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Abstract (120 words): Climate change could increase species extinction risk as temperatures 8 

and precipitation begin to exceed species’ historically-observed tolerances. Using long-term data 9 

for 66 bumblebee species across North America and Europe, we tested whether this mechanism 10 

altered likelihoods of bumblebee species’ extinction or colonization. Increasing frequency of 11 

hotter temperatures predicts species’ local extinction risk, chances of colonizing a new area, and 12 

changing species richness. Effects are independent of changing land uses. The method developed 13 

here permits spatially explicit predictions of climate change-related population extinction-14 

colonization dynamics within species that explains observed patterns of geographical range loss 15 

and expansion across continents. Increasing frequencies of temperatures that exceed historically-16 

observed tolerances helps explain widespread bumblebee species decline. This mechanism may 17 

contribute to biodiversity loss more generally.   18 

One Sentence Summary (125 characters): Warming in North America and Europe predicts 19 

decline in bumblebee species and assemblages. 20 

Main Text: 21 
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Recent climate changes have accelerated range losses among many species (1, 2). Variation in 22 

species’ extinction risk or chances of colonizing a new area determine whether species’ ranges 23 

expand or decline as new climatic conditions emerge. Understanding how changing climatic 24 

conditions alter species’ local extinction (extirpation) or colonization probabilities has proven 25 

exceptionally challenging, particularly in the presence of other environmental changes, such as 26 

habitat loss. Furthermore, identifying which species will most likely be at risk from climate 27 

change - and where those risks will be greatest - is critical to the development of conservation 28 

strategies (3, 4).  29 

While many mechanisms could alter how species fare as climate changes, discovering 30 

processes that strongly affect species persistence remains among the foremost challenges in 31 

conservation (5). Climate change could pose risks to species in part by increasing the frequency 32 

of environmental conditions that exceed species’ tolerances, causing population decline and 33 

potentially extirpation (6, 7). Conversely, climate change may render marginal areas more 34 

suitable for a species, making colonization of that locale more likely (1). Understanding and 35 

predicting spatially explicit colonization and extinction likelihood could identify which species 36 

are vulnerable to climate change and where, which species may benefit, and suggest 37 

interventions to mitigate conservation risks. Colonization and extinction dynamics, in 38 

combination across a regional species assemblage, determine how species richness changes. 39 

Among taxa that contribute critically to ecosystem service provision, including pollinators such 40 

as bumblebees (Bombus), species richness decline could impair ecosystem services (8).  41 

We evaluated changes in bumblebee species occupancy and regional richness across North 42 

America and Europe using a database of ~550,000 georeferenced occurrence records of 66 43 

bumblebee species (Figure S1 and S2, Table S1; (1, 9)). We estimated species’ distributions in 44 
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100 km by 100 km quadrats in a baseline (1901-1974) and recent period (2000-2014) (9). 45 

Climate across Europe and North America has changed significantly between these time periods 46 

(Figure S3). While the baseline period was substantially longer, there were 49% more records in 47 

the recent period. Non-detection bias (i.e. difficulty distinguishing among true and false absences 48 

due to imperfect detection) in opportunistic occurrence records can reduce measurement 49 

accuracy of species distributions and overall richness (10). Consequently, we used detection-50 

corrected occupancy models to estimate probability of occurrence for each species in quadrats 51 

within each time period (9). We calculated changes in species’ probabilities of occupancy and 52 

generated detection-corrected estimates of species richness change between periods (Figure S4).  53 

We predict greater declines in bumblebee species occupancy and species richness where 54 

changing climatic conditions more frequently exceed individual species’ historically-observed 55 

tolerances. Conversely, we predict greater occupancy and species richness in areas where climate 56 

changes more frequently cause local weather to fall within species’ historically-observed 57 

tolerances. Temperature and precipitation can affect bumblebee mortality and fecundity directly 58 

(e.g. (11)) and indirectly through changes to floral resources (12). For both periods, we 59 

calculated proximity of climatic conditions within quadrats across these continents to estimated 60 

thermal and precipitation limits of all 66 species. We averaged monthly temperatures and total 61 

precipitation in localities where species were observed, and rescaled these measures relative to 62 

each species’ historically-observed climatic limits. Those limits were calculated from averages of 63 

the five highest monthly maximum and lowest monthly minimum temperatures, or five highest 64 

and lowest monthly total precipitation values, from among values for all location-year 65 

combinations where that species was observed during the baseline. Although climate limits 66 

inferred from observed distributions might not always identify actual physiological tolerances, 67 
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they can suggest such limits and can prove useful in the absence of more mechanistic data (1). 68 

We calculated local changes in this new climatic position index between baseline and recent time 69 

periods, and also averaged it across all species present per quadrat to calculate community-70 

averaged climatic position index (Figures 1 and S5).  71 

Our measurements of bumblebee species occupancy over time provide evidence of rapid and 72 

widespread declines across Europe and North America. Probability of site occupancy declined 73 

on average by 46% (±3.3% SE) in North America and 17% (±4.9% SE) in Europe relative to the 74 

baseline period (Figure 2). Declines were robust to detection-correction methods used (Figures 75 

S6A and S7) and consistent with reductions in detection-corrected species richness (Figure S6B) 76 

(9). 77 

Declines among bumblebee species relate to the frequency and extent to which climatic 78 

conditions approach or exceed species’ historically observed climatic limits, particularly for 79 

temperature. We modelled change in probability of site occupancy with phylogenetic generalized 80 

linear mixed models using thermal position variables (baseline, change since baseline, and the 81 

interaction between these), precipitation position variables (baseline, change since baseline, and 82 

the interaction between these), the interaction between baseline thermal and precipitation 83 

position terms, and the interaction between change in thermal position and change in 84 

precipitation position. We controlled for continent (9). The models support our predictions: 85 

probability of occupancy decreases when temperatures rise above species’ upper thermal limits 86 

(Figures 3A, S8A; Table S2), while warming in regions that were previously near species’ cold 87 

limits is associated with increasing occupancy. Evidence for precipitation influencing site 88 

occupancy was mixed but declines were more likely in sites that became drier (Figures 3B, S8B; 89 

Table S2). Our model’s capacity to predict change in occupancy (marginal R2 = 0.11) was 90 
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comparable to the predictive ability of other macroecological models of the biological impacts of 91 

climate change (2), but models predicted extirpation and colonization more capably (marginal R2 92 

= 0.53-0.87 (9)). While there was weak evidence for a phylogenetic signal in the response of 93 

occupancy (Pagel’s λ = 0.12), modelling extirpation and colonization separately yields a stronger 94 

signal (9). Results were robust to detection correction method for measuring species’ presences 95 

within quadrats, across spatial scales of analysis, and through a range of thresholds for inferring 96 

absences from occurrence data (9).  97 

Bumblebee species richness declined in areas where there are increasing frequencies of 98 

climatic conditions that exceed species’ historically-observed tolerances in both Europe and 99 

North America. An analysis of covariance modelling the response of detection-corrected richness 100 

to community-averaged measures of climatic position revealed that, consistent with observed 101 

trends in species-specific occupancy change, richness was more likely to decline in regions 102 

experiencing warming, especially when species present were in the warmest parts of their 103 

historical ranges (Table S2). These models accounted for potential spatial autocorrelation and 104 

results were consistent regardless of method to correct for differences in species detection 105 

probabilities (9).  106 

Projections suggest that recent climate change has driven stronger and more widespread 107 

bumblebee declines than have previously been reported, especially in Europe (Figure 4). 108 

European estimates of observed richness rely particularly on observations from well-sampled 109 

regions that were cooler in the baseline period and that have experienced less warming 110 

subsequently (9), which may have contributed to underestimation of recent species richness 111 

decline across that continent (Figures S6B, S9, S10). These findings contrast with those for other 112 
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taxa that predict widespread range expansions and increasing species richness toward warming 113 

environments in the north (13, 14).  114 

Changes in climatic position index predict biologically significant changes in bumblebee 115 

presence, colonization, extirpation, and richness across two continents. Species-specific changes 116 

in climatic position predict bumblebee diversity change as well as or better than using mean, 117 

maximum, or minimum temperature or precipitation measures (models using climatic position 118 

index: marginal R2 2.6% lower to 23% higher, change in Deviance Information Criterion = 98.7-119 

241.9; (9)). Including land-use change in the models revealed a significant negative effect but did 120 

not influence results for climatic position variables (Table S4) (9). At this scale, effects of 121 

climate change on bumblebees appear distinct from effects of land-use. Other anthropogenic 122 

changes, such as agricultural intensification, pesticide use, and pathogens can also affect 123 

occupancy and extirpation risk of bumblebees (15–17). Interactions between these factors are 124 

expected to accelerate biodiversity loss for bumblebees and other taxa over broad areas (18, 19). 125 

