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Abstract 

Time to event data differ from other types of data because they are 

censored. Most of the related estimation techniques assume that the 

censoring mechanism is non-informative while in many applications it 

can actually be informative. The aim of this work is to introduce a class 

of flexible survival models which account for the information provided by 

the censoring times. The baseline functions are estimated non-

parametrically by monotonic P-splines, whereas covariate effects are 

flexibly determined using additive predictors. Parameter estimation is 

reliably carried out within a penalised maximum likelihood framework 

with integrated automatic multiple smoothing parameter selection. We 

derive the n -consistency and asymptotic normality of the non-

informative and informative estimators, and shed light on the efficiency 

gains produced by the newly introduced informative estimator when 
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compared to its non-informative counterpart. The finite sample 

properties of the estimators are investigated via a Monte Carlo 

simulation study which highlights the good empirical performance of the 

proposal. The modelling framework is illustrated on data about infants 

hospitalised for pneumonia. The models and methods discussed in the 

paper have been implemented in the R package GJRM to allow for 

transparent and reproducible research. 

Key Words: additive predictor, informative censoring, link-based survival 

model, penalised maximum likelihood, smoothing. 

1 Introduction 

Time to event data are different from other types of data because of censoring. 

This means that the response of interest, the time until a particular event occurs, 

can not be totally observed. As a result, models must be used to relate the 

observed and unobserved parts of the data since the recorded observations 

alone can not provide direct information on the event of interest. Most of the 

related estimation techniques assume that the censoring scheme is independent 

and non-informative conditional on covariates (e.g., Cox, 1972; Ma 

et al., 2014; Scheike & Zhang, 2003; Xue et al., 2018; Younes & Lachin, 1997). 

In many applications, however, these assumptions can at least be questioned 

(e.g., Chen, 2010; Huang & Zhang, 2008; Li & Peng, 2015; Lu & 

Zhang, 2012; Slud & Rubinstein, 1983; Wang et al., 2015; Xu 

et al., 2017, 2018; Zheng & Klein, 1995; Zeng et al., 2004). 

Censoring is independent when the hazard rate of the event of interest for the 

censored observations is equal to the hazard rate for the uncensored ones, 

otherwise it is called dependent (Kalbfleisch & Prentice, 2002). If the event and 

censoring times are assumed to be dependent, then survival models accounting 

for this feature of the data face a problem of identification. In general, without 

additional assumptions, it is not possible to identify the survival distribution from 
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the censored data alone or testing whether the censoring and survival 

mechanisms are independent (Cox, 1959; Tsiatis, 1975). 

Censoring is informative when the censoring times, say T2, contain information 

on the parameters of the distribution of the event variable, say T1 

(Lagakos, 1979; Kalbfleisch & Prentice, 2002). In particular, let us write the 

hazard functions for the event and censored times as 1 1 1
( | ; )T T Tt x θh

 and 

2 2 2
( | ; )T T Tt x θh

. If the vector of parameters 1Tθ  and 2Tθ  have components in 

common then censoring is informative. In this case, the observable data 

1 2 1 2( , ) {min( , ), ( )}Y T T I T T  
, where I is the usual indicator function, provide 

sufficient information to identify the marginal survival functions of T1 and T2 

(Kalbfleisch & Prentice, 2002). 

Although dependent censoring is a well studied problem in the survival analysis 

and competing risk literature (e.g., Crowder, 2012; Emura & Chen, 2018), the 

specific literature analysing the problem of informative censoring is scarce, even 

though ignoring it may have detrimental consequences on inferential conclusions 

(e.g., Siannis et al., 2005; Lu & Zhang, 2012). In a seminal work, Koziol & 

Green (1976) proposed an informative survival model where the hazard functions 

of T1 and T2 satisfy 2 1
( ) ( )T Tt p th h

, for some constant 0 1p  . Since this model 

did not incorporate covariates, it was further extended. For instance, Yuan (2005) 

introduced a semiparametric Cox model estimated via profile likelihood in which, 

for a given vector of covariates x, 2 1
( | ) ( , ; ) ( | )T Tt t tx x xh h

, where ϱ is a function 

known up to a finite-dimensional parameter, θ. The purpose of ϱ was to capture 

the possible information contained in the censoring times. Lu & Zhang (2012) 

proposed a semi-parametric informative survival model where the baseline 

hazards are estimated non-parametrically and the covariate effects 

parametrically. In their approach, the hazard functions of T1 and T2 conditional on 

x are modelled using 0,( | ) ( )exp( )T Tt t
  x x φh h

, where 1 0 2   x x xφ
, for 

1,2  . 
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In this article we deal with informative censoring. In particular, we develop a 

flexible, general and tractable survival modelling framework where the baseline 

functions are estimated non-parametrically via means of monotonic P-splines, 

covariate effects are flexibly determined using additive predictors, and 

informative censoring is accounted for. Model fitting is based on an optimization 

scheme that allows for the reliable simultaneous penalized estimation of all 

model’s parameters as well as for stable and fast automatic multiple smoothing 

parameter selection. We provide the n -consistency and asymptotic normality of 

the non-informative and informative estimators, and show that the newly 

introduced informative estimator is more efficient than its non-informative 

counterpart. A Monte Carlo simulation study highlights the merits of the proposal, 

and the modelling framework is illustrated on data about infants hospitalised for 

pneumonia. The models and methods introduced in the article have been 

implemented in the R package GJRM (Marra & Radice, 2019) to allow for 

transparent and reproducible research. To the best of our knowledge, there are 

no alternative flexible survival models with informative censoring, nor respective 

software implementations, of the type proposed here. Given that the assumption 

of absence of informative censoring is often made for convenience, the proposed 

methodology is likely to appeal the wider audience wishing to estimate possibly 

more realistic survival models or at least assess whether allowing for informative 

censoring can produce more plausible results. 

The article is organized as follows. In the next section, the proposed model and 

its theoretical properties are discussed. In Section 3, the effectiveness of the 

proposed methodology is explored by means of a simulation study. In Section 4, 

the framework is illustrated on data about infants hospitalised for pneumonia. 

Section 5 concludes the paper with a discussion. 

