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Abstract
Quantummechanics, in principle, allows for processes with indefinite causal order. However,most of
these causal anomalies have not yet been detected experimentally.We show that every such process
can be simulated experimentally bymeans of non-Markovian dynamics with ameasurement on
additional degrees of freedom. In detail, we provide an explicit construction to implement arbitrary a
causal processes. Furthermore, we give necessary and sufficient conditions for open systemdynamics
withmeasurement to yield processes that respect causality locally, andfind that tripartite
entanglement and nonlocal unitary transformations are crucial requirements for the simulation of
causally indefinite processes. These results show a direct connection between three counter-intuitive
concepts: entanglement, non-Markovianity, and causal non-separability.

1. Introduction

Temporal order is one of the fundamental pillars that both our everyday understanding of theworld, as well as
our physical theories are built on. Events, nomatter how complicated the underlying dynamical theory, seem to
happen in a causal succession and there is a clear arrow of time that defines inwhich direction they can influence
each other.However, the impression of causal ordermight only be locally true. Future experimentsmay
challenge the idea that causal order is fundamental, andmay reduce it to a property that exists locally but is
violated globally. For example, an experiment could consist of two parties (Alice andBob) conducting
measurements in their separated laboratories. The temporal order of events would be heralded by the joint
probability distributions of theirmeasurement outcomes.While Alice and Bob experience awell-defined
temporal order in their respective laboratories, it is fathomable that a third party (Charlie) that receives
measurement data frombothAlice and Bob is unable to assign a relative causal order to thembased on the
received data.

An example of a causally unordered process is the quantum switch, theoretically introduced in [1] and
experimentally realised in [2, 3]. Besides the quantum switch, no other exotic causal structure has been
implemented experimentally so far. Nonetheless, themathematical description of such structures is well
developed [1, 4] and is subject to active research (see, e.g., [5–10]). Themainmathematical object to represent
general processes is the processmatrix, introduced in [4] for two parties and later extended tomultiple parties in
[8]. In [4], the authors showed that this framework allows for causally non-separable processmatrices—i.e.,
processmatrices that cannot bewritten as a probabilisticmixture of causal ones. These causally non-separable
processmatrices go beyondwhat can be described by quantummechanics that respects causal order and also
encapsulate processes that can violate causal inequalities, i.e., processes that do not allow for an underlying causal
model.

By definition, no process that is compatible with a global causal order exhibits correlations that are obtained
froma causally non-separable processmatrix. However, processes without causal order can be simulated non-

OPEN ACCESS

RECEIVED

23November 2017

REVISED

30 January 2018

ACCEPTED FOR PUBLICATION

16 February 2018

PUBLISHED

29March 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aaafee
https://orcid.org/0000-0002-1339-0656
https://orcid.org/0000-0002-1339-0656
https://orcid.org/0000-0002-2054-9901
https://orcid.org/0000-0002-2054-9901
mailto:simon.milz@monash.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaafee&domain=pdf&date_stamp=2018-03-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaafee&domain=pdf&date_stamp=2018-03-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


deterministically, i.e., by conditioning the collection of data on an additionalmeasurement outcome. For
example, Charliemightmeasure an additional system that he possesses, which has interactedwith Alice and
Bob.He could choose to only record the data he receives fromAlice andBobwhen themeasurement of his
system yields a particular outcome. Even if the causal ordering of Alice’s and Bob’s laboratory isfixed, the data
that Charlie records could lead him to believe that there is no temporal ordering betweenAlice and Bob.More
generally, it has been shown that any processmatrix—causally ordered or not—can be implemented
experimentally by a quantum circuit (i.e., a causally ordered process)with an additionalmeasurement [11–14] 7.

In this article, we consider the task of implementing processes with indefinite causal order.We answer two
natural questions: Given a process, what is its circuit implementation (withmeasurement)?What resources are
necessary to simulate a causally non-separable process?We concretely relate processmatrices to quantum combs
[11, 12, 19] and process tensors [20, 21], which are a generalisation of completely positive (CP)maps used to
describe general causally-ordered processes and non-Markovian quantumphenomena. Building on this
relation, we provide a general implementation scheme for arbitrary processes. This scheme requires a genuinely
tripartite entangled initial state.Moreover, we provide necessary and sufficient conditions for a general circuit
withmeasurement to yield a valid process, and give an explicit example of causally non-separable process
matrices that can be simulatedwith a probability that exceeds 50%. Finally, we show that—independent of the
implementation scheme—the simulation of causally non-separable processmatrices requires both genuine
tripartite entanglement in the initial state, as well as nonlocal unitary dynamics, i.e., it requires the underlying
causal process to be non-Markovian. These results provide a constructive way to experimentally simulate
arbitrary processmatrices and establish a clear connection between entanglement, non-Markovianity and causal
non-separability.

2. Causally ordered processes

In order to render the structure of causally unordered processesmore transparent, we reiterate existing results
about causally ordered processes. These are processes where the temporal order of the operations performed by
Alice and Bob, respectively, is well-defined. Throughout this article, wewillmainly focus on the two-party case.
Hereinafter, we consider the following scenario: Alice (Bob) has a quantum instrument ( )A B in her (his)
laboratory, i.e., a set of CP trace non-increasingmaps      { } ( ) ( ), :i

X
i
X

X X1 2
withXä {A,B}.

 ( )Xy
represents the space of bounded operators onXy

and the inputHilbert spaceX1
is not necessarily the

same as the outputHilbert spaceX2
. The labels i correspond to the outcomes of the instrument, and the entire

procedure, å =i i
X

1 , is a CP and trace-preserving (CPTP)map. For example, suppose Alice, upon receiving a
state  r Î ( )A1

, performs ameasurement in the computational basis. Upon observing outcomem she
prepares a state  r Î ( )m A2

and sends it forward. This choice of instrument corresponds to theCPTPmap

 r r rå = å á ñ[ ] ∣ ∣m mm m
A

m m, where for eachmwehave theCPmap r r r= á ñ[ ] ∣ ∣m mm
A

m.
A generic causally ordered process, where Alice goes before Bob, is of the following form: Alice receives a

quantum system  in state  r Î ( )A1
—possibly correlated with an environment —and performs (non-

deterministically) aCP operationi
A on it. Alice’s output state is sent to Bob via a quantum communication

channel. He also performs (non-deterministically) aCP operationj
B. In the end, Bob’s output state is sent

through another quantum communication channel to yield the final state  r¢ Î ( )f . This scenario is depicted
in terms of a circuit representation infigure 1. The two quantum communication channels are—in general—
correlated and can be represented by two system-environment unitarymaps  and  (where, e.g.,
  r r=[ ] †U U , with =†UU ), and consequently, thefinal state, which depends on the performedCP
operations, can bewritten as

Figure 1.Circuit representation of a generic causally ordered process Alice Bob (see (1)).The ‘system’A1 (bottom line) is initially
correlated with the ‘environment’  (top line). It then enters Alice’s lab, who implements aCP operationi

A on it. The system
interacts with  again, then enters Bob’s lab, who implements a CPoperationj

B on it. After interactingwith  once again the
system is in thefinal state r¢, which is a function of Alice and Bob’s operations. Note that theHilbert spaces are allowed to change after
each operation/interaction.