Understanding how interactions between climate and land use changes alter extinction risk is 126 

vital to conservation of pollinator species.  127 

Climate is expected to warm rapidly in the future (20). Using a spatially explicit method of 128 

measuring climatic position and its change over time, we show that risks of bumblebee 129 

extirpation rise in areas where local temperatures more frequently exceed species’ historical 130 

tolerances, while colonization probabilities in other areas rise as climate changes cause 131 

conditions to more frequently fall within species’ thermal limits. Nevertheless, overall rates of 132 

climate change-related extirpation among species greatly exceed those of colonization, 133 

contributing to pronounced bumblebee species declines across both Europe and North America 134 

with unknown consequences for the provision of ecosystem services. Mitigating climate change-135 
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driven extinction risk among bumblebees requires efforts to manage habitats to reduce exposure 136 

to growing frequency of temperatures that are extreme relative to species’ historical tolerances.  137 
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Figure Legends 312 

Figure 1. Change in community-averaged thermal (A) and precipitation position (B) from 313 

the baseline (1901-1974) to the recent period (2000-2015). Increases indicate warmer or wetter 314 

regions and that on average, species in that assemblage are closer to their hot/wet limits than 315 

historically. Declines indicate cooling or drying regions and that on average, species in that 316 

assemblage are closer to their cold/wet limits than historically.  317 

 318 

Figure 2. Percent change in site occupancy since a baseline period (1901-1974) for 35 North 319 

American and 36 European bumblebee species.  320 

 321 

Figure 3. Change in probability of occupancy in response to change in thermal (A) and 322 

precipitation (B) position from the baseline (1901-1974) to the recent period (2000-2014). 323 

Thermal and precipitation position ranges from 0 to 1, with 1 indicating conditions at a site are at 324 

a species’ hot or wet limit for the entire year, and zero meaning conditions are at a species’ cold 325 

or dry limit for the entire year during the historic period. For ease of visualizing the significant 326 

interaction between baseline thermal position and change in thermal position, the continuous 327 

baseline thermal position variable has been split at the 1st and 3rd quantile to show sites that were 328 

historically close to species’ hot limits (red; n=969), cold limits (blue; n=2,244), and middle of 329 

their observed climatic limits (purple; n=11,793). Rug plot shows the distribution of 330 

observations. Confidence intervals (±95%) are shown around linear trendlines.  331 

 332 
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Figure 4. Climate change-related change in bumblebee species richness from a baseline 333 

(1901-1974) to a recent period (2000-2014). Predictions from a model predicting percent 334 

change in detection-corrected bumblebee species richness as a function of mean community-335 

averaged thermal and precipitation position.  336 

  337 
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Materials and Methods 360 

Bumblebee observations, observed distribution, and species richness 361 

We used a dataset comprising 557,622 observations of 66 bumblebee (Bombus) species from 362 

1901-2015, from across North America and Europe. The dataset has been previously used in (1), 363 

and contains data assembled from a variety of sources including (21–24), and other sources 364 

acknowledged in the Supplementary Acknowledgements. To produce this database from the 365 

assembled set of records, potentially unreliable records (including incomplete species, locality, 366 

and sampling year information, or disagreement between record georeferencing and stated 367 

country of origin) were flagged and removed. We assumed that records in the ocean less than 368 

2500m from a high-resolution coastline were coastal observations with spatially-imprecise 369 

georeferences and reassigned these to the nearest point on land. Approximately 6% of the 370 

records obtained from GBIF lacked latitude-longitude coordinates for collection localities. For 371 

these records, we obtained georeferencing data from a digital gazetteer, GeoNames 372 

(http://geonames.org; Creative Commons Attribution 3.0 License). Among these records, we 373 

retained those located near populated places for which reliable geographic coordinates were 374 

available. 375 

Of the 119 species present in the originally assembled data within our study area, we retained 376 

66, which had at least 100 spatially unique records in the baseline period (1901-1974; 377 

inclusively) and at least 30 in the recent period (2000-2014; inclusively). These 66 species 378 

appeared well sampled across their ranges, including at range margins. The dataset included 379 

264,494 observations of 36 North American species and 293,128 observations of 36 European 380 

species, spread across 116,254 unique location-years (i.e. spatiotemporally unique observations; 381 

Figure S1). The mean and median species-period sample size was 1887 and 848 unique location-382 
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year observations, respectively (Table S1). While the baseline period was longer, there were 383 

comparable numbers of unique location-year observation in each period (54,446 in the baseline 384 

and 61,809 in the recent). We examined the georeferencing for every observation and removed 385 

all instances of a bee observations that could not be reconciled with lists of countries they inhabit 386 

and comparison with range maps from IUCN Red List reports (http://www.iucnredlist.org/; 387 

accessed Nov 16, 2017). We merged observations of Bombus moderatus with B. cryptarum, per 388 

IUCN Red List documentation and (23), which considers these species to be synonymous. All 389 

records included georeferencing and date information. Duplicate collection records of a species 390 

for a given location-year were removed to reflect species occurrence rather than sampling or 391 

population density.  392 

We mapped presence and absence for each species within 100km by 100km equal-area 393 

quadrats across the study area in the baseline and recent periods. We inferred absence when there 394 

was no observation of the focal species in the cell in a period but at least one other species 395 

recorded. We tested the robustness of our results to this definition of absence by repeating all 396 

analyses after defining absence as no observation of the focal species but at least i) three and ii) 397 

five other species. For each species, we estimated the observed distribution as the number of 398 

cells in the study area where each species was present, and we compared recent and baseline 399 

maps of observed distribution to determine extirpation and colonization. We determined mean 400 

rates of extirpation or colonization for a species as the proportion of regional extinction or 401 

colonization events relative to the total number of cells a species occupied in the baseline. We 402 

measured the change in observed distribution for each species. In baseline and recent periods, 403 

respectively, species occupied ranges of 17 to 561 and 12 to 338 cells (mean = 195.3 and 117.2), 404 

respectively. We measured observed distribution uniquely by continent for species that are 405 

http://www.iucnredlist.org/
http://www.iucnredlist.org/
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present in both Europe and North America and did not calculate North American observed 406 

distributional change for one species which was only recorded there in the current period (B. 407 

distinguendus). Differences in sampling effort between periods of different lengths can bias 408 

detection of presence and subsequent estimates of change and occupancy, so we accounted for 409 

sampling effort in all our subsequent analyses. While the baseline period was substantially 410 

longer, the recent period had 49% more records, and 13% more unique location-year-species 411 

observations (Figure S2, Table S1). Extirpation and colonization likelihoods showed significant 412 

negative relationships with sampling effort, while sampling effort was not significantly related to 413 

observed species richness change. This was not surprising as non-detection-corrected richness 414 

analyses were restricted to a subset of well-sampled cells.  415 

We combined the presence maps of the 66 species to build a map of regional species richness 416 

for each period (Figure S10). Variation in sampling effort can bias the estimation of observed 417 

biodiversity trends (25, 26), so we excluded quadrats without a minimum of 50 unique location-418 

year observations in the baseline and most recent period. This resulted in 40 North American and 419 

124 European sites, within which we calculated the percent change in species richness from the 420 

baseline to the most recent period. While the strict selection protocol limits the number of 421 

quadrats in our species richness analysis, a less strict selection (e.g. including quadrats without a 422 

minimum of 50 unique location-years observations) fails to account for sampling bias and 423 

removes our ability to attribute changes in richness to any climatic variables. All data were 424 

organized in R 3.4.1 (27) using packages tidyverse (28) and raster (29). 425 

The scale of analysis (100km by 100km) is relatively coarse compared to local ecological 426 

studies, but these quadrats are large enough to enable reasonable sampling intensity across North 427 

America and Europe in both periods without sacrificing relevance for conservation and policy 428 
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planning. To test the effect of spatial scale on our results, we repeated analyses at a i) 50km by 429 

50km scale and ii) 200km by 200km scale.  430 

Occupancy models 431 

To correct for imperfect detection in our dataset of bumblebee observations, we used single-432 

species occupancy models to estimate occupancy for the 66 species in each period. These models 433 

account for the possibility of false-absences within detection/non-detection data by explicitly 434 

estimating detection probability (p) separately from probability of occurrence (30–34). 435 

Estimating detection probability for a species during a period requires multiple “survey units” or 436 

“visits” to sites within that period. We split each of our time periods into three “survey units” 437 

(baseline: 1901-1924, 1925-1949, and 1950-1974; recent: 2000-2004, 2005-2009, and 2010-438 

2014). We used observations of a species during a survey unit to inform detection, and absence 439 

of a species when others were seen as a non-detection. It is possible that there are biases in the 440 

species sampled within our dataset. Bumblebees are a charismatic insect species that have been 441 

collected by researchers and independent naturalists for hundreds of years, but, as with any 442 

taxon, it is possible that agriculturally important species (e.g. B. terrestris and B. impatiens), 443 

common species, and larger or more recognizable species have greater likelihoods of detection. 444 

