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ABSTRACT 12 

Humans automatically detect events that, in deviating from their expectations, may signal prediction 13 
failure and a need to reorient behaviour. The pupil dilation response (PDR) to violations has been 14 
associated with sub- cortical signals of arousal and prediction resetting. However, it is unclear how the 15 
context in which a deviant occurs affects the size of the PDR. Using ecological musical stimuli that we 16 
characterised using a computational model, we showed that the PDR to pitch deviants is sensitive to 17 
contextual uncertainty (quantified as entropy), whereby the PDR was greater in low than high entropy 18 
contexts. The PDR was also positively correlated with the unexpectedness of notes. No effects of music 19 
expertise were found, suggesting a ceiling e effect due to enculturation. These results show that the 20 
same sudden environmental change can lead to differing arousal levels depending on contextual 21 
factors, providing evidence for a sensitivity of the PDR to long-term context. 22 

Introduction  23 

The experience of surprise is very common in the sensory realm and often triggers automatic changes 24 
in arousal and attentional states that are fundamental to adaptive behaviours. Music is a ubiquitous 25 
and ecological example of a situation where changes in listeners’ arousal and attention are 26 
intentionally manipulated. Composers may, for example, modulate the predictability of musical 27 
passages in order to achieve differing levels of tension in a listener. A great deal of empirical work has 28 
shown that surprising sounds are recognised by listeners in an effortless and automatic fashion 29 
(Pearce, 2018). This process is thought to be supported by a mismatch between the current 30 
unexpected input and the implicit expectations made possible by schematic and dynamic knowledge 31 
of stimulus structure (Huron, 2006; Krumhansl, 2015; Tillmann, Bharucha, & Bigand, 2000; Vuust & 32 
Witek, 2014). However, there is still rather little research examining mismatch responses under 33 
different degrees of uncertainty during passive listening.  34 

Evidence of listeners experiencing events in music as unexpected comes from studies investigating 35 
behavioural (Marmel, Tillmann, & Delbé, 2010; Omigie, Pearce, & Stewart, 2012; Tillmann & Lebrun-36 
Guillaud, 2006) and brain responses to less regular musical events (Bianco, Novembre, Keller, Kim, et 37 
al., 2016; Carrus, Pearce, & Bhattacharya, 2013; Koelsch, 2016; Koelsch, Gunter, et al., 2002; Maess, 38 
Koelsch, Gunter, & Friederici, 2001; Miranda & Ullman, 2007; Omigie, Pearce, Williamson, & Stewart, 39 
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2013; Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010). With regard to the former, priming 40 
paradigms have shown that a context allows perceivers to generate implicit expectations for future 41 
events, leading to facilitated processing (i.e., priming) of expected events. With regard to the latter, 42 
violation paradigms have shown increased brain responses to deviant events (out of key notes, or 43 
harmonically incongruent chords) within structured contexts as well as events which are musically 44 
plausible but more improbable in the given context. For example, Omigie et al. (2013) tested brain 45 
responses to melodies whose notes were characterised in terms of their predictability by a model of 46 
auditory expectations (Pearce, 2005). They showed that surprising events (more improbable notes) 47 
within melodies elicited a mismatch response – often termed the mismatch negativity, MMN (Garrido, 48 
Kilner, Stephan, & Friston, 2009; Näätänen, Paavilainen, Rinne, & Alho, 2007). This response decreased 49 
in amplitude for progressively more predictable events, as estimated by a computational model of 50 
melodic expectation. A similar parametric sensitivity to note unexpectedness has since also been 51 
observed in subcortical regions like the anterior cingulate and insula (Omigie et al., 2019). Moreover, 52 
sensitivity to music structure violation seems to emerge in all members of the general population that 53 
have had sufficient exposure to a given musical system (Bigand & Poulin-Charronnat, 2006; Pearce, 54 
2018; Rohrmeier, Rebuschat, & Cross, 2011), and this sensitivity is modulated by pre-existing 55 
schematic knowledge of music, as reflected in acquired levels of musical expertise (Fujioka, Trainor, 56 
Ross, Kakigi, & Pantev, 2004; Koelsch, Schmidt, & Kansok, 2002a;  Tervaniemi, 2009; Vuust, Brattico, 57 
Seppänen, Näätänen, & Tervaniemi, 2012).  58 