2 Methodology 
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In this paper, the case of right censored data is considered; the true event time is 

not always observed, in which case censoring (lower) times are observed. For 

individual i, where 1, ,i n   and n represents the sample size, let 1iT
 and 2iT

 

denote the true event and censoring times. Let also 1( , , )i i K iz z
   z

 be a vector 

of baseline covariates of dimension 
K , where z  stands for the transpose of a 

vector z, 1,2   and 1 2( , )i i iz z z
. It is assumed that the 1( , )i iT z

, for 1,...,i n , 

are independently and identically distributed (i.i.d.). The censoring times, 2iT
, are 

also assumed to be i.i.d. The distribution of T2 depends on z. In addition, we 

assume that 1iT
 and 2iT

 are conditionally independent given iz
, and that 1iT

 is 

informatively right censored by 2iT
 through some covariates (Andersen & 

Keiding, 2006). We observe 1( , , )i i iY z
, where 1 2min{ , }i i iY T T

 and 1 1 2( )i i iI T T  

. We also define 2 1[1 ]i i  
. Finally, θ  is a generic vector of parameters. 

2.1 Survival functions 

The survival function of iT  taking values in (0, 1), conditional on iz
 and ν

θ
, can 

be expressed as 

( | ; ) ( | ; ) [ ( , ; )],i i i i i i i iP T t S t t              z z zθ θ θ  (1) 

where, for 
1,2,   θ

 and iz
 represent generic vectors of coefficients and 

covariates, respectively. The survival functions are modelled using generalised 

survival or link-based functions models (Younes & Lachin, 1997; Liu et al., 2018). 

That is, 
( | ; )i iS t   z θ

 is defined as 
[ ( , ; )]i i it     z θ

, where   is an inverse link 

function. The set up of the two ξ predictors is discussed in the detail in the next 

section. As conveyed by the notation, 1i  and 2i
 must include baseline functions 

of time. Different choices for function 
[ ( , ; )]i i it     z θ

 can be specified; some 

common examples are shown in Table 1 reported in Supplementary Material A. 

The cumulative hazard function, H , and the hazard function, h , are given by 
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( | ; ) log [ ( , ; )],

[ ( , ; )] ( , ; )
( | ; ) ,

[ ( , ; )]

i i i i i

i i i i i i

i i

i i i i

t t

t t
t

t t

        

        
   

     



 



 

 
 



z z

z z
z

z

θ θ

θ θ
θ

θ

H

h
 (2) 

where 
[ ( , ; )] [ ( , ; )] / ( , ; )i i i i i i i i it t t                  z z zθ θ θ

. 

2.2 Additive predictors 

This section provides some details on the set up of the two model’s predictors for 

the cases of informative and non-informative censoring. Note that these must 

include baseline functions of time. To make the presentation simpler, the same 

design matrix is set up for the two additive predictors. Also, it  can be treated like 

a covariate. The main advantages of using additive predictors are that various 

types of covariate effects can be dealt with and that such effects can be flexibly 

determined without making strong parametric a priori assumptions regarding their 

forms (e.g., Wood, 2017). 

Let us consider a generic predictor i 
 (where the dependence on the 

covariates and parameters is momentarily dropped), and the overall baseline 

covariate vector ix
, which contains iz

 and it . The additive predictors for the 

censoring and event times can be defined generically as 

0

0

( ), 1, , .

K

i k k i

k

s i n


 



    


    x  (3) 

In (3), 0 
 is an overall intercept, k ix

 denotes the 
thk  sub-vector of the 

complete vector ix
 and the 

K  functions 
( )k k is

  x
 represent generic effects 

which are chosen according to the type of covariate(s) considered. Note that, in 

(3), 
k  starts from 0 since the summation also includes a smooth function of time. 

If censoring is informative, some covariates in 1ix
 must also appear in 2ix

. In 

particular, let us define the vectors of informative and non-informative covariates 
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of dimensions Q and 
Q  as 

0 0 0

1( , , )i i Qix x x
 and 

1 1 1

1( , , )i i Q ix x
   x

, where 

K Q Q  
. Informative censoring implies that some components of 

1

1 1

1

1 1

1

( )

K

k k i

k

s


 x

 

must appear in 

2

2 2

2

2 2

1

( )

K

k k i

k

s


 x

. Without loss of generality, we assume that the first 

Q components in 

1

1 1

1

1 1

1

( )

K

k k i

k

s


 x

 appear in 

2

2 2

2

2 2

1

( )

K

k k i

k

s


 x

. That is, 

1 1

1 1 1 1

1 0 1

2 2

2 2 2 2

2 2

0 1

1 1 1 1

1 1 1

0 1

2 2 2 2

1 1 1

( ) ( ) ( )

.

( ) ( ) ( )

K QQ

k k i q qi q q i

k q q

K QQ

k k i q qi q q i

k q q

s s s

s s s

  

  

 

 

  

  

x x x

x x x

 (4) 

Therefore, using (4), equation (3) becomes 

0 1

0

1 0

( ) ( ),

QQ

i q qi q q i

q q

s s


 



    
 

   x x  (5) 

where 
0

qix
 and 

1

q ix
 denote the informative and non-informative sub-vectors of 

the complete vectors 
0

ix
 and 

1

ix
 respectively, and 

1

0( ) ( )q q i is s t
    x

 when 
0q 

. 

In (5), the smooth functions are represented using the penalised regression 

spline approach (e.g., Wood, 2017). Specifically, each 
1( )q q is

  x
 can be 

approximated as a linear combination of qJ
  non-informative basis functions 

1( )
qq j q i  

 x
 and regression coefficients qq j  

 
. In a similar manner, each 

0( )q qis x
 can be approximated as a linear combination of Jq informative basis 

functions 
0( )

qqj qix
 and regression coefficients 0 qqj 

. More specifically, 
0( )q qis x
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and 
1( )q q is

  x
 are given by 

0 0

0

1

( ) ( )
q

q q

q

J

q qi qj qj qi

j

s 


x x

 and 

1 1

1

( ) ( )
q

q q

q

J

q q i q j q j q i

j

s
 

       

 

    


 x x

, and therefore (5) can be written as 

0 1

0 0

1 0

( ) ( ) ,

QQ

i q qi q q q i q

q q



  



     
 

   x xα α  (6) 

where 

0 0

0 0

1

( ) ( )
q

q q

q

J

q qi q qj qj qi

j




x xα

 , 

1 1 0 0 0 1 1 1

1 1 0 0 1 0

1

( ) ( ), ( ) { ( ), , ( )} , ( ) { ( ), , ( )} , ( , , )
q

q q q q q

q

J

q q i q q j q j q i q qi q qi qJ qi q q i q q i q J q i q q qJ

j

 

                

 

             


      x x x x x x x xα α

 and 
1( , , )

qq q q J    
    α

. To write equation (6) in a more compact way, we 

define 

0 0

0 0

1

( )
Q

i q qi q

q

 xα α

 and 

1 1

0

( )