7
In a slightly different context, schemes involving conditioning of data are also actively investigated both theoretically as well as

experimentally with respect to the simulation of closed timelike curves (see, e.g., [15–18]).
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      r r¢ =( ) {( ◦ ◦ ◦ )[ ]} ( ), tr , 1i
A

j
B

j
B

i
A

wherewe have omitted the respective identity operators on the environment.We emphasise the dependence of
the output state onAlice’s and Bob’s quantumoperations, while we omit the dependence on the unitarymaps 
and  . This is becausewe regardAlice’s and Bob’s operations as variables that Alice and Bob can choose freely,
while the rest of the circuit isfixed.

Since  is initially correlatedwith  , and  and  act on the same  , this noisy process can be temporally
correlated. Such processes are also known as a non-Markovian processes.Mathematically, they can be described
with the framework of quantum combs [11, 12, 19], or equivalently, with the framework of process tensors [20],
where every process of the form(1) can be rewritten as a linearmapping 2:0 from the performed operations
i

A andj
B to thefinal state  r¢( ),i

A
j
B . Explicitly, we have

    r¢ =( ) [ ] ( ), , , 2i
A

j
B

i
A

j
B

2:0

where the linearmap 2:0 is called a quantum supermap [12], or a process tensor [20]. The notation 2:0 refers to
the fact that the process has two open slots and produces an outputwith no open slot. Similar frameworkswere
proposed byGutoski andWatrous [22] andHardy [23].

A graphical representation formultitime processes is provided infigure 2. The linearmap 2:0 is the
generalisation of a quantum channel tomultiple time steps [24]. Such a generalisation straightforwardly
accounts for temporal correlations, i.e., non-Markovian open quantumdynamics.When a process is
Markovian, it reduces to a sequence of CPTPmaps (seefigure 3).Wewill showbelow thatNon-Markovianity
plays an important role when simulating causally inseparable process. In the following section, we provide the
mathematical restrictions that have to be imposed on the linearmap 2:0 in order for it to describe a valid
causally ordered process.

2.1. Properties of causally ordered processes
Mathematically, themap 2:0 is amapping frompairs of CPmaps to afinal state  r¢ Î ( )f . This
mathematical structure can bemademoremanifest by employing theChoi-Jamiołkowski isomorphism [27, 28]:

Let  ( )X1
denote the set of linear operators on theHilbert spaceX1

. EveryCPmap    ( ) ( ):X
X X1 2

canbemapped isomorphically onto apositivematrix   Î Ä( )M X X
X X

2 1
2 1

. For an arbitraryCPmap

    ( ) ( ):k
X

X X1 2
theChoi stateof themap is givenby

   f f fÄ ñá Ä+ + +≔ ( )[∣ ∣] ≔ ( )[ ] ( )M d , 3k
X X

X k
X

X X k
X

X
2 1

1 1 1 1

where  f ñ = å ñ Î Ä+
=∣ ∣nnX d n

d
X X

1
1

X

X

1 1

1
1 1

is a normalisedmaximally entangled state and  is the identitymap

in the appropriate dimension. For themap to also be trace preserving, it has to satisfy the additional constraint
=( )MtrX

X X
X2

2 1
1
, i.e., the trace over theHilbert space of the output of themap has to yield the identitymatrix on

the input space. The action of aCPmapk
X on a state  r Î ( )X1

can bewritten in terms of its Choi state:

Figure 2.Generalmultitime process. The final state of any causally ordered process where Alice acts before Bob can bewritten as the
result of a CPmap 2:0 acting on the performed operationsi

A andj
A. TheCPmap 2:0 contains all the operations that are not

performed byAlice or Bob, i.e., the total initial state r and the system-environment unitarymaps  and  (seefigure 1).

Figure 3.GeneralMarkovian process. In the absence ofmemory effects, thefinal state  r¢ ( ),i
A

j
B is given by a concatenation of

CPmaps (i
A andj

B) andCPTPmaps (LA B2 1 and xB f2
) acting on an initially uncorrelated state ρ to yield thefinal state

   r¢ Î( ) ( ),i
A

j
B

f . This property no longer holds for processes withmemory; for such processes the onlymeaningful description
is in terms of amapping fromperformed operations to a final state [12, 20, 21, 24–26].
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 r r= Ä( ) [( ) ] ( )Mtr , 4k
X

X X k
X XT

1 2
2 1

where · T denotes the transpose with respect to the computational basis.
Similarmathematical relations hold formultitime processes. Specifically, a process 2:0 thatmaps a pair of

CPmaps into a state, can be represented by aChoi state      ¡ Î Ä Ä Ä Ä( )f A A B B2:0 2 1 2 1
. The action

of the process 2:0 on theChoi states of the two input CPmaps can—in clear analogy to(4)—bewritten as [12]

   r¢ = Ä Ä ¡( ) [( ( ) ( ) ) ] ( )M M, tr , 5i
A

j
B

f i
A A

j
B BT T

2:02 1
2 1 2 1

wherewe have employed the convention  = A By y y. The corresponding probability tomeasure the outcomes i
and j (given the instrumentsA andB) in the same run can be computed via [12]

   = Ä ¡( ∣ ) {[( ) ( ) ] ( )} ( )p i j M M, , tr tr . 6A B i
A A

j
B B

f
T T

2:01 2
2 1 2 1

This expression allows us to derive restrictions on ¡2:0 to represent a causally ordered process. For example,
the statement ‘Alice goes before Bob’, means that no operation that Bob performs in his laboratory can influence
themeasurement statistics of Alice’s experiment. In terms of the outcome probabilities, thismeans that
  = å( ∣ ) ( ∣ )p i p i j, ,A j A B is independent of the choice of instrumentB for all possible choices of

instruments in Alice’s laboratory. It is straightforward to prove [11, 12] that this requirement implies