According to theoretical and empirical work framing perception in the context of predictive processing, 59 
the experience of surprise may be modulated by the predictability of a stimulus structure as it unfolds 60 
(Clark, 2013; Dean & Pearce, 2016; Friston, 2005; Ross & Hansen, 2016). Random or high entropic 61 
stimuli hinder the possibility of making accurate predictions about possible upcoming events, whilst 62 
stimuli characterized by familiarity or regular statistics will enable relatively precise predictions by 63 
permitting the assignment of high probability to a few possible continuations. Perceptually, it has been 64 
shown that listeners indeed experience high-entropic musical contexts with greater uncertainty 65 
compared to low entropy ones (Hansen & Pearce, 2014). Moreover, previous work has shown that 66 
neurophysiological signatures associated with auditory surprise display larger responses to a given 67 
deviant event when it is embedded in a low rather than high entropic context (Dean & Pearce, 2016; 68 
Garrido, Sahani, & Dolan, 2013; Hsu, Le Bars, Hamalainen, & Waszak, 2015; Ricardo Quiroga-Martinez, 69 
2018; Rubin, Ulanovsky, Nelken, & Tishby, 2016; Southwell & Chait, 2018). Therefore, research 70 
suggests that to understand whether and how surprising events modulate arousal and re-orient 71 
behaviours, the statistics of the proximal context must be considered.   72 

A vast literature has used pupil dilation response (PDR) as a general marker of arousal, selective 73 
attention, and surprise (Aston-Jones & Cohen, 2005; Sara, 2009). Pupil dilation is associated with the 74 
locus coeruleus-norepinephrine (LCN) system (Laeng, Sirois, & Gredeback, 2012; Widmann, Schröger, 75 
& Wetzel, 2018), the activation of which results in wide spread norepinephrine release in the brain. 76 
Increase of the PDR has been extensively reported in response to violation of expectations or 77 
surprising/salient events in distracted listeners (Damsma & van Rijn, 2017; Liao, Yoneya, Kidani, 78 
Kashino, & Furukawa, 2016; Wetzel, Buttelmann, Schieler, & Widmann, 2016; Zhao et al., 2019), and 79 
when deviants are presented below participants' perceptual threshold (Fink, Hurley, Geng, & Janata, 80 
2018). Furthermore, a relationship between PDR and continuous ratings of surprisal in music 81 
(measured via a continuous slider) has been reported during passive listening (Liao, Yoneya, Kashino, 82 
& Furukawa, 2018). Other work has specifically associated the PDR to violations of statistical 83 
regularities in the sensory input even when these violations are behaviourally irrelevant (Alamia, 84 
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VanRullen, Pasqualotto, Mouraux, & Zenon, 2019; Zhao et al., 2019). These results provide supporting 85 
evidence for a role of norepinephrine in the tracking of abrupt deviations from the current predictive 86 
model of the world, and as a signal of prediction resetting that enables the discovery of new 87 
information (Dayan & Yu, 2006).  88 

Music has the ability to play with our expectations, hence manipulating our arousal and emotions in 89 
an automatic fashion (Laeng, Eidet, Sulutvedt, & Panksepp, 2016; Meyer, 2001; Zatorre & Salimpoor, 90 
2013). Abrupt changes in register, texture and tonality are all examples of instances where the listener 91 
may have to reset or potentially abandon current models about the unfolding music. Such changes 92 
may however appear less surprising if embedded in high entropy contexts.  Here, we use music as an 93 
ecological setting with which to study how the PDR to deviant musical events is modulated by structure 94 
of the stimulus context, specifically by its entropy. The growing field of computational musicology 95 
means that information in melodies can be statistically estimated. One particular model of auditory 96 
expectations – the Information Dynamics of Music, IDyOM (Pearce, 2005) – has been shown to model 97 
listeners’ experience of surprise and uncertainty. This unsupervised Markov model learns and 98 
estimates the conditional probability of each subsequent note in a melody based on a corpus on which 99 
it has been trained (long-term sub-model; extra-opus-learning) and the given melody as it unfolds 100 
(short-term sub-model; intra-opus learning). The model outputs information content and entropy 101 
values, which, respectively, reflect the experienced unexpectedness of a certain note after its onset 102 
and the experienced uncertainty in precisely predicting a subsequent note based on the preceding 103 
pitch probabilities. 104 

We created novel melodies (Figure 1) that adhered to the principles guiding Western tonal melodic 105 
structure. We then created shuffled versions of these melodies to create stimuli that were higher in 106 
entropy albeit matched for pitch range, content and tonal space. The information theoretic properties 107 
of all stimuli were estimated using IDyOM (Pearce, 2005). Listeners were presented with these 108 
melodies either in their standard form or with a pitch deviant whilst PDR was measured. Participants 109 
were not informed about the presence of the pitch deviants, but asked to rate the unexpectedness of 110 
last note of each melody. We expected a larger PDR to deviant notes that are embedded in low rather 111 
than high entropy contexts, and that are higher in their unexpectedness – information content value 112 
– as estimated by the computational model. Also, we expected entropy of the melodies to predict 113 
subjective ratings of stimulus unexpectedness (Hansen & Pearce, 2014). Finally, based on evidence of 114 
greater brain response to musical violations in musicians than non-musicians (Vuust, Brattico, 115 
Seppänen, Näätänen, & Tervaniemi, 2012b), presumably reflecting expertise-related enhancement in 116 
the accuracy of predictive models, differences due to musical expertise (Müllensiefen et al., 2014) were 117 
also investigated.  118 