Q

i q q i q

q



  



    



  xα α

, where 

0 01 0( , , )Q α α α
, 

0 0 0

0 0 1 1( , , , ) , { ( ) , , ( ) }Q i i Q Qi      x xα α α
 and 

1 1 1

0 0{1, ( ) , , ( ) }i i Q Q      x x
. Therefore, 

0 1

0 .i i i    α α  (7) 

If Q > 0 then censoring is informative and 

0

1

( )
Q

q qi

q

s


 x

 can be estimated using the 

information from both the censoring and event times. If Q = 0 (i.e., the 

components in 

1

1 1

1

1 1

1

( )

K

k k i

k

s


 x

 and 

2

2 2

2

2 2

1

( )

K

k k i

k

s


 x

 are assumed all distinct) then (6) 

reduces to the model with non-informative censoring and hence we would have 

0

0

( ) ,

K

i k k i k

k



  



     


  x γ  
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where 
1( ) { ( ), , ( )}

kk k i k k i k J k i      
      x x x

 and 
1( , , )

kk k k J    
    γ

. 

Furthermore, if 
0 0

0

( ) , ( , , , )

K

i k k i k K

k



   



        


   xγ γ γ γ γ

 and 

0 0{1, ( ) , , ( ) }i i K K      x x
, we obtain 

.i i    γ  (8) 

Note that, for the case in which Q = 0, we have introduced the new parameter 

vector γ  to stress the difference between the parameters of the informative and 

non-informative models. Some methods for determining the value of Q are 

discussed in Supplementary Material F. 

The vectors of parameters 0qα
 and qα  have associated quadratic penalties 

0

0 0q q q q α α
 and 

1

q q q q       α α
 used in fitting, whose role is to enforce specific 

properties on the respective functions, such as smoothness. It is important to 

note that 
0

q  and 
1

q  only depend on the choice of the basis functions. 

Smoothing parameter 
[0, )k  

 controls the trade-off between fit and 

smoothness, and plays a crucial role in determining the shape of 
ˆ ( )k k is

  x
. The 

overall penalty can be defined as   α α
, where 

0 0 1 1

1 1 0 0diag( , , ,0, , , )Q Q Q Q          
. Moreover, smooth functions are 

typically subject to centering (identifiability) constraints. The set up described 

above allows for several types of covariate effects such as linear, non-linear, 

spatial, random and functional effects, to name but a few. We refer the reader to 

Wood (2017) for the exact definitions of the spline bases and penalties of the 

above mentioned cases. 

To give a concrete example, consider the informative additive model 

0 1 0 1

0 0

1 1

{ ( | , )} { ( )} ( ) ( ) ,

QQ

i i i i q qi q q q i q

q q

g S t g S t


  



         

 

   z z z zα α  (9) 
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where 
: (0,1) ( , )g   

 is a differentiable and invertible link function (see Table 

1 in Supplementary Material A), 0 ( )iS t   is a baseline survival function, and 

0{ ( )}ig S t    is represented using a smooth function of time, 0 ( )is t  . When the 

log-log link is chosen, equation (9) yields the proportional hazards model 

0 1 0 1

0 0

1 1

log{ ( | , )} log{ ( )} ( ) ( ) ,

QQ

i i i i q qi q q q i q

q q

t t


  



       

 

   z z z zα αH H  

where 
0 1 0 1( | , ) log{ ( | , )}i i i i i it S t      z z z zH

 and 0 0log{ ( )} log{ ( )}i it S t    H
 is the 

cumulative baseline hazard function. Analogously, equation (9) yields the 

proportional odds model when the -logit link is chosen. 

The models considered in this paper are fundamentally parametric but flexible. It 

is worth noting that the more extensive use of parametric survival models in 

applications has been encouraged by Cox; see the discussion in Reid (1994). 

Moreover, as pointed out for instance by Hjort (1992), parametric approaches 

simplify somewhat model estimation and comparison, easily allow for the 

visualization of the estimated baseline hazard and survival functions, and allow to 

calculate several quantities of interest and their variances which would otherwise 

be difficult to obtain with a non-parametric approach. Another important 

advantage is that there is no necessity to use numerical integration methods to 

estimate the cumulative hazard function. 

2.3 Estimation framework 

The data consist of 1{ , , }i i iY  z
, where 1 2min{ , }i i iY T T

 and 1 1 2( )i i iI T T  
, for 

1, ,i n  . Let 1 2( , | )f t t z
 be the conditional joint distribution of 1 2( , )T T

 given z. We 

can write 
1 2 2( , 1| ) ( , | )

i
i i i i i

y
P Y f y t dt



  z z
 and 

1 1 1( , 0 | ) ( , | )
i

i i i i i
y

P Y f t y dt


  z z
. 

Therefore, the conditional likelihood function of 1( , )i iY 
 given iz

, for all 1,...,i n , 

is 
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   
1 2

2 2 1 1

1

( , | ) ( , | ) .
i i

i i

n

i i i i
y y

i

f y t dt f t y dt
 

 



  z z  

Below we provide the relevant details for the cases of informative and non-

informative censoring, which highlight the differences between the two estimators 

and that are also required for the theoretical derivations in Section 2.4. 

If it is assumed that 1iT
 and 2iT

 are conditionally independent given iz
, then 

2 2 1 1 1 2 2 2( , | ) ( | ; ) ( | ; )
i

i i i i i i
y

f y t dt f y S y


 z z zγ γ
 and 

1 1 2 2 2 1 1 1( , | ) ( | ; ) ( | ; )
i

i i i i i i
y

f t y dt f y S y


 z z zγ γ
 when censoring is non-informative. 

However, if censoring is informative 1γ  and 2γ  would have some components in 

common. Since it was assumed that the first Q components of 1γ  are the same 

as the first Q components of 2γ , we have 
0 1

0i i i    γ α α
. Using (1), (2), 

(7), (8), and 
( )i  γ

 and 0( , )i  α α
 as the shorthand notation for 

( , ; )i i iy   z γ
 and 

0( , ; , )i i iy   z α α
, the non-informative and informative log-likelihood functions can 

be written, respectively, as 

 
 
 

 
 
 

 
 

1 1 1 1 1
1 1 1 1

1 1 1 1

2 2 2 2 2

2 2 2 2

1 2 2 2

1 1 0 1

1 1 0 1 1

1

( ) ( )
( ) log ( ) log

( )

( ) ( )
log ( ) log ,

( )

( , )
( ) log ( , ) log

n
i i

i i

i i i

n
i i

i i

i i i

i

i i

y

y

 
 



 
 




 





     
    

    

     
    

    


  





γ γ
γ γ

γ

γ γ
γ

γ

α α
α α α

 

 
 
 

1 0 1

1 1 0 1

2 2 0 2 2 0 2
2 2 0 2 2

1 2 2 0 2

( , )

( , )

( , ) ( , )
log ( , ) log .

