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Abstract 

We have previously investigated, discovered, and replicated plasma protein biomarkers for use to 

triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) 

pathology. This study sought to undertake validation of these candidate plasma biomarkers in a 

large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence 

for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy 

elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, 

selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and 

Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid 

pathology. These proteins form a biomarker panel that, along with age, could significantly 

discriminate between individuals with high and low amyloid pathology with an area under the curve 

of 0.74. The performance of this biomarker panel remained consistent when tested in 
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apolipoprotein E ɛ4 non-carrier individuals only. This blood-based panel is biologically relevant, 

measurable using practical immunocapture arrays, and could significantly reduce the cost incurred 

to clinical trials through screen failure. 

 

Introduction: 

Clinical trials for Alzheimer’s disease (AD) modification have recently started to target the earlier 

prodromal and pre-symptomatic stages with a belief that disease modification efforts are most likely 

to be effective earlier in the disease process. However, conducting trials in prodromal/preclinical 

individuals necessitates the use of biomarkers to detect evidence of AD pathology. Currently 

pathology detection is possible with CSF obtained from lumbar puncture and by PET imaging. Both 

methods are employed routinely in clinical studies but their limitations impact significantly upon the 

efficiency of clinical trials. Both CSF and PET can be costly and invasive and are therefore not suitable 

for large-scale screening or where repeated measures are desirable. The relatively low prevalence of 

amyloid pathology in people with prodromal, and even more so in preclinical, disease inevitably 

results in high screen failure rates. The cost of this screen failure by either CSF or PET can be 

prohibitive. More worryingly, given that such screening is likely to be mandatory as part of clinical 

implementation of a successful therapeutic, this screen failure rate is likely to constitute an obstacle 

to clinical translation through a combination of cost factors and the capacity of health systems to 

enable lumbar puncture or PET imaging at the scale likely to match demands of their populations. 

One option to overcome this issue is to employ prediction methods such as apolipoprotein E (APOE) 

genotyping prior to trial entry, with APOE 4 carriers most likely to harbour AD pathology. However, 

individuals with an APOE 4 allele are in the minority and most prodromal/preclinical AD cases are 

instead APOE 4 non-carriers. Additionally, genotyping only reveals risk and does not indicate 

current pathological state. Therefore, in order to increase the efficiency of recruitment to clinical 

trials, a cost effective, minimally invasive method that can be implemented on a large scale to 
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predict current AD pathology would be enormously valuable. A blood based assay that predicted 

likely pathological load would become part of a diagnostic screening funnel directing potential trials 

participants or users of therapy to direct markers of pathology such as CSF measures or PET imaging.  

Over a decade ago, we conducted a large agnostic, or untargeted, proteome-wide, discovery study of 

blood biomarkers in dementia 1. This study was successful in detecting a signal in the blood that 

reflected the presence of AD and since then many other studies, by others and by ourselves, have 

aimed to replicate and improve upon this original signal and have identified blood based protein 

biomarkers able to distinguish AD ‘cases’ from cognitively healthy elderly ‘controls’. However, the 

relatively low rate of replication of these biomarkers across studies may be in part due to issues of a 

study design that compares AD to cognitively healthy elderly controls, many of whom will harbour 

silent pathology. Other factors limiting replication include technical issues such as assay variance and 

quality, differences in sampling and storage protocols and the frequently small size of many studies. 

Nonetheless, such studies demonstrate that there is a signature of disease detectable in blood and 

the task is now to find a signature that is reproducible.  

To attempt this we have since serially refined our study design focussing on an ‘endophenotype’ 

approach predicating on outcomes, not of clinical diagnosis, but on a phenotype indicative of disease 

(‘endophenotype’) such as brain atrophy measured by structural MRI or Aβ plaque burden measured 

by PET and CSF.  Using this approach we have identified putative plasma markers relating to AD 

pathology and disease progression using a range of proteomic approaches including mass 

spectrometry, SOMAscan and immunocapture 2-8 (Westwood et al, submitted). In addition, we also 

performed a series of iterative studies targeting complement and related inflammatory proteins; 

neuroinflammation itself being an endophenotype associated with disease and amyloid pathology. 

We previously showed that plasma complement factor H (CFH) was associated with AD 1, a finding 

replicated by ourselves and others, and several of our other studies show that complement proteins, 

including C3, C4B and clusterin, are repeatedly associated with amyloid load. Genetic association 
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studies nominate complement genes as risk factors both in single gene and in pathway analyses and 

complement signalling clearly plays a role in pathological processes 9,10. In discovery phase studies, we 

find clusterin and CFI predict conversion from mild cognitive impairment (MCI) to AD 11 and multiple 

complement proteins including clusterin are higher in people with an AD polygenic score 12.  

Many of the proteins identified in our discovery-phase ‘endophenotype’ studies replicate across 

proteomic platforms and different cohort types. However, unsurprisingly given the wide range of 

techniques and study designs, not every protein identified replicates in every study. The aim of the 

present study was to determine the most replicable set of plasma protein markers predicting brain 

amyloid, by testing 31 of our previously discovered candidate biomarkers in a large, multi-centre 

cohort of individuals with high and low amyloid burden. 

Methods: 

Subjects: EMIF Multimodal Biomarker Discovery study (EMIF-AD MBD) cohort 

The EMIF-AD MBD is part of the European Medical Information Framework for Alzheimer’s disease 

(EMIF-AD; http://www.emif.eu/), a European wide collaboration to facilitate the re-use of existing 

healthcare data and the sharing of cohort samples for the benefit of AD research. The EMIF-AD MBD 

study design, including subject selection criteria, clinical diagnoses, brain amyloid classification and 

plasma sample collection have all been described previously 13. In essence though, we sought to 

assemble a collection of samples from participants in cohort studies from across the full disease 

spectrum from pre-clinical through prodromal to established disease, in each category seeking to 

balance those with pathology to those without. To do this we selected, using existing data wherever 

possible, samples for inclusion from apparently normal, cognitively healthy elderly controls, from 

participants with diagnosed MCI and from people with established AD. Samples were selected within 

each category with proven high and low amyloid load wherever possible as previously described 13. 