Methods  119 

Participants 120 

Forty-seven participants (age: M=26.19, SD=6.24, min.=20, max.=52, 68% female, representing 15 121 
nationalities) took part in the study. The sample scored relatively high on the general musical 122 
sophistication index, GoldMSI (Müllensiefen et al., 2014), with M=87.40, SD=25.24, min.=32, 123 
max.=120. A big sample size was chosen based on a previous experiment using musical stimuli (Laeng 124 
et al., 2016) and to ensure statistical power. As a post-hoc confirmation of the adequacy of our sample-125 
size, we quantified effect sizes of the difference between PDR to deviants in high vs. low entropy 126 
contexts. The power analysis was conducted in the G*Power software package (version 3.1.9.2) with 127 
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the setting p = .05 and N = 42 and confirmed that our sample size was adequate (1 − β > .9). Two 128 
participants reported ophthalmologic concerns or surgery prior to the experiment but were not 129 
excluded from participation as the pupil dilates even in blindsight participants (Weiskrantz, Cowey, & 130 
Barbur, 1999). Technical problems occurred during the recording of four participants, who were 131 
therefore excluded from the analysis. One subject was further excluded as blink gaps were too large 132 
to be interpolated. In sum, forty-two participants’ data were analysed.  133 

Ethical approval for this study was granted by the Research Ethics Committee of Goldsmiths, University 134 
of London. Participants were instructed as to the purpose of the study, and consented to participate 135 
(written informed consent). Participation was remunerated with 5 pounds.  136 

Stimul i  137 

One-hundred-twenty melodies were used in this study (thirty originally composed, thirty matched 138 
‘shuffled’ versions, and sixty corresponding versions with a deviant tone always as the 13th note). The 139 
melodic sequences comprised 20 tones, were 5 seconds long, isochronous (with an inter-onset-interval 140 
of 250 ms, 20/4 bar with 240 bpm), and had constant intensity and timbre (MIDI generated piano 141 
timbre). 142 

The corpus of melodies was composed according to the principles of Western-tonal music and using 143 
all tones of the chromatic scale. Ambitus and tonal space varied across melodies. Interval size did not 144 
exceed a perfect fifth (Narmour, 2015) between adjacent notes. Thus, the original melodies were 145 
characterized by a smooth contour. To generate matched melodies that controlled for potential biases 146 
such as tonal space, pitch class, frequency range or ambitus, high entropy melodies were created from 147 
the original melodies by randomizing the order of constituent notes using MIDI processing tools (Eerola 148 
& Toiviainen, 2004). Our manipulation of entropy, whereby notes in original melodies were randomly 149 
shuffled without constraint, necessarily resulted in the mean absolute interval size being greater in 150 
high entropy than in low entropy melodies [L vs. H: t(58) = -2.644, p-value = .01]. Corpus studies of 151 
western tonal music  show that large interval sizes are much less common than small ones (Huron, 152 
2001). Thus, we anticipated that the presence of such large intervals would lead to the higher entropy 153 
levels desired for the high entropy condition.  154 

Deviant notes were inserted in all 60 melodies (original and shuffled version) at the onset of the 13th 155 
note (3000ms on the salient onbeat) in order to create the corresponding set of deviant melodies (Fig. 156 
1). The deviant note was integrated into the second half of the melody in order to allow the 157 
establishment of an expectation-forming context before its occurrence. To ensure that differences in 158 
the PDR to the deviant notes between low and high entropy condition were not attributable to 159 
difference in the just preceding event, but to the context, the interval size between the deviant and 160 
the preceding 12th note was the same in matched pairs of high and low entropy melodies (see Fig. 1). 161 
However, interval size of the deviant varied between maj7 up/down, min9 up/down and aug11 162 
up/down as those intervals sound particularly unusual within a melodic progression. Larger interval 163 
size of the deviant was assigned to matched pairs with lower entropy differences. This allowed for a 164 
variety of deviant interval sizes (a range of unexpectedness) while ensuring salience of deviants even 165 
in melodies showing relatively smaller entropy differences.  166 