( , )

n

i

i i i

n
i i

i i

i i i

y

y





 
 







    
  

    

     
    

    





α α

α α

α α α α
α α

α α

 (10) 

To ensure that the hazard functions in (10) are positive, 
[ ( ) / ]i iy 

ν
θ

, for 

(1,2)  , must be positive. To this end, we model the time effects using B-splines 

with coefficients constrained such that the resulting smooth functions of time are 
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monotonically increasing. In particular, we define 
0 00 0 0

1

( ) ( )

J

i j j i

j

s y y


 



  



, 

where the 00 ( )j iy
  are B-spline basis functions of at least second order built 

over the interval [ , ]a b , based on equally spaced knots, and 00 j  are spline 

coefficients. A sufficient condition for 0[ ( ) / ] 0i is y y  
 over [ , ]a b  is that 

0 00 0 1 ,j j j
     

 (Leitenstorfer & Tutz, 2006). Such condition can be imposed 

by re-parametrising the spline coefficient vector so that 0 0 0    Γ β
, where 

00 01 02 0( , , , )J      β
, 001 02 0( ,exp( ), ,exp( ))J      β

 and 0 01 02[ , ] 0    Γ
 

if 01 02  
, and 0 01 02[ , ] 1    Γ

 if 01 02  
. Following Pya & Wood (2015, 

Section 2.2.1), the penalty term is set up to penalise the squared differences 

between adjacent 00 j , starting from 02 , using 0 0 0  
, where 0  is a 

0 0( 2)J J  
 matrix made up of zeros except that 

0 0 0 0 0 0[ , 1] [ , 2] 1            
 for 0 0 21, , J   

. Therefore, the non-

informative and informative additive predictors, that ensure positive hazard 

functions in (10), are 

0 0 0 0

1

0 1
00 0 0 0

1 1

( ) ( ) ,

( ) ( ) ( ) .

K

i i k k i k

k

QQ

i i q qi q q q i q

q q

y

y



  





  



      

      

 

 



 

  

   



 

Γ x

Γ x x

γ γ

α α α

 (11) 

Our model specification allows for a high degree of flexibility in modelling survival 

data. If an unpenalised estimation approach is employed to estimate 1 2( , )γ γ γ
 

and 0 1 2( , , )α α α α
, then the resulting smooth function estimates are likely to be 

unduly wiggly (e.g., Wood, 2017). Therefore, to prevent over-fitting, the following 

functions are maximized 

1
( ) ( ) ,

2
p  γ γ γ γ  (12) 
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1
( ) ( ) ,

2
p  α α α α  (13) 

where 
( )p γ

 and 
( )p α

 are the non-informative and informative penalized log-

likelihoods. Moreover, 1 2diag( , )
, and 1  and 2  are overall penalties 

which contain 1 2,λ λ
. The smoothing parameter vectors can be collected in the 

overall vector 1 2( , )λ λ λ
. Estimation of the models’ parameters and smoothing 

coefficients is achieved by using a stable and efficient trust region algorithm with 

integrated automatic multiple smoothing parameter selection (see Supplementary 

Material C for details). This required working with first and second order 

analytical derivatives which have been tediously derived as well as verified using 

numerical derivatives. Their structures are shown below. Note that these results 

were also required for the theoretical proofs presented in Section 2.4. 

When censoring is non-informative, the gradient of (12) can be obtained as 

( ) ( ) ,p  
γ γ

γ γ γ   

where 1 2
( ) ( ) , ( )( )

γ γ γ
γ γ γ  

. The components of 
( )

γ
γ

 can generically 

be calculated using the following expression 

0 0 0

1

1

( ) ( ) if ,

( )

( ) otherwise.

[ ]

[ ]
k

n

i i i i k

i

n

i k k i

i

y y


 

 

     

  








  


 
 




 x

γ

γ γ

γ  (14) 

In (14), 0 ( )iy  and 0 ( )iy



 are design vectors. Furthermore, 

1

i

i i

iy


 






 
    

 

and 

[ ( )]i i

  
 

  


  

   


, for all 1,2  . The non-informative penalized 

Hessian can be calculated as 

( ) ( ) ,p  
γγ γγ

γ γ   
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where 

1 1

2 2

( )
( ) .

( )

 
  
  

0

0

γ γ

γγ

γ γ

γ
γ

γ





 

Further, the elements of 
( )

 γ γ
γ

 are calculated using 

0

0

0 0

0

1

0

1

1

0 0 0 0

1

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( )

[ ]

[ ]

[ ]

[

k

s

k s

n

k k i i i

i

n

i i s s i

i

n

k k i i s s i

i

n

i i i i i i i

i

y

y

y y y y

   

   

      

 

   

   

    

      











 

 

 

    









x

x

x x

γ γ

γ γ

γ γ

γ γ

γ

γ

γ

γ







 0 0( ) ( ) .]i i iy y  

 

 (15) 

In these sub-matrices 

2 2

2 2
( )i i

   
 

   


   

    


 and 

2

[ ]i

i i

iy


 






 
    

. 

In addition, 0 ( )iy  and 0 ( )iy



 are design diagonal matrices. 

If the censoring is informative, the gradient of (13) can be calculated as 

( ) ( ) ,p  
α α

α α α   

where 0 1 2
( ) ( ) , ( ) , ( )( )

α α α α
α α α α   

. To obtain 0
( )

α
α

 and 
( )

α
α

, 

we use 

 
0

0

1 2

1

0 0 0

1

1

( ) ,

( ) ( ) if ,

( )

( ) otherwise,

[ ]

[ ]
k

n

i i i

i

n

i i i i k

i

n

i k k i

i

y y


 

 

 

     

  









     


  


 
 






 x

α

α

α

α α

α





 (16) 
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where 0 ( )iy

  and 0 ( )iy





 are design vectors. The informative penalized 

Hessian can be obtained as follow 

( ) ( ) ,p  
αα αα

α α   

where 

0 0 0 1 0 2

1 0 1 1

2 0 2 2

( ) ( ) ( )

( ) ( ) ( ) .