We used total number of records to help inform species-specific detection probabilities in our 445 

occupancy models to account for sampling bias. Unfortunately, reliable inter- and intra-specific 446 

data on other traits that may influence detection probability, such as body size, are not available 447 

for all species to include in our models. A necessary assumption of occupancy modelling is that 448 

there is no change in occupancy (or species turnover) within a survey period or between survey 449 

units within the same period: the closure assumption (35). Estimates of site occupancy rely on 450 

this assumption to calculate a probability of detection from the pattern of detection/non-451 
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detections during a period (31). Aggregation of occurrence data into periods to estimate species’ 452 

presence or absence makes a similar assumption that presence/absence remains static within 453 

those periods. Violations of the closure assumption during occupancy modelling are likely to be 454 

frequent throughout the literature and within-period colonization or extinction tends to result in 455 

overestimates of occupancy probabilities (31, 35). Since this study focuses on relative change in 456 

occupancy probabilities instead of the absolute values themselves, potential violations of the 457 

closure assumption are not likely to alter our results or conclusions. Probability of occupancy for 458 

a species was only calculated across the continent(s) it is known to inhabit. Detection-corrected 459 

species richness, calculated as the summed probability of species occurrence in a region, was 460 

estimated across the study area for each period (this measure is similar to detection-corrected 461 

estimates of taxonomic diversity used in (36)). Using estimates of species-specific site 462 

occupancy and detection-corrected species richness for each period, we calculated the percent 463 

change in these values between the baseline and recent periods. All data were organized and 464 

transformed in R v3.4.1 (27) using packages raster (29) and rgdal (37). 465 

Occupancy models were fit using the Bayesian general-purpose modelling software JAGS 466 

(38), with R v3.4.1 (27) and package R2jags (39). Each species- and season-specific model 467 

computed season- and site-specific occupancy, using season-specific sampling effort (i.e. the 468 

total number of unique location-year observations of any species in a cell) as a covariate for the 469 

underlying detection process. We used noninformative Bayesian priors for all parameters and 470 

each model ran three Markov chains for 100k iterations, discarding the first 50k as a burn-in and 471 

thinning by 10, resulting in 5000 samples from the joint posterior distribution. We ran models 472 

until values of the Brooks-Gelman-Rubin statistic suggested convergence had been reached 473 

(<1.1) for all parameters (40). The JAGS code specifying our model, including the priors used, is 474 
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available with the rest of the data and materials (available on figshare DOI: 475 

10.6084/m9.figshare.9956471). 476 

Climatic position variables 477 

For each of the 66 bumblebee species, we extracted the average of the five highest monthly 478 

maximum and five lowest monthly minimum temperatures from among the values for all 479 

location and year combinations within the species’ geographic range in the baseline period 480 

(1901-1975). These maximum and minimum temperatures were assumed to represent the 481 

thermal limits for the species, and previous studies have found that this measure is robust to both 482 

variation in the number of records used to calculate it and variation in species sampling effort 483 

(1). Maximum and minimum precipitation limits were extracted from the five highest and five 484 

lowest monthly total precipitation values from among all location and year combinations within 485 

the species’ geographic range in the baseline period. Climatic limits were rescaled for each 486 

species to equal 0 for the lower climatic (i.e. cold/dry) limit and 1 for the upper climatic (i.e. 487 

warm/wet) limit. While these derived environmental limits may not represent the actual critical 488 

limits that a species can tolerate, they offer an indication of the species’ environmental tolerances 489 

and measuring the change in the environment relative to these derived limits enables tests of our 490 

main hypotheses.  491 

For each species, in each cell of the study area in both periods, we rescaled the local 492 

maximum and minimum monthly temperatures and precipitations onto the same scale as the 493 

climatic limits. These rescaled values were averaged across months to estimate the thermal 494 

position index and precipitation position index: values of 1 indicate that temperatures or 495 

precipitation across the whole year equals the warm or wet tolerance limits, and values of 0 496 

indicate that temperatures or precipitation across the year approach or meet the cold or dry 497 
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tolerance limits for the species (values greater than 1 and less than 0 are possible where climate 498 

change has caused temperatures or precipitation to exceed species’ upper thermal or precipitation 499 

limits or to fall below lower thermal or precipitation limits). The change in thermal and 500 

precipitation position was calculated by subtracting position in the baseline period from position 501 

in the recent.  502 

To calculate the community-averaged estimates of climatic position, we clipped each species’ 503 

thermal and precipitation position maps to their observed distribution in the baseline period, and 504 

then overlapped all the position maps, averaging all index values in a given cell. This shows the 505 

mean thermal or precipitation position for the entire estimated assemblage of species in that 506 

region (Figure S5). We did this for both periods, and then measured the change from the baseline 507 

to recent (Figure 1).  508 

In addition to these species-specific and community-averaged climatic position variables, we 509 

calculated average annual mean, maximum, and minimum temperature and mean annual 510 

precipitation across the study area. These annual climate variables are commonly used to attempt 511 

to predict climate change-related effects on biodiversity, and act as a reference model against 512 

which we compare predictions of the climate position indices we developed here. As with 513 

climatic position variables, we measured mean/max/min temperature and annual precipitation in 514 

each period and then measured the change from baseline to recent (Figure 1). 515 

Climate data were obtained from the Climate Research Unit (41) at a resolution of 0.5 X 0.5 516 

degrees. After the calculation of the climatic position index, data were projected and resampled 517 

to Cylindrical Equal Area projection at 100 km X 100km resolution to match the bumblebee 518 

data, using R 3.4.1 (27) and packages raster (29) and rgdal (37). 519 
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Statistical analyses 520 

Change in local occupancy. We tested the relationship between climatic position and change 521 

in probability of local site occupancy by constructing a series of linear mixed models (LMM). 522 

Change in occupancy probability was the difference in occupancy probability between the 523 

baseline and recent periods and could range continuously from -100% to 100%, with negative 524 

values indicating a decrease in probability of occupancy and positive values indicating an 525 

increase in probability of occupancy. Models included the thermal position variables (baseline 526 

period, change since the baseline, and the interaction between these), the precipitation position 527 

variables (baseline period, change since the baseline, and the interaction between these), the 528 

interaction between baseline thermal position and precipitation position, and the interaction 529 

between change in thermal position and change in precipitation position.   530 

North America and Europe have substantially different histories of land use, human 531 

development, and population trends, and different approaches to species conservation, all of 532 

which may contribute to differences in rates of species and assemblage change. We included 533 

continent as a categorical variable to account for hypothesized differences in rates of change 534 

between North America and Europe (1). Species was included as a random effect in the model to 535 

account for differences in species’ responses to climate. We ran identical models with separate 536 

random intercepts for site and for species and noted qualitatively consistent results between these 537 

models and models without site. In cases where models did not clearly converge, we re-ran 538 

models using several different optimizers with >107 evaluations and found consistent results. We 539 

calculated conditional and marginal R2 using the method proposed by (42). 540 

Observed extirpation/colonization. We ran another series of models separately testing the 541 

relationship between local colonization and extinction, and climatic position variables. We used 542 
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binomial generalized linear mixed models (GLMM), again including species as a random effect. 543 

The model structure was identical to change in occupancy models (see previous section), 544 

although we included sampling effort, calculated as the total number of observations in each cell 545 

in a period (sampling effort was not included in change in occupancy models because it was 546 

already used to estimate occupancy). We calculated conditional and marginal R2 in the same way 547 

as in the change in occupancy models. Colonization and extinction models with site included as a 548 

separate random effect produced consistent results.  549 

Phylogenetic analyses. To account for phylogeny in our analyses, we repeated the occupancy, 550 

extinction, and colonization modelling using a phylogenetic generalized linear mixed model 551 

framework, with a comprehensive molecular and nuclear phylogeny (43). We programmed 552 

models using the MCMCglmm (44) and ape (45) packages in R, following the framework from 553 

(46). All models used uninformative univariate priors for random effects corresponding to an 554 

inverse-Gamma with shape and scale parameters equal to 0.01. Models were run with a 555 

minimum of 105k iterations with a thinning factor of 20 and discard the first 5k, resulting in a 556 

minimum of 5000 samples from the joint posterior distribution. Model parameters were visually 557 

assessed for convergence, and if all parameters did not appear to converge then were reran for 558 

more iterations and a longer burn-in. We estimated marginal and conditional R2, and 559 

phylogenetic signal (Pagel’s λ) using code from (46). As is common with Bayesian models, we 560 

compared them using the Deviance Information Criterion (DIC). B. magnus was not present in 561 

the phylogeny and so was excluded from these analyses. The structure of fixed model effects 562 

tested was identical to the descriptions provided above, and we found that model parameter 563 

values using the PGLMMs were very consistent with those from models in lme4. We present 564 
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results from the PGLMMs here as previous work has shown significant phylogenetic signal in 565 

patterns of bumblebee declines and in their response to climate change (1, 47). 566 

Observed species richness. We constructed an analysis of covariance model (ANCOVA) to 567 

test the relationship between change in species richness and climatic position. The model 568 

included the thermal position variables (baseline period, change since the baseline, and the 569 

interaction between these), the precipitation position variables (baseline period, change since the 570 

baseline, and the interaction between these), and continent and sampling effort as controlling 571 

variables. We used quadratic polynomials for the baseline thermal and precipitation position. To 572 

avoid overfitting due to the low sample size in this test (n = 164 sites) and because they were 573 

neither significant in the occupancy models nor necessary for our hypothesis testing, we did not 574 

include the interaction between baseline thermal position and precipitation position, nor the 575 

interaction between change in thermal and precipitation position. We also removed sampling 576 

effort and the 2nd order polynomial of baseline precipitation position as covariates after seeing 577 

that they were not significant and that the model was not improved by their addition (ΔAIC < 2). 578 

