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Abstract— The incidence of chronic liver disease has in-
creased in Europe and can lead to Acute on Chronic Liver
Failure (ACLF) which is associated with high levels of mortality
due to multisystem organ failure. The characteristics of the
ACLF patients can change very rapidly within a short period of
time. Continuous assessment of their recovery status is critical
for clinicians to adjust and deliver effective treatment. The aim
of this paper is to validate the usefulness of a data preparation
approach by combining different criteria to replace missing
values, balance target-class variables, select useful patient char-
acteristics and optimise hyperparameters of machine learning
models for the prediction of ACLF associated mortality rates.
A key step in the data preparation is a feature selection Mutual
Information (MI) based multivariate approach to build smaller,
and yet equally and in some cases more informative, subsets
of patient characteristics than those frequently proposed for
the prediction of mortality, from patients with ACLF in the
CANONIC dataset. The usefulness of the data preparation
approach proposed to predict mortality was evaluated by
training the XGBoost and Logistic Regression models with
the prepared data. Evaluations of the models trained using
a test set provided evidence of an overall high accuracy in the
prediction of the mortality rates of patients for days after their
diagnosis, and in some cases even higher when reduced and
more informative subsets of patient characteristics were found.

I. INTRODUCTION

The incidence of chronic liver injury has increased and
it can lead to ACLF, a condition associated with rapid
deterioration in clinical status (usually four weeks of onset)
and often leading to multi-organ failure and high mortality.
There are an estimated 170,000 patients dying from ACLF
each year in Europe alone with limited treatments options,
including liver transplantation, which is restricted by a short
time window to intervene, progression of organ failure and
limitations in organ availability.

Efforts, within the medical field, are constantly carried
out to minimise the mortality rates by improving the current
dialysis procedures for treating patients. The achievement of
such improvements is part of the objectives of the ALIVER
project [1], on which this research work is based. Other

objectives include to reach a more accurate diagnosis and
prognosis of ACLF to help guide better the dialysis therapies
and improve patients’ overall quality of health, allowing them
to live better and wait longer for a liver transplantation.

The therapies need to be provided within specific time
points to the patients for them to improve their response to
the dialysis treatments. The optimal therapy delivery time
frame for patients could be better determined by providing
future overall information on organ failures and decompen-
sations; or in any case on their possible future recovery
paths captured in the prediction of their mortality rates. The
accurate prediction of these patients’ mortality is the core ob-
jective of this work. The prediction is carried out by training
Machine Learning (ML) models using mortality historical
related data of patients from the CANONIC dataset, for
which detailed information on its variables can be found in
[3]. The predictions aim to provide clinicians with additional
information to help assess better the likelihood of ACLF
mortality. The assessment is not trivial, as even when patients
show recovery sudden infections or organ failures occur.

The incidence of ACLF mortality is very high within
the first three months after its diagnosis. Around 30% of
patients show health complications and ultimately die, even
those that have been discharged from the hospital with a
reasonably improved health condition can, frequently, present
deterioration, as they cannot receive the same quality of care
as in the hospital. The frequency of hospital readmission
within three months of discharge is of the order of 40% as
reported in several studies [5]. Also when a complication
is severe enough and not treated when required it can lead
to a higher severity of ACLF, this is denoted by the levels
one, two and three, which correspond to the number of
organs failing in the patients, and therefore to a considerable
increase in their mortality rate.

The accurate prediction of mortality rates would help
to determine patients that might require an adjustment on
their dialysis therapy, or at least require a closer form of
monitoring to help their likely futile course by offering



palliative options accordingly.
To boost the predicted accuracy of the mortality rates re-

quired, a data preparation approach is proposed in this paper
that addresses important inconsistencies in the CANONIC
data, gathered from a selected subset of ACLF patients for
this work. The first inconsistency addressed is the missing
patient observation values, which increase considerably in
number after patients die and are therefore unable to con-
tribute with more data records. The second inconsistency
addressed is the imbalance of the classes which is rather
severe especially during the initial days of prediction, right
after the patients diagnosis of ACLF when too few positive
data records, corresponding to dead patients, can be found.
A third inconsistency addressed is the selection of data
variables, called patient characteristics, that are essential
in the accurate prediction of mortality. The selection is
performed by eliminating non-informative variables and by
keeping only subsets that are found highly informative for
the accurate prediction.

