 > -0.8 -0.4
Generalize Effect < 1 , 0 , 1 , - 1 > 1.4 -0.4
New-Process < —1, —1,0 ,1  > -1.4 0.3

Table A .l: Selection vectors for relevant revision operators.

be considered are add-e£Eect and g enera lize -effec t, but both  of these cannot generate 

revisions as discussed above. Next are d e le te* co n d itio n  and g en era lize*cond ition , 

but of these only d e le te -c o n d itio n  is applicable, and it can apply to r e le a s e  and 

f  l u i d - f  lov . (It also applies to  a b so rp tio n , but observations are addressed in order, 

the first of which, in c re a s e  (am ount-of s o lu tio n 2 ) ,  is not an effect of ab so rp tio n .)  

The n e g a te -c o n d itio n  and in v e rt-e ffec t operators are both  not acceptable because the 

inversion of relevant conditions do not appear in the scenario description, and because 

there are no appropriate active processes. Finally, the last operator is the new -p ro cess  

operator.

Since the d e le te -c o n d itio n  operator can be applied to  two processes, static selection 

is used to  distinguish between them. In the case of r e le a s e ,  only one precondition needs 

to be deleted, and with f  l u i d - f  low, one precondition and one quantity condition are 

deleted. Thus, the r e le a s e  revision has an extra condition but one less change than  the 

f  l u i d - f  low revision. In terms of the criteria, r e le a s e  scores better for conservatism and 

modesty, but f  l u i d - f  low scores better for bo th  generality and simplicity. Remember 

tha t the difference between the counts th a t are generated for each revision are compared 

against the limit values for the set of revisions being compared, and the difference between 

particular revisions and the limiting revision for each criterion is used instead of the 

original count. Here, the revisions differ on counts of conditions. Simplicity and generality 

both prefer a smaller count, but modesty prefers a larger one. Thus for modesty, the 

limiting number is the smaller one, which is for the r e le a s e  revision, while for generality 

and simplicity, the limiting number is the larger one, which is for the f  l u i d - f  low revision. 

Using the weights above, we get the ordering values shown in Table A.2, where r e le a s e  

scores 1.6, and f  l u i d - f  low scores 1.0 and is thus preferred.
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release fiuid-fiow
criterion, c weight, Wc difference in count, Tie Tic Tic X We Tic Tic X We

K A K A K A
conservatism 0.8 0.4 no. of changes 0 0 0 1 0.8 0.4
simplicity no. of processes 0 0

0.8 0.2 no. of disjunctions 0 0
no. of conditions 1 0.8 0.2 0 0 0

generality no. of conditions 1 0
0.8 0.1 no. of disjunctions 0 0

no. of effects 0 0.8 0.1 0 0 0
modesty no. of conditions 0 1

0.2 0.9 no. of disjunctions 0 0
no. of effects 0 0 0.2 0.9

support 0.1 0.1 time since last revision 0 0 0 0 0 0

/(A) 1.6 0.3 1.0 1.3

Table A.2: Scores for revisions in static selection.

Revision first step second step
Revision # 1 d e le te -c o n d itio n  f  l u i d - f  low —
Revision # 2 d e le te -c o n d itio n  r e le a s e d e le te -c o n d itio n  a b so rp tio n
Revision # 3 d e le te -c o n d itio n  r e le a s e n ew -p ro cess
Revision # 4 n ew -p rocess d e le te -c o n d itio n  a b so rp tio n
Revision # 5 n ew -p rocess n ew -p ro cess
Revision # 6 d e le te -c o n d itio n  f  l u i d - f  low —
Revision # 7 n ew -p rocess —

Table A.3: Final ordering of revisions under knowledge motivation.

The final ordering on revisions is thus the one shown in Table A 3. Note tha t where 

only one step revision occurs, it accounts for bo th  observations.

We can see tha t the first revision tha t is consistent with prior evidence is revision 

# 5 . Each of the preceding revisions must be checked against each of the scenarios in the 

history to  ensure consistency, demanding significant resources. Note th a t revisions ^ 3  

and # 6  are the same, but tha t revision # 3  arises through attem pting to  accommodate the 

first observations, and :^6 arises through attem pting to  accommodate both  observations 

together. Both revisions and characterize osmosis, but ^ 5  uses two distinct 

processes to do so.

