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ABSTRACT   

We developed a novel SRR system, called Multi-Angle Gotcha image restoration with Generative Adversarial Network 

(MAGiGAN), to produce resolution enhancement of 3-5 times from multi-pass EO images. The MAGiGAN SRR system 

uses a combination of photogrammetric and machine vision approaches including image segmentation and shadow 

labelling, feature matching and densification, estimation of an image degradation model, and deep learning approaches, to 

retrieve image information from distorted features and training networks. We have tested the MAGiGAN SRR using the 

NVIDIA® Jetson TX-2 GPU card for onboard processing within a smart-satellite capturing high definition satellite videos, 

which will enable many innovative remote-sensing applications to be implemented in the future. In this paper, we show 

SRR processing results from a Planet® SkySat HD 70cm spaceborne video using a GPU version of the MAGiGAN system. 

Image quality and effective resolution enhancement are measured and discussed. 

Keywords: Super-Resolution Restoration, Multi-angle, Generative Adversarial Network, Earth Observation, MAGiGAN, 

Planet® SkySat® HD Video 

1. INTRODUCTION  

Very high spatial resolution imaging data is playing an increasing role in many commercial and scientific applications of 

Earth observation. However, given the physical constraints of the imaging instruments themselves, we always need to 

trade-off spatial resolution against launch mass, usable swath-width, and telecommunications bandwidth for transmitting 

data to Earth. One solution to this conundrum is through the use of super-resolution restoration (SRR) to combine image 

information from repeat observations at multiple viewing angles, and exploit information derived from multiple imaging 

sources, to generate images at much higher spatial resolutions. SRR can be performed either as post processing on the 

Earth or potentially via satellite onboard processing using a graphics processing unit (GPU). 

Previously, within the EU FP-7 Planetary Robotics Vision Data Exploitation (PRoViDE) and UKSA CEOI 10 SuperRes-

EO projects, MSSL developed the Multi-Angle Gotcha image restoration with Generative Adversarial Network 

(MAGiGAN) method to improve the effective resolution from stacks of overlapping multiple lower resolution images. 

MAGiGAN combines image information from repeat observations at various viewing angles, and exploits information 

derived from multiple imaging sources, to generate images at much higher spatial resolutions. 

The MAGiGAN SRR system [1] is based on the mutual shape adapted [2] features from accelerated segment test (MSA-

FAST) [3] combined with convolutional neural network (CNN) [4] feature matching, adaptive least-squares correlation 

(ALSC) and region growing (Gotcha) [5], partial differential equation (PDE)-based total variation (TV) regularization 

(GPT) [6], support vector machine (SVM) and graph cut (GC)-based shadow labelling [7], and the generative adversarial 

network (GAN) [8] based super-resolution refinement method. 

The MAGiGAN system was previously applied to stacks of 4m UrtheCast Corp Deimos-2 (MS band) multi-angle repeat-

pass images over several experimental sites to produce SRR results with 3.5–3.75 times (hereafter referred to as “x”) 

resolution enhancement. Since then, MAGiGAN has been tested with 1.1m SSTL Carbonite-2 video frames, the 275m 

Multi-angle Imaging SpectroRadiometer (MISR) Level 1B1 red band images, and 300m Sentinel 3 OLCI level-1 EFR red 

band radiance images to produce resolution enhancement at various levels of performance. In this paper, we further explore 

the MAGiGAN SRR system using as input the Planet® Skysat® HD 70cm videos. 
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2. DATASETS 

The Planet® SkySat captures sub-metre resolution EO still images or HD videos. Full videos are collected between 

30 and 120 seconds (30 frames per second) by the Panchromatic camera from any of the SkySat constellation1 while 

the spacecraft pointing follows a target. The size of the video products are 1920x1080 pixels. A raw video product 

with individual Tiff images with 11bit of radiometric resolution is also available at the full panchromatic detector size 

of 2560x1080 pixels. The HD video has two types of product, the stabilised (one that all video frames have been co-

registered) and the unstabilised without co-registration. In this work, we tested our MAGiGAN SRR system on an 

unstabilised SkySat video over the San Diego, CA, U.S.A. area. It is mostly urban with tower buildings in the 

downtown area along with residential blocks. The video length is 54 seconds and 1350 raw panchromatic frames are 

available at 2560x1080 pixels. An example of the reference frame used in this work is shown in Figure 1.  

 

Figure 1 An example of the reference image of the SkySat raw panchromatic frames over the San Diego area. 