The selection of the variables that correspond to patient
characteristics is particularly useful in reducing the data
gathering effort, and simplifies the further steps taken in
the data preparation and in the building of the ML predict-
ing models. Also the small subset variable selection helps
with the overall interpretability and understandability of the
patient characteristics deeply correlated in the development
and progression of the ACLF condition of patients, which
could help clinicians to advance steps for setting a standard
criterion for its diagnosis. Previous works have been carried
out to predict the ACLF different levels of intensity and
the mortality rates of patients, by proposing scores, such as
the SOFA and CLIF-SOFA to associate potential factors and
provide insights in the development of ACLF [8]. Some of
these previous works, in some cases, use larger amounts of
patients characteristics than those considered in this work.
Such a reduction on the data used in accurately predicting
ACLF related mortality rates is the main contribution of this
paper, with the data preparation approach proposed.

In the following section a recent state-of-the-art work is
presented that includes relevant ideas for the improvement
of care and outcome of ACLF patients. The ideas proposed
are based on acquiring patients’ data of different medical
symptoms and signs at different stages of progression of the
ACLF to mainly reduce hospital readmission rates.

II. STATE OF THE ART

Current results indicate that there is still work to be
done to provide clearer explanations of ACLF developments
and progressions in patients presenting different scenarios
in terms of acuteness and major determinants of short term
mortality. Efforts in providing such explanations have taken
place in different liver disease hospitals from Europe and the
United States (US).

In the US the hospitalisation costs have increased from
around five billion dollars in 2001 to ten billion dollars in
2011. In[2] it is discussed how telemedicine and other novel

health remote monitoring strategies could provide better
healthcare to more patients, keeping the costs low.

In [3] a diagnostic criterion is proposed based on the
CANONIC dataset to determine different grades of ACLF,
to predict the need for liver transplantation and the progres-
sion of severity in patients, and also the progression and
response to treatments over time. This work also provides
an assessment of the statistical significance of the different
variables’ clinical usefulness at different points in time to
create a relational basis for ACLF therapy.

In [4], [5] multicentre statistical studies shows that a
total of 53% of patients required hospital readmissions in a
three-month time span. The work in [5] shows that a better
prediction of the readmissions requires relevant variables in
diagnosing ACLF, which might help recognizing tangible
areas of intervention. This work used multivariate LR models
and a new proposed score based on admission and discharge
variables to predict hospital readmissions.

The predictions of hospital readmissions were performed
using two different datasets. The first model was created
using admission variables, and the second model was created
using variables generated within the hospital discharged time
frame. The results showed that 30% of the readmissions
could not be predicted.

In [6], clinical characteristics and laboratory parameters
are used within the score called CLIF-C AD to provide an
increased mortality accuracy prediction, primarily within the
three-month time span. The results in this work showed that
this score outperforms, by 8% to 15%, other scores such as
the one called Model for End-Stage Disease. The CLIF-C
AD score was also used as a criterion to determine patients
with a high and low risk of health deterioration, to consider
patients that could be discharged early.

Another score is proposed in [7] for the prediction of
ACLF patient prognosis. The score was defined simpler than
other scores by being based on organ failure variables, and
also including age and white blood cell count. The score
proposed provided a significantly higher predictive accuracy
than other proposed scores such as the MELD, MELD-Na,
and CPs.

In [8] the current definition and potential causes of ACLF
are discussed based on proposing variables in building more
accurate predictive models. To assess the variable usefulness
univariate statistical relationships were determined using the
chi2, student t-test and ANOVA. The relationships aimed
to determine potential factors in the development of ACLF
and in the prediction of mortality rates. The predictive
models were trained by implementing a multivariate stepwise
forward method using statistical significance.

Other efforts are presented in [9] by considering a Remote
Monitoring System for the improvement of healthcare of out-
patients or patients after being discharged from the hospital.
It is included the evaluation over time of the efficacy and
financial sustainability of the care management check-ups
on a regular basis. The evaluation consisted of assessing
the differences in outcome between the patients provided
with specific care management check-up and patients pro-



vided with a standard outpatients care. It was concluded the
existence of advantages in monitoring the patients’ levels
of recovery in a continuous and remote way by reducing
the hospital readmission rates. In this work efforts to help
reduce the hospital readmission rates were carried out, but
concluded much research is required before accurate data
driven recommendations can impact significantly to help
alleviate liver conditions.