Overall, 1221 participants (494 cognitively healthy controls, 526 MCI and 201 AD) were recruited to 

http://www.emif.eu/
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the EMIF-AD MBD study from 11 European cohorts. Each parent cohort was approved by the local 

medical ethics committee. 

The present study selected two sub-cohorts of participants from the EMIF-AD MBD study, all with 

plasma samples available for analysis. Firstly, 1000 individuals comprising 408 cognitively healthy 

individuals, 400 individuals with mild cognitive impairments, and 192 AD patients were included for 

proteomic analysis in the University of Oxford laboratories. Secondly, 866 individuals (93 AD 413 MCI 

360 CTL) were included for proteomic analysis in the laboratories at the University of Cardiff. 

Participants were included in these ‘Oxford’ and ‘Cardiff’ sub-cohorts from across three multicentre 

studies: DESCRIPA 14, EDAR 15, and PharmaCog 16, and eight single centre studies: Amsterdam 17, 

Antwerp 18, San Sebastian GAP 19, Gothenburg 20, Barcelona IDIBAPS 21, Lausanne 22, Leuven 23 and 

Barcelona St Pau 24. Sample number differences between the ‘Oxford’ and ‘Cardiff’ cohorts were 

necessary due to plasma sample availability. 

Plasma analyses 

Targeted plasma protein analyses were conducted at both Oxford and Cardiff laboratories using 

Luminex xMAP (Cat#: HNDG1MAG-36K-06, HNDG2MAG-36K-05, HNDG3MAG-36K-07, HND2MAG-

39K-02, HKI6MAG-99K-03, HNDG1MAG-36K-01), ELISA (Cat#: CSB-EL008551HU and CSB-E13319H), 

and MSD assays (in-house optimised using U-plex platform). All assays were performed according to 

the manufacturer’s instructions.  

Brain amyloid measurements and group classifications 

Measurement and classification of amyloid burden in the EMIF-AD MBD cohort has been described 

previously 13. Briefly, where CSF was available, Aβ1-40, and Aβ1-42 were measured using the V-PLEX 

Plus Aβ Peptide Panel 1 (6E10) Kit from Meso Scale Discovery in a central laboratory (Gothenburg 

University, Sweden) and the Aβ42/40 ratio was established. Where CSF was unavailable then the CSF 
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Aβ42 measurement provided by the parent cohort or the standardised uptake value ratio (SUVR) 

from an amyloid PET scan was used. 

The above measurements were combined into a continuous variable using z-scoring. The A Z-score 

was calculated using the mean and standard deviation of the control subjects as a reference. In cases 

where an individual had multiple measures of amyloid (e.g. CSF and PET), all data available were 

used to generate the mean and standard deviation for each measure. However, the measure 

included in the final Aβ Z-score was selected from each individual in the following order of priority: 

CSF Aβ42/40 ratio, local CSF Aβ42 or the amyloid PET SUVR. PET amyloid Z-scores were multiplied by -1 

in order to be combined with CSF derived amyloid Z-scores.  

CSF tau measurements 

To assess tau pathology, continuous phosphorylated tau (p-tau) and total tau (t-tau), values were 

obtained from the parent cohorts. As sites were not standardised to each other, the p-tau and t-tau 

values were Z-scored with controls within each data set as a reference. 

MRI acquisition, visual rating and ROI measurements 

Full details on the MRI data acquisition, visual rating check and ROI measurements have been 

previously reported (Ten Kate et al, submitted). Briefly, TI-weighted images, acquired according to 

local protocols, were collected from each site, each image was visually assessed and Freesurfer used 

to obtain volumetric measurements.  

Clinical and cognitive data 

Clinical information and neuropsychological test scores were collected from each local site, 

harmonized, pooled and stored in an online data platform using tranSMART 25. Full details of the 

clinical information provided by each site and the harmonization process has been previously 

described in Bos et al, 2018 13. 

Statistical analyses 
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All statistical analyses were completed using R (version 3.3.2). Individual participant data was 

excluded where there was a long interval (>1 year), or missing data on the time interval, between 

plasma collection and measurement of the outcome variable (amyloid status, n = 69 and 30 excluded 

from Oxford and Cardiff cohorts respectively; MMSE, n= 73 and 39 excluded from Oxford and Cardiff 

respectively; brain volume, n=121 and 97 excluded from Oxford and Cardiff respectively). Baseline 

cohort characteristics between high and low amyloid groups were compared using Mann-Whitney U 

test. All analyses included age as a covariate when possible (logistic and linear regression). P-values 

and false discovery rate corrected q-values are reported. 

Univariate statistics 

Univariate statistics were performed using identical statistical methods for both the ‘Oxford’ and 

‘Cardiff’ cohorts and the results for all 31 proteins are presented in this manuscript together. The 

relationship of each individual protein with group-wise outcome variables was tested using logistic 

regression. The relationship of proteins with continuous outcome variables was examined using 

linear regression.  

ROC analysis was performed on the values of expression levels of each of the proteins individually, 

and the outcome was the dichotomous amyloid status. Standard ROC evaluation metrics were 

computed (sensitivity, specificity, positive and negative predictive values [PPV and NPV, 

respectively]) along with the area under the curve (AUC). The 95% confidence intervals were 

estimated using the bootstrap resampling method with n=1000 repetitions 26.  