¡ = Ä ¡( ) ( )tr , 7f B
B A A

2:0 1:02
1 2 1

where    ¡ Î Ä Ä( )B A A
B A A1:0

1 2 1
1 2 1

is the Choi operator of amultitime process with a single open slot.
Employing the same reasoning again yields the final restriction

 r¡ = Ä( ) ( )tr , 8B
B A A

A1:01
1 2 1

2

where ρ is the initial system state, i.e.,  r r= ( )tr [12, 25].
The unitary circuit of(1) automatically leads toChoi operators that fulfil these requirements. Conversely,

every Choi operator satisfying equations (7) and (8) can be represented by a unitary circuit like the one depicted
infigure 1 [12, 20]. Analogously, a process that is causally ordered BobAlice would have to fulfil the same
trace requirements, but with the roles ofB2 (B1) andA2 (A1) interchanged.

A causally ordered (AliceBob) process 2:0 cannot only bemeaningfully applied to independent CP
operationsi

A andj
B, but also to temporally correlated operationsAB (see figure 4). For example, Alice

could send the result of hermeasurement to Bob, and he conditions his choice of instrument on said outcome;
or Alice could send Bob the ancilla that she used to implement her instrument, and he uses the same ancilla to
performhis operation. The resulting temporally correlated operationAB is itself a causally ordered process
(AliceBob), and as such, its Choi state M B B A A2 1 2 1 has to fulfil

  = Ä =( ) ( ) ( )M M M M0, tr and tr . 9B B A A
B

B B A A
B

A A
A

A A
A

2 1 2 1
2

2 1 2 1
1

2 1
2

2 1
1

With this, we can equivalently restate the requirements on ¡2:0 in terms of a probability preservation condition;
amatrix      ¡ Î Ä Ä Ä Ä( )f B B A A2:0 2 1 2 1

is a valid causally ordered two-step process tensor, if it
maps every causally ordered M B B A A2 1 2 1 to a unit trace quantum state, i.e.:

¡ ¡ = "[ ( )( ) ] ( ) ( )M M0 and tr tr 1 that fulfil 9 . 10f
B B A A B B A A

2:0 2:0
T2 1 2 1 2 1 2 1

Wewill see in the following section that a relaxation of condition(10) directly leads to processes with indefinite
causal order.

Figure 4.Connection of a two-step process with a three-step process. A causally ordered (in our case: Alice Bob) process 2:0 can be
connected to another causally ordered processAB, representing a sequence of two operations correlated by an internalmemory.
The result of the connection, is a quantum state r¢.
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3. Locally causal processes—the processmatrix

A causally ordered process imposes a global temporal order (e.g., Alice goes before Bob), as well as a local
temporal order, i.e., the outputs of Alice’s (Bob’s) instrument do not influence its respective inputs. Oreshkov
et al [4] introduced the processmatrix framework in order to describe quantumprocesses without reference to a
global causal order. For two parties—Alice andBob—the framework is a generalisation of the framework
described in section 2 (the generalisation tomore than two parties is straightforward [8]): Alice and Bob both
have quantum instrumentsA andB. They can choose their instrument at will; in contrast to the above case,
their respective laboratories are separated, such that they cannot create correlated operations. All they can do is
to individually receive a quantum state, apply an operation to it, and send out the result. Consequently, the Choi
states8 of operations that Alice and Bob can perform are of the form ÄM Mi

B B
j
A A2 1 2 1 only.

For the choice of instrumentsA andB ofAlice andBob, theprobability of outcomes i and j is then givenby

  = Ä( ∣ ) { [( ) ( ) ]} ( )i j W M M, , tr , 11A B
B B A A

i
A A

j
B BT T2 1 2 1 2 1 2 1

where the positive-semidefinitematrix     Î Ä Ä Ä( )W B B A A B B A A2 1 2 1 2 1 2 1 is called the processmatrix.
We denote the probabilities obtained froma processmatrix by  to clearly distinguish them fromprobabilities
obtained from causal process (possibly with conditioning—see section 4.1). The only restriction onW B B A A2 1 2 1 is
that it has the correct normalisation for independent CPTP operations, i.e.,

 Ä ={ [( ) ( ) ]} ( )W W M M0 and tr 1, 12B B A A B B A A A A B BT T2 1 2 1 2 1 2 1 2 1 2 1

for all Choi state M A A2 1 and M B B2 1 of CPTPmaps. Positivity ofW B B A A2 1 2 1 ensures that probabilities are positive9,
while the trace condition enforces local causality (i.e., in Alice’s and Bob’s separate laboratories).

It is important to note the similarity between the conditions(12) for processmatrices and the conditions(10)
imposed onquantumcombs. Processmatrices yieldunit probability on the affine spanof the set of productCPTP
maps ÄM M ;B B A A2 1 2 1 this set coincideswith the set of no-signalling operations [1, 30], which is strictly smaller
than the set of temporally correlated causally ordered operations M B B A A2 1 2 1. Consequently, the set of admissible
processmatricesW B B A A2 1 2 1 is strictly larger than the set of temporally orderedprocesses ¡( )trf (here, and inwhat
follows,wewill drop the subscripts of the process tensor and itsChoi state); processmatrices candescribe temporal
correlations that donot agreewith a global causal order.We list the explicit restrictions that local causality imposes
on processmatrices in the appendix.

IfW B B A A2 1 2 1 corresponded to a causally ordered process, it would be of the form = Ä ¡W B B A A
B

B A A2 1 2 1
2

1 2 1

(Alice goes before Bob) or = Ä ¡W B B A A
A

A B B2 1 2 1
2

1 2 1 (Bob goes before Alice), where ¡B A A1 2 1 and ¡A B B1 2 1 are
correctly causally ordered one-step process tensors. It is also conceivable that the causal structure is not known
with certainty, or depends on an exterior statistical parameter (like, e.g., theflipping of a coin). The
corresponding processmatrix could then be expressed by a convex combination of causally ordered ones:

 = Ä ¡ + - Ä ¡ Î( ) ( )( ) [ ] ( )W q q q1 , 0, 1 . 13B B A A
B

B A A
A

A B B
caus.sep.