If we need to take action immediately, the resources demanded may not be available. 

Below, the same scenario is given, but this time the desire for action motivates the rea-
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Revision first step second step
Revision # 1 n ew -p rocess n ew -p ro cess
Revision # 2 new -p ro cess d e le te -c o n d itio n  a b so rp tio n
Revision # 3 d e le te -c o n d itio n  r e le a s e n ew -p ro cess
Revision # 4 d e le te -c o n d itio n  r e le a s e d e le te -c o n d itio n  a b so rp tio n
Revision # 5 d e le te -c o n d itio n  f  l u i d - f  low —
Revision # 6 n ew -p ro cess —
Revision # 7 d e le te -c o n d itio n  f  l u i d - f  low —

Table A.4: Final ordering of revisions under action motivation.

soning. The same operators are applied, but are now ordered differently according to  the 

values:

y V a c tio n  =< 0.4,0.2,0.1,0.9,0.1,0.0 >

The calculated ordering on these revision operators is also shown in Tables A .l, A.2 

and A.4. The n ew -p ro cess  operator is now preferred to  the d e le te -c o n d itio n  oper­

ator in dynamic selection, and d e le te -c o n d itio n  r e le a s e  is now preferred to  d e le te - 

c o n d itio n  f  l u i d - f  low in static selection.

Current Motivations:
<kno«ledge,0.6,Fized>
<action,0.4,Varlable>
New value for action: .8 
New value for knowledge: .6 

New motivations aire:
<knowledge,0.6,Fized>
<action,0.8,Variable>

Action motivations are now saHent.

Current Motivations:
<knowledge,0.6,Fized>
<act ion ,0.8, Vair iable>

Heizimum confidence : 0.9, and minimum confidence : 0.1 
Importance: 0.8
Urgency: 0.8 with a limit of: 0.7

Accuracy: 0.8 Credibility: 0.9

Enter reliability of observer: .9 
Enter trustworthiness of observer: 1

Acceptance threshold: 0 . 8 ----> Action point : 0.16
Confidence: 0.648
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Confidence exceeds action  point -  observations are accepted!

Enter observations (end with return alone):
> increase (amount-of solution2)
> decrease (amount-of solutionl)
>

Anomalous observations: theory refuted!

Note th a t the strength of the salient motivation, the action motivation is now 0.8. 

This raises the im portance and thus the acceptance threshold accordingly, and would 

demand confidence of 0.8 or above. However, the UTgencyoî the situation is high (higher 

than the urgency lim it), so the action point is lowered accordingly, allowing the same 

evidence to be accepted here too, despite the increase in importance. The revisions are 

the same as before, but because of the need to construct a local temporary revision under 

action motivations based on evidence tha t has an associated confidence lower than  the 

acceptance threshold, they are generated in a different order.

Searching for revisions ...

Revision #1
Ho change: solution
Ho change : evaporation
Ho change : condensation
Ho change : absorption
Ho change : release
Ho change: fluid-flow
Ho change : add-solute
PROCESS: processS
V ariab les: Tvair-IB
Individuals : contained-liquid ?var-15
Pconditions: precondition-osmosis-scenario ?var-15
Qconditions:
Relations :
Influences : 1+ (amount-of ?var-lS) (a (processS-rate))
Revision Log: 8 new.process

PROCESS: processG
Variables : ?var-16
Individuals : contained-liquid ?var-16
Pconditions: precondition-osmosis-scenario ?var-16
Qconditions:
Relations :
Influences : I- (amount-of ?var-16) (a (process9-rate))
Revision Log: 8 new.process

Revision #2
HISTORICALLY IHCOHSISTEHT --  clash with: absorption.fails.scenario
Ho change : solution
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No change: evaporation 
No change: condensation 
PROCESS: absorption 
Revision Log: 8 delete conditions

No change : release 
No change : flnid-flow 
No change : add-solute 
PROCESS: processS 
Revision Log: 8 nev.process

Revision #3
HISTORICALLY INCONSISTENT --- clash with: release-fails-scenario
No change : solution 
No change : evaporation 
No change : condensation 
No change : absorption 
PROCESS : release
Revision Log: 8 delete conditions