We did not expect sampling to be significant since this analysis was restricted to well-sampled 579 

cells with at least 50 unique location-year observations in each period. Results from the model 580 

were robust to the presence of outliers, and aside from violations of spatial autocorrelation in the 581 

residuals, appeared to satisfy all other assumptions. 582 

We checked for spatial autocorrelation in the residuals by visually inspecting a correlogram of 583 

Moran’s I (Figure S11A) and found some evidence of spatial autocorrelation. We proceeded by 584 

constructing a simultaneous autoregressive (SAR) spatial error model to correct for residual 585 

autocorrelation, as suggested by (48) and (49). This reduced much of the variability in Moran’s I 586 

(Figure S11B). Model results with the SAR model were qualitatively similar to the ANCOVA 587 
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results that we report here (Tables S2 and S3). We calculated the Nagelkerke Pseudo-R2 of the 588 

model as a measure of the variance explained. 589 

Given the number of sites where we could measure species richness change with confidence 590 

was relatively low (124 in Europe and 40 in North America), we compared the mean 591 

community-averaged climatic position of the species richness sites to the mean community-592 

averaged climatic position of the entire continent to check that the species richness sites were 593 

representative. We used a series of Welch’s two-sample t-tests to compare the means of the 594 

community-averaged thermal position variables (in the baseline and the change between periods) 595 

and the community-averaged precipitation position variables (in the baseline and the change 596 

between periods) of the species richness cells to their respective continental averages.   597 

Detection-corrected species richness. We built an ANCOVA model to test the relationship 598 

between climatic positioning and detection-corrected species richness. The model structure here 599 

was identical to the occupancy PGLMMs but used community-averaged measures of climatic 600 

positioning and did not include the random effects of species. As with the observed species 601 

richness models, we checked for spatial autocorrelation and used the same procedure to correct 602 

for this with SAR models (Figure S12). Spatial autocorrelation was significant in the original 603 

model, but results were qualitatively similar between SAR and ANCOVA models (Tables S2 and 604 

S3). 605 

The explained variance of the detection-corrected species richness model was substantially 606 

lower than the observed species richness model (8% vs 38%). This is likely to be a result of the 607 

occupancy modelling process. The occupancy modelling took the binary measures of species 608 

detection/non-detection and used a derived detection probability to estimate continuous 609 

probabilities of occupancy from these from 1s and 0s, across the entire continent it occupies. In 610 
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each period, the occupancy models estimate a probability of 1 (or very close) for cells where the 611 

species was detected in any one of the survey units, and they estimate some probability between 612 

0 and 1 for cells where a species was never detected. This latter occupancy probability depends 613 

on the species-period-specific detection probability and the total sampling effort in that cell. For 614 

most species the occupancy probability of cells where they were not detected is between 0 and 615 

0.4. As detection probability and sampling effort vary by period, the same cell can have a 616 

different occupancy estimate in the baseline and recent period, even when the species was never 617 

observed there or when it has persisted through both periods. This between-period variation 618 

reflects the uncertainty within estimates of occupancy probability during a period, and likely 619 

drives the lower adjusted R2 values we see when comparing the detection-corrected and observed 620 

species richness models. A similar reasoning likely explains the differences between marginal R2 621 

of change in occupancy models (0.11) compared to extinction and colonization models (0.87 and 622 

0.53, respectively). 623 

Comparison with mean climate variables. For all our models, we created a model identical in 624 

structure but with mean climate variables (i.e. mean baseline annual temperature, mean baseline 625 

total annual precipitation, and the change in these to the recent period) instead of climatic 626 

position variables. We also compared using average annual maximum and minimum temperature 627 

variables. All continuous variables in both sets of models were centered and rescaled before 628 

modelling, and we used Information Criterion and R2 to compare between climatic position and 629 

mean climate models. We tested models where baseline thermal and precipitation variables were 630 

fit as either linear, or quadratic polynomial terms, since we predicted that species would be more 631 

likely to decline in occupancy where sites were already closer to an upper or lower limit in the 632 



 

30 

baseline. With the exception of PGLMMs, all models were constructed in R v3.5.1 (27), using 633 

packages lme4 (50) and spdep (51) for simultaneous autoregressive models.  634 

Spatial projection across recent period 635 

Using the detection-corrected species richness model (adjusted R2 = 0.14) and 0.5-degree 636 

resolution climate data (41), we spatially projected the predicted change in species richness since 637 

the baseline across the entire study area (Figure 4). We also projected change using the non-638 

detection-corrected species richness model (adjusted R2 = 0.44; Figure S9). We used rescaled 639 

climatic position and climatic position change layers at 0.5 × 0.5 degree grid resolution and used 640 

the respective model coefficients to predict what percent climate-change-induced change in 641 

assemblage richness occurred from the baseline period (1901-1974) to the recent period (2000-642 

2014). 643 

Effects of land-use change 644 

Using high-resolution data on historic land-use from the Global Harmonized Land-use dataset 645 

(52), we calculated the mean proportion of cropland, pasture, and urban land cover (hereafter 646 

human-dominated land-use) in each period for cells across the study area. We then measured the 647 

mean change in human-dominated land-use between periods. We built PGLMM’s of change in 648 

probability of occupancy, extinction and colonization, as well as spatial autoregressive error 649 

models of detection-corrected species richness, which included the best fitting variables from 650 

previous steps of analysis and human-dominated land-use change. We compared these models 651 

with land-use to pure climate change models using information criterion values and R2 and 652 

compared the values and estimated significance of fixed effects. 653 
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Agricultural species might be declining through increased use of certain pesticides, which 654 

could modify relative rates of decline between species. We calculated the proportion of cropland 655 

across species’ geographic ranges in the baseline period, and used linear regressions to separately 656 

test the association between this and i) the number of unique location-year observations of a 657 

species, ii) the mean change in probability of occupancy of a species, and iii) the mean change in 658 

observed (non-detection-corrected) distribution of a species. 659 

 660 

Supplemental Text 661 

Non-detection corrected declines 662 

Occupancy, extirpation, and colonization. Consistent with measured declines in occupancy 663 

(Figure 2), observed distributions declined on average by 54% (±3.4% SE) in North America and 664 

18% (±7.2% SE) in Europe relative to the baseline period (Figure S6A). 665 

Rates of observed extirpation and colonization were calculated for each species as the 666 

proportion of extirpation or colonization events relative to the total number of cells occupied 667 

historically. Across all species in North America and Europe there was a 72% (±2.2% SE) and 668 

49% (±2.8% SE) chance, respectively, that a given bumblebee species was lost from a quadrat it 669 

occupied historically. Globally, extirpation events were 8 times (±1.7 SE) more likely than 670 

colonization events, with ratios being higher in North America (Figure S7). Imperfect species 671 

detection and patchy sampling mean that extirpation can be overestimated in opportunistic 672 

datasets, so observed extirpation rates likely represent the upper bound of true extinction 673 

probability. 674 
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Non-detection corrected species richness. Since the baseline period, local (non-detection 675 

corrected) species richness has declined by about 18.6% (±3.2% SE) in North America, while 676 

richness in Europe has stayed relatively constant (2.2% increase since the baseline ±2.6% SE; 677 

Figure S6B). Species richness declines do not reflect differences in sampling intensity in this 678 

subset of well-sample cells and was not informative or significant in statistical models.  679 

Response of change in occupancy to precipitation position 680 

While the relationship between change in occupancy and proximity to thermal limits was 681 

statistically detectable and followed our expectations, relationships with precipitation showed 682 

more mixed results. Declines in occupancy were stronger in sites that became drier since the 683 

baseline but other effects were inconsistent, and we did not see an interaction between baseline 684 

precipitation and change in precipitation as we expected if exposure to precipitation limits from 685 

climate change was a driver of declines (Figure 3, Figure S8, Table S2). While direct effects of 686 

precipitation are undoubtably important for bumblebees at a local scale, especially in terms of 687 

moisture availability, we are unable to detect these effects with this analysis. Conflicting indirect 688 

effects of precipitation (through changes in floral resources or vegetation structure), may make 689 

these effects more difficult to measure and detect than direct effects of temperature.  690 

Response of extirpation and colonization to climatic position 691 

Patterns in extirpation across the 66 bumblebee species display a strong signal of climate 692 

change, especially increasing temperature. We used a phylogenetic generalized linear mixed 693 

model (PGLMM) with a similar fixed and random effect structure as the site occupancy-climate 694 

change model, but here including sampling effort as a covariate. As expected, extirpation 695 

probability related to thermal position in the baseline period, change since then, and their 696 
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interaction (Table S2). Increasing thermal position was linked to greater probability of 697 

extirpation for species in regions that were already near their upper thermal limit, and lower 698 

probability of extirpation for species in regions historically closer to their cold limits (Figure 699 

S13A). As with occupancy, precipitation position showed more ambiguous associations. While 700 

sites that became drier had higher probability of extirpation, the effect of baseline precipitation 701 

was not significant and there was no significant interaction between these two effects (Figure 702 