In the following section the steps followed in this work are
presented. Information on the CANONIC data is given, in-
cluding sings and indications gathered from patients, and the
steps followed to predict the mortality rates across specific
time spans within the first month after ACLF diagnosis.

III. METHODOLOGY

The CANONIC data used can be organized in two cat-
egories of clinical variables the first one corresponding
to clinical and biomarkers characteristics gathered under
standarized laboratory techniques [8]. The second category
contains only biomarker variables obtained using laboratory
techniques of exploratory kind [8]. Three different groups of
variables were built, using the two mentioned categories, in
order to explore their predictive power in predicting mortality
rates.

The first and second group corresponds to the first and
second categories mentioned, and are called Non-Exploratory
(NE) and Exploratory (E), respectively. The third group
called Both (B) contains both the first and second group.
Results on the predictive power provided by these three
groups can be found in the next section in Table III.

A high number of missing values can be found in all of
the three groups considered, increasing these even more in
the latter days of prediction. If the data instances are simply
dismissed where missing values are found, there would not
be enough data to carry out the training and testing of
such ML models. For this reason and as a first step of the
data preparation approach proposed, two methodologies for
replacing the missing values with data were explored and
tested, given their relative simplicity. The first method simply
replaced the missing values with the Mode (M) value of the
variable where a missing value is found. The second method
replaces the missing values with a number generated from
a Random Normal Distribution (RND) that has the same
mean and Standard Deviation (STD) of the variable where
the missing value is found.

After the missing values are replaced, and as a second step
the dataset is randomly split into train and test sets. The 80%
of the data instances were assigned to the train set and the
remaining 20% to the test set.

Using exclusively the training set a third step in the data
preparation approach process, is the multivariate Feature
Selection (FS) using the MI as criterion, which is a very well
known similarity information measure. And similarly using
only the training set a fourth and last step is to balance the
number of positive and negative class data labels for each of
the prediction days. After the dataset is prepared, a number
of hyperparameter optimization ML approaches are explored

to determine a useful combination of parameters for training
the predictive models.

A. The CANONIC dataset

The patient characteristics used for ML training and testing
were extracted from the CANONIC dataset, from across the
first 22 days after the hospital inclusion day. The hospital
inclusion day being the first day the patients arrived to
hospital and therefore when data started being gathered. The
initial data gathered are called inclusion day. Data collected
two days after the inclusion day are called “day 1” and “day
2” respectively. The data gathered between day 3 and day
7 are called the “day 3” data. The data gathered between
day 8 and day 14 are called “day 8” data. The data gathered
between the day 15 and day 21 are marked as “day 15”. From
day 22 to day 28 the data are marked as “day 22”. All the data
gathered between day 1 and day 22 was considered within
the proposed data preparation approach for the prediction of
mortality rates at day 29.

The mortality target variables, used to train the predictive
models, for the prediction days is organised in the CANONIC
data as follows. The mortality target variable at day 1
contains binary information of all the dead and living patients
at this day. The data instances corresponding to the living
patients are labelled with a zero value, and the dead ones
labelled with the number one. The mortality target variable
varies for each of the prediction days as the number of dead
and living patients changes depending of the prediction day.

Both the targets and the patient characteristics for each of
the days were used to train the ML models in a supervised
way. The training and testing data used to build the predictive
models for day 1 had data only from the inclusion day. For
the remaining days, all the previous data instances available
before a particular prediction day were considered for the
training and testing of the models. For instance, for training
and testing the models to predict the mortality at day 3 all
the patient information available from inclusion day to day
2 was considered.

The technical approach for the selection of useful patient
characteristics, using the MI, for each of the days of predic-
tion mentioned before is described in the next section.

B. The MI as a feature selection criterion

The MI is a popular technique and has been used exten-
sively across the probability and information theory fields
[11]. The MI can determine linear and non-linear relation-
ships amongst variables or groups variables and provides a
quantification for the information they share.

Despite the advantages in using MI its calculation can be
negatively impacted when there is very little variance in the
data, which happens when many repeated or missing values
are present, caused by inconsistencies in its gathering pro-
cess, or reduced number of data instances [12], [13]. Another
disadvantage of the MI is that its multivariate calculation
becomes computationally very expensive in higher multi-
dimensional spaces and therefore its usage is often restricted
mainly to univariate FS analysis [14].