2 1 2 1
2

1 2 1
2

1 2 1

Any processmatrix that can bewritten in the form(13) is called causally separable. Processes with an underlying
causal order, or processes where Alice and Bob cannot influence each other (e.g., Alice and Bob could share an
entangled state but are spacelike separated) can be described by a processmatrix that is of the form(13). The set
of processmatrices defined by(12) contains processmatrices that are not causally separable [4].

4. Conditional simulation of causally indefinite processes

By definition, causally non-separable processes cannot be realised deterministically as quantum circuits or as
probabilisticmixtures of quantum circuits. However, it has been shown that every processmatrix can be
simulated probabilistically by a quantum circuit with postselection [11–14]. Explicitly, thismeans that the joint
probability distributions  ( ∣ )i j, ,A B , corresponding to a given processmatrixW B B A A2 1 2 1, can be simulated by
conditioning the probabilities   m( ∣ )p i j, , , ,A B C , with respect to a successful outcome msucc, i.e., with respect
to a successful outcome of Charlie’smeasurement10.

In this section, we provide a direct, constructive proof (in the spirit of the one provided in [11]) that every
processmatrix can be simulated by a circuit with postselection.With respect to existing results of this type, our

8
Our definition(3) of theChoi state, as well as the ordering ofHilbert spaces differs slightly from [4]. These particular choices have no

influence on the results of the paper.
9
More precisely, positivity of W B B A A2 1 2 1 is sufficient for positive probabilities, but not necessary [29]. Demanding W 0B B A A2 1 2 1 can be

justified under the additional assumption that Alice and Bob can share amaximally entangled state on top of the temporal correlations that
are given by W B B A A2 1 2 1 [4, 6].
10

It is important to note that conditioning on the othermeasurement outcomes m m¹ succ can also lead to valid processmatrices (see, e.g.
example 1).
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construction is useful because it yields a higher probability of success. Subsequently, wewill analyse how, and
underwhat circumstances a valid processmatrix emerges in general from a conditioned circuit. This analysis
will then enable an investigation of the necessary resources to simulate a causally inseparable process, that will be
carried out in the next section.

4.1. Conditional simulation of arbitrary causally non-separable processes
Acircuit like the onedepicted infigure 1 yields a joint probability distribution  ( ∣ )p i j, ,A B to obtain the outcomes
i and j inAlice’s andBob’s laboratory, respectively.Allowing for an additional (givenby afixed instrumentC)
measurement on the environment leads to a joint probability distribution   m( ∣ )p i j, , , ,A B C . Inwhat follows,we
will omit the explicit dependenceonC, for compact notation, and to emphasise thatwe considerCharlie’s
instrument tobefixed andpart of theunderlyingprocess. By conditioning  m( ∣ )p i j, , ,A B onameasurement
outcomeon the environment, i.e., by only recordingdatawhen themeasurement on the environment yields the
correct outcome, it is possible to simulate anyprocess—causally non-separable ornot.Wehave the following
theorem:

Theorem1.AnyprocessmatrixW B B A A2 1 2 1 can be simulated by a circuitwithan initial state   r f f= Ä Ä P+ + ( )
A B

0
1 1 1

,

where and P = ñá∣ ∣( ) 0 00 is a pure state of the environment. After the instrumentsA andB are applied, the systems
and the environment evolve through theunitaryV that satisfies

  lP = -[ ] ( ) ( )( ) V Wtr , 14B B A A0
max

1 T2 1 2 1

where lmax is the largest eigenvalue ofW B B A A2 1 2 1. The desired process is simulated bymeasuring the environment in
the computational basis and conditioning on the outcome 0. The probability of success is

l
= ( )p

d

1
. 15

A B
succ

max1 1

Beforewe prove the theorem, wewant to emphasise that it is constructive; for any given processmatrix, it allows
one tofind an explicit circuit plus conditioning procedure that will yield the same statistics as the processmatrix.
This circuit is depicted infigure 5(a), wherewe delineate between different spaces: the initial system space
includes one half of f+

A1
and f+

B1
, i.e.,  = A B ;1 1 1 while, the other half, alongwith, makes up   = 1 2.

Proof. Inserting(3) into(11)we obtain     f f= Ä Ä+ +( ∣ ) { ( )[ ]}i j d W, , trA B A B i
A

j
B

A B
T

1 1 1 1
, wherewe

have set ≔W W B B A A2 1 2 1. SinceWT is positive we can think of it as an element of a POVM; byNeumark’s theorem

[31–33], there is a unitaryV, and a projector P ñá≔ ∣ ∣( ) 0 00 such that  a = P[ ]( )W VtrT 0 , whereα>0 is
chosen such that  a- W 0T . Putting it togetherwe get

    
a

f f= P Ä Ä Ä P+ +( ∣ ) { [( )[ ] ] } ( )( ) ( ) †i j
d

V V, , tr . 16A B
A B

i
A

j
B

A B
0 01 1

1 1

The right-hand side of(16)describes a circuit with ameasurement on in the computational basis that yields
0. The probability tomeasure 0 on the environment is

Figure 5. (a)Circuit withmeasurement that yields a given causally indefinite process. The initial state and the unitarymap  (with
 r r=[ ] †V V ) are given by theorem 1.We have    r= ¢ =( ) ( ) { [ ]}( )i j, tr tr ,i

A
j
B0

2
. (b)Resulting processmatrix. The process

matrix obtained from the circuit withmeasurement (orange box) yields the correct probabilities  ( ∣ )i j, ,A B .
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å åa a
= = =( ) ( ) ( ) ( )p p i j

d
i j

d
0 , , 0 , , 17

i j A B i j A B, ,1 1 1 1

where p(i, j, 0) is the probability tomeasure i, j and 0. Themaximum success probability psucc is hence obtained
for a l= -

max
1 . ,

This result is robust; due to the linearity of the scheme, a deviation of the experimentally prepared initial
state from the desired one of order ò leads to a deviation from the desired processmatrix (original success
probability) of the same order. It is convenient to rewrite equation (16) as

          r=( ∣ )
( )

( ◦ ◦ ◦ [ ]) ≔ ( [ ]) ( )( ) ( )i j
p

, ,
1

0
tr tr , , 18A B j

B
i
A

i
A

j
B0 0

1

where     r rP P[ ] ≔( ) ( ) ( )0 0 0 is the projection on, which defines the conditioned process tensor  ( )0 .
Comparison of(18) and(5) shows that = ¡( )W trB B A A

f
02 1 2 1 , where ¡( )0 is the Choi state of  ( );0 every process

matrix can be simulated by a conditioned process tensor. For the above scenario, we have