S13C). Our model explained most of the variation in the response of extirpation to climatic 703 

position (marginal R2 = 0.87). The strong relationship between temperature warming and 704 

extirpation risk among bumblebee species is consistent with previous work demonstrating that 705 

extinction risk depends on shifts in the spatial distributions of thermal niches in other taxa (53, 706 

54) and is of particular importance since bumblebee species are being pushed towards their upper 707 

thermal limits across most of North America and Europe (Figure 1A). 708 

Trends in local colonization also showed a strong association with climate change, providing 709 

independent support for a separate prediction of our hypothesis. A PGLMM with similar fixed 710 

and random effects to the extirpation models shows that the three thermal position variables 711 

appear to significantly drive colonization, with precipitation position showing inconsistent 712 

effects (Table S2). Species were more likely to colonize regions which were historically near the 713 

cold limit and had warmed, and historically hot regions that cooled were more likely to be 714 

colonized than historically cool or moderate regions that became colder (Figure S13B). Regions 715 

that moved towards species’ wet limits were more likely to be colonized (Figure S13D). Regions 716 

that were simultaneously hot and dry historically had higher rates of colonization, as did regions 717 

that got simultaneously hotter and drier. Models explained a large part of the variation in local 718 

colonization (marginal R2 = 0.53). The difference in explained variance between the extirpation 719 
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and colonization models (marginal R2 0.87 vs 0.53) could suggest that the process of 720 

colonization is less tied to physiological climate limits than extirpation. In regions that were 721 

historically moderate or near species’ hot limits, rates of extirpation greatly exceeded rates of 722 

colonization following warming. Given that species and communities appear to have been 723 

moderately situated with respect to their climatic limits in many northern regions across North 724 

America and Europe that warmed (Figures 1A and S5A), this finding may help explain why most 725 

bumblebees are not generally expanding their ranges at poleward limits of their distributions to 726 

track climate change (1, 14).  727 

The models revealed a significantly detectable phylogenetic signal in the response to both 728 

extirpation and colonization to climatic position, with the signal for extirpation (Pagel’s λ= 0.88) 729 

being stronger than the signal for colonization (Pagel’s λ= 0.70). Previous work has also detected 730 

significant phylogenetic signal in patterns of declines across bumblebees (47) and found that 731 

traits can influence the sensitivity of bumblebees to land-use and agricultural pressures (55). 732 

More data on inter- and intra-specific variation on traits should be gathered to test questions 733 

about how traits and evolutionary change may mediate responses to climate change at this scale.  734 

Comparing climatic position models to mean climate variables  735 

While measures of climate like mean annual temperature or mean annual precipitation are 736 

easy to gather, inter-specific variation in physiological tolerances mean that how these conditions 737 

influence species depends on proximity to species physiological limits. A regional measure of 738 

climatic position directly measures whether climatic conditions are near or outside species’ 739 

tolerances to test whether changing exposure to such conditions drives persistence and 740 

colonization. Predictions from this hypothesis are consistent with recent trends in North 741 

American and European bumblebees (Figures 3 and S13) and using thermal and precipitation 742 
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position variables instead of mean climate variables produces models that better predict 743 

extinction, colonization, and change in occupancy (marginal R2 7% lower to 12.5% higher) and 744 

are more informative (ΔDIC ~ 202.4, ΔDIC ~ 102.8 and ΔDIC ~ 164.9 respectively). This 745 

increase in explanatory power was consistent when comparing to models using average annual 746 

maximum (marginal R2 1.6% to 23% higher; ΔDIC = 98.7-157.5) or minimum temperatures 747 

(marginal R2 2.6% lower to 21.3% higher; ΔDIC = 128.2-241.9). We show that accounting for 748 

inter-specific variation significantly improves detection of relatively local-scale climate impacts 749 

on bumblebees. Regardless of technique used, there is a biologically meaningful signal of 750 

climate change within patterns of bumblebee decline. 751 

Climatic sampling across continents 752 

We tested whether the most well-sampled quadrats in our analysis (which were used for the 753 

non-detection-corrected species richness analysis) presented a representative sample of historic 754 

climate and climatic patterns across North America and Europe, and found that well-sampled 755 

regions in European tended to be cooler in the baseline and experience less warming between 756 

periods (Welch’s two-sample t-test results: t-statistics = 2.72 and 4.16, p-values = 7.0x10-3 and 757 

4.8 x10-5, df = 227 and 206, respectively). Previous estimates of European bumblebee richness 758 

change extrapolating from well-sampled areas may have systematically underestimated recent 759 

richness declines. Well-sampled quadrats in North America appeared representative of the 760 

general temperature trends experienced over the continent as a whole, but tended to be 761 

historically wetter and have gotten wetter than the continental average (Welch’s two-sample t-762 

test results: t-statistics = 2.95 and 2.30, p-values = 5.1x10-3 and 0.03, df = 41.5 and 40.2, 763 

respectively). 764 

Land-use change 765 
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Human land-use has also been associated with pollinator declines (8). We find that while 766 

human-dominated land-use change appears to have strong negative effects on probability of 767 

occupancy and detection-corrected species richness, this effect is distinct from those presented 768 

by climate change. Including LU in the models showed a significant negative effect of land-use 769 

but produced virtually identical results for climatic position variables, suggesting that direct 770 

effects of climate change on bumblebees are distinct from effects of land-use (Table S4). 771 

We did not find any statistically significant relationship between percent of species’ 772 

geographical range covered by cropland and unique location-year observations (t-value= -0.79, 773 

p-value= 0.43, d.f.= 64), mean change in probability of occupancy (t-value= 0.07, p-value= 0.94, 774 

d.f.= 64), or mean change in observed distribution (t-value= 1.24, p-value= 0.22, d.f.= 64). It 775 

appears that rates of species decline do not appear to strongly differ between species more 776 

associated with agricultural areas, although we note that our subset of well-sampled species is 777 

likely already biased toward species more associated with agricultural and urban areas. This is 778 

consistent with previous work that concluded latitudinal range shifts in bumblebees appeared 779 

strongly sensitive to climate change but not especially sensitive to agriculture (1). 780 

Additional tests of modelling robustness 781 

Spatial scale. Spatial scale of analysis is an important factor to consider for any study 782 

involving extirpation/colonization and range change. Where possible, spatial scale of a study 783 

should be chosen with consideration to the biologically relevant area encompassing population 784 

dynamics of the study species (56, 57), but reasonably chosen spatial scales can still reveal 785 

valuable macroecological patterns (58). Here, we selected 100km by 100km cells as the spatial 786 

scale of our analysis, which represented a balance between having adequate sampling density 787 

across our study area and a high resolution to detect “local” effects of climate and climate 788 
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change. Repeating analyses in 50km by 50km cells and 200km by 200km cells produced results 789 

that were qualitatively similar (Tables S5 and S6), suggesting our analyses were robust to the 790 

scale used.   791 

Absence threshold. When converting our occurrence records into presence absence data, we 792 

inferred absence of a species when the focal species was not seen but at least one other species 793 

was (absence threshold of one). A liberal absence threshold could result in overestimating 794 

absences (and ultimately detection ability), which could lead to overestimates of extirpation and 795 

local colonization. We tested the sensitivity of our results to our definition of absence by 796 

repeating analyses using an absence threshold of three and five, and found that all results were 797 

qualitatively similar (Tables S7 and S8). 798 

 799 

 800 

  801 
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Supplemental Figures 825 

 826 

 827 

Figure S1. Distribution of unique species-location-year sampling locations from North 828 

America (A) and Europe (B). 829 

 830 
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 831 

Figure S2. Density of unique location-year observations per 100km by 100km grid cell 832 

across North America and Europe. 833 

 834 

 835 
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 836 

Figure S3. Change in mean annual mean temperature (A) and mean total precipitation (B) 837 

from the baseline (1901-1974) to the recent period (2000-2015) across North America and 838 

Europe. 839 

 840 
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 841 

 842 

Figure S4. Graphical description of methods visualizing relation between occurrence 843 

records and eventual measures of detection-corrected change in occupancy, extirpation, 844 

and colonization for Bombus hortorum. 845 

 846 

 847 
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 848 

Figure S5. Community-averaged thermal (A) and precipitation position (B) in the baseline 849 

period (1901-1974) across North America and Europe. Both thermal and precipitation 850 

position indices have a potential range of 0 to 1. Zero indicates that species in the assemblage are 851 

on average at their cold/dry tolerance limit for the entirety of the year in the period. One 852 
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indicates that species in the assemblage are on average at their hot/wet tolerance limit for the 853 

entirety of the year in the period. 854 

 855 

 856 

 857 

Figure S6. Change in species’ observed distribution (A) and observed species richness (B) 858 

from the baseline (1901-1974) to recent period (2000-2014) in sites across the study area. 859 
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Observed species richness was only measured in sites with a minimum of 50 unique location-860 

year-species observations in the baseline and most recent period. N= 164. 861 

 862 

 863 

 864 

Figure S7. Ratio of local extirpation:colonization across species’ observed distributions 865 

between the baseline (1900-1975) and recent period (2000-2015). 866 

 867 

  868 
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 869 

 870 

Figure S8. Change in probability of occupancy in response to change in thermal (A) and 871 

precipitation (B) position from the baseline (1901-1974) to recent period (2000-2014). Note 872 

that this figure is identical to Figure 3 in the main text but shows raw data points. Thermal and 873 

precipitation position ranges from 0 to 1, with 1 indicating conditions at a site are at a species’ 874 

hot or wet limit for the entire year, and zero meaning conditions are at a species’ cold or dry limit 875 

for the entire year during the historic period. For ease of visualizing the significant interaction 876 

between baseline thermal position and change in thermal position, the continuous baseline 877 

thermal position variable has been split at the 1st and 3rd quantile to show sites that were 878 

historically close to species’ hot limits (red; n=969), cold limits (blue; n=2,244), and middle of 879 

their observed climatic limits (purple; n=11,793). Rug plot shows the distribution of 880 

observations. Confidence intervals (±95%) are shown around linear trendlines.  881 