In the following two sections 3.3 and 3.4 a description of
these two methodologies, univariate and multivariate, is pro-
vided to highlight the similarities and dissimilarities between
both methods. And to understand better the potential of the
multivariate analysis in describing more complex phenomena
than its univariate counterpart. It is important to mention
at this point that the multivariate approach, in the data
used, provided higher AUC performance while providing
smaller subsets of patient characteristics than the univariate
method without jeopardising the level of prediction accuracy
when using the whole set of characteristics. Therefore only
the results obtained when selecting characteristics using the
multivariate approach are reported in this work.

C. Univariate feature selection

The univariate FS analysis is less computationally ex-
pensive than the multivariate approach. This is mainly as
the univariate approach does not use combinatorial search
strategies to determine the useful features. A disadvantage
of the univariate analysis is that it does not consider the
relationships among groups of variables and how these can
lead to reduced amount of data with higher predictive power.
Which in this work, could lead to not capturing the ACLF
heterogeneous complexity provided by the different patient
characteristics.

Despite the univariate methods being less sophisticated
and tending to provide less accurate predictive results than
the multivariate approaches, they are sometimes preferred
when providing enough performance and given their lower
computational cost and scalability [15].

D. Multivariate feature selection

The MI information and the Sequential Forward Selec-
tion (SFS) approach were combined in this work for the
evaluation and search of useful combinations of patient
characteristics in accurately predicting mortality rates.

For the calculation of the multivariate MI in this work,
the package called Gaussian-Copula Mutual Information
(GCMI) version 3.0 was used under the Python GNU General
Public License [16]. This package is used for the calculation
of the MI between a multidimensional data input (patient
characteristics) and a vector output (mortality patient label)
with discrete values using a Gaussian mixture model [16].
The GCMI package calculates a multidimensional MI as-
suming the data variables are normally distributed.

The SFS algorithm was implemented from scratch and
embedded within the GCMI for the multivariate calculation
of the MI with the aim of capturing relevant relationships
between the mortality CANONIC variable and the different
groups of patient characteristics explored.

The multivariate FS approach allows for the measurement
of the patient characteristics usefulness considering their
group-relationships to the mortality variable, which aims to
determine higher relevance in predictability of the mortality
using smaller groups of patient characteristics.

If after considering a new patient characteristic for evalu-
ation of the MI, following the SFS approach, a non-positive

covariance matrix is calculated within the evaluation of
the MI algorithm, then this new patient characteristic is
considered redundant, which means that the new patient
characteristic can be represented as a linear combination of
other variables that are part of the group that have been
already selected. When this is the case the new patient
characteristic is dismissed and not considered part of the
subset of useful patient characteristics in the prediction of
mortality [13], [17].

When the dimensionality of a patients’ characteristics sub-
set grows in number, it is not rare for the GCMI algorithm to
calculate more of the non-positive covariance matrices. This
type of matrices, especially in the latter days of prediction,
result when an increased amount of information from the
same patient characteristic types is collected, with some of it
becoming increasingly redundant. The patient characteristics
that cause the calculation of the non-positive covariance
matrices are considered non-essential in the prediction of
mortality, and so dismissed before training the ML models.

The patient characteristics that combined provided higher
MI quantities were considered highly informative and useful
in the prediction of mortality. As opposed to other com-
binations that provided lower levels of MI, and therefore
are considered less informative and are least useful in the
prediction of mortality.

In the present and previous subsections it is summarized
the main differences between the multivariate and the uni-
variate FS approaches; and highlight the potential advantages
in using the former over the latter approach for the purposes
of this work. In the following sections the next steps after
FS in the data preparation approach are described.

E. The class data balance and the hyperparameter optimiza-
tion

After the selection of the patient characteristics two class
balanced approaches were explored and applied to the train-
ing data at the different prediction days to alleviate the class
imbalance problem and to avoid the overfitting of the models
during the training phase. The class imbalance is generated
by the low number of positive labels (dead patients) and
the high level of negative labels (living patients) present
especially in the training data used for the prediction of the
first two days. The class balance approach used for these two
days was the Random Over Sampler [18]. For the remaining
days of prediction from day 3 to day 29 the class imbalance
is not as severe as in the first two days, the SMOTEEN class
balance approach was used as it provided higher Areas Under
the Curve (AUCs) results than other methodologies explored
within the imbalanced-learn package [19].