( ) ( )

 
 

  
 
  

0

0

α α α α α α

αα α α α α

α α α α

α α α

α α α

α α

  

  

 

 

Furthermore, 0 0
( )

α α
α

 and the components of 0
( )

α α
α

 and 0
( )

α α
α

 are 

obtained using 

0 0

0

0

0 0

1 2

1

0

0 0

1

0 1

1

0

0 0

1

1 0

( ) ( ) ,

( ) if ,

( )

( ) otherwise,

( ) if ,

( )

( )

q

q

n

i i i i

i

n

i i i q

i

n

i i q q i

i

n

i i i q

i

q q i i i

y

y



 

 



 

 



   

  



   

  









    


    


 
   

   



  









x

x

α α

α α

α α

α

α α

α

α α

α







1

otherwise.
n

i









 (17) 

Finally, the elements of 
( )

 α α
α

 are calculated using 
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0

0

0 0

1

0

1

1

0

1

1 1

1

0 0 0 0

1

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( )

[ ]

[ ]

[ ]

[

q

q

q r

n

q q i i i

i

n

i i q q i

i

n

q q i i r r i

i

n

i i i i i

i

y

y

y y y

   

   

      

 



   



   

    

  

     









 

 

 

    









x

x

x x

α α

α α

α α

α α

α

α

α

α







 0 0( ) ( ) ( ) .]i i i i iy y y  

   

   

 (18) 

As before, 0 ( )iy

  and 0 ( )iy





 represent design diagonal matrices. 

The derivations of the results reported here as well as some algorithmic details 

are given in Supplementary Materials B and C. 

Remark 1. The scores and Hessian components described in this section have 

been implemented in a modular way, hence no substantial programming work 

will be required to incorporate link functions not considered in this article. 

Furthermore, quantities such as those defined in (14), (15), (16), (17) and (18), 

are needed for the theoretical proofs of the next section. 

2.4 Theoretical properties 

In this section, we derive the n  consistency and asymptotic normality of the 

non-informative and informative estimators, and shed light on the efficiency gains 

produced by the newly introduced informative estimator when compared to its 

non-informative counterpart. As far as the number of basis functions is 

concerned, we use the fixed-knot asymptotic framework since it is closer to 

practical statistical modelling (e.g., Vatter & Chavez-Demoulin, 2015, and 

references therein). In what follows, we define 0 00 0
ˆ ( ) [ ( )]S s  θ θ

 as the short 

notation for 0 00 0
ˆ ( , ) [ ( , )]i iS y s y  θ θ

 and θ  as the true vector of parameters. 
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The informative penalized maximum log-likelihood estimator (IPMLE) can be 

defined as 

argmax ( ),p



α

α α  

and the non-informative counterpart (NPMLE) as 

argmax ( ).p



γ

γ γ  

Theorem 1 (Asymptotic properties of the IPMLE estimator). If the set of 

Assumptions 1 and 2 in Supplementary Material D hold then 

(i) the informative penalized maximum log-likelihood estimator α  exists, is 

n -consistent and 

 1( ) ,[ ( )] ,
d

n   0α α α  

where 
( ) [ ( ; )]  w

αα
α α

. 

(ii) 1010
ˆ ( )S α

 is asymptotically independent of 2020
ˆ ( )S α

 and 

 
0

00 0 0
ˆ[ ( ) ( )] , , 1,2,

d

n S S


     0 Σ
α

α α  

where 0 00

1

0 0 0 0 0 0 0[ ( )] ( )[ ( )] ( ) [ ( )]s s s s
 

      

  Σ α αα
α α α α α 

 and 

0 00 0( ) [ ( ; )]
    w
α α

α α
. 

Theorem 2 (Asymptotic properties of the NPMLE estimator). If the set of 

Assumptions 1 and 2 in Supplementary Material D hold then 

(i) the non-informative penalized maximum log-likelihood estimator γ  

exists, is n -consistent and 
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 1( ) ,[ ( )] ,
d

n   0γ γ γ  

where 
( ) [ ( ; )]  w

γγ
γ γ

. 

(ii) 10 10
ˆ ( )S γ

 is asymptotically independent of 20 20
ˆ ( )S γ

 and 

 
0

0 0 00
ˆ[ ( ) ( )] , , 1,2,

d

n S S


     0 Σ
γ

γ γ  

where 0 00

1

0 0 0 0 0 0 0[ ( )] ( )[ ( )] ( ) [ ( )]s s s s
 

      

  Σ γ γγ
γ γ γ γ γ 

 and 

0 00 0( ) [ ( ; )]
    w
γ γ

γ γ
. 

Theorem 3 (Efficiency of the IPMLE estimator). For 1,2  , let 
( , )n 

  γ γ γ
 be 

the informative and non-informative parameters of the non-informative model, 

respectively. Under the set of Assumptions 1 and 2 in Supplementary Material D, 

and if we further assume that 0 0

n

 γ α
, then 

0( ) ( ),

( ) ( ),
n







 





Cov Cov

Cov Cov

α γ

α γ

 

where 0
0( ) , ( ) , ( ) 

 



      Cov Cov Cov
α α γ

α α γ
, and 

( ) n

n






  Cov
γ

γ
 

represent the asymptotic covariance matrices of 0 , ,


 α α γ
 and 

n

γ  respectively. 

The proofs of Theorems 1, 2 and 3 are given in Supplementary Material D. 

Remark 2. The fact that the informative and non-informative survival functions 

are orthogonal (part (ii) of Theorems 1 and 2) suggests that the estimation 

algorithm will yield more accurate parameter vector updates throughout the 

iterations (e.g., Nocedal & Wright, 2006). Moreover, Theorem 3 shows that under 

informative censoring it is possible to estimate the model’s coefficients more 

efficiently since more information is exploited by the informative model. 
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Remark 3. As far as the construction of confidence intervals and p-values are 

concerned, for practical purposes it is convenient to adapt to the current context 

the results discussed in Marra et al. (2017). Supplementary Material E provides 

more details on this. 

3 Simulation study 

This section provides evidence on the empirical effectiveness of the proposed 

methodology in recovering true linear effects, non linear effects and baseline 

functions under informative censoring for three Data Generating Processes 

(DGPs). The performance of the informative penalized maximum log-likelihood 

estimator against that of its non-informative counterpart was also examined. 

(i) DGP1 ( 1iz
 non-informative, 2iz

 informative and censoring rate of about 

78%). Event times, 1iT
, were generated from a proportional hazard model, 

while censored times, 2iT
, were generated from a proportional odd model. 

