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Abstract: The velocities of space plasma particles, often follow kappa distribution functions. The 
kappa index, which labels and governs these distributions, is an important parameter in 
understanding the plasma dynamics. Space science missions often carry plasma instruments on 
board which observe the plasma particles and construct their velocity distribution functions. A 
proper analysis of the velocity distribution functions derives the plasma bulk parameters, such as 
the plasma density, speed, temperature, and kappa index. Commonly, the plasma bulk density, 
velocity, and temperature are determined from the velocity moments of the observed distribution 
function. Interestingly, recent studies demonstrated the calculation of the kappa index from the 
speed (kinetic energy) moments of the distribution function. Such a novel calculation could be very 
useful in future analyses and applications. This study examines the accuracy of the specific method 
using synthetic plasma proton observations by a typical electrostatic analyzer. We analyze the 
modeled observations in order to derive the plasma bulk parameters, which we compare with the 
parameters we used to model the observations in the first place. Through this comparison, we 
quantify the systematic and statistical errors in the derived moments, and we discuss their possible 
sources. 
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1. Introduction 

The velocity distribution function (VDF) of space plasma particles contains all the information 
we need in order to understand the kinetic and thermodynamic properties of the plasma. Several 
studies have shown that the VDFs of space plasma particles are kappa distribution functions ([1–7] 
and references therein), which consist of a lower energy “core” and a higher energy “tail”. Over the 
last few decades, several studies have used kappa distribution functions to describe plasma particles 
in several space regions such as, the solar wind (e.g., [8–15]), planetary magnetospheres (e.g., [16–
21]), in the vicinity of a comet [22], and the inner and outer heliosheath (e.g., [23–29]). In the 
theoretical framework, the kappa distribution function minimizes the Tsallis entropic form under the 
constraints of the canonical ensemble [30–32], which is shown to be the only physically meaningful 
entropic form consistent with thermodynamics [33]. 

The three dimensional (3D) isotropic kappa VDF (e.g., [3,6] and references therein) is 
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where u  is the particle velocity vector, n, 
0u
 , and T are the plasma density, bulk velocity vector, 

and temperature respectively, Γ is the gamma function, m the mass of the particle species, and kB is 
the Boltzmann constant. Finally, κ is the kappa index that labels and governs the VDF. In order to 
describe accurately space plasmas, we need high-quality measurements which allow the accurate 
determination of the VDF. State-of-the-art instruments, such as top-hat electrostatic analyzers, are 
capable of measuring plasma particle fluxes in velocity space, constructing the 3D VDFs of the plasma 
particles. Due to technological limitations associated with the instrument’s resolution, range, and 
efficiency, the 3D VDFs are not always perfectly resolved. Inaccuracies in the measurements can lead 
to inaccurate description of the plasma. Furthermore, the total error of the derived plasma parameters 
also depends on the method we use to analyze the observations [34–37]. 

We highlight the importance of the accurate determination of κ, which describes the 
thermodynamic distance from the classic thermal equilibrium (e.g., [38]) and is related with the 
correlation between the plasma particles (e.g., [3,39]). Interestingly, recent studies have shown that 
the kappa index is related with the polytropic index of space plasmas [21,33,40,41], which must be 
determined for the valid characterization and understanding of physical mechanisms, such as 
transitions through shocks [42–45], plasma turbulent compressions (e.g., [36,46]), particle collisions 
[47], and many more. Importantly, previous studies demonstrated that inaccurate estimations of the 
kappa index can lead to significant misestimations of other plasma bulk parameters [2,3,34]. 