It is important to remark that the test data partition was not
balanced using any methodology, and that it was exclusively
the subject of a pre-processing data analysis for replacing
of its missing values. The training data partition, contrary
to the test data partition, and once balanced, was used to
fine tune the hyperparameters of the ML models compared
in performance, the LR and the XGBoost(XGB).



Two approaches for hyperparameter optimization were
tested in this work, Randomized [20] and Bayes Search
Cross Validation [11]. The Grid search was not considered
given its rather high computational complexity. No statistical
comparison of the hyperparameters optimization techniques
alone is provided in this work, as it is beyond its objectives

F. Building of the machine learning models

The two ML model types, the LR and the XGB, were
tested in the prediction of mortality for day 1, 2, 3, 15,
22 and day 29. A total of 112 different models (see Table
III) were built for each of the two ML types and for each
of the configurations for data preparation explored. The
models built for each prediction day were compared in
performance for the different patient characteristics selected.
The first criterion of selection uses the MI multivariate FS
approach to determine useful variables from a subset of
patient characteristics that exclusively contain NE clinical
variables. The second criterion similarly uses the MI multi-
variate FS approach, but in this case, it selects variables from
a subset that only contains E clinical group type variables.
The third criterion used the MI multivariate FS approach
to select useful variables from both (B) E and NE type of
patient characteristics. And lastly models were built without
selecting patient characteristics at all (none), this is all the
variables available per day were used.

The models built with the selected patient characteristics
were also compared to the models built using all the patient
characteristics available per day. The results provided by
the different ML models built using the different patient
characteristics can be found in the following section.

IV. RESULTS AND COMPARISONS

The ML predictive models built for the present work
usually predicted the negative mortality class without any
trouble as there were plenty of data instances of this type
(patients alive), especially in the initial days. For this reason,
attention was given to the patient characteristics that could
provide higher levels of recall (dead patients) and considered
as the most useful in the prediction of mortality.

Table I shows the percentage of missing values increased
across days. More than half of the variables contain missing
values from day 1, and most of the instances have at least
one missing value. Also from day 3 all the instances are
incomplete. By day 29 only a small fraction of 8.82% of the
variables is complete of the 255 instances available.

In Table II the number of patient characteristics selected
when using the NE and E clinical type and both (B) as
criterion are presented. Also contains the quantities selected,
when these clinical type groups are combined with the MI
FS approach for the selection of compact subset of patient
characteristics, when both the Median and the RND were
used to replace the missing values.

In Figure 1 information regarding the data class imbalance
across the days of prediction is provided. It can be seen how
the imbalance is very severe in the initial days when no many
patients have passed away.

TABLE I
PERCENTAGE OF DATA AVAILABLE PER DAY

Prediction
day

Data available
in columns %

Data Available
in records %

Number of
missing values

1 40.62 0.39 6630
2 32.14 0.39 8978
3 24.19 0 11594
8 16.73 0 20383

15 12.89 0 31293
22 10.49 0 46566
29 8.82 0 62632

TABLE II
NUMBER OF PATIENT CHARACTERISTICS USED EACH DAY (M-RND)

Pred.
day

Total
Num NE E NE+MI E+MI B+MI

1 97 58 40 4-5 5-4 6-4
2 145 103 40 11-10 7-9 8-7
3 193 148 40 18-17 19-16 18-19
8 278 193 77 42-44 36-41 39-42

15 361 238 112 48-50 26-48 48-50
22 444 283 147 60-54 40-55 61-36
29 527 328 182 62-60 17-58 20-60

The class imbalance is less severe in the latter days of
prediction when as the ACLF condition is progressed more
patients have died. The accuracy of the ML models was
evaluated using the AUC as performance criterion. In Table
III it can be seen that both the LOG and XGB ML models
achieved different levels of performance across the different
days of prediction, given that in many of cases for each
day different criteria were used for the preparation of the
data. The accuracy provided for each of the data preparation
configurations is compared in Table III. Every combination
tested results and comparisons can be found in the first
column of Table III. A intra-configuration comparison was
carried out as follows.

The training and testing of the ML models were repeated
10 times for statistical comparison purposes. The mean of
the highest and second highest AUC performances in each
configuration were compared. The statistical significance of
the comparison between the best two configuration models is
quantified, and the results were provided in the P-intra-Conf
(p-value) .