    =( ∣ )
( )

( ∣ ) ( )i j
p

p i j, ,
1

0
, , 0 , . 19A B A B

The simplest implementation of theorem1 is the implementationwhere the ancilla is a qubit. Defining
l≔X WT

max and  -≔X X , a possible unitaryVwhich implements the desired processmatrixW, as one of
two possible processmatrices { }W W, , can bewritten as

 = Ä ñá - Ä ñá + Ä ñá + Ä ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )V X X X X0 0 0 1 1 0 1 1 . 20

This choice ofV is indeedwell-defined and unitary, as  =[ ]X X, 0, and X is a positive operator.
Conditioning on the outcome 0 yieldsW, whereas conditioning on 1 yields the processmatrix W . The above
construction is not restricted to a two-party scenario, but can straightforwardly be generalised to process
matrices that apply to an arbitrary number of parties.

We conclude this section by illustrating theorem1 for an explicit example.

Example 1. In [4] the following processmatrix was introduced as an example for a causally non-separable
process that can violate a causal inequality:

 s s s s s= + Ä + Ä Ä
⎛
⎝⎜

⎞
⎠⎟( ) ( )W

1

4

1

2
, 21B B A A B B A A

z
B

z
A

z
B

x
B

z
A2 1 2 1 2 1 2 1 1 2 2 1 1

where sa
X are Paulimatrices on theHilbert space =X

2, andwe have omitted the respective identity
matrices. For this processmatrix, we can choose a in(16) to be equal to 2. Consequently:





s s s s s

s s s s s

= + Ä Ä + Ä

= - Ä Ä + Ä

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

X

X

1

2

1

2
,

1

2

1

2
. 22

B B A A
z
B

x
B

z
A

z
B

z
A

B B A A
z
B

x
B

z
A

z
B

z
A

2 1 2 1 2 1 1 1 1

2 1 2 1 2 1 1 1 1

The corresponding unitaryV can be constructed using(20). The probability ( )p 0 of success for the outcome 0
on the environment for this choice of unitary is equal to 1/2. The processmatrix W that onewould obtain by

conditioning on the outcome 1 is given by  = = -( )W p X W1 1

2
. BothW aswell as W are causally non-

separable; conditioning his data recording on either of the outcomes 0 or 1 on the environment, Charlie could
not ascribe a causal order to Alice and Bob’s actions based on the joint probability distributions he obtains. As
expected, the average ofW and W is causally ordered, though.

By construction, the initial state r exhibits genuine tripartite entanglement, i.e., it is entangled across all
possible bipartitions   { }A B B A A B: , : , :1 1 1 1 1 1 . On top of that, it is easy to check, that the constructedV is
nonlocal, i.e., it cannot bewritten as  Ä ÄV Z V Z,A B B A2 2 2 2 or ÄV ZB A2 2 . For this example, it is even
tripartite entangling11.Wewill see in section 5 that both of these properties—initial tripartite entanglement and
a nonlocal unitary—are necessary requirements for the simulation of causally non-separable processmatrices.

4.2. Conditional circuits and valid processes
In the previous section, we have shown that every causally non-separable process can be obtained via a circuit
withmeasurement. On the other hand, not every circuit withmeasurement yields a valid process. The following
theoremfixes the set of circuits that lead to a valid processmatrix when conditioned on an outcomeμ on the
environment:

11
In general, nonlocality of a unitary operation is necessary for it to be entangling, but not sufficient.
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Theorem2.A circuit withmeasurement on the environment yielding outcome m leads to a valid processmatrix if the
success probability m( )p does not depend on the choices of instrumentsA andB.

In a slightly different context, this was also discussed in [14], where the authors pointed out that valid process
matrices can be simulated by two-time states that have the property that the probability rule becomes linear, i.e.,
probabilities do not depend on the choice of instruments. Here, we provide a direct proof of this statement.
Theorem2 shows that the conditioned simulation of a processmatrix is well-defined; since the probability for
success does not depend onAlice’s and Bob’s instruments, the reconstructed processmatrix is independent of
howAlice andBob choose to run their respective experiments. Consequently, conditioning is a clear-cut
experimental prescription. However, this alsomeans that the respective circuits are highlyfine-tuned; an
arbitrary circuit withmeasurement would almost always lead to success probabilities that depend on the choices
of instruments, or, put another way, would lead to a reconstructed process that violates local causality.

Proof.The probability tomeasure i, j andμ in a run of a general two-step circuit withmeasurement on the
environment is given by:

 m = ¡ Ä
~ m( ∣ ) { ( )[( ) ( ) ]} ( )( )

p i j M M, , , tr tr , 23A B f i
A A

j
B BT T2 1 2 1

where m¡ ¡
~ m m≔ ( )( ) ( )p is theChoi state of an unnormalised conditioned process tensor, which does not depend

on the respective instruments in Alice’s and Bob’s laboratories.
If the success probability  m m= å( ) ( ∣ )p p i j, , ,i j A B, tomeasureμ is independent ofA andB, we can

define the positivematrix = ¡
~m m( )( )

W trf . Thismatrix is also independent ofA andB and it is straightforward
to see that it is correctly normalised on products of CPTPmaps, i.e.,

 åm
mÄ = =m{ [( ) ( ) ]}

( )
( ∣ ) ( )W M M

p
p i jtr

1
, , , 1. 24A A B B

i j
A B

T T

,

2 1 2 1

Toprove the converse statement, let the circuit withmeasurement be such that it yields a valid process
matrixWμ. Thismeans that Alice and Bob—choosing their respective instruments independently—can
reconstruct a valid processmatrix by only recording data when ameasurement on the environment yields the
outcomeμ. Consequently, the processmatrix they reconstruct is the Choi state defined in(23), normalised by

the overall probability m ( )p tomeasureμ, i.e., = ¡
~m

m

m

 ( )
( )

( )
W tr

p f
1 .With this, we can show that the probability

tomeasureμ for given instrumentsA andB, given in (18), is independent of the choice of instruments:

   åm m m m= = Ä =m ( ∣ ) ( ∣ ) ( ) { [( ) ( ) )]} ( ) ( )p p i j p W M M p, , , , tr , 25A B
i j

A B
A A B B

,

T T2 1 2 1

wherewe have used thatWμ is a valid processmatrix, i.e., it satisfies(12). ,

Wehave already seen an example of theorem 2 in section 4.1; the probability tomeasure 0 on the
environment in example 1was independent of the respective instruments and equal to p(0)=1/2.While the
above proof only applies to the case of two parties (Alice andBob), it can straightforwardly be extended to the
case ofmultiple parties.