No change : fluid-flow 
No change : add-solute 
PROCESS : process8 
Revision Log: 8 new.process

Revision #4
HISTORICALLY INCONSISTENT --  clash with: absorption_fails_scenario
No change : solution 
No change : evaporation 
No change : condensation 
PROCESS : absorption 
Revision Log: 8 delete conditions

PROCESS : release
Revision Log: 8 delete conditions

No change : fluid-flow 
No change : add-solute

Revision #5
HISTORICALLY INCONSISTENT --  clash with: fluid-flow-failsl-scenario
No change : solution
No change : evaporation
No change : condensation
No change : absorption
No change : release
PROCESS : fluid-flow
Revision Log: 8 delete conditions

No change : add-solute
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Revision #6 
No change: solution 
No change: evaporation 
No change : condensation 
No change : absorption 
No change : release 
No change : fluid-flow 
No change : add-solute 
PROCESS: processS 
Revision Log: 8 new.process

Revision #7
HISTORICALLY INCONSISTENT --  clash with: fluid-flow-failsl-scenario
No change: solution
No change : evaporation
No change: condensation
No change : absorption
No change : release
PROCESS : fluid-flow
Revision Log: 8 delete conditions

No change : add-solute

Now, the first revision generated is one which will snfhce for the current situation with 

no further reasoning. It comprises two new processes which characterize the phenomenon 

of osmosis. This would be better characterized by a  single process, but th a t would require 

more reasoning.

A .4 .2  G rouping O bservations

Below, we show how the grouping heuristic organises the sesu’ch better. In mzmy cases, 

grouping observations together provides a good basis for revision. This affects the or­

dering by attem pting to generate revisions th a t account for groups of observations in 

progressively smaller groups. Again, the revisions are the same as before, but in a dif­

ferent order. Only a limited trace is shown. F irst, reasoning for knowledge, we get the 

following.

Current Motivations:
<knowledge,0.6,Fixed>
<action,0.4,Variable>

Searching for revisions ...

Revision #1
HISTORICALLY INCONSISTENT clash with: fluid-flow-failsl-sceneirio
No change: solution 
No change: evaporation
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Ho change: condensation 
Ho change : absorption 
Ho change : release 
PROCESS: flnid-flow 
Variables: ?source

?destination
?path

Individuals: contained-flnid ?source
contained-flnid Tdestination 
path ?path

Pconditions: path-connection ?source ?destination ?path 
Qconditions:
Relations: Q+ (fInid-flow-rate) (pressure ?source)

q- (lluid-lloH-rate) (pressure ?destination)
Influences : 1+ (amount-of ?destination) (a (fluid-flow-rate))

I- (amount-of ?source) (a (fluid-flow-rate)) 
Revision Log: 8 delete conditions

Ho change : add-solute

Revision #2 
Ho change : solution 
Ho change : evaporation 
Ho change : condensation 
Ho change : absorption 
Ho change : release 
Ho change : fluid-flov 
Ho change : add-solute 
PROCESS: processS 
Veiriables: ?var-lS

?var-16
Individuals : contained-liquid ?var-15 

contained-liquid ?var-16 
Pconditions: precondition-osmosis-scenario ?var-15 ?var-16 
Qconditions:
Relations :
Influences : 1+ (amount-of ?var-15) (a (processS-rate))

I- (amount-of ?var-16) (a (processB-rate)) 
Revision Log: 8 neu.process

Revision #3
HISTORICALLY IHCOHSISTEHT --  clash with: fluid-flow-failsl-scenario
Ho change : solution
Ho change : evaporation
Ho change : condensation
Ho change : absorption
Ho change : release
PROCESS : fluid-flow
Revision Log: 8 delete conditions

Ho change : add-solute
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Revision #4
HISTORICALLY INCONSISTENT --  clash with: absorption_lails_scenario
No change: solution 
No change: evaporation 
No change : condensation 
PROCESS: absorption 
Revision Log: 8 delete conditions

PROCESS : release
Revision Log: 8 delete conditions

No change : fluid-flow 
No change : add-solute

Revision #5
HISTORICALLY INCONSISTENT --  clash with; release-fails-scenario
No change : solution 
No change : evaporation 
No change: condensation 
No change : absorption 
PROCESS : release
Revision Log: 8 delete conditions