Fig. 1. Class Imbalance across days



Fig. 2. Usage levels of the different groups of patient characteristics

In Table III an inter-configuration (not intra-configuration)
data preparation comparison is carried out to determine the
one that provided the best ML model prediction performance.
The comparison is carried out as follows. The mean AUC
of the two best performer models across configurations were
compared per day and quantified in the P-inter-Conf row of
Table III. The comparison provides information on which
is the best data preparation configuration per day in the
prediction of mortality. When the p-value is <0.05 the
top two most accurate AUC results for a particular day
are considered to be statistically significant, when p>0.05
these two top results are considered equally accurate and
therefore the one that corresponds to the configuration that
uses less patients characteristics should be used. All the
statistical significance analyses were calculated using the
Mann-Whitney U test.

In Figure 2 it is shown the most used groups of patient
characteristics within the best data preparation configura-
tions, these are C2.3, C1.1, C4.3, C4.3, C1.1, C4.1 and
C4.1 for day 1, 2, 3, 8, 15, 22 and 29 respectively, The
horizontal Sum axis quantifies within histograms the number
of patient characteristics used from each of the groups of
patient characteristics, ranging from 0 to above 20.

V. CONCLUSION

In the prosed approach several configurations were ex-
plored and tested to prepare the CANONIC dataset used.
Each of these configurations use different techniques to
provide different AUC accuracies across the days as follows.

For the replacement of missing values, the RND criterion
appeared in the best configurations found for the days 3, 8, 22
and 29. While the Mode criterion appeared only for the days
1, 2 and 15. In a second step, when filtering and selecting
the patient characteristics, the NE+MI criteria appeared in
the best configurations found for the days 1, 15, 22 and 29.
For the remaining days the B+MI criteria appeared in the
best configurations.

In a third step when balancing the class variable, the
Radom Over Sampler Technique was part of the best con-
figurations for the day 1 and 2. And the SMOTEEN was
part of the best configurations for the remaining days. In
a fourth step to fine-tune the ML hyperparameters, the

Bayesian Search cross-validation approach was used in all of
the prediction days. In a fifth step we evaluated the impact
that the prepared data had in the ML models performance.
The XGB model performed better for the majority of the
prediction days, being the day 1 and 15 the only days in
which the LOG model overcame the XGB model.

In the day 1 the configuration C2.3 provided a AUC mean
very high of 0.97, despite this best high accuracy, one must
consider that the test set for this first day had a very severe
data class imbalance, with very few positive instances to
evaluate. Therefore, future tests should be made over more
cases of positive instances.

In the day 2 a best AUC mean of 0.86 was provided by the
configuration C2.3. The inter-configuration p-value (>0.05)
indicates that there is no statistical significance with the
second-best configuration C1.1 which, only used 11 patient
characteristics therefore, should be considered as the best
configuration of the two. In the day 3 a best AUC mean
of 0.9 was provided by C4.3. For this day 3 also there was
not statistical significance with the second best configuration
C1.4-none which uses 193 characteristics. Since C4.3 used
only 19 patient characteristics this configuration remains as
the best of the two. For the day 8 the top two best result,
were generated by the configurations C4.1 and C4.3, which
were not statistically significant (p>0.05). The C4.3 used
42 patient characteristics and can be considered as the best
configuration of the two, since it used less than C4.1.

In the day 15 the best AUC mean found was 0.81 which
was generated by the configuration C1.1. The top two AUC
results for this day were not statistically significant either, but
since C1.1NE used fewer patient characteristics (only 48), it
can still be considered the best of the two. For the day 22
the best mean AUC was 0.827 generated by C4.1.

And finally for day 29 the best AUC mean obtained was
0.758 generated by C4.4-none. The intra configuration p-
value (>0.05) indicated there was not statistical significance
with the second best mean AUC (0.667) provided by C4.1NE
which then can be considered as the best configuration of the
two since the latter uses less patient characteristics for the
prediction of mortality.

The day 29 had the lowest AUC prediction rate, but also
this day had the highest percentage of missing values and the
highest number of patient characteristics to select. And since
replacing the data artificially invariably affects the quality of
the data, the MI information calculation can also become
less accurate, impacting ultimately in the usefulness of the
patient characteristics selected and used in building the ML
mortality predictive models. Overall, the multivariate MI FS
approach showed to be useful in decreasing considerably
the amount of patient characteristics used for ML training.
Reducing the data dimensionality required can be very useful
since information within the healthcare space in many cases
is expensive or simply unfeasible to acquire.