Typical analysis of the VDF calculates the velocity moments of the VDF via numerical 
integration. From the different orders of the velocity moments, we determine the plasma density, 
bulk velocity, and temperature. However, there is no velocity moment that is a function of the kappa 
index. Instead, the speed (or kinetic energy) moments of the VDF are functions of the temperature T 
and the kappa index κ. Livadiotis [6] and [48] have derived the kinetic energy moments of the kappa 
distribution function 
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 is the kinetic energy of the plasma particles in the reference frame of the 

bulk flow, α is the order of the moment, and dK denotes the kinetic degrees of freedom. In Equation 

(2) we use the notation of the invariant kappa index 0 2
kdκ κ≡ −  (for more details see [48,49]). As 

explicitly shown by [6], only the 0th (α = 0) and the 2nd (α = 2) order εΚ moments do not depend on 
κ, while any other order is a combination of κ and T. In this study we examine 3D VDFs, therefore dK 

= 3, and 0
3
2

κ κ= + . In this consideration, κ ranges between 3/2 and ∞. According to Equation (2) and 

as discussed in [6], only moments of order α ≤ 2 converge for all possible κ values. For instance, the 
first order moment (α = 1) for a 3D VDF is 
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and Figure 1 shows M1 as a function of κ, for five different temperatures. For all the temperatures we 
show, there is a sharp increase of 1M  as a function of κ within the range 1.5 < κ < 4, and a plateau 
for κ > 4. The numerical calculation of Equation (3) leads to the determination of κ. Such a novel 
calculation could be useful for future analyses and/or could be applied on-board in future operations 
for fast estimations. However, we firstly need to validate this method considering plasma 
measurements with realistic uncertainties, obtained by an instrument with realistic detection 
efficiency, field of view, and resolution. 
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Figure 1. The first order kinetic energy moment 1M  as a function of the kappa index κ, for five 
different plasma temperatures T. 

The purpose of this paper is to demonstrate and quantify the derivation of the kappa index for 
distributions constructed from plasma measurements. In order to do that, we model observations of 
typical solar wind plasma protons with their velocities following the isotropic kappa distribution 
function, considering a realistic response of an electrostatic analyzer. We then analyze the 
observations by constructing the 3D VDFs from the observations and calculate the statistical 
moments that allow the calculation of the plasma parameters. The difference between the derived 
and the input plasma parameters quantifies the accuracy of the specific method for the specific 
instrument design and plasma conditions. In the next section, we show how we construct our 
synthetic solar wind observations and how we construct the VDF and analyze it to obtain the 
statistical moments. In Section 3, we show the results for a synthetic solar wind plasma, and we 
quantify the accuracy of the derived parameters. In Section 4, we discuss in detail our results, and in 
Section 5 we summarize our conclusions. 

2. Methods  

2.1. Synthetic Data Set 

We use the forward modeling method (e.g., [20,34–37,50–56]) to simulate solar wind proton 
observations by a typical top-hat electrostatic analyzer with an electrostatic aperture deflector system 
and a position-sensitive Multi-Channel-Plate (MCP) detector. Our model instrument measures 
protons within the energy range from 200 ev to 20 keV, in 96 electrostatic steps of the electrostatic 
analyzer, each with resolution ΔE/E ~ 5%. The instrument resolves the elevation direction of the 
particles Θ within the range from –22.5° to +22.5°, in 9 electrostatic scans of the aperture deflector. 
Each elevation angle is resolved with resolution ΔΘ = 5°. The MCP resolves the azimuth direction of 
the particles Φ within the range from –45° to +45°, in 16 azimuth sectors with resolution ΔΦ = 6°.  

We model solar wind protons with velocities following the isotropic kappa distribution function. 
The instrument scans through the energies and directions of the particles in discrete Ε, Θ, Φ bins and 
registers the amount of particles that hit the MCP detector within the acquisition time Δτ and produce 
detectable signal. For this study, we use Δτ = 1 millisecond. The expected amount of detected particles 
is approximately 

2
2

2( , , ) G ( , , )C E E f E
m

Θ Φ Θ Φ τ= Δ , (4)

where m is the mass of the proton and 0G A ΔΕ= ΔΘΔΦ
Ε

 is the instrument’s geometric factor with 

A0 the effective aperture, which is a function of the geometric aperture and the detection efficiency 
(for more see [35–37]). For our study, we use 6