No chamge: fluid-flow 
No change : add-solute 
PROCESS : process8 
Revision Log: 8 new.process

Revision #6
HISTORICALLY INCONSISTENT --- clash with: absorption_fails_scenario
No change : solution 
No cheinge: evaporation 
No change : condensation 
PROCESS : absorption 
Revision Log: 8 delete conditions

No change : release 
No change : fluid-flow 
No change : add-solute 
PROCESS : processS 
Revision Log: 8 new_process

Revision #7 
No change : solution 
No change : evaporation 
No change : condensation 
No change : absorption 
No change : release 
No change : fluid-flow 
No change : add-solute 
PROCESS : processS 
Revision Log: 8 new.process
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PROCESS: process9 
Revision Log: 8 new.process

The grouping heuristic thus allows us to  consider more conservative revisions earlier, 

so tha t the consistent revision is now the second one to  be considered. This contrasts 

with reasoning for action below in which the consistent revision is the first. This time, 

however, the first acceptable revision is one which represents osmosis as a single process.

Current Motivations:
Ocnovledge,0.6,Fized>
<action,0.8,Variable>

Searching for revisions ...

Revision #1 
No change : solution 
No change : evaporation 
No change : condensation 
No change : absorption 
No change : release 
No change : fluid-flo*
No change : add-solute 
PROCESS: processS 
Variables: ?var-15

?vaur-16
Individuals : contained-liquid ?var-15 

contained-liquid ?var-16 
Pconditions: precondition-osmosis-scenaurio ?var-15 ?var-16 
Qconditions:
Relations:
Influences: 1+ (amount-of ?var-16) (a (process8-rate))

I- (amount-of ?var-16) (a (process8-rate))
Revision Log: 8 nev.process

Revision #2
HISTORICALLY INCONSISTENT --  clash with: fluid-flow-failsl-scenario
No change : solution
No change : evaporation
No change : condensation
No change : absorption
No change : release
PROCESS : fluid-flow
Revision Log: 8 delete conditions

No change : add-solute

Revision #3 
No change: solution 
No change : evaporation 
No change: condensation
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No change: absorption 
No change: release 
No change: lluid-llov 
No change: add-solute 
PROCESS: processS 
Revision Log: 8 nev.process

PROCESS : processS 
Revision Log: 8 new.process

Revision #4
HISTORICALLY INCONSISTENT --  clash with: absorption_fails_scenario
No change : solution 
No change : evaporation 
No change : condensation 
PROCESS : absorption 
Revision Log: 8 delete conditions

No change : release 
No change : fluid-flow 
No change : add-solute 
PROCESS : processS 
Revision Log: 8 new_process

Revision #6
HISTORICALLY INCONSISTENT --- clash with: release-fails-scenario
No change : solution 
No change : evaporation 
No change : condensation 
No change : absorption 
PROCESS : release
Revision Log: 8 delete conditions

No change : fluid-flow 
No change : add-solute 
PROCESS : processS 
Revision Log: 8 new.process

Revision #6
HISTORICALLY INCONSISTENT --  clash with: absorption_fails_scenario
No change : solution 
No change: evaporation 
No change : condensation 
PROCESS : absorption 
Revision Log: 8 delete conditions

PROCESS : release
Revision Log: 8 delete conditions

No change : fluid-flow 
No change : add-solute
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Revision #7
HISTORICALLY IHCOHSISTEHT --  clash with: iluid-llow-lailsl-scenario
Ho change: solution
Ho change: evaporation
Ho change: condensation
Ho change : absorption
Ho change : release
PROCESS: fluid-flow
Revision Log: 8 delete conditions

Ho change : add-solute

We can see th a t action motivations allow a quick revision to  be generated th a t suf­

fices for the current needs. W ithout grouping observations, the first consistent revision 

involves two applications of the n ew -p ro cess  operator, resulting in two new processes 

which each account for one of the observations. Together, they provide an acceptable lo­

cal revision. When grouping observations, only a single new process is generated, and this 

is in fact the desired revision corresponding to  the process of osmosis. Under knowledge 

motivations, a longer path  is taken tha t involves generating and checking five revisions 

without grouping, and two revisions with grouping. Thus we see tha t the heuris­

tic can significantly shorten the search if groups of observations are caused by a single 

process. Secondly, we see that reasoning under action motivations, though a more risky 

strategy because it ignores issues of consistency, and allows reasoning based on poor evi­

dence, can generate solution states in a much smaller amount of time. The results of the 

four revisions are summarized in Table A.5.