Multivariate amyloid classifier 

Logistic regression was used to assess the performance of a multi-protein model for the 

discrimination between individuals in the high and low brain amyloid groups. The AUC, sensitivity, 

specificity, PPV and NPV and likelihood ratio (LR) of the model are reported. Other statistical 

approaches are described in the results 
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Results 

The EMIF-MBD assembled a sample set from multiple cohort studies across Europe using pre-

existing data wherever possible to identify people with no apparent cognitive deficit, those with mild 

cognitive impairment and those with established dementia and in each predementia category 

seeking to balance those with amyloid burden and those without. In total over 1200 samples were 

identified of which 1000 were used in the Oxford set and 866 in the Cardiff set with these 

differences being due to limited sample availability 

Clinical characteristics and inter-group differences 

The clinical characteristics of the Oxford and Cardiff sets, stratified by amyloid status, are presented 

in Table 1 along with the Mann-Whitney U inter-group difference significance level. Across the whole 

cohort, individuals with high amyloid status were older (p<0.001), more frequently APOE 4 carriers 

(p<0.001) and had lower MMSE scores (p<0.001) compared to those with low amyloid status. Within 

the Oxford set only, individuals with high amyloid status were more frequently female (p<0.05) 

compared to those with low amyloid status. 

Variable 

Subjects included in Oxford sample set Subjects included in Cardiff sample set 

Low amyloid 

status 

High 

amyloid 

status 

P value 
Low amyloid 

status 

High 

amyloid 

status 

P value 

N 457 543 / 460 406 / 

Aβ Z-score 0.49 ± 0.62 -1.35 ± 0.48 < 0.001* 0.45 ± 0.62 -1.36 ± 0.51 < 0.001* 

Age (yrs.) 66.52 ± 8.71 69.81 ± 8.12 < 0.001* 66.61 ± 8.25 70.47 ± 8.22 < 0.001* 

Female gender N (%) 223 (49) 301 (55) <0.05* 253 (55) 226 (56) 0.844 

CTL N (%) 289 (63) 119 (22) / 272 (59) 88 (22) / 

MCI N (%) 147 (32) 253 (47) / 179 (39) 234 (58) / 

AD N (%) 21 (5) 171 (31) / 9 (2) 84 (21) / 

APOE genotype 4+ N (%) 147 (32) 349 (64) < 0.001* 134 (29) 246 (61) < 0.001* 

MMSE 27.93 ± 2.49 25.11 ± 4.29 < 0.001* 28.09 ± 2.23 25.41 ± 4.26 < 0.001* 

Table 1. Demographics of subjects from the EMIF-AD MBD study. Abbreviations: MCI, mild cognitive 

impairment; AD, Alzheimer's disease, APOE, apolipoprotein E; CTL, cognitively healthy control; MMSE, 

mini-mental state examination. Mean ± standard deviation. *Statistically significant p<0.05 
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Univariate statistics for amyloid status (high/low group) 

Cross-sectional comparisons of protein concentrations between high and low amyloid status groups 

were performed by logistic regression (Table 2). Seven proteins remained statistically significant 

after multiple testing corrections (q<0.05; FCN2, B2M, apoE, CC4, cathepsin D, CFI). Five of these 

proteins have previously been discovered as biomarkers of brain amyloid pathology in one or more 

of our previous biomarker studies (FCN2, B2M, A1AT, apoE and CC4), and all five replicate the 

direction of change previously identified. Expression of cathepsin D has previously been found to be 

decreased in AD fibroblasts, and here we show that this protein is also decreased in plasma with 

increased AD pathology 27. Factor I was previously found as a biomarker for conversion from MCI to 

dementia, with decreased a protein concentration measured in MCI converters 11. Therefore, the 

direction of change identified in this study, decreased CFI with increased pathology, agrees with this 

previous finding. 

Logistic regression analysis was also performed separately for each diagnostic group and APOE ε4 

carrier groups (ε4 non-carrier / ε4 carrier). These results are reported in supplementary tables 1-5. 

Table 2. Logistic regression (age as covariate) results for each protein with amyloid status as the 

outcome variable. *statistically significant <0.05 

Sub-cohort 
protein 

Logistic Regression  

beta p-value q-value N-number 

O
xf

o
rd

 

FCN2 0.466 0.000* 0.000* 824 

FGG -0.071 0.300 0.521 891 

Cystatin C -0.135 0.049* 0.124 898 

Clusterin -0.138 0.045* 0.124 906 

B2M -0.266 0.000* 0.004* 832 

AGP 0.009 0.901 0.963 875 

CP 0.028 0.679 0.780 883 

A2M -0.017 0.813 0.900 896 
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ApoA1 -0.073 0.290 0.521 886 

ApoC3 -0.001 0.991 0.991 900 

ApoE -0.220 0.002* 0.008* 901 

TTR -0.039 0.572 0.772 901 

CFH -0.049 0.475 0.701 907 

CRP -0.139 0.049* 0.124 854 

A1AT -0.213 0.004* 0.016* 784 

PEDF -0.006 0.933 0.964 853 

SAP -0.052 0.449 0.697 869 

CC4 0.243 0.001* 0.005* 894 

BDNF -0.036 0.603 0.778 887 

Cathepsin.D -0.238 0.001* 0.005* 880 

sICAM.1 -0.148 0.033* 0.124 893 

RANTES -0.100 0.146 0.309 905 

NCAM 0.032 0.645 0.780 891 

sVCAM.1 -0.071 0.302 0.521 891 

PAI.1 -0.134 0.052 0.124 890 

C
ar

d
if

f 

CR1 -0.077 0.378 0.617 770 

TCC 0.112 0.149 0.309 770 

CFB -0.042 0.567 0.772 788 

CFI -0.284 0.000* 0.004* 754 

Eotaxin 0.176 0.037* 0.124 749 

MCP 0.031 0.680 0.780 769 

ROC analysis was performed on each of the seven proteins found to replicate direction of change to 

determine their individual predictive ability for the discrimination of high / low amyloid status 

groups, and compared to the discriminant ability of age. Table 3 displays the results of the ROC 

analysis and Supplementary Figure 1 displays both the AUC and corresponding 95% confidence 

interval of each protein and age. The AUC for every protein is higher than chance, even when 

including the lower end of the confidence interval.  
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For these seven proteins, ROC analysis was also performed separately for each diagnostic group and 

APOE ε4 carrier groups (ε4 non-carrier / ε4 carrier). These results are reported in supplementary 

tables 6 & 7. 