These, defined on the survival function scale, are given by 

 

 

10 1 01 11 1 11 2

20 2

02 12 1 12 2

20 2

log log ( ) ( ),

1 ( )
log ( ),

( )

i i i

i

i i

i

S t z s z

S t
z s z

S t

 

 

     

 
   

 

 (19) 

where 
2.4 1.0

10 1 1 1( ) 0.72exp( 0.4 ) 0.28exp( 0.1 )i i iS t t t   
 and 

2.2 1.1

20 2 2 2( ) 0.99exp( 0.1 ) 0.01exp( 0.4 )i i iS t t t   
 (Crowther & Lambert, 2013). 

Covariate 1iz
 was generated using a binomial distribution and 2iz

 using a 

uniform distribution. As for the smooth functions, we used 

11 2 12 2( ) ( ) 0.2exp(3.2 )i i is z s z z  
, whereas the parametric coefficients were: 

01 02 110.25, 0.85, 2.0     
 and 12 1.8 

. 

Sample sizes were set to 500, 1000 and 4000, and the number of 

replicates to 1000. Replicates in which the models did not converge were 
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discarded and replaced with additional ones. The models were fitted using 

gamlss() in GJRM by employing the proportional hazard link (”PH”) for the 

event times and the proportional odd link (”PO”) for the censoring times 

(see Supplementary Material A for some software details). The smooth 

components of z2 were represented using penalized low rank thin plate 

splines with second order penalty and 10 bases (the default in GJRM), and 

the smooths of times using monotonic penalized B-splines with penalty 

defined in Section 2.3 and 10 bases. Note that smooth terms of 

explanatory variables can also be represented using different spline 

definitions (see Supplementary Material A). In the case of one-

dimensional smooth functions, all definitions lead to virtually the same 

result as long as the amount of smoothing is selected in a data-driven 

manner (e.g., Wood, 2017). For each replicate, curve estimates were 

constructed using 200 equally spaced fixed values in the (0, 8) range for 

the baseline functions and (0, 1) otherwise. 

Results: Regarding the estimates for α11 (the parameter of the non-

informative covariate), Figure 4 (in Supplementary Material G) and Table 1 

show that overall the mean estimates for the IPMLE and NPMLE are very 

close to the respective true values and improve as the sample size 

increases, and that the variability of the estimates decreases as the 

sample size grows large. 

As for the smooth effect of the informative covariate, Figures 6 and 7 (in 

Supplementary Material G), and Table 1 show that overall the true 

functions are recovered well by the proposed estimation methods and that 

the results improve in terms of bias and efficiency as the sample size 

increases. However, the IPMLE is more efficient than the NPMLE for all 

sample sizes examined in the simulation study; for example, for 

n 500,1000  the RMSE for the NPMLE is more than twice as large as the 
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IPMLE. Some gains in efficiency are also observed for the baseline 

functions. 

(ii) DGP2 ( 1iz
 informative, 2iz

 informative and censoring rate of about 

74%). As for DGP1, 1iT
 and 2iT

 were generated using the model defined in 

(19). However, in this case, the baseline survival functions were defined 

as 
2.4 1.0

10 1 1 1( ) 0.75exp( 0.4 ) 0.25exp( 0.1 )i i iS t t t   
 and 

2.2 1.1

20 2 2 2( ) 0.99exp( 0.1 ) 0.01exp( 0.4 )i i iS t t t   
. The informative covariates, 1iz

 

and 2iz
, were generated using binomial and uniform distributions, 

respectively. Finally, 11 2 12 2 01 02( ) ( ) 0.2exp(3.2 ), 0.25, 0.85i i is z s z z      
 

and 11 12 1.5   
. 

Results: Similarly to DGP1, Figures 5, 8 and 9 and Table 3 (in 

Supplementary Material G) show that overall the mean estimates for the 

two estimators are very close to the respective true values and improve as 

the sample size increases. The variability of the estimates also decreases 

as the sample size grows large. However, the IPMLE is significantly more 

efficient than the NPMLE for all cases considered. 

Computing times for the proposed approach were on average 8 seconds for n = 

4000 and around 5 seconds for n = 1000, 500. A third DGP with a different 

smooth function for 2iz
 and with a censoring rate of about 47% was explored 

(see Supplementary Material G). This DGP suggested the perhaps expected 

result that the gain in efficiency of the IPMLE tends not to be too significant when 

a mild censoring rate is considered. Finally, for the above DGPs, we explored the 

ability of information criteria such as the Akaike information criterion (AIC) and 

the Bayesian information criterion (BIC), defined in Supplementary Material F, to 

select the correct model. When doing this, we also considered the informative 

estimator with incorrectly chosen set of informative covariates (e.g., for DGP1, in 
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estimation, z1 was assumed to be informative instead of z2). For all sample sizes 

and cases considered both AIC and BIC always chose the correct model. 

4 Empirical illustration 

The modelling framework is illustrated using the data employed by Lu & 

Zhang (2012), where the aim was to assess how several factors affect the 

contraction of pneumonia in infants in the presence of informative censoring. 

According to the World Health Organization (WHO), pneumonia accounted for 

16% of all deaths of children under five years old in 2015. The data set consists 

of 3470 annual personal interviews conducted for the National Longitudinal 

Survey of Youth from 1979 through 1986 (NLSY, 1995). The response variable, 

Yi, is the age, in months, at which the infant was hospitalised for pneumonia, and 

97.9% of this variable is right censored. 

The covariates considered in the modeling were age of the mother in years 

(mthage), urban environment (urban = 1, rural = 0), region (1 = north-east, 2 = 

north central, 3 = south, 4 = west), poverty (1 = yes, 0 = no), whether the infant 

had a normal birth weight as defined by weighting at least 5.5 pounds (wmonth = 1 

if yes and 0 otherwise), race (1 = white, 2 = black, 3 = other), education (years of 

school of mother), month the child started to be on solid food (sfmonth), average 

number of cigarettes smoked per week during pregnancy (smoke = 0, 1 or 2) and 

alcohol used by mother during pregnancy (0, 1, 2), where the higher the number 

the higher the frequency of alcohol consumption. To capture the effect of housing 

crowding (since pneumonia is a communicable disease), number of siblings of 

the child (nsibs) was considered and grouped in three categories (0 for infants 

without siblings, 1 for infants with one to three siblings, and 2 for more than three 

siblings. 

To assess whether the censoring mechanism was informative, we employed the 

AIC, BIC, and K-Fold Cross validation (
KCV ) with K = 20 (decreasing or 

increasing this value did not alter the conclusions); see Supplementary Material F 
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for their definitions. Since several combinations of covariates and link functions 

had to be considered, a number of models were tried out and the final models 

selected using the above mentioned criteria. Table 2 in Supplementary Material F 

shows the results for the chosen models and supports the presence of 

informative censoring through the alcohol and region variables (Model 3). Table 

2 and Figure 1 present the results for Model 3 and Model 1 (the latter neglects 

informative censoring). 