Entropy values were assigned by the IDyOM model to each note of the melodies. The IDyOM model 167 
considered one pitch viewpoint, namely ‘cpitch’, whereby chromatic notes count up and down from 168 
the middle pitch number (C=60) (Pearce, 2005). Through a process of unsupervised learning, the model 169 
was trained on a corpus (903 Western tonal melodies) comprising songs and ballads from Nova Scotia 170 
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in Canada, German folk songs from the Essen Folk Song Collection and chorale melodies harmonised 171 
by J.S. Bach. The probability of each note of the stimulus used here were then estimated based on a 172 
combination of the training set’s statistics and those of the given melody at hand. The model outputs 173 
information content and entropy values. In mathematical terms, information content is inversely 174 
proportional to the probability of an event xi, with IC(xi) = −log2 p(xi) (MacKay, 2003), while the 175 
maximum entropy is reached when all potential events xi are equally probable, with p(xi) = 1/n, where 176 
n equals the number of stimuli. In psychological terms, information content represents how surprising 177 
each subsequent note is based on its fit to the prior context  (Pearce & Wiggins, 2006). In contrast, 178 
entropy refers to the anticipatory difficulty in precisely predicting a subsequent note. Mean entropy 179 
values, obtained by taking the mean entropy of all notes, were used to characterise the predictability 180 
of each melody. Given our manipulation, mean entropy was largely, but not entirely, explained by the 181 
mean interval size of melodies (rho = .474, p < .001). These values were then used to predict subjective 182 
inferred uncertainty (measured as unexpectedness of last note) about each melody, and to categorise 183 
melodies into low and high entropy groups. By controlling that the interval preceding the deviant note 184 
was identical across high and low entropy condition, we predicted that a greater PDR to deviant notes 185 
in low than high entropy melodies should be attributable to the difference in the context.  186 

Procedure 187 

The experiment was presented using the Experiment Builder Software and pupil diameter was 188 
recorded using EyeLink 1000 eye-tracker at a 250Hz sampling rate (SR Research, www.sr-189 
research.com/experiment-builder). Prior to the data acquisition, a three-dot calibration was 190 
conducted to ensure adequate gaze measurements. Participants were further allowed to adjust the 191 
sound volume to a comfortable level and were asked to reduce head movements to a minimum 192 
throughout the recording session. As no differences were anticipated between the left and right pupil, 193 
the left pupil was recorded in ten and the right pupil in 32 participants depending on the participants’ 194 
dominant eye. To reduce motion artefacts, the head was stabilized using the SR Research Head Support 195 
chinrest placed 50 cm from the presentation screen.  196 

During the experiment, the 120 melodies were presented binaurally through headphones in a 197 
randomized order. Each trial was triggered by the experimenter on the control computer when the 198 
fixation was stable at less than two arbitrary gaze units away from the fixation point. When recording 199 
was enabled, a white fixation dot on the grey screen turned black to prepare participants for the onset 200 
of the melody. The fixation cross was displayed for 7 seconds after stimulus onset. Each trial was 201 
preceded by a 400 ms baseline period and followed by a 2000 ms post stimulus offset. The melody was 202 
5000 ms long and participants were instructed not to blink or move but to fixate during that whole 203 
period. Participants were allowed to take breaks to avoid fatigue effects at their convenience. A re-204 
calibration procedure using the 3-dot-calibration was applied after each break. 205 

Participants were instructed to carefully listen to the melody while fixating on the fixation point in the 206 
centre of the screen throughout the recording period. They were not informed about the deviant 207 
manipulation. After each trial, participants rated the final note on a Likert-scale ranging from 1 (not at 208 
all unpredictable) to 7 (extremely unpredictable) in a forced-choice task on the presentation screen. 209 
Data on the subjects’ musical expertise and sociodemographic background was collected at the end of 210 
each experiment using the GoldMSI (Müllensiefen et al., 2014). The whole study lasted approximately 211 
one hour. 212 

Data pre-processing 213 
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Blinks were identified and removed from the signal using MATLAB R2017b. These were characterized 214 
by a rapid decline towards zero from blink onset, and a rapid rise back to the regular value at blink 215 
offset. 100ms of the signal was removed before and after the missing data points (Troncoso, Macknik, 216 
& Martinez-Conde, 2008) and missing data were interpolated: four equally spaced time points were 217 
used to generate a cubic spline fit to the missing time points between blink onset (t2) and blink offset 218 
(t3) of the unsmoothed signal, with t1= t2-t3+t2 and t4= t3-t2+t3 (Mathôt, Fabius, Van Heusden, & Van 219 
der Stigchel, 2018). Trials containing more than 15% missing data were excluded from the analysis (M= 220 
.3, SD = .9 trials across subjects). Data were cleaned of artefacts using Hampel filtering (median filtered 221 
data; Pearson, Neuvo, Astola, & Gabbouj, 2016), and smoothened using a Savitzky-Golay filter of 222 
polynomial order 1 over the entire trial epoch. Finally, data were z-scored, and then baseline-corrected 223 
by subtracting the median pupil size of 400 ms baseline before melody onset. To analyse the time-224 
window after deviant onset, data were baselined from 400 ms before deviant onset. The normalized 225 
pupil diameter was time-domain-averaged across trials of each condition.  226 