Table 3. AUC statistics per protein, for the classification of high / low brain amyloid status. 

Abbreviations: AUC, area under the curve. 

Variable Optimal cutpoint Sensitivity Specificity AUC 

FCN2 24607094.990 0.448 0.783 0.640 

Age 67.355 0.641 0.560 0.619 

CFI 26793.107 0.547 0.623 0.585 

CC4 73789.784 0.436 0.713 0.580 

B2M 4232.708 0.433 0.698 0.577 

Cathepsin D 322.630 0.586 0.547 0.576 

ApoE 106.020 0.667 0.445 0.554 

A1AT 1675622.528 0.765 0.333 0.552 
 

 

Multi-protein classifier of amyloid high / low status 

It is possible, if the individual protein associations with AD are independent of each other, that a 

compound marker set of some or all of these proteins would have greater predictive value than any 

one protein alone. In order to test this, the seven proteins significant by logistic regression after 

multiple testing corrections (q<0.05; FCN2, B2M, apoE, A1AT, CC4, cathepsin D, CFI) were included in 

a logistic regression classifier, along with age, to determine their predictive ability for amyloid status 

when combined. After missing data was removed this 8-feature model was tested on 374 individuals 

and achieved moderate accuracy (AUC = 0.742 (figure 2, sensitivity = 0.682, specificity = 0.704, PPV = 

0.715, NPV = 0.670, LR = 2.3). In comparison, age alone achieved an AUC = 0.617. 
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Figure 2. ROC curve obtained for the 8-feature classifier for prediction of amyloid high / low 

status.   

To determine how this 8-feature model performs at different stages of the disease process and also 

in APOE 4 carriers and non-carriers independently, we tested the classification ability of this model 

within each separate diagnostic group and APOE 4 carriers and non-carriers. Table 4 displays the 

performance of this model within each group. The performance within the AD only group could not 

be accurately determined since removal of subjects with missing data left only 5% of the AD cases as 

amyloid negative. 

Table 4. ROC and AUC statistics for the 8-feature model for the classification of amyloid status 

within each diagnostic group, and APOE 4 carriers and non-carriers. Abbreviations: MCI, mild 

cognitive impairment; AD, Alzheimer's disease, APOE, apolipoprotein E; CTL, cognitively healthy 
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control; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; 

LR, likelihood ratio. 

 

Relationship of classifier proteins with continuous A Z-score 

Having determined the relationship between the top 7 proteins and amyloid status (high/low 

groups) we wanted to determine whether this protein-amyloid relationship remains consistent using 

the A Z-score (Table 5). All, except one protein (A1AT), were significantly related to A Z-score after 

testing for multiple testing corrections (q<0.05). A1AT was tending towards significance (q=0.061).  

Relationship of classifier proteins with other markers of AD pathology or disease progression 

In order to determine whether the classifier proteins were specific to brain amyloid pathology or if 

they could also perform as a biomarker of the other key hallmark of AD, brain tau pathology, linear 

regression was used to assess the continuous relationship with both p-tau and t-tau Z-scores (Table 

5). None of the proteins were significantly related to either measure after multiple testing 

correction. We then used a similar approach to examine their relationship to hippocampal volume 

and MMSE score, and logistic regression to examine their predictive ability for MCI conversion to 

dementia (Table 5). FCN2 displayed a significant relationship with all three measures (q<0.05). CFI 

was found to be significantly related to both MMSE and MCI conversion to dementia (q<0.05). A1AT 

was found to be significantly related to hippocampal volume only (q<0.05).

 AUC Sensitivity Specificity PPV NPV LR N-
number 

Whole cohort (AD, MCI & CTL) 0.742 0.682 0.704 0.715 0.670 2.30 374 
MCI 0.743 0.658 0.785 0.815 0.614 3.06 193 
CTL 0.768 0.682 0.776 0.577 0.844 3.04 142 
MCI & CTL combined 0.724 0.677 0.661 0.641 0.696 2.00 335 

APOE 4 non-carriers 0.736 0.681 0.725 0.604 0.786 2.47 199 

APOE 4 carriers 0.836 0.757 0.767 0.861 0.622 3.25 175 
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Table 5. Linear and logistic regression (age as covariate) results for each protein with alternative outcome measures. *statistically significant <0.05 

 

 

 

  
Aβ Z-score P-Tau Z-score T-Tau Z-score 

Hippocampal 
volume 

MMSE 
MCI conversion to 

dementia 

Sub-
cohort 

protein 

Linear  regression Linear regression Linear regression Linear regression Linear regression Logistic regression 
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FCN2 -0.19 0.000* 0.000* -0.125 0.017* 0.098 -0.138 0.019* 0.132 
-

244.14 
0.000* 0.000* -0.88 0.000* 0.000* 0.398 0.002* 0.006* 

B2M 0.125 0.001* 0.001* 0.019 0.715 0.876 -0.001 0.991 0.991 -14.6 0.758 0.758 0.174 0.183 0.214 0.039 0.729 0.901 

ApoE 0.123 0.000* 0.001* 0.05 0.334 0.584 0.045 0.444 0.778 37.388 0.403 0.47 -0.184 0.146 0.204 -0.015 0.901 0.901 