Main findings: From a quick overall look at Table 2, the results exhibit a smaller 

estimation uncertainty for the informative model. Analysing the table in more 

detail, the coefficients of wmonth, nsibs1, nsibs2 are statistically significant for 

both models. For instance, the expected hazard for infants with one to three 

siblings is 2 times that for infants without siblings. Similarly, the expected hazard 

is 6.4 times higher in infants with more than 3 siblings as compared to infants 

with no siblings. The parameters of categories alcohol1 and region4 of the 

respective variables are statistically significant at the 10% level for the 

informative model and are not significant for the non-informative model. The 

implication of this result is that using the non-informative model the variables 

alcohol and region would most likely be removed from the model, hence 

missing out on some potentially important behavioral and geographical patterns. 

The table also shows that the smooth functions estimates for s(u) and s(mthage) 

are statistically significant for both models, whereas Figure 1 displays their 

estimated functional forms along with the survival and hazard curves. The plots 

show, for instance, that, after a certain point, the hazard to contract pneumonia 

decreases with mother’s age. The survival and hazard curves are every similar 

across the two models with the main difference that the informative approach 

yields considerably less variable estimates. Our results are consistent with those 

of Lu & Zhang (2012) who found that the censoring mechanism is informative in 

this dataset, and that the informative model provides a better fit as compared to 

its non informative counterpart. 
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5 Discussion 

In this article, we have introduced generalized link-based additive survival 

models with informative censoring and their potential illustrated using simulated 

and real data. The proofs of the n -consistency and asymptotic normality of the 

non-informative and informative estimators have been provided. Further, we 

showed that the newly introduced informative estimator is more efficient than its 

non-informative counterpart. 

Important features of the modelling framework are that: the survival models can 

account for informative censoring; the baseline functions are estimated non-

parametrically via means of monotonic P-splines, which allows one to obtain 

coherent estimated survival functions; covariate effects are flexibly determined 

using additive predictors; the optimization scheme allows for the reliable 

simultaneous penalized estimation of all model’s parameters as well as for stable 

and fast automatic multiple smoothing parameter selection; the models can be 

easily utilized using the freely available GJRMR  package which allows for several 

modelling choice as well as for transparent and reproducible research. Given that 

the assumption of absence of informative censoring is often made for 

mathematical convenience as well as lack of software, the proposed 

methodology is likely to appeal researchers in various fields wishing to estimate 

possibly more realistic survival models. 

Future research will focus on extending the proposed informative model to 

include time varying covariates along with the incorporation of left and interval 

censored responses, and on the construction of efficient schemes for selecting 

automatically the set of informative covariates. We will also look into the case of 

dependent censoring as well as alternative estimation approaches such as sieve 

maximum likelihood. 

References 

Acc
ep

te
d 

M
an

us
cr

ipt



Andersen, P. K. & Keiding, N. (2006). Survival and event history analysis. Wiley 

Chichester. 

Chen, Y.-H. (2010). Semiparametric marginal regression analysis for dependent 

competing risks under an assumed copula. Journal of the Royal Statistical 

Society: Series B (Statistical Methodology), 72(2), 235–251. 

Cox, D. (1972). Regression models and life tables (with discussion). Journal of 

the Royal Statistical Society, Series B, 34(2), 187–220. 

Cox, D. R. (1959). The analysis of exponentially distributed life-times with two 

types of failure. Journal of the Royal Statistical Society: Series B 

(Methodological), 21(2), 411–421. 

Crowder, M. J. (2012). Multivariate survival analysis and competing risks. 

Chapman and Hall/CRC. 

Crowther, M. J. & Lambert, P. C. (2013). Simulating biologically plausible 

complex survival data. Statistics in medicine, 32(23), 4118–4134. 

Emura, T. & Chen, Y.-H. (2018). Analysis of Survival Data with Dependent 

Censoring: Copula-Based Approaches. Springer. 

Hjort, N. L. (1992). On inference in parametric survival data models. International 

Statistical Review/Revue Internationale de Statistique, 60(3), 355–387. 

Huang, X. & Zhang, N. (2008). Regression survival analysis with an assumed 

copula for dependent censoring: a sensitivity analysis approach. Biometrics, 

64(4), 1090–1099. 

Kalbfleisch, J. D. & Prentice, R. L. (2002). The Statistical Analysis of Failure Time 

Data. 2nd Ed. Hoboken, Wiley. 

Acc
ep

te
d 

M
an

us
cr

ipt



Koziol, J. A. & Green, S. B. (1976). A cramér-von mises statistic for randomly 

censored data. Biometrika, 63(3), 465–474. 

Lagakos, S. (1979). General right censoring and its impact on the analysis of 

survival data. Biometrics, 35(1), 139–156. 

Leitenstorfer, F. & Tutz, G. (2006). Generalized monotonic regression based on 

b-splines with an application to air pollution data. Biostatistics, 8(3), 654–673. 

Li, R. & Peng, L. (2015). Quantile regression adjusting for dependent censoring 

from semicompeting risks. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 77(1), 107–130. 

Liu, X.-R., Pawitan, Y., & Clements, M. (2018). Parametric and penalized 

generalized survival models. Statistical methods in medical research, 27(5), 

1531–1546. 

Lu, Z. & Zhang, W. (2012). Semiparametric likelihood estimation in survival 

models with informative censoring. Journal of Multivariate Analysis, 106, 187–

211. 

Ma, J., Heritier, S., & Lô, S. N. (2014). On the maximum penalized likelihood 

approach for proportional hazard models with right censored survival data. 

Computational Statistics & Data Analysis, 74, 142–156. 

Marra, G. & Radice, R. (2019). GJRM: Generalised Joint Regression Modelling. 

R package version 0.2-1. 

Marra, G., Radice, R., Bärnighausen, T., Wood, S. N., & McGovern, M. E. 

(2017). A simultaneous equation approach to estimating hiv prevalence with 

nonignorable missing responses. Journal of the American Statistical Association, 

112(518), 484–496. 

Acc
ep

te
d 

M
an

us
cr

ipt



NLSY (1995). National Longitudinal Survey of Youth Handbook. The Ohio State 

University. 

Nocedal, J. & Wright, S. (2006). Numerical optimization, series in operations 

research and financial engineering. Springer, New York, USA, 2006. 