Experimental  design and statistical  analysis 227 

We estimated a single time series for each sequence type: low or high entropy with either standard or 228 
deviant note type (S-Low/D-Low/S-High/D-high) by averaging across trials and participants. Statistical 229 
analysis was performed using Fieldtrip's cluster-based permutation test (Maris & Oostenveld, 2007), 230 
with a significance threshold at 5% to control family-wise error-rate (FWER). This analysis revealed the 231 
time windows showing significant difference between the compared time series.  232 

We first compared responses to deviant notes in the low and high entropy contexts with the 233 
corresponding standard notes using signals recorded across the entire melody duration (baselined 400 234 
ms before melody onset). This ensured that differences between deviant and corresponding standards 235 
were not due to differences in the immediately preceding note. Then, to determine how the deviant 236 
PDR is affected by the entropy of the melodic context, we focussed on the time window from deviant 237 
onset to the end of the melody (3000 to 5000 ms epochs). We thus baselined to 400 ms before deviant 238 
onset, and we tested for an interaction of the deviant and context manipulation: (D-Low – S-low) vs. 239 
(D-High – S-High). Further, we compared the responses to standard tones in the two contexts (S-Low 240 
– S-High) to ensure that any differences were not driven simply by the standard notes (the control 241 
conditions). 242 

To assess a potential influence of expertise on the PDR to deviants (data between 3000 and 5000 ms 243 
baselined to 400 ms before deviant onset), we computed the mean PDR to deviant trials as D-Low – S-244 
Low for deviants in low entropy context, and D-High – S-High for deviants in high entropy context. 245 
Participants were split into two groups of musical experts and non-experts based on GoldMSI scores 246 
(Mdn=96). An ANOVA with within-subject factor context (low/ high entropy) and expertise as between-247 
subject factor (expert/non-expert) was computed. 248 

Results 249 

Stimuli characterization. Analyses were carried out to clarify the nature of all differences in information 250 
theoretic properties of the different stimuli. Figure 1B (left panel) shows the mean entropy values for 251 
all conditions (D-Low: M = 2.96, SD = .18; D-High: M = 3.09, SD = .19; S-Low: M = 2.86, SD = .19; S-High: 252 
M = 3.03, SD = .23). An ANOVA with context (low/ high entropy) and note type (deviant / standard) as 253 
between-group factors yielded a main effect of context [F(1,116) = 15.20,  p < .001, np2 = .12], 254 
indicating higher entropy in High than Low entropy melodies [t(58) = 2.85, p = .006]. A significant main 255 
effect of note type [F(1,116) = 5,  p = .027, np2 = .04], was not supported by a further post hoc 256 
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comparison [t(58) = -1.641, p = .11]. No interaction was found between the two factors [F(1,116) = .25,  257 
p = .617, np2 < .01].  258 

Figure 1B (right panel) shows that the unexpectedness of deviant notes, as reflected by information 259 
content values, was comparable between low and high entropy melodies. An ANOVA with between 260 
group factors context (low / high entropy) and note type (deviant / standard) yielded a main effect of 261 
note type [F(1,116) = 239.02, p < .001, np2 = .67], a non-significant main effect of context [F(1,116) = 262 
.42,  p = .517, np2 = .01], and no interaction between the two factors [F(1,116) = .00,  p = .714, np2 < 263 
.01] – thus indicating higher information content in deviant than standard notes regardless of the 264 
context in which they were embedded [t(58) = -12.321, p < .001]. The similar IC levels of deviant for 265 
the two entropy conditions may be due to fact that in both low and high entropy contexts, deviants 266 
were similar in being characterised by very large interval departures away from the melodic contour 267 
(as opposed to the relatively naturalistic events that occurred in real melodies (Dean & Pearce, 2016). 268 
Critically, that deviant IC levels are similar for the two entropy conditions, supports our suggestion that 269 
stimulus context (and not just the IC level an incoming event) has the ability to modulate the PDR.  270 

IC was positively predicted by interval size between the 12th and 13th note (rho = .862, p < .001), in 271 
line with research showing that amongst multiple psychological representations of pitch (e.g., height, 272 
contour, etc.), interval exerts a major contribution to perception of surprise (Levitin & Tirovolas, 2009; 273 
Pearce, 2018; Quiroga-martinez et al., 2019).  274 