Knowledge Action First consistent revision
W ith Grouping 2 1 one n ew -p ro cess
W ithout Grouping 5 1 two new -processes

Table A.5: Number of revisions explored until consistency.
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A pp en d ix  B

T he M ID  Program

M I D  is implemented under Unix on a Sun4 in the functional language, Miranda^. It 

comprises over 1200 lines of code.

Q PT  representation

Below we give details of the representation (as a variant of Q P T )  used in the implemen­

tation of MID.

Some lunctions to manipulate quantities where a quantity is a string 
comprising an amount and an object.
If quantity = "amount-of liquid2", then qty_amt(quantity) = "amount-of"

and qty_obj(quantity) = "liquid2"

> qty_amt : : quantity -> eunount
> qty.amt qty = get.word (strip qty)

> qty_obj : : quantity -> object
> qty_obj qty = tl(after_word (strip qty))

RULES are used to encode the backround knowledge rule base (BKRB) 
comprising classificatory information. A rule is made up of a left 
hand side (antecedent) and a right hand side (consequent), both of 
which are predicates. The left hand side is said to imply the right 
hand side. Abstract data type for rules:

> abstype rule
> with l_side : : rule -> predicate
> r_side : : rule -> predicate
> make.rule : : predicate -> predicate -> rule
> get.rule : : (predicate, predicate) -> rule
> rule == (predicate,predicate) I I define a rule
> l_side (as,b) = as I I get the antecedent part

^Miranda is a trademark of Research Software Ltd.
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> r_side (as,b) = b
> make_rule as b = (as,b)
>
> get.nile (as,b) = (as,b)
>

get the consequent pairt 
convert two predicates 
(ante and cons) into a rale 

convert a tuple ol 
two predicates Into a rule

ADT for OBSERVATIONS of the form ("Increase", "amount-of liquids").

abstype observation 
with o_dir ; ; observation -> direction 

o_qty : : observation -> quantity
get_obs : : [char] -> observation 
make_obs : : (direction, quantity) -> observation 
unmake_obs : : observation -> (direction, quantity) 
show.obs ; : observation -> [char] 
test_obs : : observation

> observation == (direction, quantity)
> o.dlr (a,b) = a
> o_qty (a,b) = b
> get.obs chs = ((get.word chs), (tl (after.word
>
> make.obs (a,b) = (a,b)
> unmake.obs (a,b) = (a,b)
> show.obs (a,b) = a ++ sp ++ b

define an observation 
get the direction part 
get the quantity part 

chs)))
convert a string to an obs 
convert a tuple to an obs 
convert an obs to a tuple 
show an observation

Abstract data types for elements of a process.

An INDIVIDUAL Is a variable that Is specified by a type predicate.

abstype individual
with l.pred : : individual -> predicate 

i.var : ; individual -> vEuriable 
make.ind :: (predicate, variable) -> individual 
unmake.ind : : individual -> (predicate, variable) 
bind.ind : : individual -> variable -> individual 
show.ind : : individual -> [char]

individual == (predicate, variable) 
i.pred (a,b) = a 
i_var (a,b) = b 
make.ind (a,b) = (a,b) 
unmake.ind (a,b) = (a,b) 
bind.ind (a,b) c = (a,c)

show.ind (a,b) = a ++ sp ++ b

define an individual 
get the predicate part 
get the variable part 
convert a tuple into an ind 
convert an ind into a tuple 
bind a var to a predicate 

to create an individual, 
display an individual

A PCONDITION is a precondition made up of a predicate and a list of variables.