 882 

 883 
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 884 

Figure S9. Spatial projections of climate change-related change in non-detection-corrected 885 

bumblebee species richness from a baseline period (1901-1974) to a recent period (2000-886 

2014). Made using a model predicting percent change in non-detection-corrected bumblebee 887 

species richness as a function of mean community thermal and precipitation position (R2= 0.44; 888 

see Materials and Methods for model details).  889 

 890 

 891 
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 892 

Figure S10. Percent change in observed bumblebee species richness across North America 893 

from the baseline (1901-1974) to recent period (2000-2014). Grid cells shown are 100 km by 894 

100 km, in an equal area projection. No sampling-based selection (see methods) applied here. 895 

 896 

 897 
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 898 

Figure S11. Correlogram of Moran’s I for non-detection corrected species richness model. 899 

Moran’s I calculated from a) ordinary least squares regression model and b) simultaneous 900 

autoregressive (SAR) error model. SAR model was a significantly better fit (according to log 901 

likelihood). Model coefficients were qualitatively similar between both models. 902 

 903 

 904 
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 905 

Figure S12. Correlogram of Moran’s I for detection-corrected species richness response 906 

model. Moran’s I calculated from a) ordinary least squares regression model and b) simultaneous 907 

autoregressive (SAR) error model. SAR model was a significantly better fit (according to log 908 

likelihood). Model coefficients were qualitatively similar between both models. 909 

 910 

 911 
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 912 

Figure S13. Probability of local extinction (A, C) and colonization (B, D) in response to 913 

change in thermal (A, B) and precipitation (C, D) position from the baseline (1901-1974) to 914 

recent period (2000-2014). Thermal and precipitation position ranges from 0 to 1, with 1 915 

indicating conditions at a site are at a species’ hot or wet limit for the entire year, and zero 916 

meaning conditions are at a species’ cold or dry limit for the entire year during the historic 917 
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period. For ease of visualizing the significant interaction between baseline thermal position and 918 

change in thermal position, the continuous baseline thermal position variable has been split at the 919 

1st and 3rd quantile to show sites that were historically close to species’ hot limits (red; n=969), 920 

cold limits (blue; n=2,244), and middle of their observed climatic limits (purple; n=11,793). Rug 921 

plot shows the distribution of observations. Confidence intervals (±95%) are shown around 922 

linear trendlines. 923 

 924 

 925 
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Supplementary Tables 926 

Table S1. Summary of unique location-year observations per period for the 

66 bumblebee (Bombus) species in the analysis dataset. 

Bumblebee species Baseline (1900-1975) Recent (2000-2015) 

affinis 1386 76 

appositus 622 178 

auricomus 407 224 

barbutellus 1053 494 

bifarius 2921 644 

bimaculatus 981 794 

bohemicus 1957 4171 

borealis 542 142 

campestris 1495 1847 

centralis 1038 344 

citrinus 344 334 

cryptarum 336 717 

distinguendus 1409 1735 

fervidus 2798 856 

flavifrons 1078 421 

fraternus 323 80 

frigidus 350 195 

griseocollis 1070 1089 

hortorum 3856 9238 

humilis 2006 2055 

huntii 1252 449 

hypnorum 2333 6214 

impatiens 2914 1632 

insularis 840 332 

jonellus 1753 4162 

lapidarius 4124 14547 

lucorum 4646 15076 

magnus 348 587 

melanopygus 1242 454 

mendax 166 111 

mesomelas 351 447 

mixtus 860 452 

monticola 410 2125 

morrisoni 858 257 

mucidus 194 147 

muscorum 1974 2012 

nevadensis 517 207 
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norvegicus 165 578 

occidentalis 3217 398 

pascuorum 7883 22236 

pensylvanicus 3953 443 

perplexus 581 442 

pomorum 483 38 

pratorum 3928 11142 

pyrenaeus 271 308 

quadricolor 106 356 

ruderarius 2565 2355 

ruderatus 1731 398 

rufocinctus 1097 435 

rupestris 1011 2117 

sicheli 223 332 

soroeensis 1725 4028 

sporadicus 188 411 

subterraneus 1355 1522 

sylvarum 2492 3235 

sylvestris 1252 2598 

sylvicola 471 310 

ternarius 677 459 

terrestris 4027 15206 

terricola 1886 337 

vagans 1191 564 

vandykei 182 150 

vestalis 936 2874 

veteranus 1221 145 

vosnesenskii 3249 410 

wurflenii 1042 426 

 927 

 928 
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 929 

Table S2. Estimated model coefficients for the five main models. Posterior means and 95% Bayesian credible intervals are shown for PGLMM 

models. t-values (for analysis of covariance models, ANCOVA) are included as a measure of significance. Generally, coefficients with t-values < 

-2 and > 2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance 

explained is expressed in terms of marginal R2 (for PGLMM) and adjusted-R2 (for ANCOVA models). 

 

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ancova) 

Detection-

corrected species 

richness (ancova) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

t 

value 

Intercept -46.29 

-100.93 - 

6.96 0.87 -1.53 - 3.21 -2.55 -4.75 - -0.32 

-10.94 

(4.26) -2.57 

-15.41 

(0.52) 

-

29.38 

           

Thermal position 

variables           

Baseline (1st order 

polynomial) -8.46 -10.39 - -6.33 27.38 

22.31 - 

32.65 -12.91 -19.85 - -6.16 

-161.33 

(34.39) -4.69 

-0.49 

(0.43) -1.14 

Baseline (2nd order 

polynomial) -- -- 17.44 

12.43 - 

22.16 13.27 6.77 - 19.46 

-62.53 

(26.68) -2.34 -- -- 

Change since 

baseline -4.54 -6.08 - -3.01 0.29 0.23 - 0.36 -0.09 -0.17 - -0.01 -4.86 (2.92) -1.67 

-2.16 

(0.55) -3.91 

Baseline:Change 

interaction -10.76 -12.82 - -8.76 0.53 0.43 - 0.63 -0.43 -0.55 - -0.29 -9.74 (4.31) -2.34 

-2.77 

(0.44) 0 

           

Precipitation position variables          

Baseline (1st order 

polynomial) -1.63 -3.04 - -0.25 -0.89 -7.39 - 6.14 -30.56 

-39.56 - -

21.29 -5.57 (2.09) -2.67 

-0.73 

(0.44) -1.64 
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Baseline (2nd order 

polynomial) -- -- -2.56 -8.56 - 2.96 13.56 6.53 - 20.55 -- -- -- -- 

Change since 

baseline 3.9 2.55 - 5.13 -0.14 -0.21 - -0.09 0.21 0.13 - 0.29 -1.27 (2.47) -0.51 0.26 (0.5) 0.53 

Baseline:Change 

interaction -0.11 -0.81 - 0.69 0.02 -0.02 - 0.05 -0.03 -0.08 - 0.02 -9.74 (4.31) -2.26 

0.47 

(0.34) 1.38 

           

Climatic position interactions          

Baseline 

thermal:Baseline 

precipitation 

interaction -0.05 -1.82 - 1.69 0.02 -0.05 - 0.1 0.12 0.03 - 0.21 -- -- 

-0.39 

(0.39) -1.01 

Change in 

thermal:Change in 

precipitation 

interaction -0.15 -1.17 - 0.85 0.02 -0.02 - 0.06 0.06 0 - 0.12 -- -- 

2.04 

(0.39) 5.26 

           

Covariates           

Continent (Europe) 39.35 32.95 - 45.45 -1.98 -2.22 - -1.71 1.27 0.96 - 1.56 12.2 (5.13) 2.38 

7.87 

(1.13) 6.95 

Sampling Effort -- -- -0.59 -0.65 - -0.55 -0.17 -0.21 - -0.13 -- -- -- -- 

           

Random effects Variance (95% CI) Variance (95% CI) Variance (95% CI)     

Species 181.4 117 - 256.2 0.3 0.19 - 0.44 0.26 0.15 - 0.39 -- -- 

           

Model summary           

Number 

observations (n) 4617-5264 30.8-1035.5 118.5-1730.1 164 1849 

Variation explained 

(R2) 0.11 0.87 0.53 0.38 0.07 

 930 
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 931 

Table S3. Model coefficients (and standard error) for the simultaneous autoregressive (SAR) 

error species richness models correcting for spatial autocorrelation. Z values are included as a 

measure of significance. Generally, coefficients with z values < -2 and > 2 are considered 

significant, these are in bold text in the table. Variance explained is expressed in terms of 

Nagelkerke pseudo-R2.  