 275 

 276 

Fig. 1. Experimental design. Participants listened to the melodies of 20 notes and had to rate how 277 
unexpected they found the last note on a seven-step Likert scale (– 1 equal ‘not at all unpredictable’ 278 
and 7 ‘extremely unpredictable’). The design included two factors: Contextual entropy (low/high) and 279 
Note type (standard/deviant). Melodies containing deviant notes where 50% of the trials and the 280 
deviant notes occurred always at the 13th position. B) Characterization of the stimuli. A model of 281 
musical expectations was used to characterise the stimuli: Mean entropy was larger for high than low 282 
entropy melodies regardless of the presence of deviant (yellow) or standard (blue) tones. Mean 283 
information content of deviants (yellow) was larger than standard (blue) tones regardless of the 284 
entropy of the context.  285 
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PDR characterization. Figure 2A shows the time course of the PDR across conditions (S-Low = standard 286 
low entropy, S-High = standard high entropy, D-Low = deviant low entropy, D-High = deviant high 287 
entropy) baselined 400 ms before melody onset. A comparison between S-Low and S-High showed no 288 
difference in the PDR as a function of entropy levels of the melody, whilst the PDR to deviants (D-Low 289 
vs. D-High) was greater in predictable than unpredictable contexts (diverging at .56 s from deviant 290 
onset). The response to deviants in the predictable contexts was greater than the relative standard 291 
condition (D-Low vs. S-Low: p = .029), significantly diverging from S-Low between 3.57 and 5.64 s after 292 
melody onset. Conversely, the response to deviants in unpredictable contexts did not differ from the 293 
relative standard condition (D-High vs. S-High), despite their high information content (see Figure 1B, 294 
middle panel).  295 

Figure 2B shows the PDR to deviants baselined 400 ms before deviant onset. We show the conditions 296 
D-Low and D-High following subtraction of the relative standard conditions. The comparison between 297 
the two time-courses confirmed that D-Low evoked a larger response than D-High starting at .59 s from 298 
deviant onset (p = .007) and ending at 1.5 s. Intrinsic noise in the baseline may explain the very early 299 
divergence between the curves, which however was not significant. Importantly, this pattern was 300 
observed in 67% of the participants (Figure 2C).  301 

We run a post hoc analysis (Figure 3A) to investigate the relationship between the PDR related to the 302 
13th note (including both standard and deviant notes) and associated information content for low and 303 
high entropy melodies. For each subject and for each melody, the average PDR to the 13th note was 304 
computed from the pre-deviant baseline (as in Figure 2B). A linear model with the factor context (Low 305 
/High) and information content as continuous variable was run to predict the PDR. This analysis yielded 306 
no main effect of context [F(1,116) = .005,  p = .941, np2 < .001] and a main effect of information 307 
content [F(1,116) = 4.911,  p = .029, np2 = .041] and a no significant interaction [F(1,116) = 3.274,  p = 308 
.073, np2 = .027]. This suggests that the PDR is sensitive to a large range of unexpectedness levels. 309 

We further investigated potential influences of expertise on the mean PDR to deviants (computed as 310 
D-Low – S-Low for deviants in low entropy contexts, and D-High – S-High for deviants in high entropy 311 
contexts on the data between 3000 and 5000 ms baselined to 400 ms before deviant onset as in Figure 312 
2B). The ANOVA examining the effect of musical expertise on the mean PDR to deviants yielded a main 313 
effect of context [F(1,40) = 5.09, p = .03, np2 = .11]. The main effect of expertise was not significant 314 
[F(1,40) = 3.72, p = .061, np2 = .09], and no interaction between the two factors  was seen [F(1,40) = 315 
2.18, p = .147, np2 = .05]. This confirmed that the mean PDR to deviants was greater in low than high 316 
entropy contexts although no considerable difference between experts and non-experts was observed.  317 

Finally, we showed that the model reliably predicted subjective uncertainty levels (inferred entropy) 318 
of the melody progressions (Hansen & Pearce, 2014) (Figure 3B). The measure of the unexpectedness 319 
of the last note was collected after participants listened to each melody. We found that the mean 320 
ratings for each melody strongly correlated with the information content of the last note of the melody 321 
(rho = .355, p < .001), and with the mean IDyOM entropy values for that melody (rho = .400, p < .001). 322 
This analysis validated our categorization of melodies based on the IDyOM output. 323 
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 324 