If a circuit withmeasurement satisfies theorem 2,we can explicitly compute the resulting processmatrix as
well as the probability of successful conditioning. A circuit like the one depicted in figure 6 is defined by a triple

 r P m{ }( )V, ,
1

of initial system-environment state, intermediate system-environment unitary and a projection
on the environment.We have the following corollary:

Corollary 1. For a triple  r P m{ }( )V, ,
1

that yields a valid process matrix mW , we have

       


m
r= Ä Ä P Äm m( )

( )
[[ ( ) ]( )] ( )† ( )W

p
V V

1
tr 26T T

1 2 2 1
1

     m r= Ä P Äm( ) {[ ( ) ]( )} ( )† ( )p
d

V Vand
1

tr , 27
A B2 2

2 2 2

where    r r= ( )tr
1 1

and · T
1 is the partial transpose with respect to 1.

The above case of orthogonal projections on the environment is very general; it includes—byNeumark’s
theorem—all possible POVMs. Amore general construction, whereA andB act sequentially, follows in a
similarmanner, and is discussed in section 5.2.
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Proof.Using(18), we canwrite the probability to obtain outcomes i, j andμ in a single run of the experiment as



  

       

     


m r

r

= Ä P Ä Ä

= Ä Ä P Ä Ä

m

m

( ∣ ) [( ) ( )[ ] ]

{ [( ( ) )( )]( )} ( )

( ) †

† ( )

p i j V V

V V M M

, , , tr

tr tr . 28

A B i
A

j
B

i
A A

j
B BT

2 1

1 2 2 1
1 2 1 2 1

The resulting processmatrixWμ can be directly read off of(28). By theorem 2, the probability p(μ) tomeasureμ
on the environment is independent of the instrument. Using  å = å =M M,i i

A A
d A A i i

B B
d B B

1 1

A B

2 1

2
1 2

2 1

2
1 2
, and

 m m= å( ) ( ∣ )p p i j, , ,i j A B, yields(27). ,

While the processmatrix obtained by conditioning on a particularmeasurement outcome can be signalling
or even causally non-separable, the average processmatrix is compatible with a definite causal order, as itmust
be. From the construction of (28)wehave  m rå = ¡ = Äm

m( ) [ ]p W trf 2 1
, wherewe have used

å P =m
m( ) and   r r= ( )tr

1 1
. This is in agreementwith the results from example 1, wherewe had

  + = + =~( ) ( )p W p W W W0 1 1

2

1

2

1

4 1 2
and  r = 1

41 1
.

The proof of corollary 1 suggests that a circuit withmeasurement has to be highlyfine-tuned to yield a valid
processmatrix. Since the valid processmatrices belong to a lower-dimensional vector space random choice of

 r P m{ }( )V , ,
1

will almost always lead to amatrixWμ that violates local causality. For the case of a properly fine-
tuned circuit withmeasurement, the form(26) allows us to investigate what resources are necessary to simulate
processmatrices with indefinite causal order.Wewill carry out this investigation in section 5.

4.3. Probability of success
The probability of success for simulating a processmatrix depends—amongst others—on its causal structure
and the protocol that is employed for its implementation [18]. Using the scheme provided in section 4.1, we can
show the following notable property:

Remark 1.With the protocol of theorem 1, the success probability for the implementation of a processmatrix
that violates a causal inequality can exceed 1/2.

We illustrate this fact with an explicit example.

Proof. It has been shown in [34] that the processmatrix of example 1 can bemixedwith a certain amount of
white noise and still be causally non-separable. In detail, the processmatrix


g

g g
g¢ =

+
+

+
Î -

( )
‐ [ ) ( )W W

4 1

1

1
is causally non separable for 0, 2 1 , 29OCB

whereWOCB is the processmatrix defined in (21). In order to be able to implement ¢W with success probability
a= -( )p d dA A

1
1 2

according to the procedure provided in section 4.1, the relation  a- ¢W 0 has to hold. The
minimal eigenvalue of  a- ¢W is equal to 4+4γ−2α−αγ. For g  -2 1, themaximal allowedα
tends to +( )4 2 1 2 . Consequently, there are causally non-separable processmatrices that can be
implementedwith a probability arbitrarily close to = + »( )p 2 1 2 0.59. As ¢W also violates a causal
inequality for g < -2 1 [34], thismeans that there are processmatrices that violate causal inequalities and
can be implementedwith a success probability ofmore than 50%. ,

Figure 6.General parallel circuit withmeasurement. Here again, we have a conditional superchannel [25, 26]: Alice and Bob perform
the respective independent operationsi

A andj
B on a shared state. The result is subjected to a unitary time evolution and then

conditioned on the outcomeμ on the environment.
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It is important to contrast this result with the scheme for the simulation of processmatrices proposed in [13];
independent of the processmatrix that is to be simulated, this scheme always yields a success probability of 1/16.
Wenow show that both entanglement, nonlocal operations, and non-Markovian features are needed to simulate
processmatrices that are causally non-separable.

5. Resources for causally non-separable processmatrices

The constructive procedure presented in section 4.1 to simulate any processmatrixW via conditioning requires
both genuine tripartite entanglement, as well as a nonlocal unitaryV. In this section, wewill showourmain
result: the simulation of a causally non-separable processmatrix via conditioning always requires both a
genuinely entangled initial state, as well as a nonlocal unitary—nomatter the strategy. In afirst step, wewill
prove this statement for the special case of the circuit depicted infigure 6, whichwewill—for obvious reasons—
call the parallel case. This circuit is a special case of a circuit including two unitary evolutions (depicted in
figure 7), and it is natural to ask if the requirement of initial entanglement can be lifted, if two intermediary
evolutions are available.We show in section 5.2 that this is not the case, and initial entanglement and nonlocal
unitaries are indeed crucial for the simulation of a causally non-separable processmatrix.