 

3. METHOD 

The UCL MAGiGAN SRR system is based on multi-angle feature restoration, estimating an observation/degradation 

model, and using GAN as a further refinement process. A flow diagram is shown in Figure 2. The overall process of the 

MAGiGAN SRR processing has 5 steps, including: 1) Image segmentation and shadow labelling; 2) Initial feature 

matching and subpixel refinement; 3) Subpixel feature densification; 4) Estimation of the image degradation model; 5) 

GAN network training and SRR refinement (prediction).  

 

 
1 https://calval.cr.usgs.gov/apps/sites/default/files/jacie/bsmileyJACIE2018approveddraft.pdf 
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Figure 2 Flow diagram of the MAGiGAN SRR system. 

In the first processing stage, we use an adaptive non-local means (ANLM) denoising to produce multiple Lower Resolution 

(LR) inputs from the continuous video frames. The ANLM method is based on the non-local means (NLM) denoising 

method which takes a mean of all pixels in a sequence of images, weighted by how similar these pixels are to the target 

pixel. The ANLM denoised value at a given pixel is obtained by a weighted average of the pixels in its temporal 

neighborhood. The temporal neighbouring pixels are found by minimising the Mean Squared Difference (MSD) of an 

adaptive sliding window within a constrained step size. Then we segment the denoised LR images based on their image 

content using the Graph Cut algorithm, and subsequently, segmented image patches for the same region are paired using 

normalised cross-correlation. If paired segments are found with different illumination, and one segment is much darker (at 

a given threshold) than the other one, the darker segment is labelled as a shadow patch. Finally, the illumination of the 

shadow segments is corrected using illumination statistics from the neighbouring non-shadowed pixels. The de-shadowed 

intermediate images are only used as metadata to provide seed feature points for the shadowed regions and are not used in 

the follow-on processing stages. The output SRR will keep the shading information from the reference image which are 

not devoid of shadows. 

In the second processing stage, we aim to produce initial feature correspondences between LR images and the reference 

image and then derive a initial High Resolution (HR) grid (a scaled version of the reference image interpolated by LR 

images). An accurate, dense, and evenly distributed first estimation of the seed points is essential to the success of 

interpolating the initial HR grid. The MAGiGAN SRR system uses a MSA-FAST-CNN [2][3][4] based feature matching 

approach to produce very dense initial feature correspondences. Then we iteratively update the matched seed point 

locations and orientations from the previous step using forward and backward ALSC within a transformable elliptical 

window. The feature correspondences are more evenly distributed between different types of image content including 

recovered shadow regions after the first processing stage.  

During the third processing stage, the optimized feature correspondences are then used as seed points in a pyramidal 

version of ALSC and region growing (Gotcha) process until most pixels in the LR images find their optimal subpixel 

correspondence with respect to the reference frame. These sub-pixel correspondences are collected to form a series of 2-

channel motion maps with encoded subpixel x and y translation vectors. Pixels in any LR image that do not match with 

any subpixel location in the reference HR grid, are removed from calculation in further steps. If a subpixel location in the 

HR grid does not have any corresponding motion vector from all motion maps, this HR pixel will be propagated by its 

neighbouring HR pixels. The Gotcha method progressively refines the existing subpixel correspondences and densifies 

until we find a matching for all valid pixels. The motion maps provide the initial degradation information in the similarity 

measurement term of the Maximum a Posteriori (MAP) estimation at the next processing stage. 

In the fourth processing stage, we aim to iteratively refine the initial HR grid through estimation of a sequence of 

degradation matrices by minimizing a similarity cost (calculated from the MSD of each LR image and degraded HR image) 

and weighted regularization cost. A mathematical representation of this process can be found in [6]. The intermediate HR 

output image at this processing stage contains restored information from multi-angle distorted features contained in each 

LR input image. The intermediate HR image generally produces less resolution enhancement for regions that changed in 
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each LR input than the regions that are comparably static. This means the effective resolution enhancement for the 

intermediate HR image (as well as the final SRR image) is not the same for different regions depending on the number of 

matched pixels from each LR input. Also, the intermediate HR image does not contain high frequency texture details for 

flat regions given there is no multi-angle information.  