0 4.4 10A −= ×  m2, and combined with the energy 

resolution and the solid angle covered by the instrument’s angular resolution results to 9G 2 10−= ×  
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m2∙eV/eV∙sr. Although Equation (4) gives the expected average number of detected particles for each 
E, Θ, Φ pixel, in reality, the registered counts Cout follow the Poisson distribution function of average 
C(E,Θ,Φ), with measurement probability 

out
out

P( ) e
!

outC
C CC
C

−= . (5)

In the left panel of Figure 2, we show one example of registered counts as a function of energy 
and elevation angle, integrated over the azimuth angles. In the right panel of Figure 2, we show the 
registered counts as a function of energy and azimuth, integrated over the elevation angles. For the 
specific example, we model plasma with n = 20 cm−3, 0u  = 500 kms−1 with direction towards Θ = 0° 
and Φ = 0°, T = 20 eV and κ = 3. 

 

Figure 2. Measurement sample for plasma with n = 20 cm−3, 0u  = 500 kms−1 towards Θ = 0° and Φ = 

0°, T = 20 eV, and κ = 3, recorded by the top-hat electrostatic analyzer design we consider in this study. 
The left panel shows the registered number of counts Cout as a function of log10(E) and Θ integrated 
over Φ, while the right panel shows Cout as a function of log10(E) and Φ, integrated over Θ. 

2.2. Statistical Moments 

In plasma applications, we usually consider that Cout (E,Θ,Φ) ~ C(Ε,Θ,Φ) and the kinetic energy 
distribution function is constructed from the observations, using the inverse of Equation (4): 
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from which we can obtain the VDF out ( )f u  for 2Eu
m

= . Commonly, the plasma bulk parameters 

are determined from the velocity moments of fout, i.e., the plasma density 
3
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the plasma bulk velocity vector 
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and the elements of the temperature tensor 
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where, with i and j running through the x, y, and z components. Finally, the ( )0 ,outij i jw u u= −  scalar 

temperature is determined as 
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The α order kinetic energy moment is  
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and according to Equation (2), the kappa index κout is determined by solving 
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Having completed the set of the statistical moments in Equations (7–11), we determine the 
complete set of the plasma bulk parameters. Here we focus on the derivation of the κout by 
numerically solving Equation (12). The accurate derivation of κout, depends on the accuracy of Tout 
and outM α , which we examine through this paper. 

3. Results 

We examine the accuracy of the derived moments for plasma with n = 20 cm−3, 0u  = 500 kms−1 
towards Θ = Φ = 0°, T = 20 eV, and κ = 3, which are typical solar wind proton parameters within the 
heliocentric distance range from 0.3 to 1au (e.g., [57,58]). We model 1000 observation samples for the 
specific input parameters. We analyze each sample as explained in Section 2.2 in order to determine 
nout, u0,out, Tout, and κout. In Figure 3, we show the histograms of the derived plasma parameters for the 
1000 modeled observation samples. In the example shown in Figure 3, we calculate κout from the first 
order energy moment 1

outM  (α = 1). On average, the analysis of the specific plasma underestimates 
the plasma density and temperature and overestimates the kappa index. More specifically, the 
average nout is ~19.8 cm−3, which is by ~1% smaller than the actual n. The average Tout is 19.4 eV, which 
is by ~3% smaller than the actual T. The average κout is about 3.5, while the actual κ = 3. Finally, we 
find that the average plasma speed does not deviate from the actual value. 
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Figure 3. Histograms of the derived (top left) nout, (top right) u0,out, (bottom left) Tout, and (bottom 

right) κout, by the analysis of 1000 measurement samples considering plasma with n = 20 cm−3, 0u  = 

500 kms−1 towards Θ = 0° and Φ = 0°, T = 20 eV, and κ = 3. In each panel, we show the mean value μ 
and the standard deviation σ of the derived moments, while the vertical blue dashed line indicates 
the corresponding input value. 