5.1. The parallel case
The parallel case is described by a triple  r P m{ }( )V, ,

1
, i.e., an initial total state, an intermediary unitary

dynamics and a conditioning on the environment. Possible resources for the simulation of a causally non-
separable processmatrix are the initial state  r

1
, as well as the unitaryV.We have the following theorem:

Theorem3. For the conditional simulation of a causally non-separable processmatrix, it is necessary that both the
initial state  r

1
is genuinely tripartite entangled as well as the unitarymatrixV is nonlocal, i.e., it cannot be written

as a product operation in any possible bipartition.

Proof.Toprove thefirst part of the theorem, letV be an arbitrary unitarymatrix,  P Îm ( )( ) an arbitrary
orthogonal projection on the environment, and let the initial system-environment state be of the form

   r r x= Ä
1 1

.We define G Ä Pm m≔ ( )( ) † ( )V V
2

. Recall that 2 denotes the outputHilbert spaces of Alice
and Bob, whileV acts on these output spaces as well as the environment  (see figure 6). Consequently,

   G Î Ä Äm ( )( ) ;A B2 2
the resulting processmatrixWμ follows from (26) and is given by

     m
x r r= G Ä Ä Q Äm m

( )
{[ ( ( ))] } ≔ ( )( )W

p

1
tr . 30T

2 1 2 1

Local causality forbids terms of the form A B B,2 2 2 orA2 to appear in the processmatrix (see appendix). If Q
2
is

not proportional to 2
, one of these terms is bound to appear in mW .With ameaningfully chosen conditioning,

the processmatrix is then of the form  rÄ
2 1

, which is causal (non-signalling).
A similar argument holds for the case   r r x= ÄA B1 1 1

. For this case, we have

  m
x r w r= G Ä Ä Äm m

( )
{[ ( ( ( ) ))] } ≔ ( )( )W

p

1
tr . 31B A B B A A

T TB
2 1

1
1 2 1 2 1

Local causality forbids terms of the form B A B B B, ,2 2 2 2 1 and A B B2 2 1. This forces wB B A2 1 2
to be of the form

w z= ÄB B A B B A2 1 2 2 1 2
(where   z Î Ä( ))B A B A1 2 1 2

, which leads to a causally separable processmatrix (Alice
goes before Bob). The same argument applies for an initial state of the form   r r x= ÄB A1 1 1

. Consequently,
any initial state  r

1
of the form

    r r x r x r x= Ä + Ä + - - Ä " + Î( ) ( ) [ ] ( )p q p q p q q p1 , , , 0, 1 32A B A B B A1 1 1 1 1 1 1

does not lead to a causally non-separable processmatrix.

Figure 7. Serial circuit withmeasurement. The initial system-environment state is given by r hÄA1
, thefinal state after conditioning

on the outcomeμ on the environment is     r¢ = m( ) [ ]( ), ,i
A

j
B

i
A

j
B (see equation (18)).
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Toprove the second part of the theorem, let  r
1
be an arbitrary state and = ÄV V UA B2 2 a unitary of

product form. The resulting processmatrix is given by

     


m
r= Ä Ä P

~m m

( )
{ [ (( ) )] } ( )( )

W
p

1
tr , 33T T

2 1 1
1

where  P = P
~ m m( ) ( )†

U U . This is obviously a causal processmatrix (non-signalling).
IfV is of the form = ÄV V UA B2 2 , we obtain the following processmatrix:

    


m
r h= Ä X Ä Äm m

( )
{ [ ( ( ))] } ≔ ( )( )W

p

1
tr 34A B A A B B

T T
2 2 1

1
2 1 1 2

where  X = Ä Pm m( )( ) † ( )U UB
B

B2
2

2 . Again, this processmatrix is causally ordered (it allows signalling from
Bob toAlice only). A similar argument holds for total unitaries of the form = ÄU U VB A2 2 . Consequently
only non-product unitaries lead to causally non-separable processmatrices. ,

In agreement with the results in section 4.1 genuine tripartite entanglement does notmean that Alice and
Bob have to initially share entanglement amongst each other. However, the total state of the environment, Alice,
and Bob has to be entangled in any possible bipartition. Genuine tripartite entanglement in the initial state
constitutes a quantummemory of the past, that can be used to implement a causally non-separable process. In
otherwords, pre-shared quantummemory is a crucial resource for the simulation of causal non-separability.

Non-product unitaries are signalling [35–37], whichmakes the above theoremperspicuous; causal non-
separability can only be simulated if a resource is available that enables communication betweenAlice, Bob and
the environment. Such a unitary propagates the initialmemory in a detectable way. Consequently, it is the non-
Markovianity of the underlying circuit that enables the simulation of causally indefinite processes. Having these
results for the parallel case at hand, we nowdiscuss, if the requirements of initial entanglement and nonlocal
unitaries can be relaxed if two intermediate unitary dynamics are available.

5.2. Serial case
In the previous sections, we have analysed the implementation of causally non-separable processes bymeans of a
parallel circuit with additional conditioning. Obviously, if we allow for any possible initial state, the parallel
circuit is a special case of the serial one (depicted infigure 7), i.e., a circuit with two intermediary unitaries. It is
hence natural to ask, if a serial circuit withmeasurement allows us to relax the requirement of initial tripartite
entanglement and nonlocality of the system-environment unitaries for the simulation of causally non-separable
processmatrices. This question is answered by the following theorem:

Theorem4.The conditional simulation of a causally non-separable process matrix with a serial circuit requires
initial system-environment entanglement and nonlocal intermediate system-environment unitaries.

Proof. Let  r r h= ÄA1
be the initial system-environment state and let  and  be arbitrary system-

environment unitarymaps. Thefinal system state obtained by conditioning on the outcomeμ on the
environment, giveni

A andj
B, is (see figure 7):

          r r h¢ = = Ä
~m m

( ) [ ] ( ◦ ◦ ◦ ◦ [ ]) ( )( ) ( )
, , tr . 35i

A
j
B

i
A

j
B

j
B

i
A

A1

Analogous to the definition of the conditioned process tensor (with  =
~ m

m
m( )

( )
( )

p

1 , see(18)), this equation

can be rewritten in terms of a (non-deterministic) supermap m( )S acting on theCPmapj
B (see [11] and

figure 8):

   r
m

r¢ = m( )
( )

( [ ])[ [ ]] ( )( )

p
S,

1
, 36i

A
j
B

j
B

i
A

A1

where m( )S is a CPmap (in the sense of [11]), and     m
¢ [ ] ( ) ( )( )S :j

B
A B2 2

.We distinguish between ¢B2

andB2
for notational purposes only, i.e., @¢B B2 2

.