A1AT 0.07 0.061 0.061 -0.011 0.843 0.876 -0.006 0.924 0.991 
172.16

8 
0.000* 0.001* 0.239 0.078 0.181 -0.096 0.52 0.901 

CC4 -0.117 0.001* 0.001* -0.088 0.09 0.209 -0.045 0.445 0.778 
-

70.691 
0.112 0.261 -0.131 0.306 0.306 0.153 0.207 0.483 

Cathepsin D 0.086 0.013* 0.016* -0.008 0.876 0.876 0.017 0.776 0.991 46.917 0.306 0.429 0.195 0.118 0.204 0.032 0.792 0.901 

C
ar

d
if

f 

CFI 0.117 0.001* 0.002* 0.116 0.028* 0.098 0.107 0.063 0.221 52.396 0.256 0.429 0.442 0.001* 0.002* -0.932 0.000* 0.000* 
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Discussion 

We have previously used a pathology endophenotype approach to discover plasma proteomic 

biomarkers designed to be predictive of AD pathology and disease progression. The aim of the 

present study was to replicate these previously identified candidate biomarkers in a large multi-

centre pragmatic sample collection collated from multiple cohorts, as well as to identify a plasma 

proteomic panel that could classify individuals into high or low brain amyloid groups. Our results 

show that in around 1000 samples from multiple studies across Europe seven biomarkers replicate, 

and we confirm a panel of proteins that predict high levels of amyloid pathology with a positive 

predictive value of 0.72 and a negative predictive value of 0.67. Moreover, the model has predictive 

value in both APOE 4 carrier and non-carrier individuals generating a biological predictor that could 

be used to reduce the screen failure rate in clinical trials. 

The final 7-protein biomarker panel consists of: 2-microglobulin (B2M), cathepsin D (CTSD), ficolin-

2 (FCN2), complement component 4 (C4), alpha-1 antitrypsin (A1AT), complement factor I (CFI) and 

apolipoprotein E (apoE). Although our initial discovery-phase studies often used an unbiased 

approach to identify proteins that have a relationship with AD and its pathology, it is noteworthy 

that the resulting biomarker candidates are also biologically relevant to the disease process. B2M 

shares structural characteristics with Aβ 28 and is one of a number of proteins that form amyoid 

deposits. Cathepsin D is increased in tangle bearing neurons 29, a process that might be induced by 

Aβ 30. Ficolins and mannose-binding lectins are both activators of the lectin complement pathway 31 

and CSF MBL levels have been shown to be reduced in AD 32. The complement proteins (C4 and CFI) 

are just two members of a pathway repeatedly shown to be associated with AD through genetics 

and neuropathology as well as from biomarker studies 9. A1AT is an acute phase chemoreactant that 

is metabolized by the serpin enzyme complex (SEC) and hence might compete with and affect the 

activity of another SEC ligand, Aβ 33. The relationship between the APOE ε2/ε3/ε4 polymorphism and 

AD is well established and complementary to our finding here that apoE protein is clearly a marker 
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of amyloid load. Overall, complement and inflammatory proteins dominate this protein panel, even 

beyond CFI that was previously identified in complement-targeted studies. 

Recently, Nakamura et al. (2018) published an important study demonstrating that Aβ fragments can 

be reliably detected in blood and perform as well as current CSF biomarkers for predicting brain 

amyloid 34. This approach using immunoprecipitation combined with mass spectrometry (IP+MS), 

was able to predict brain amyloid status with up to 90% accuracy. This finding builds upon other 

recent work by Ovod et al. (2017) who also used an IP+MS technique to identify blood Aβ with high 

concordance to amyloid PET 35. Whilst these papers are important in demonstrating the value of 

blood Aβ as a biomarker tool for brain pathology, replication in larger sample sizes is needed, and 

the proteomic technology employed will require refinement to enable implementation at scale. 

Nevertheless, these studies provide considerable further proof of concept for AD blood biomarkers. 

Whilst the accuracy rates reported in our study are not as high as those reported when measuring 

blood Aβ levels, we are still able to achieve a level of accuracy to make a substantial impact upon the 

cost efficiency of clinical trials whilst using immunocapture - a practical and low-cost assay 

technology already in very wide use in both clinical and research laboratories. 

Given that sample collection and storage protocols differed across the 11 cohorts included in the 

EMIF-AD MBD study, this pragmatic meta-collection reflects the challenges faced by any putative 

biomarker in the real-world of multi-site, multi-national clinical studies, and even more so in clinical 

practice, where standardisation of sample collection is sought but rarely achieved. Replication of any 

putative biomarker set in such a collection of samples has a higher prior probability of effective utility 

in practice than replication in a single cohort or single site study with a fully standardised sample 

collection procedure. Nonetheless the limitations of this study are also acknowledged; this study was 

designed to determine whether candidate biomarkers replicate in their ability to predict amyloid, it 

was not designed to determine the real-world value of the biomarkers or the biomarker panel they 

form. Selecting half of the samples from people with high amyloid enables proof of concept but clearly 
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random prediction will already identify 50% of those with amyloid correctly. Additionally, missing data 

(4-11% per protein as a result of variable sample volume and quality and occasional assay performance 

failure) meant that when combining multiple proteins together in a biomarker panel the overall 

sample size with complete data was significantly reduced. However, even in this reduced sample set 

with 50% prediction accuracy possible by chance, the likelihood ratio with our biomarker panel is 2.3 

in the whole cohort and 3 for preclinical disease, suggesting approximately a 15% and 20% 

improvement in detection respectively 36. Applying these figures to the screen failure rate occurred in 

actual trials demonstrates a significant impact on projected cost of start-up. For example, assuming 

an approximate screen failure rate of 70% in preclinical disease, a rate similar or lower than found in 

current clinical trials, and a current screening cost by PET amyloid of approximately $3500 per scan, 

in order to recruit 5000 individuals successfully the cost of screen failure would be around $41 million. 