Our results in Figure 3, indicate that in addition to the systematic error, the plasma parameters 
are derived within a certain standard deviation. We specifically calculate σn,out ~ 0.1 cm−3, σu0,out ~ 0.2 
kms−1, σT,out ~ 0.1 eV, and σκ,out ~ 0.05. The total error of the derived plasma parameters (statistical and 
systematic) depends on the plasma input and the accuracy with which the instrument measures the 
particle flux (e.g., [34–37]). In Section 4, we discuss further the sources of errors. 

We would also like to examine the accuracy of κout as calculated from the kinetic energy moments 
of different orders α. In Figure 4, we show the average κout and its standard deviation, as functions of 
α for the same input plasma parameters as in the example in Figure 3. We investigate the results for 
α values within 0 and 2, which are the boundaries of the converging energy moment orders (see also 
[6] and references therein). For each α value, we analyze 1000 samples following the Poisson 
distribution in Equation (5). The derived kappa index κout ~ 3.95 for 0α →  and κout ~ 3.4 for 2α →
. The standard deviation of the mean κout values is σκ,out ~ 0.07 for 0α →  and reduces to σκ,out ~ 0.05 
for 2α → . In the next section we discuss in detail our results.  

 
Figure 4. The mean kappa index κout and its standard deviation σκ,out as functions of the energy 
moment order we use to analyze the data-set. 

4. Discussion 

We demonstrate the analysis of plasma measurements that estimates the kappa index from the 
statistical moments of the velocity distribution function of the plasma particles. The analysis of the 
synthetic solar wind proton data sets in our study shows that the specific method systematically 
overestimates the kappa index. 

In fact, the kappa index is calculated by numerically solving Equation (12). Thus, an accurate 
calculation of κout is based on the accuracy of Tout and outM α . Any systematic error of Tout and/or outM α  
results in a systematic error of κout. In Figure 5, we examine the values of κout as a function of Tout and 
the first order energy moment 1

outM . The top left panel shows the histogram of 1
outM  and the lower 

right panel the histogram of Tout as derived from the analysis of 1000 samples considering plasma 
protons with n = 20 cm−3, 0u  = 500 kms−1 towards Θ = 0° and Φ = 0°, T = 20 eV, and κ = 3. In the top 

right panel, we show the solution matrix for κout as a function of Tout and 1
outM , as calculated from 

Equation (12). On the same matrix, we indicate the input and the average derived parameters in our 
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analysis. The derived κout in our example is overestimated due to the misestimation of Tout by ~3% 
and the overestimation of 1

outM  by just 0.5%.  

 

Figure 5. (Top left) The occurrence of 1
outM  and (lower right) Tout, as derived from the analysis of 

1000 samples of plasma with n = 20 cm−3, 0u  = 500 kms−1 towards Θ = 0° and Φ = 0°, T = 20 eV, and κ 

= 3. (Top right) Solutions of κout as a function of Tout and 1
outM  according to Equation (12). On each 

panel, the blue lines indicate the input parameters and the black lines the derived parameters in our 
example. 

The misestimation of the statistical moments is due to the instrument’s limited efficiency, energy 
and angular range, energy and angular resolution, and poor statistics related to the sampling of the 
distribution function in discrete steps (e.g., [34–37]). For instance, the instrument’s limited efficiency 
prevents the detection of low particle fluxes which are allowing the construction of the high energy 
tails of a distribution function. Additionally, there are cases when the distribution function drifts 
beyond the instrument’s energy and angular range. In these cases, Equations (7) and (9) 
underestimate the plasma density and temperature respectively, as fout is under-sampled. Moreover, 
plasma instruments resolve the distribution function in finite ΔΕ, ΔΘ, and ΔΦ intervals. As a result, 
the shape of the actual distribution within individual ΔΕ, ΔΘ, and ΔΦ pixels and its contribution to 
the statistical moments cannot be quantified. Similarly, the distribution is sampled in discrete energy 
and angular steps, and the statistical moments are numerically calculated according to the specific 
limited sampling (binning). 