The best configurations of techniques found in this work
will be considered in future exploratory analyses in the
prediction of ACLF related mortality. These configurations
will be challenged using new exploratory model architectures



TABLE III
PERFORMANCE COMPARISONS OF THE PERFORMANCE ACCURACY (AUC) GENERATED BY THE DATA PREPARATION CONFIGURATIONS FOR THE

PREDICTION OF ACLF RELATED MORTALITY USING THE LR AND XGB ML MODELS

Conf1 LR-M day1 std1 day2 std2 day3 std3 day8 std8 day15 std15 day22 std22 day29 std29
C1.1 NE+MI 0.371 0.007 0.807 0.114 0.756 0.095 0.723 0.069 0.814 0.039 0.795 0.012 0.641 0.024
C1.2 E+MI 0.782 0.004 0.791 0.007 0.674 0.036 0.591 0.102 0.501 0.026 0.550 0.041 0.529 0.000
C1.3 B+MI 0.767 0.009 0.796 0.000 0.561 0.009 0.644 0.014 0.477 0.056 0.716 0.011 0.558 0.032
C1.4 none 0.456 0.005 0.655 0.008 0.831 0.078 0.842 0.031 0.831 0.005 0.789 0.052 0.605 0.003

P-Intra-Conf 0.001 0.057 0.395 0.351 0.351 0.351 0.351
Conf2 XGB-M day1 std1 day2 std2 day3 std3 day8 std8 day15 std15 day22 std22 day29 std29
C2.1 NE+MI 0.474 0.009 0.488 0.009 0.483 0.014 0.681 0.084 0.717 0.063 0.742 0.038 0.678 0.041
C2.2 E+MI 0.782 0.144 0.836 0.000 0.569 0.099 0.577 0.072 0.572 0.031 0.51190 0.04 0.476 0.023
C2.3 B+MI 0.970 0.024 0.863 0.052 0.503 0.031 0.629 0.061 0.538 0.112 0.664 0.046 0.625 0.038
C2.4 none 0.484 0.014 0.499 0.004 0.533 0.066 0.739 0.121 0.744 0.053 0.733 0.042 0.696 0.027

P-Intra-Conf 3E-05 7E-05 7E-05 7E-05 7E-05 7E-05 7E-05
Conf3 LR-RND day1 std1 day2 std2 day3 std3 day8 std8 day15 std15 day22 std22 day29 std29

C3.1 NE+MI 0.39 0.0 0.417 0.021 0.756 0.052 0.748 0.084 0.72 0.059 0.588 0.012 0.657 0.042
C3.2 E+MI 0.354 0.013 0.581 0.012 0.668 0.03 0.616 0.086 0.549 0.043 0.552 0.023 0.39 0.053
C3.3 B+MI 0.342 0.006 0.653 0.007 0.708 0.072 0.694 0.082 0.573 0.017 0.596 0.017 0.4 0.019
C3.4 none 0.431 0.003 0.699 0.0 0.71 0.057 0.622 0.078 0.639 0.006 0.681 0.034 0.57 0.02

P-Intra-Conf 1.E-05 2.E-05 0.029 0.284 0.284 0.284 0.284
Conf4 XGB-RND day1 std1 day2 std2 day3 std3 day8 std8 day15 std15 day22 std22 day29 std29

C4.1 NE+MI 0.654 0.248 0.48 0.014 0.651 0.084 0.867 0.016 0.647 0.07 0.827 0.038 0.667 0.028
C4.2 E+MI 0.486 0.027 0.577 0.112 0.608 0.056 0.643 0.036 0.565 0.03 0.51 0.045 0.5 0.037
C4.3 B+MI 0.496 0.005 0.493 0.01 0.9 0.052 0.874 0.021 0.618 0.058 0.638 0.047 0.494 0.043
C4.4 none 0.488 0.012 0.522 0.07 0.709 0.05 0.83 0.049 0.7 0.067 0.82 0.046 0.758 0.018

P-Intra-Conf 0.485 0.485 8E-05 0.485 0.485 0.485 0.485
P-Inter-Conf 4E-05 0.136 0.191 0.02 3.8E-4 0.012 7E-04

and new generated data from the ALIVER project.
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