Implementing our blood biomarker panel to reduce the screen failure rate by 20% would save 

approximately $19 million. Further work is now needed to validate the biomarker panel in samples 

representing those of people being recruited to clinical trials. 

To summarise, our overall goal is to facilitate clinical trials by contributing to rapid and effective 

selection of research participants most likely to have brain amyloid pathology and hence reducing 

screen failure rates, reducing cost and time of trial start-up and reducing exposure of potential 

participants to PET imaging or CSF lumbar puncture. In order to do this, we have previously 

investigated, discovered and replicated plasma protein biomarkers that could be implemented as a 

clinical trial entry criterion to triage potential participants for amyloid PET or CSF measures. In the 

current study 7 of these biomarkers are replicated in a large, multi-centre cohort. These seven 

proteins form a biomarker panel that is the product of over a decade of research, is biologically 

relevant and measurable using practical immunocapture arrays and could significantly reduce the 

cost incurred to clinical trials by screen failure because of absence of amyloid pathology. 
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Supplementary Tables 

Supplementary Table 1. Logistic regression (age as covariate) results for each protein with amyloid 

status as the outcome variable in AD subjects only. *statistically significant <0.05 

   Logistic Regression 

Sub-cohort protein beta p-value q-value 

O
xf

o
rd

 

FCN2 0.722 0.062 0.635 

FGG 0.140 0.620 0.946 

Cystatin C -0.307 0.218 0.803 

Clusterin -0.468 0.083 0.635 

B2M -0.484 0.035* 0.635 

AGP 0.118 0.665 0.946 

CP 0.043 0.868 0.956 

A2M -0.261 0.288 0.803 

ApoA1 0.060 0.817 0.956 

ApoC3 -0.247 0.309 0.803 

ApoE -0.353 0.131 0.675 

TTR -0.123 0.630 0.946 

CFH -0.394 0.102 0.635 

CRP -0.052 0.849 0.956 

A1AT 0.227 0.540 0.946 

PEDF 0.033 0.907 0.956 

SAP -0.264 0.241 0.803 
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CC4 0.658 0.050* 0.635 

BDNF -0.107 0.671 0.946 

Cathepsin  

D -0.232 0.311 0.803 

sICAM1 0.038 0.881 0.956 

RANTES 0.014 0.954 0.956 

NCAM 0.218 0.452 0.877 

sVCAM1 0.029 0.911 0.956 

PAI.1 -0.199 0.381 0.817 

C
ar

d
if

f 

CR1 
0.023 0.952 0.956 

TCC 
-0.312 0.234 0.803 

CFB 
0.203 0.650 0.946 

CFI 
0.024 0.956 0.956 

Eotaxin 
-0.282 0.338 0.805 

MCP 
-0.249 0.395 0.817 

 

Supplementary Table 2. Logistic regression (age as covariate) results for each protein with amyloid 

status as the outcome variable in MCI subjects only. *statistically significant <0.05 

   Logistic Regression 

Sub-cohort Protein beta p-value q-value 

O
xf

o
rd

 

FCN2 0.241 0.046* 0.264 

FGG 0.246 0.037* 0.264 

Cystatin C -0.074 0.499 0.736 

Clusterin 0.065 0.550 0.875 

B2M -0.213 0.060 0.264 

AGP 0.093 0.403 0.658 

CP 0.170 0.127 0.342 

A2M 0.000 0.998 0.998 

ApoA1 0.163 0.148 0.343 

ApoC3 0.048 0.663 0.859 
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ApoE -0.305 0.006* 0.188 

TTR 0.001 0.991 0.998 

CFH 0.035 0.748 0.859 

CRP -0.158 0.155 0.343 

A1AT 0.009 0.935 0.998 

PEDF -0.110 0.321 0.562 

SAP -0.087 0.425 0.658 

CC4 0.217 0.053 0.264 

BDNF 0.021 0.846 0.936 

Cathepsin D -0.170 0.118 0.342 

sICAM1 -0.106 0.327 0.562 

RANTES 0.036 0.742 0.859 

NCAM 0.177 0.121 0.342 

sVCAM1 -0.038 0.728 0.859 

PAI.1 -0.127 0.235 0.454 

C
ar

d
if

f 

CR1 0.234 0.031* 0.264 

TCC 0.176 0.132 0.342 

CFB -0.137 0.189 0.391 

CFI -0.263 0.018* 0.264 

Eotaxin 0.198 0.101 0.342 

MCP 0.037 0.725 0.859 

 

Supplementary Table 3. Logistic regression (age as covariate) results for each protein with amyloid 

status as the outcome variable in cognitively healthy control subjects only. *statistically significant 

<0.05 

   Logistic Regression 

 Protein beta p-value q-value 

O
xf

o
rd

 FCN2 
0.305 0.010* 0.180 

FGG 
-0.137 0.262 0.427 
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Cystatin C 
-0.228 0.066 0.256 