Fig. 2. A) The PDR for all conditions from melody onset (S-Low = standard low entropy, S-High = 325 
standard high entropy, D-Low = deviant low entropy, D-High = deviant high entropy).  The PDR to 326 
deviants compared to standard tones (D-Low vs. S-Low) in low entropy contexts diverged between 327 
3.57 and 5.64 s from melody onset (.57 s from deviant onset), but did not differ in high entropy 328 
contexts. Also, the PDR to deviants was greater in low than in high entropy contexts (D-Low vs. D-High) 329 
(diverging at 3.056 s from melody onset), but there was no significant context-dependent difference 330 
between the standard tones (S-Low and S-High).  Shaded regions around the curves represent standard 331 
error in the mean estimated with bootstrap resampling (1000 iterations; with replacement). B) 332 
Interaction effect of deviant and context entropy on the PDR after deviant onset. The difference 333 
between the PDR to deviant and standard tones was greater in low than in high entropy contexts. This 334 
effect emerged .59 after deviant onset and ended at 1.5 s. C) The relationship between the PDR for D-335 
High – S-High and D-Low – S-Low conditions. Each data point represents an individual participant. Dots 336 
above the diagonal reveal that 67% of participants showed a greater PDR to deviants in low compared 337 
with high entropy contexts.  338 

 339 

 340 

 341 
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Fig. 3. A) The unexpectedness of the 13th notes (deviants and standards) was estimated by the IDyOM 342 
model and showed a positive correlation (Spearman) with the mean evoked PDR. Blue and yellow dots 343 
represent each of the standard and deviant notes. Shading represents s.e.m. B) The stimulus entropy 344 
was computed by the IDyOM model, and validated by participants’ self-reports about the overall 345 
unexpectedness of each melody. Each dot represents one of the 120 melodies. Red and orange dots 346 
represent each of the low and high entropy melodies, respectively (N = 120). Shading represents s.e.m. 347 

Discussion 348 

We report that pupil dilation response (PDR) to behaviourally irrelevant deviants occurs when deviants 349 
are embedded in predictable rather than unpredictable melodies. We showed that the amplitude of 350 
the response is predicted by the information content (or unexpectedness) of the musical deviants. We 351 
also replicate the previous finding that listeners’ experience of uncertainty is predicted by the entropy 352 
of the music (Hansen & Pearce, 2014). These results show that the same sudden environmental change 353 
leads to differing levels of arousal depending on whether it occurs in low or high states of uncertainty. 354 
Our results suggest that the more stable predictions formed in predictable rather than unpredictable 355 
contexts may be more abruptly violated by surprising events, possibly leading to greater changes in 356 
the listeners’ arousal state.  357 

The observed modulatory effect of context predictability on the PDR to deviants is consistent with a 358 
body of electrophysiological work showing context effects on mismatch like responses at the cortical 359 
level (Garrido et al., 2013; Quiroga-Martinez et al., 2019; Southwell & Chait, 2018). Here we show a 360 
similar pattern but in autonomic markers of arousal, as reflected by the PDR. Pupil response is thought 361 
to be driven by norepinephrine activity in the locus coeruleus (LC) (Joshi, Li, Kalwani, & Gold, 2016). 362 
This is a key subcortical nucleus which widely connects to the brain (Sara, 2009) to signal unexpected 363 
and abrupt contextual changes (Alamia et al., 2019; Damsma & van Rijn, 2017; Zhao et al., 2019). It has 364 
been hypothesised (Zhao et al., 2019) that MMN-related brain systems (Garrido et al., 2009; Hsu et al., 365 
2015; Southwell & Chait, 2018) may trigger norepinephrine-mediated updating or interruption of 366 
ongoing top-down expectations. In line with this hypothesis, Alamia et al. (2019) have shown a 367 
correlation between pupillary response and MMN-like response evoked by violations of expectations, 368 
providing evidence of a link between the sources of these two responses. Top-down expectations 369 
about unfolding sensory signals have been associated with the temporo-frontal network in music-370 
violation paradigms, which is thought to link present and past information to generate predictions 371 
about forthcoming events (Bianco, Novembre, Keller, Seung-Goo, et al., 2016; Koelsch, Gunter, et al., 372 
2002; Tillmann, Janata, & Bharucha, 2003). Based on this existing evidence and in line with a model 373 
resetting hypothesis, our results suggest that listeners generate stronger predictive models (in the 374 
predictable melodies). These may be supported by temporo-frontal cortical regions, and require a 375 
greater signal (greater PDR) to be interrupted. 376 