 Species richness SAR 

Detection-corrected species 

richness SAR 

 Estimate z value Estimate z value 

Intercept -12.64 (11.27) -1.12 -14.19 (1.98) -7.16 

     

Thermal position variables     

Baseline (1st order polynomial) -107.69 (38.08) -2.83 -0.26 (0.84) -0.31 

Baseline (2nd order polynomial) -13.86 (25) -0.55 -- -- 

Change since baseline 0.63 (3.08) 0.21 -1.95 (0.64) -3.06 

Baseline:Change interaction 1.5 (4.46) 0.34 -1.18 (0.56) -2.11 

     

Precipitation position variables     

Baseline (1st order polynomial) 0.94 (2.59) 0.36 0.12 (0.62) 0.19 

Baseline (2nd order polynomial) -- -- -- -- 

Change since baseline -3.33 (2.66) -1.25 0.32 (0.64) 0.5 

Baseline:Change interaction 1.15 (1.87) 0.62 -0.04 (0.38) -0.1 

     

Climatic position interactions     

Baseline thermal:Baseline 

precipitation interaction -- -- 0.36 (0.55) 0.65 

Change in thermal:Change in 

precipitation interaction -- -- 0.7 (0.43) 1.63 

     

Covariates     

Continent (Europe) 14.47 (12.99) 1.11 7.1 (3.72) 1.91 

     

Model summary     

Number observations (n) 164 1849 

Variation explained (R2) 0.44 0.14 
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Table S4. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models including land-use. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model coefficients (and 

standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for analysis of 

covariance models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values < -2 and > 

2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance explained is 

expressed in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

 

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ANCOVA) 

Detection-

corrected 

species richness 

(SAR error 

model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -46.47 

-102.49 - 

10.76 0.91 -1.28 - 3.33 -2.96 -5.38 - -0.29 

-15.62 

(0.56) 

-

27.73 -14.2 (2) -7.11 

           

Thermal position variables           

Baseline (1st order 

polynomial) -8.18 -10.29 - -6.18 26.77 

21.01 - 

31.65 -14.9 -24 - -6.14 

-0.67 

(0.47) -1.43 

-0.26 

(0.85) -0.31 

Baseline (2nd order 

polynomial) -- -- 15.56 10.31 - 20.7 16.08 7.69 - 25.05 -- -- -- -- 

Change since baseline -4.22 -5.75 - -2.68 0.29 0.22 - 0.34 -0.09 -0.19 - 0.01 

-2.24 

(0.56) -4.01 

-1.95 

(0.64) -3.06 

Baseline:Change 

interaction -11.06 -13.09 - -8.93 0.52 0.43 - 0.61 -0.5 -0.68 - -0.34 

-2.7 

(0.45) -6 

-1.18 

(0.56) -2.1 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -2 -3.44 - -0.58 1.9 -4.63 - 7.57 -35.49 

-47.78 - -

23.32 

-0.59 

(0.46) -1.28 

0.12 

(0.62) 0.19 

Baseline (2nd order 

polynomial) -- -- -4.05 -10.46 - 2.35 15.95 6.79 - 25.15 -- -- -- -- 

Change since baseline 3.78 2.46 - 5.03 -0.14 -0.2 - -0.09 0.24 0.14 - 0.34 

0.25 

(0.5) 0.5 

0.32 

(0.64) 0.5 

Baseline:Change 

interaction -0.02 -0.76 - 0.74 0.02 -0.02 - 0.05 -0.03 -0.08 - 0.02 

0.48 

(0.34) 1.4 

-0.04 

(0.38) -0.1 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction -0.3 -2.02 - 1.4 0.04 -0.04 - 0.11 0.13 0.03 - 0.25 

-0.32 

(0.4) -0.81 

0.36 

(0.55) 0.65 

Change in thermal:Change 

in precipitation interaction -0.1 -1.08 - 0.95 0.02 -0.02 - 0.06 0.07 0 - 0.14 

2.01 

(0.39) 5.14 

0.7 

(0.43) 1.63 

           

Human dominated land-

use           

Land-use change  -16.4 -27.33 - -6.46 0.92 0.44 - 1.39 -0.61 -1.3 - 0.15 

3.72 

(3.73) 1 

0.11 

(4.35) 0.03 

           

Covariates           

Continent (Europe) 38.78 33.03 - 45.31 -1.96 -2.25 - -1.67 1.43 1 - 1.91 

8.21 

(1.18) 6.94 

7.11 

(3.74) 1.9 

Sampling Effort -- -- -0.57 -0.64 - -0.53 -0.19 -0.25 - -0.14 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 181.6 118.1 - 256.8 0.31 0.19 - 0.43 1.32 0.14 - 3.66 -- -- 

           

Model summary           

Number observations (n) 7235-7500 18.4-1464.9 57.9-1551.6 1849 1849 

Variation explained (R2) 0.11 0.87 0.27 0.07 0.14 

933 
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Table S5. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models at a 50km by 50km scale. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model coefficients (and 

standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for analysis of covariance 

models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values < -2 and > 2 are 

considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance explained is expressed 

in terms of marginal R2 (for PGLMM), ad`usted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 

Species 

richness 

(ANCOVA) 

Detection-

corrected 

species richness 

(SAR error 

model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -53.03 

-115.76 - 

10.83 1.54 -1.04 - 4.04 -2.27 -4.41 - -0.2 

-21.59 

(0.28) -78.3 

-21.02 

(1.13) -18.6 

           

Thermal position variables           

Baseline (1st order 

polynomial) -6.17 -7.65 - -4.76 32.56 27.47 - 37.66 -16.86 -23.25 - -11.77 

-0.05 

(0.21) -0.23 0.5 (0.4) 1.27 

Baseline (2nd order 

polynomial) -- -- 28.47 23.31 - 33.69 2.02 -3.6 - 7.4 -- -- -- -- 

Change since baseline -3.45 -4.56 - -2.36 0.24 0.2 - 0.29 -0.21 -0.26 - -0.16 

-0.83 

(0.29) -2.87 

-0.63 

(0.33) -1.9 

Baseline:Change 

interaction -7.12 -8.45 - -5.58 0.47 0.4 - 0.53 -0.32 -0.39 - -0.24 

-1.41 

(0.22) -6.29 

-0.68 

(0.28) -2.38 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -0.88 -2.02 - 0.19 0.73 -5.91 - 7.46 -23.4 -30.61 - -15.15 

-0.26 

(0.21) -1.23 

0.13 

(0.31) 0.44 

Baseline (2nd order 

polynomial) -- -- -10.36 -15.67 - -5.18 13.49 6.85 - 20.92 -- -- -- -- 

Change since baseline 4.99 4.01 - 6.04 -0.26 -0.3 - -0.22 0.22 0.17 - 0.27 

0.25 

(0.24) 1.03 

0.25 

(0.33) 0.76 

Baseline:Change 

interaction -0.31 -0.97 - 0.38 0.08 0.05 - 0.11 -0.02 -0.05 - 0.02 

0.3 

(0.17) 1.81 

-0.01 

(0.19) -0.04 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction 0.71 -0.62 - 1.9 -0.06 -0.11 - 0 0.12 0.07 - 0.18 

-0.21 

(0.18) -1.2 

0.01 

(0.25) 0.05 

Change in thermal:Change 

in precipitation interaction -0.3 -1.09 - 0.46 -0.05 -0.09 - -0.02 0.01 -0.03 - 0.05 

1.04 

(0.2) 5.25 

0.4 

(0.23) 1.79 

           

Covariates           

Continent (Europe) 37.1 31.46 - 42.32 -1.87 -2.09 - -1.65 1.46 1.23 - 1.69 

3.96 

(0.57) 6.95 

3.06 

(1.97) 1.55 

Sampling Effort -- -- -0.53 -0.56 - -0.5 -0.09 -0.11 - -0.07 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 238.8 160.1 - 334 0.37 0.23 - 0.52 0.25 0.16 - 0.36 -- -- 

           

Model summary           

Number observations (n) 5000-5490 40.3-5608 58.8-2410.7 4856 4856 

Variation explained (R2) 0.1 0.84 0.61 0.03 0.06 
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Table S6. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models at a 200km by 200km scale. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model coefficients (and 

standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for analysis of covariance 

models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values < -2 and > 2 are 

considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance explained is expressed 

in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 

Species 

richness 

(ANCOVA) 

Detection-

corrected species 

richness (SAR 

error model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -36.36 -85.99 - 13.45 0.07 -2.85 - 2.79 -4.64 -12.08 - -0.63 

5.23 

(1.16) 4.52 

6.75 

(2.88) 2.35 

           