Clusterin 
-0.166 0.172 0.368 

B2M 
-0.263 0.053 0.256 

AGP 
-0.216 0.087 0.298 

CP 
-0.254 0.047* 0.256 

A2M 
-0.162 0.202 0.368 

ApoA1 
-0.245 0.060 0.256 

ApoC3 
-0.016 0.891 0.920 

ApoE 
-0.175 0.160 0.368 

TTR 
-0.180 0.145 0.368 

CFH 
-0.178 0.146 0.368 

CRP 
0.011 0.924 0.924 

A1AT 
-0.359 0.014* 0.180 

PEDF 
-0.020 0.872 0.920 

SAP 
0.139 0.235 0.404 

CC4 
0.150 0.201 0.368 

BDNF 
0.094 0.427 0.614 

Cathepsin D 
-0.097 0.436 0.614 

sICAM1 
-0.288 0.045* 0.256 

RANTES 
0.084 0.471 0.634 

NCAM 
-0.017 0.888 0.920 

sVCAM1 
-0.017 0.884 0.920 

PAI.1 
0.156 0.180 0.368 
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C
ar

d
if

f 

CR1 -0.667 0.017* 0.180 

TCC -0.044 0.781 0.920 

CFB 0.092 0.497 0.642 

CFI -0.242 0.137 0.368 

Eotaxin 0.143 0.276 0.428 

MCP 0.040 0.767 0.920 

 

Supplementary Table 4. Logistic regression (age as covariate) results for each protein with amyloid 

status as the outcome variable in APOE ε4 carrier subjects only. *statistically significant <0.05 

   Logistic Regression 

Sub-cohort Protein beta p-value q-value 

O
xf

o
rd

 

FCN2 
0.628 0.000* 0.000* 

FGG 
-0.258 0.013* 0.120 

Cystatin C 
-0.127 0.234 0.409 

Clusterin 
-0.136 0.204 0.400 

B2M 
-0.111 0.305 0.431 

AGP 
0.033 0.761 0.795 

CP 
0.031 0.770 0.795 

A2M 
0.064 0.575 0.660 

ApoA1 
-0.071 0.503 0.606 

ApoC3 
-0.074 0.480 0.606 

ApoE 
-0.108 0.306 0.431 

TTR 
-0.136 0.200 0.400 

CFH 
-0.023 0.831 0.831 



28 
 

CRP 
-0.236 0.025* 0.129 

A1AT 
-0.221 0.050* 0.192 

PEDF 
-0.121 0.251 0.409 

SAP 
-0.187 0.081 0.280 

CC4 
0.405 0.001* 0.009* 

BDNF 
-0.168 0.106 0.329 

Cathepsin D 
-0.253 0.017* 0.120 

sICAM1 
-0.141 0.179 0.400 

RANTES 
-0.241 0.019* 0.120 

NCAM 
0.131 0.244 0.409 

sVCAM1 
0.071 0.509 0.606 

PAI.1 
-0.160 0.122 0.345 

C
ar

d
if

f 

CR1 0.047 0.707 0.783 

TCC 0.134 0.297 0.431 

CFB 0.090 0.461 0.606 

CFI -0.151 0.206 0.400 

Eotaxin 0.325 0.030* 0.133 

MCP 0.202 0.207 0.400 

 

Supplementary Table 5. Logistic regression (age as covariate) results for each protein with amyloid 

status as the outcome variable in APOE ε4 non-carrier subjects only. *statistically significant <0.05 

   Logistic Regression 

Sub-cohort Protein beta p-value q-value 

O xf o
r d
 FCN2 0.395 0.000* 0.005* 
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FGG 0.083 0.406 0.716 

Cystatin C -0.206 0.043* 0.222 

Clusterin -0.241 0.017* 0.125 

B2M -0.427 0.000* 0.005* 

AGP -0.062 0.545 0.769 

CP -0.021 0.836 0.894 

A2M -0.033 0.751 0.894 

ApoA1 -0.052 0.609 0.821 

ApoC3 0.077 0.439 0.716 

ApoE -0.022 0.827 0.894 

TTR 0.062 0.539 0.769 

CFH 0.012 0.903 0.908 

CRP 0.082 0.416 0.713 

A1AT -0.190 0.081 0.288 

PEDF 0.110 0.281 0.669 

SAP 0.065 0.513 0.769 

CC4 0.175 0.075 0.288 

BDNF 0.043 0.668 0.863 

Cathepsin D -0.249 0.020* 0.125 

sICAM1 -0.177 0.084 0.288 

RANTES 0.037 0.713 0.884 

NCAM -0.025 0.799 0.894 

sVCAM1 -0.161 0.112 0.348 

PAI.1 -0.090 0.384 0.716 

C
ar

d
if

f 

CR1 
-0.165 0.268 0.669 

TCC 
0.090 0.387 0.716 

CFB 
-0.087 0.417 0.716 

CFI 
-0.362 0.002* 0.022* 

Eotaxin 
0.125 0.234 0.660 

MCP 
-0.012 0.908 0.908 
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Supplementary Table 6. AUC statistics per protein, for the classification of high / low brain amyloid 

status, within APOE 4 carrier / non-carrier groups separately. 

Variable 
APOE 4 

status 
Optimal 
cutpoint Sensitivity Specificity AUC CI.low CI.up 

A1AT 
carrier 142278.725 0.408 0.706 0.563 0.483 0.650 

A1AT non-
carrier 273159.570 0.544 0.571 0.546 0.468 0.623 

ApoE 
carrier 93.568 0.624 0.456 0.527 0.455 0.609 

ApoE non-
carrier 138.613 0.836 0.233 0.501 0.426 0.570 

B2M 
carrier 2957.260 0.276 0.872 0.554 0.478 0.632 

B2M non-
carrier 6191.573 0.658 0.524 0.604 0.531 0.676 

Cathepsin D 
carrier 270.670 0.395 0.805 0.597 0.526 0.674 

Cathepsin D non-
carrier 393.785 0.784 0.363 0.573 0.496 0.642 

CC4 
carrier 42726.128 0.752 0.450 0.621 0.545 0.698 

CC4 non-
carrier 73547.781 0.467 0.693 0.556 0.488 0.627 

FCN2 
carrier 18215589.820 0.630 0.682 0.674 0.596 0.745 

FCN2 non-
carrier 24620022.060 0.515 0.772 0.626 0.547 0.696 

CFI 
carrier 25047.264 0.460 0.684 0.552 0.469 0.634 

CFI non-
carrier 26770.591 0.529 0.647 0.596 0.524 0.673 

Age 
carrier 65.010 0.731 0.534 0.652 0.585 0.714 

Age non-
carrier 67.355 0.708 0.532 0.643 0.580 0.706 
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Supplementary Table 7. AUC statistics per protein, for the classification of high / low brain amyloid 

status, within diagnostic groups separately. 