Albeit indirectly, our results also establish a link between subcortical and cortical activity in response 377 
to unexpected events under different states of uncertainty. Increased MMN response under low states 378 
of uncertainty (Quiroga-Martinez et al., 2019; Southwell & Chait, 2018) are replicated in the pupil 379 
response, reflecting a general increase in arousal. A possible interpretation, in line with the predictive 380 
coding theory (Friston, 2005), is that more stable expectations, representative of a strong predictive 381 
model, are reflected in precision-weighing of the prediction error, and hence a stronger response when 382 
the input mismatches the current predictions. Conversely, in high entropic contexts predictive models 383 
are weak, and the prediction error attenuated. This mirroring pattern between cortical (MMN) and 384 
subcortical (as reflected by the PDR) responses may have important behavioural advantages. 385 
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Specifically, strong predictive models can suddenly be abandoned when they are revealed to be 386 
erroneous, thus allowing speedy reorienting behaviours and quicker engagement with new potentially 387 
relevant stimuli.  One limitation with regard to this possible interpretation is the nature of the deviant 388 
events used here, whereby the deviating event was a single note that did not lead to any long-lasting 389 
changes in the statistics of the unfolding sequence. Further studies combining cortical and pupil 390 
response measurements in continuously changing stimuli are necessary to corroborate our working 391 
hypothesis.  392 

The absence of difference between high and low entropic contexts in the sustained pupil response (in 393 
the first half of the melodies) suggests that the pupil is relatively unresponsive to slowly unfolding 394 
stimulus structures, at least when listeners are not required to actively track them (Alamia et al., 2019; 395 
Zhao et al., 2019). Whilst cortical responses have been shown to be sensitive to the statistics of the 396 
unfolding stimulus structure (Barascud, Pearce, Griffiths, Friston, & Chait, 2016; Sohoglu & Chait, 2016; 397 
Southwell et al., 2017), subcortical responses may be less sensitive. This suggests they may be more 398 
vulnerable to stimulus properties and tasks demands (Zhao et al., 2019). 399 

We also found that the PDR mismatch response is positively predicted by unexpectedness of incoming 400 
notes (in line with electrophysiological studies (Omigie et al., 2013; Quiroga-martinez et al., 2019), but 401 
it seems not to be modulated by degree of musical expertise. Larger MMN responses have been shown 402 
for musicians in a range of studies examining electrophysiological correlates of expectancy violation in 403 
music (Koelsch, Schmidt, & Kansok, 2002b; Oechslin, Van De Ville, Lazeyras, Hauert, & James, 2013; 404 
Tervaniemi, Tupala, & Brattico, 2012). One possibility is that this reflects a ceiling effect whereby the 405 
rather salient deviants used here were relatively easy to detect (given their large interval departures 406 
away from the melodic contour). Future studies examining the PDR to more subtle differences in 407 
musical structure may be expected to show similar expertise effects to those reported in previous 408 
studies. 409 

Finally, our results provide evidence of music’s usefulness in investigating the neural mechanisms 410 
underlying processing of stimuli statistical properties in a common, highly structured, and ecologically 411 
valid type of auditory stimulus, as music. While our work here focused on pitch expectations, previous 412 
studies have shown that music-induced temporal expectations are also tracked by the PDR (Damsma 413 
& van Rijn, 2017). Future experiments could address, for example, how introducing rhythm to 414 
concurrent melodic lines may affect the PDR to unexpected events. Similarly, that music induced chills 415 
– high arousal physiological responses associated with subjective pleasure – are associated with 416 
increased PDR (Laeng et al., 2016) suggest a usefulness of music in examining the relationship between 417 
stimulus information theoretic properties and reward processing. Whilst the IDyOM model used here 418 
is only able to deal with monophonic MIDI music, the development of the model for polyphonic music 419 
is underway (https://psyarxiv.com/wgjyv/) and it is expected that the approach we take here will be 420 
beneficial in a wider range of contexts in future years. By showing that predictive uncertainty can be 421 
used to modulate prediction-error related arousal, our findings have implications for understanding 422 
the variety of forms listeners’ aesthetic appreciation of music may take. However, considering, more 423 
generally, the tight coupling between the error-related norepinephrine system and the reward-seeking 424 
dopaminergic pathway (Laeng et al., 2016; Xing, Li, & Gao, 2016; Zatorre & Salimpoor, 2013), our 425 
results emphasize that measuring the PDR may be useful for investigating the reward value of 426 
information across a range of modalities and domains.  427 

In sum, we show that pupillometry in the auditory domain can reliably track the effect of context 428 
uncertainty on responses to sudden environmental change and independently from overt behavioural 429 
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responses. Given the hypothesised interplay between cortical and subcortical mechanisms in precision 430 
weighted anticipatory processing and prediction resetting, a first milestone is set towards the non- 431 
invasive quantification of the subcortical components. 432 
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