Importantly, we expect the accuracy to depend on all the plasma bulk parameters, as they affect 
the shape of the VDF e.g., [35–37]. For instance, plasmas with higher temperatures have broader VDFs 
with bigger portion of their tails drifting beyond the instrument’s angular range, causing an 
underestimation of nout and Tout. On the other hand, colder plasmas have narrower VDFs, which are 
harder to sample with a limited angular resolution. In another example, plasmas with higher 
densities will increase the number of recorded counts, therefore will reduce the statistical (Poisson) 
error. The detailed characterization of the accuracy as a function of the plasma parameters is beyond 
the scope if this study but will be the subject of a future project. 

We note that several missions apply moments calculation algorithms on-board spacecraft to 
enable fast calculations and anticipate the limited telemetry. The specific method we demonstrate 
here provides novel estimations of the kappa index, which completes the set of the plasma bulk 
parameters. Moreover, we note that such a method is useful for on-ground calculations in any 
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application beyond plasma VDFs, where kappa distributions play a significant role (e.g., [59,60]). 
However, users of this method should be aware of the potential errors exposed in this study and use 
similar approach for their quantification. 

Finally, we demonstrate how the accuracy depends on the instrument’s field of view and 
resolution. We do that by analyzing the same plasma as in Section 3 considering two different 
instrument designs; one as described in Section 2, and a second one with double the Θ range (–45° < 
Θ < +45°) and with better angular resolution (ΔΘ = ΔΦ = 2.5°). In Figure 6, we show the results of the 
analysis in the same format as in the top right panel of Figure 5. As expected, the analysis of the 
observations by the second instrument design calculates more accurately the plasma moments. The 
improved angular resolution minimizes numerical errors associated with the limited sampling of the 
VDF’s shape, while the increased field of view captures a bigger portion of the distribution function 
which contributes to the statistical moments. 

 

Figure 6. Solutions of κout as a function of Tout and 1
outM  according to Equation (12). The black circle 

indicates the average parameters as derived from the analysis of 1000 observation samples by our 
standard instrument model with field of view –22.5° < Θ < +22.5°, –45° < Φ < +45°, and angular 
resolution ΔΘ = 5° and ΔΦ = 6° respectively. The green circle indicates the average parameters as 
derived from the analysis of 1000 observation samples by an instrument with field of view –45° < Θ < 
+45°, –45° < Φ < +45°, and angular resolution ΔΘ = ΔΦ = 2.5°. The input plasma parameters are the 
same as in Section 3 and are indicated by the blue circle. 

5. Conclusions 

We demonstrate the derivation of plasma bulk parameters by calculating the statistical velocity 
and kinetic energy moments of a modeled kappa distribution as constructed from the observations 
by a typical electrostatic analyzer. We apply the mathematical tools demonstrated by [6,48] to 
simulated observations and we quantify the accuracy of the plasma parameters when derived from 
the specific method. Our analysis shows that: 

• The velocity moments of the observed distribution underestimate the plasma density and 
temperature, but they provide an accurate estimation of the plasma bulk speed. 

• The calculation of the kinetic energy moments of order between 0 and 2 leads to the estimation 
of the kappa index value. The accuracy of the derived index value is slightly improved as the 
order of the used energy moment increases. Nevertheless, due to instrument limitations, the 
analysis systematically overestimates the kappa index of the plasma. 

• The misestimations of the plasma parameters are due to the instrument’s limited efficiency, 
energy and angular range, resolution, and limited sampling of the actual plasma distribution. 
Our analysis quantifies the error of the derived parameters for a specific instrument design and 
plasma conditions. Similarly, future applications could quantify the expected errors by adjusting 
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the instrument and plasma parameters. Moreover, our results could drive future instrument 
designs in order to achieve the desired accuracy in specific applications. 
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