abstype pcondition
w ith p .p red  : : p cond ition  -> p re d ic a te  

p .v a rs  : ; p cond ition  -> [v a riab le ] 
make.p : : (p re d ic a te , [v a r ia b le ] ) -> p co n d itio n  
unmake.p : : p co n d itio n  -> (p re d ic a te ,[ v a r ia b le ] ) 
b in d .p  : : p co nd ition  -> [v a riab le ] -> p co n d itio n  
show.p : : p co n d itio n  -> [char]

pcondition == (predicate, [variable]) I I d e fin e  a p recond ition
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> p_pred (a ,b s )  = a
> p_vars (a ,b e ) = bs
> make.p (a ,b s )  = (a ,b s )
> unmake.p (a ,b s )  = (a ,b s )
> bin.d_p (a ,b s )  cs = (a ,c s )
>

> show.p (a ,b e ) = a ++ sp ++ (sp .co n ca t bs)

g e t th e  p re d ic a te  p a r t  
g e t th e  (v a r ia b le  l i s t )  paurt 
convert a tu p le  in to  a pcond 
convert a pcond in to  a tu p le  
b ind  a vax l i s t  to  a 
p re d ic a te  to  c re a te  a pcond 
d isp la y  a p reco n d itio n

A qCONDITION is a quantity condition. It is a condition that specifies 
relationships between quantities. It is made up of a predicate and two 
quantities.

abstype qcond ition
w ith q .p red  : : qcond ition  -> p re d ic a te  

q .q ty l  : : qcond ition  -> q u a n tity  
q_qty2 : : qcond ition  -> q u a n tity
make.q : : (p re d ic a te , q u a n tity , q u a n tity )  -> qcond ition  
unmake.q : : qcond ition  -> (p re d ic a te , q u a n ti ty , queuitity) 
show.q : : qcond ition  -> [char] 

qcond ition  == (p re d ic a te , q u a n tity , q u a n tity )  
q .p red  ( a ,b ,c )  = a 

bq .q ty l  ( a ,b ,c )  = 
q_qty2 (a ,b ,c )  = 
make.q (a ,b ,c )  =

c
(a ,b ,c )

> unmake.q (a ,b ,c )  = ( a ,b ,c )
> show.q (a ,b ,c )  = a ++ sp ++ b ++ sp ++ c

d e fin e  a q u a n tity  co nd ition  
ge t th e  p re d ic a te  peurt 
ge t th e  f i r s t  q u a n tity  
ge t th e  second q u a n tity  
convert a tu p le  in to  a qcond 
convert a qcond in to  a tu p le  
d isp la y  a qcond ition

A RELATION specifies am indirect effect. It is made up of an effect 
direction and two quantities, the first of which depends on the 
second.

> abstype relation
> with r.dir ; ; relation -> eff.dir
> r.qtyl : ; relation -> quauitity
> r.qty2 : : relation -> quantity
> make.r : : (eff.dir, quantity, quantity) ->
> unmake.r : : relation -> (eff.dir, quantity
> show.r ; : r e la tio n  -> [chair]
> relation == (eff.dir, quantity, quantity)
> r.dir (a,b,c) = a
> r.qtyl (a,b,c) = b
> r.qty2 (a,b,c) = c
> make.r (a,b,c) = (a,b,c)
> unmake.r (a,b,c) = (a,b,c)
> show.r (a,b,c) = a ++ sp ++ b ++ sp ++ c

An INFLUENCE is a direct effect of a process.

r e la t io n  
, q u a n tity )

I d e fin e  a r e la t io n  
I g e t th e  d ire c tio n  paurt 
I g e t th e  f i r s t  q u a n tity  
I g e t th e  second q u a n tity  
I convert a tu p le  in to  a r e l  
I convert a r e l  in to  a tu p le  
I d isp la y  a r e la t io n

abstype in flu en ce
w ith i . d i r  : : in flu en ce  -> e f f .d i r  

i_ q ty l  : : in flu en ce  -> quauitity 
i .q ty 2  ; : in flu en ce  -> q u a n tity
m ake.inf ( e f f . d i r ,  q u a n ti ty , q u a n tity )  -> in flu en ce  
unm ake.inf : : in fluence  -> ( e f f . d i r ,  q u a n ti ty , q u a n tity  ) 
show .inf : : in flu en ce  -> [char]
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> in flu en ce  == ( e f f . d i r ,  q u a n tity , q u a n tity )
> i . d i r  ( a ,b ,c )  = a
> i . q t y l  ( a ,b ,c )  = b
> i .q ty 2  ( a ,b ,c )  = c
> m ake.inf ( a ,b ,c )  = (a ,b ,c )
> unm ake.inf ( a ,b ,c )  = (a ,b ,c )
> show.in f  ( a ,b ,c )  = a ++ sp ++ b ++ sp ++ c

define an influence 
get the direction paurt 
get the first quantity 
get the second quantity 
convert a tuple into an inf 
convert an inf into a tuple 
display an influence