Pya, N. & Wood, S. N. (2015). Shape constrained additive models. Statistics and 

Computing, 25(3), 543–559. 

Reid, N. (1994). A conversation with sir david cox. Statistical Science, 9(3), 439–

455. 

Scheike, T. H. & Zhang, M.-J. (2003). Extensions and applications of the cox-

aalen survival model. Biometrics, 59(4), 1036–1045. 

Siannis, F., Copas, J., & Lu, G. (2005). Sensitivity analysis for informative 

censoring in parametric survival models. Biostatistics, 6(1), 77–91. 

Slud, E. V. & Rubinstein, L. V. (1983). Dependent competing risks and summary 

survival curves. Biometrika, 70(3), 643–649. 

Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. 

Proceedings of the National Academy of Sciences, 72(1), 20–22. 

Vatter, T. & Chavez-Demoulin, V. (2015). Generalized additive models for 

conditional dependence structures. Journal of Multivariate Analysis, 141, 147–

167. 

Wang, A., Chandra, K., Xu, R., & Sun, J. (2015). The identifiability of dependent 

competing risks models induced by bivariate frailty models. Scandinavian Journal 

of Statistics, 42(2), 427–437. 

Wood, S. N. (2017). Generalized Additive Models: An Introduction With R. 

Second Edition, Chapman & Hall/CRC, London. 

Acc
ep

te
d 

M
an

us
cr

ipt



Xu, J., Ma, J., Connors, M. H., & Brodaty, H. (2018). Proportional hazard model 

estimation under dependent censoring using copulas and penalized likelihood. 

Statistics in medicine, 37(14), 2238–2251. 

Xu, J., Ma, J., & Prvan, T. (2017). Non parametric hazard estimation with 

dependent censoring using penalized likelihood and an assumed copula. 

Communications in Statistics-Theory and Methods, 46(22), 11383–11403. 

Xue, X., Xie, X., & Strickler, H. D. (2018). A censored quantile regression 

approach for the analysis of time to event data. Statistical methods in medical 

research, 27(3), 955–965. 

Younes, N. & Lachin, J. (1997). Link-based models for survival data with interval 

and continuous time censoring. Biometrics, 53(4), 1199–1211. 

Yuan, M. (2005). Semiparametric censorship model with covariates. Test, 14(2), 

489–514. 

Zeng, D. et al. (2004). Estimating marginal survival function by adjusting for 

dependent censoring using many covariates. The Annals of Statistics, 32(4), 

1533–1555. 

Zheng, M. & Klein, J. P. (1995). Estimates of marginal survival for dependent 

competing risks based on an assumed copula. Biometrika, 82(1), 127–138. 

  

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 1 Smooth function estimates and their corresponding 95% intervals for 

Model 1 (non-informative model) and Model 3 (informative model) obtained by 

applying gamlss() in GJRM to pneumonia data. The intervals have been obtained 

using the approach described in Supplementary Material E. 
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Table 1 Bias and root mean squared error (RMSE) for the IPMLE and NPMLE 

obtained by applying the gamlss() to informative survival data simulated 

according to DGP1 characterised by a censoring rate of about 78%. Bias and 

RMSE for the smooth terms are calculated, respectively, as 

1

1

ˆ| |
sn

s i i

i

n s s




 and 

 
2

1 1

,

1 1

ˆ
reps

nn

s rep rep i i

i rep

n n s s 

 

 
, where 

1

,

1

ˆ ˆ
repn

i rep rep i

rep

s n s



 
, ns is the number of equally 

spaced fixed values in the (0, 8) or (0,1)  range, and nrep is the number of 

simulation replicates. In this case, ns = 200 and nrep = 1000. The bias for the 

smooth terms is based on absolute differences in order to avoid compensating 

effects when taking the sum. 

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)  

 Bias RMSE 

 n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000 

α11  -0.047  -0.013  -0.001  0.369  0.239  0.118  

s11  0.036  0.028  0.013  0.161  0.114  0.061  

h10 0.095  0.069  0.034  0.336  0.245  0.104  

S10 0.027  0.024  0.018  0.071  0.054  0.033  

(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)  

 Bias RMSE 

 n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000 

α11  -0.079  -0.015  -0.005  0.360  0.245  0.116  

s11  0.085  0.069  0.046  0.383  0.206  0.118  

h10 0.120  0.070  0.034  0.427  0.292  0.121  

S10 0.034  0.025  0.017  0.086  0.068  0.039  
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Table 2 Estimation results of the non-informative and informative models 

(Models 1 and 3, respectively, in Table 5 in Supplementary Material F) applied to 

pneumonia data. The models were fitted using gamlss() in GJRM by employing the 

”PH-PH” link functions combination. Furthermore, EDF  and Ref.DF  refer to the 

effective degrees of freedom and reference degrees of freedom of the smooths. 

More details can be founded in Supplementary Materials C and E.  

(a) Model 1 (NPMLE) 

Linear Covariates  Estimate Standart Error Z-value  P-value  

intercept  -71.28  45.52  -1.566   0.117 

alcohol1   0.364  0.310   1.174   0.240  

alcohol2  -0.130  0.336  -0.386   0.700 

nsibs1   0.696  0.258   2.695   .0 007  

nsibs2   1.833  0.761   2.408   .0 016  
region2  -0.004  0.343  -0.012   0.991  

region3  -0.489  0.343  -1.426   0.154  

region4  -0.698  0.438  -1.595   0.111  

wmonth  -0.767  0.293  -2.617   .0 009  

Smooth Variables  EDF  Ref.DF  Chi-square P-value  

s(u)  7.776  8.640  101.94   2e-16  

s(mthage)  2.503  3.171  10.41   .0 019  

(b) Model 3 (IPMLE) 

Linear Covariates  Estimate Standart Error Z-value  P-value  

intercept  -71.50  45.51  -1.571   0.116  

alcohol1   0.086  0.046   1.859   .0 063  
alcohol2   0.022  0.046   0.472   0.637  

nsibs1   0.687  0.257   2.670   .0 008  

nsibs2   1.860  0.760   2.448   .0 014  
region2  -0.063  0.056  -1.135   0.256  

region3  -0.017  0.052  -0.325   0.745  

region4  -0.107  0.059  -1.814   .0 070  
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(a) Model 1 (NPMLE) 

wmonth  -0.761  0.291  -2.616   .0 009  

Smooth Variables  EDF  Ref.DF  Chi-square P-value  

s(u)  7.776  8.640  101.59   2e-16  

s(mthage)  2.466  3.127  9.501   .0 026  
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