Thermal position variables           

Baseline (1st order 

polynomial) -6.14 -9.06 - -3.06 13.46 6.36 - 21.36 -11.78 -33.65 - 1.39 

1.46 

(0.99) 1.47 

-0.9 

(1.66) -0.54 

Baseline (2nd order 

polynomial) -- -- 12.3 5.42 - 19.56 35.46 15.18 - 81.11 -- -- -- -- 

Change since baseline -3.08 -5.23 - -1.06 0.22 0.09 - 0.37 0.1 -0.13 - 0.42 

-0.69 

(1.18) -0.58 

-1.88 

(1.26) -1.5 

Baseline:Change 

interaction -9.96 -12.87 - -6.94 0.54 0.33 - 0.81 -0.47 -1.16 - -0.08 

-5.5 

(0.99) -5.55 

-2.97 

(1.11) -2.69 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -2.89 -4.89 - -0.91 0.07 -7.03 - 7.34 -37.24 -83.9 - -14.07 

-1.04 

(1.05) -0.99 

0.31 

(1.26) 0.24 

Baseline (2nd order 

polynomial) -- -- 3.68 -4.3 - 11.65 11.72 -6.28 - 38.02 -- -- -- -- 

Change since baseline 4.33 2.59 - 6.08 -0.13 -0.25 - -0.02 0.49 0.17 - 1.15 

0.26 

(1.16) 0.23 

0.48 

(1.33) 0.36 

Baseline:Change 

interaction 0.26 -0.72 - 1.16 -0.05 -0.12 - 0.02 -0.12 -0.34 - 0.03 

0.77 

(0.94) 0.83 

0.48 

(0.99) 0.49 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction 1.07 -1.54 - 3.83 0.05 -0.07 - 0.2 0.28 -0.01 - 0.74 

1.1 

(0.89) 1.23 

1.28 

(1.09) 1.18 

Change in thermal:Change 

in precipitation interaction 0.57 -0.88 - 1.92 0.02 -0.06 - 0.09 0.25 0.05 - 0.59 

2.42 

(0.9) 2.68 

1.2 

(0.93) 1.29 

           

Covariates           

Continent (Europe) 38.47 31 - 45.34 -2.13 -3.18 - -1.46 1.55 0.55 - 3.55 

-1.5 

(2.52) -0.6 

-0.52 

(5.76) -0.09 

Sampling Effort -- -- -0.72 -0.93 - -0.54 -0.34 -0.79 - -0.14 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 133.8 75.62 - 193.4 0.41 0.16 - 0.82 0.66 0.09 - 2.47 -- -- 

           

Model summary           

Number observations (n) 4181-5284 10.5-1428.2 6.5-382.6 584 584 

Variation explained (R2) 0.1 0.71 0.14 0.08 0.19 
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Table S7. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models using an absence threshold of three. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model 

coefficients (and standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for 

analysis of covariance models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values 

< -2 and > 2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance 

explained is expressed in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ANCOVA) 

Detection-corrected 

species richness 

(SAR error model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -45.15 

-102.49 - 

11.21 0.89 -1.41 - 3.21 -2.52 -4.73 - -0.33 

-15.36 

(0.74) 

-

20.69 

-14.85 

(1.47) 

-

10.09 

           

Thermal position 

variables           

Baseline (1st order 

polynomial) -5.4 -7.18 - -3.58 20.67 15.2 - 25.93 -7.69 -14.72 - -0.65 -0.08 (0.56) -0.15 0.52 (0.72) 0.72 

Baseline (2nd order 

polynomial) -- -- 13.85 9.03 - 19.04 14.45 8.32 - 20.34 -- -- -- -- 

Change since 

baseline -3.69 -5.23 - -2.17 0.27 0.21 - 0.34 -0.05 -0.14 - 0.03 -2.85 (0.78) -3.66 -3.12 (0.8) -3.88 

Baseline:Change 

interaction -9.51 -11.24 - -7.75 0.44 0.35 - 0.52 -0.36 -0.47 - -0.26 -3.97 (0.59) -6.71 -2.94 (0.66) -4.46 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -1.93 -3.34 - -0.5 0.63 -6 - 6.94 -33.81 -42.7 - -25.37 -1 (0.58) -1.74 -0.61 (0.67) -0.91 

Baseline (2nd order 

polynomial) -- -- -5.52 -11.5 - 0.4 15.51 8.38 - 22.84 -- -- -- -- 

Change since 

baseline 4.63 3.21 - 6.01 -0.19 -0.25 - -0.13 0.25 0.16 - 0.33 0.4 (0.65) 0.61 1.11 (0.76) 1.46 

Baseline:Change 

interaction -0.25 -1.05 - 0.55 0.04 0 - 0.08 -0.04 -0.08 - 0.01 0.39 (0.44) 0.9 0.06 (0.46) 0.13 

           

Climatic position interactions          

Baseline 

thermal:Baseline 

precipitation 

interaction 0.13 -1.41 - 1.58 0.01 -0.06 - 0.08 0.11 0.03 - 0.18 -0.36 (0.46) -0.78 -0.19 (0.54) -0.35 

Change in 

thermal:Change in 

precipitation 

interaction -0.24 -1.29 - 0.84 0.02 -0.02 - 0.07 0.05 -0.01 - 0.11 2.29 (0.52) 4.42 1.63 (0.54) 3.04 

           

Covariates           

Continent (Europe) 38.03 31.62 - 44.05 -1.99 -2.29 - -1.7 1.26 0.93 - 1.59 9.48 (1.51) 6.29 

10.17 

(2.63) 3.87 

Sampling Effort -- -- -0.56 -0.62 - -0.51 -0.17 -0.21 - -0.13 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 185.1 115.6 - 256 0.3 0.18 - 0.43 0.27 0.16 - 0.4 -- -- 

           

Model summary           

Number 

observations (n) 4596-5481 69.4-2453.7 201.6-4627.8 1374 1374 

Variation explained 

(R2) 0.1 0.85 0.56 0.09 0.1 
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Table S8. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models using an absence threshold of five. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model 

coefficients (and standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for 

analysis of covariance models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values 

< -2 and > 2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance 

explained is expressed in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ANCOVA) 

Detection-

corrected 

species richness 

(SAR error 

model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -43.16 -96.07 - 13.89 0.8 -1.56 - 2.98 -2.56 -4.88 - -0.25 

-14.76 

(0.91) 

-

16.27 

-13.73 

(2.16) -6.34 

           

Thermal position variables           

Baseline (1st order 

polynomial) -3.81 -5.57 - -2.12 17 11.13 - 22.42 -4.41 -11.67 - 2.67 

0.37 

(0.65) 0.58 

1.4 

(1.01) 1.39 

Baseline (2nd order 

polynomial) -- -- 12.82 6.57 - 17.84 14.83 8.72 - 21.08 -- -- -- -- 

Change since baseline -3.47 -5.05 - -1.9 0.25 0.19 - 0.31 -0.07 -0.15 - 0.02 

-2.96 

(0.92) -3.21 

-2.37 

(1.06) -2.24 

Baseline:Change 

interaction -9.07 -10.73 - -7.5 0.42 0.34 - 0.5 -0.32 -0.42 - -0.22 

-4.66 

(0.66) -7.05 

-2.43 

(0.83) -2.92 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -1.99 -3.47 - -0.59 -0.14 -6.21 - 6.16 -36.96 

-45.96 - -

28.29 

-0.94 

(0.65) -1.45 

-0.04 

(0.87) -0.05 

Baseline (2nd order 

polynomial) -- -- -7.41 -12.94 - -1.84 16.85 9.68 - 23.69 -- -- -- -- 

Change since baseline 4.7 3.39 - 6.19 -0.19 -0.26 - -0.11 0.26 0.18 - 0.35 

0.62 

(0.76) 0.82 

0.73 

(0.98) 0.74 

Baseline:Change 

interaction -0.16 -1.03 - 0.65 0.03 -0.01 - 0.07 -0.03 -0.08 - 0.02 

0.37 

(0.49) 0.75 

-0.38 

(0.53) -0.72 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction 0.31 -1.11 - 1.65 -0.02 -0.07 - 0.04 0.08 0.02 - 0.16 

-0.17 

(0.51) -0.34 

0.17 

(0.69) 0.25 

Change in thermal:Change 

in precipitation interaction -0.66 -1.75 - 0.38 0.05 -0.01 - 0.1 0.04 -0.02 - 0.11 

2.16 

(0.61) 3.56 

0.74 

(0.69) 1.07 

           

Covariates           

Continent (Europe) 38.09 31.68 - 44.28 -1.97 -2.27 - -1.67 1.34 0.99 - 1.67 

9.44 

(1.74) 5.42 

8.44 

(3.63) 2.32 

Sampling Effort -- -- -0.54 -0.6 - -0.48 -0.17 -0.21 - -0.13 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 185.9 120.9 - 265.9 0.3 0.18 - 0.43 0.31 0.17 - 0.46 -- -- 

           

Model summary           

Number observations (n) 5000-5324 25.3-2121.9 175.4-3736.8 1133 1133 

Variation explained (R2) 0.1 0.86 0.53 0.1 0.18 

937 
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