Now we can define a PROCESS.

abstype process
with p.name : ; process -> name

vars : : process -> [variable] 
p.inds : ; process -> [individual] 
rt : : process -> rate 
pconds : : process -> [pcondition] 
qconds : : process -> [qcondition] 
rels : : process -> [relation] 
infs : : process -> [influence] 
revlog : : process -> [ [chaur]]

get elements of process

put.name 
put.inf 
put.rel 
put.ps ; 
put.qs ; 
put.ind 
put.vaur

: : p rocess -> name -> p rocess I I modify p rocess 
: p rocess -> [in flu en ce] -> p rocess 
: p rocess -> [ re la t io n ]  -> p rocess 
process -> [pcondition] -> p rocess 
process -> [qcondition] -> p rocess 

: p rocess -> [ in d iv id u a l]  -> p rocess 
: p rocess -> [v a riab le ]  -> p rocess

add.to.log : ; process -> [chaur] -> procès:

get.proc : : ([chaur], [vauriable], [(predicate, variable)], rate, 
[(predicate, [variable])], [(predicate, quantity, 
quantity)], [(eff.dir, quantity, quantity)], [(eff.dir, 
quantity, quantity)], [[char]]) -> process 

put .pro c : : process -> ([chaur], [vauriable], [(predicate, variable)], 
rate, [(predicate, [variable])], [(predicate, quantity, 
quantity)], [(eff.dir, quantity, quantity)],
[(eff.dir, quantity, quantity)], [[char]]) 

mod.proc :: (name, [vauriable], [individual], rate, [pcondition],
[qcondition], [relation], [influence], [[chaur]]) -> process

null.proc : ; process 
show.proc ; ; process -> [chaur]

I I empty processes 
I I show a process

process == (name, [vauriable], [individual], rate, [pcondition],
[qcondition], [relation], [influence], [[char]])

The following functions get each of the elements of the process.

> p.name (a,b,c,d,e,f,g,h,i) = a
> vars (a,b,c,d,e,f,g,h,i) = b
> p.inds (a,b,c,d,e,f,g,h,i) = c
> rt (a,b,c,d,e,f,g,h,i) = d
> pconds (a,b,c,d,e,f,g,h,i) = e
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> qconds (a,b,c,d,e,f,g,h,i) = i
> r e l s  ( a , b , c , d , e , l , g , h , i )  = g
> in fs  ( a , b , c , d , e , l , g , h , i )  = h
> revlog (a,b,c,d,e,l,g,h,i) = i

The following functions modify each element of the process.

put.name (a,b,c,d,e,f,g,h,i) x = (x,b,c,d,e,f,g,h,i) 
put_inf (a,b,c,d,e,f,g,h,i) xs = (a,b,c,d,e,f,g,xs,i) 
put.rel (a,b,c,d,e,f,g,h,i) xs = (a,b,c,d,e,f,xs,h,i) 
put_ps (a,b,c,d,e,f,g,h,i) xs = (a,b,c,d,xs,f,g,h,i) 
put.qs (a,b,c,d,e,f,g,h,i) xs = (a,b,c,d,e,xs,g,h,i) 
put.ind (a,b,c,d,e,f,g,h,i) xs = (a,b,xs,d,e,f,g,h,i) 
put.var (a,b,c,d,e,f,g,h,i) xs = (a,xs,c,d,e,f,g,h,i)

a d d .to .lo g  ( a , b , c ,d , e , f , g ,h , i )  x I I add an en try  to  the
= ( a ,b ,c ,d ,e ,f ,g ,h ,i+ + C x ] )  II re v is io n  log

g e t.p ro c  ( a ,b , c ,d , e , f , g ,h , i )
= (a, b, (map make.ind c), d, (map make.p e), (map make.q f ),