During the fifth processing stage, we further refine the intermediate HR image from the previous processing stage using a 

pre-trained GAN network [8]. GAN uses the perceptual loss calculated from feature maps of a deep learning network to 

replace the MSE based content loss, and is therefore highly complementary to the multi-angle feature matching and model-

based approach in terms of restoring different features. GAN applies a deep network (Generator G) to generate high 

frequency textures that are highly similar to real images, in combination with an adversarial network (Discriminator D) to 

distinguish super-resolved images from real images. In this work, we use a previously pre-trained network from 102 non-

repeat Deimos-2 4m green band images and 102 corresponding Deimos-2 1m PAN band images [9]. The 102 Deimos-2 

green band images (at 4m resolution) formed 18,782 (256 by 256 pixels) LR training samples. The corresponding 102 

Deimos-2 PAN band images (1m resolution) formed 18,782 (1024 by 1024 pixels) HR training samples.  

 

4. RESULTS 

We tested the MAGiGAN SRR system on the raw panchromatic frames (2560x1080 pixels) of the SkySat video over the 

San Diego, CA,U.S.A. area. Due to the “zooming effect” of the frames (the target resolution changes when camera moves 

away), we only used the first 168 (out of 1350) frames for the experiments. In this paper, we demonstrate SRR results of 

different sub-areas of a cropped region (512x512 pixels). Note that currently, the maximum size we can handle in 

MAGiGAN SRR is 2048x2048 pixels for the stage (1) to (4) processing. The 1st 2nd 3rd and the last (168th) frame of the 

cropped region are shown in Figure 3. 11 adjacent frames are used to denoise to 1 input LR frame, hence there are 15 LR 

inputs used to produce 1 SRR output. The resulting intermediate HR images (size 1024x1024) are then further divided into 

smaller sample sizes (128x128 pixels) to be used for GAN refinement, resulting in a total of 64 tiles of final SRR images 

(size 256x256) with an overall up-scaling factor of 4x. The cropping (tiling) is mainly due to memory limitations of 

computation. Examples of the resulting SRR images (256x256 pixels) in comparison with the original SkySat 

panchromatic frames for the same region are shown in  

Table 1. 

 

    

Figure 3 The 1st 2nd 3rd and the last (168th) frame of the LR inputs for a cropped region over San Diego 
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Table 1 Examples of MAGiGAN SRR results in comparison with the original SkySat frames for same regions. 

Original SkySat frames MAGiGAN SRR Original SkySat frames MAGiGAN SRR 
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Original SkySat frames MAGiGAN SRR Original SkySat frames MAGiGAN SRR 

    

    

    

    

 

5. CONCLUSIONS AND FUTURE WORK 

SRR of EO imagery is challenging due to frequent changes in atmospheric clarity, phase scattering of the Earth’s surface, 

shadowing, and more complex artificial structures. The overall quality of the MAGiGAN SRR results for EO data are 

generally affected by 4 factors: 1) the quality of the input LR images; 2) the number of LR images; 3) the time difference 

between each LR image; 4); sufficient volume of training data(sets); 5) image obstacles in terms of smoke, haze, and 

clouds. 

In this paper, we introduce the MAGiGAN SRR system and apply it to spaceborne HR video, developed within the CEOI 

10 SuperRes-EO project, designed to address various issues found with EO SRR. The MAGiGAN system not only retrieves 
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subpixel information from multi-angle distorted features, but also uses the GAN network to retrieve high-frequency texture 

details. The multi-angle feature matching and model-based approaches applied in the MAGiGAN SRR system and the 

GAN single image SRR process are highly complementary to each other in terms of restoring different types of features. 

If only GAN is applied then there is a risk that artificial features will be “detected” falsely. This was demonstrated in [1]. 

Therefore, the GAN single image SRR process was integrated as a further refinement step within the MAGiGAN SRR 

system.  

In this paper, we demonstrated SRR results (64 tiles of size 256x256 pixels, total size 2048x2048 pixels) of an urban area 

of San Diego, CA, U.S.A. using 168 cropped (512x512 pixels) and denoised SkySat panchromatic Tiff image frames. At 

the GAN refinement processing, we used a previously pre-trained network from 4m and 1m Deimos-2 images. Although 

the resolution of the target dataset is different (from 70cm to 17.5cm for 4x scale up) to the training images (from 4m to 

1m for 4x scale up), the actual achieved resolution enhancement is between 2x to 3x. The MAGiGAN SRR images contain 

more structural features and texture details which are not observable in the original SkySat panchromatic frames.  

Currently, we are working on a GPU porting of the MAGiGAN SRR system. In the future, we will form a much richer 

LR/HR training datasets for different types of targets using multiple imaging sources and test how far we can use SRR 

onboard in future EO missions. 
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