Variable Diagnosis 
Optimal 
cutpoint Sensitivity Specificity AUC CI.low CI.up 

A1AT MCI 253270.314 0.481 0.627 0.526 0.442 0.612 
A1AT AD 54461.556 0.299 0.917 0.500 0.250 0.730 
A1AT CN 3758206.009 0.925 0.240 0.559 0.466 0.655 
ApoE MCI 115.549 0.722 0.449 0.583 0.501 0.669 
ApoE AD 111.074 0.720 0.563 0.626 0.396 0.864 
ApoE CN 104.386 0.693 0.431 0.545 0.462 0.632 
B2M MCI 18721.188 0.948 0.150 0.535 0.448 0.623 

B2M AD 7032.937 0.669 0.643 0.671 0.421 0.899 
B2M CN 7295.702 0.753 0.419 0.589 0.497 0.679 
Cathepsin 
D MCI 452.920 0.859 0.261 0.551 0.470 0.629 
Cathepsin 
D AD 319.070 0.600 0.611 0.602 0.418 0.778 
Cathepsin 
D CN 272.795 0.396 0.741 0.561 0.464 0.655 
CC4 MCI 44884.347 0.764 0.387 0.567 0.484 0.643 
CC4 AD 77450.398 0.401 0.882 0.655 0.453 0.865 
CC4 CN 78252.733 0.354 0.777 0.551 0.459 0.642 
FCN2 MCI 22524455.125 0.500 0.712 0.597 0.514 0.681 
FCN2 AD 18939335.605 0.723 0.643 0.679 0.446 0.908 

FCN2 CN 30220128.285 0.276 0.891 0.571 0.479 0.657 
CFI MCI 26825.973 0.462 0.713 0.587 0.511 0.661 
CFI AD 29249.109 0.875 0.333 0.508 0.033 0.929 
CFI CN 24171.476 0.424 0.752 0.566 0.459 0.678 
Age MCI 67.350 0.709 0.483 0.603 0.536 0.665 
Age AD 68.900 0.571 0.200 0.381 0.206 0.555 
Age CN 66.100 0.593 0.582 0.570 0.484 0.655 

 

Supplementary Table 8. Ethical approval committee of each centre 

Centre Part of multicentre Country Approval Committee  

Aristotle University, 

Thessaloniki  

DESCRIPA, EDAR, 

Pharmacog 

Greece Aristotle University of Thessaloniki Medical 

School Ethics Committee 

Central Institute for Mental 

Health, Mannheim 

EDAR Germany Ethics Committee of the Medical Faculty 

Mannheim, University of Heidelberg 

GAP, San Sebastian - Spain Ethic and Clinical Research Committee Donostia 
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Hôpital Timone Adultes, 

Marseille 

Pharmacog France Ethics committee Inserm and Aix Marseille 

University 

Hospital Clínic de Barcelona 

IDIBAPS 

Pharmacog Spain The Healthcare Ethics Committee of the Hospital 

Clínic 

Hospital de la Santa Creu i Sant 

Pau, Barcelona 

EDAR Spain Central Clinical Research and Clinical Trials Unit 

(UICEC Sant Pau) 

INSERM, Toulouse Pharmacog France INSERM Ethical Committee 

IRCCS-FBF, Brescia Pharmacog Italy Ethic Committee of the IRCCS San Giovanni di 

Dio FBF 

IRCCS-SDN, Napels Pharmacog Italy Comitato Etico IRCCS Pascale - Napoli 

Karolinska Institutet, 

Stockholm 

EDAR Sweden Ethics Committee at Karolinska Institutet 

Katholieke Universiteit, Leuven EDAR Belgium Ethische commissie onderzoek UZ/KU Leuven 

Lausanne University Hospital, 

Lausanne 

- Switzerland Research Ethics Committee Lausanne University 

Hospital 

Maastricht University, 

Maastricht 

DESCRIPA, EDAR Netherlands Medical ethical committee Maastricht University 

Medical Center 

Rigshospitalet, Copenhagen EDAR Denmark Committee on Health Research Ethics, Region of 

Denmark 

University of Mediterranean, 

Marseille 

Pharmacog France Ethics committee of Mediterranean University 

University of Lille, Lille Pharmacog France University of Lille Ethics committee 

University of Leipzig, Leipzig Pharmacog Germany Ethical Committee at the Medical Faculty, 

Leipzig University 

University of Essen, Essen Pharmacog Germany Ethical Committee at the Medical Faculty, 

University Hospital Essen 

University of Antwerp, Antwerp - Belgium Ethics committee University of Antwerp 

University of Genoa, Genoa Pharmacog Italy Ethical Committee of University of Genoa 

University of Gothenburg, 

Gothenburg 

- Sweden Ethics Committee, University of Gothenburg 

University of Perugia, Perugia Pharmacog Italy Human ethics Committee of the University of 

Perugia 

VU Medical Center, Amsterdam  EDAR, Pharmacog Netherlands Medical ethics committee VU Medical Center 
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Supplementary Figures 

 

Supplementary Figure 1. AUC and corresponding 95% confidence intervals plotted per protein, for 

the classification of high / low brain amyloid status. Abbreviations: AUC, area under the curve. 

 