(map make.r g), (map make.inf h), i) I I strings to proc 
put.proc (a,b,c,d,e,f,g,h,i)

= (a, b, (map unmeike.ind c), d, (map unmake.p e), (map unmake.q f ), 
(map unmake.r g),(map unmake.inf h),i) I Iproc to string tuple

mod.proc (a,b,c,d,e,f,g,h,i) = (a,b,c,d,e,f,g,h,i) I I convert tuple to proc
null.proc =([],[],[],[],[],[],□,[],□) II empty process

show.proc p = "PROCESS : " ++ (p.name p) ++ nl ++ II display a process
show.tag.list "Veuriables : 
show.tag.list "Individuals: 
show.tag.list "Pconditions: 
show.tag.list "Qconditions: 
show.tag.list "Relations: 
show.tag.list "Influences:
show.tag.list "Revision Log: " (map take.col (revlog p)) ++ nl 

where take.col x = (takewhile (“=’:*) x) ++ (tsJcewhile
(“■=’:’) (tl (dropwhile ("=*;0 x)))

bstract data type for SCENARIOS.

p.fact == pcondition I I some definitions
q.fact == qcondition

abstype scenario 
with s.name : : scenario -> name

s.vars : : sceneurio -> [variable] 
p.facts ; : scenario -> [p.fact] 
q.facts : : scenario -> [q.fact] 
add.p.fact ; : sceneirio -> p.fact -> scenairio 
null.scen : : scenaurio
get.scen : : (name, [vauriable], [(predicate, [variable])],

[(predicate, quantity, quantity)]) -> scenario 
put.seen : : scenaurio -> (name, [variable], [(predicate, [vauriable] )] ,

[(predicate, quantity, quantity)])
show, sc en : : scenaurio -> [char]

(vaurs p) ++
(map show.ind (p.inds p)) ++ 
(map show.p (pconds p)) ++ 
(map show.q (qconds p)) ++ 
(map show.r (rels p)) ++
(map show.inf (infs p)) ++
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> scenario == (name, [variable], [p.fact], [q.fact]) II define a scenario

null.scen = ([],[],[],[]) II an empty scenario 
get.scen (a,b,c,d) = (a,b,(map make.p c),(map make.q d))

I I convert a tuple into a scenario 
put.seen (a,b,c,d) = (a,b,(map unmake.p c),(map unmake.q d))

I I convert a scenario into a tuple 
s.name (a,b,c,d) = a II get scenario name
s.vars (a,b,c,d) = b II get the variables
p.facts (a,b,c,d) = c II get the pcondition facts
q.facts (a,b,c,d) = d II get the qcondition facts

add.p.fact (a,b,c,d) p.f = (a, b, (c ++ [p.f]), d) II add a pcond fact
I I to scenario (for characterization)

show.scen (a,b,c,d) = "SCENARIO: " ++ a ++ nl ++ II display a scenario
show.tag.list "Individuals: " (map show b) ++ 
show.tag.list "Pfacts: " (map show.p c) ++ 
show.tag.list "Qfacts: " (map show.q d)

Some generally useful functions that manipulate processes and scenarios:

Display an entire domain theory:

> show.domain : : domain -> [char]
> show.domain [] = nl
> show.domain (p:ps) = nl ++ show.proc p ++ show.domain ps 

Display a modified domain theory.
Show modified processes completely, but only name unchanged ones :

> show.alt ered.domain : : domain -> domain -> [cheur]
> show.altered.domain ps zs = show.altered.domain ps (init zs) ++
> show.proc (last zs), #ps "= #zs
> I I ps is original domain
> show.altered.domain ps zs = show.altered.2 ps zs, otherwise

> show.altered.2 : : domain -> [process] -> [char]
> show.alt ered.2 ps [] = []
> show.altered.2 ps (z:zs) = show.proc z ++ show.altered.2 ps zs, oldp "= z
> I I modified process
> = "No change: " ++ (p.name z) ++ nl ++ II unchanged
> show.altered.2 ps zs, otherwise I I process
> where oldp = hd (filter ok ps)
> ok z = p.name z = p.name z
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