Let m( )S denote the analogous CPmap to m( )S on the level of Choi states, i.e.
   Î Äm ¢[ ] ( ) ( )( )S Mj

B B
B A

2 1

2 2
is the Choi state of m [ ]( )S j

B .With this,(36) can bewritten as

  r
m

r¢ = Ä m¢( )
( )

[( [ ] ) [ ]] ( )( )
p

S M,
1

tr . 37i
A

j
B

A B i
A

A
B BT

2 2 1
2 1

Defining theChoi state of themap S(μ) as     Î Ä Ä Äm ¢( )( )$ B A B B2 2 2 1
, we can rewrite the action of m( )S

via (see (4)):
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= Äm m¢( ) [( ( ) ) ] ( )( ) ( )S M Mtr $ . 38j
B B

B B B A j
B B T2 1

2 1 2 2
2 1

With this, (37) reads

   r
m

r¢ = m( )
( )

{[ ] [( ) ]} ( )( )
p

M M,
1

tr $ . 39i
A

j
B

A i
A A

j
B BT T TA

2 1 1

2 1 2 2 1

Hence, we obtain

  m
m

r= Ä Äm¢( ∣ )
( )

{( )[( ) ( ) )} ( )( )p i j
p

M M, , ,
1

tr tr $ , 40A B B A i
A A

j
B BT T

2 1
2 1 2 1

whichmeans that for the serial case with initial product state the resulting processmatrix is of the form

m
r= Äm m¢

( )
( )( )W

p

1
tr $ . 41B A2 1

This processmatrix has exactly the same form as (31), the processmatrix obtained for the parallel case with a
separable initial state. It is causally separable (only allowing signalling fromAlice to Bob) for the same reasons.
Consequently, any separable initial state r will lead to a causally non-separable processmatrix.

The necessity of nonlocal unitariesU andV can be proven in a similar way as in theorem3. Let
= ÄV V ZB2 . Rewriting (35) in terms of Choi states, it is straightforward to see that the resulting process

matrix is of the form  u= ÄmW B B A A2 1 2 1
, which is causal (AliceBob). Analogously, a product unitary

= ÄU U QA2 leads to a processmatrix of the form n= ÄmW B A B A1 2 2 1
, where nB A1 2

is theChoi state of a
unitarymap. Up to normalisation, nB A1 2

is amaximally entangled state, which implies that terms of the form
B A1 2 appear in its decomposition. As terms of the form B B A2 1 2 and B B A A2 1 2 1 cannot appear in mW , this implies
that  j= ÄB A B A2 1 2 1

, whichmeans that the resulting processmatrix is causal (AliceBob). ,
As for the parallel case, the nonlocality of the system-environment unitaries is perspicuous. If the first

unitarywas of product form, local causality in Alice’s laboratorywould automatically dictate a global order
between the two laboratories. Nonlocality of the final system-environment unitary enables communication
betweenBob and the environment, which is necessary to ‘blur’ the causal order betweenAlice and Bob.

As for the serial case, the theorem shows the importance of genuine pre-existing quantummemory, and
system-environment unitaries that transportmemory in a detectable way. This implies the following
straightforwardCorollary:

Corollary 2. Independent of the strategy, aMarkovian process is not sufficient for the conditional simulation of a
causally non-separable processes.

For a process—like, e.g., the one depicted infigure 3—that does not allow to store information in the
environment and access it at a later time, local causalityfixes the global temporal order. The simulation of
processes with indefinite causal order via conditioning requires underlying non-Markovian dynamics, i.e.,
dynamics that display detectablememory effects.

6. Conclusions

Quantummechanics is compatible with the existence of processes without a definite causal order. To date,
however, no such processes has been found in nature or has been realised experimentally, besides the quantum
switch [1–3]. In this article, we proposed away to simulate every causally unordered process through a causally
ordered circuit with postselection.With respect to previous results of this type, we have found a simulation

Figure 8. Serial circuit and Supermaps. The action of the two unitarymaps  and  , the initial state h and the conditioning onμ can

bewritten as a non-deterministic supermap m( )S acting onj
B. The resultingmap m [ ]S j

B maps  r Î( ) ( )i
A

A2 onto the
correct output state  r¢ Î ¢( )B2

.
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strategy that ensures a higher probability of success, facilitating the experimental observation of causal
anomalies.

The simulation of causally unordered processes can be obtained by a simple circuit withmeasurement on the
environment. This simulationworks also for processmatrices that would be forbidden if purification postulates
were imposed [10]. It is important to note that—in contrast to the results of [13, 14]—the conditioning in our
scheme happens on the environment, and not on the outputs of Alice and Bob; Charlie can decide whether or
not to record data, without having direct access to Alice’s or Bob’s degrees of freedom. Additionally, beyond the
proof of existence, we provided a constructiveway to obtain a triple  r P m{ }( )V, ,

1
of initial state, unitary

evolution andmeasurement outcome on the environment that yields a given processmatrixW.
Even though conditioning seems like a cherry-picking of data to obtain statistics that display causal

anomalies, it is not amathematical post-processing procedure, performed offline, but an experimental
procedure; data is collected, whenever themeasurement on the environment yields the correct outcome. The
whole procedure is well-defined, as the probability for successful conditioning does not depend on the choices of
instruments. In a slightly different context, this has also been noted in [14], where the authors showed that valid
processmatrices can be simulated by two-time states that have the property that the probability rule becomes
linear, i.e., probabilities do not depend on the choice of instruments. This understanding of the conditioning
processmakes causality become an emergent average property. For example, for the conditioning process
presented in example 1, both processmatricesW and W obtained by conditioning on the two possible outcomes
0 and 1 are causally non-separable, but their average +( ) ( )p W p W0 1 is—as it should be—causally ordered.

The simulation of causally unordered processes is highly non-unique. A randomly chosen triple

 r P m{ }( )V, ,
1

almost always leads to amatrixWμ that violates local causality. Put differently, there are spatial

correlations that cannot be understood as temporal correlations [38].We have provided a necessary and
sufficient condition for a conditioned circuit to yield a valid processmatrix. These results also show that, should
this kind of conditioning actually happen in nature, it is a highlyfine-tuned process.

Finally, we analysed in detail the resources necessary to implement a causally non-separable processmatrix
via a circuit with conditioning. Our results show that the implementation of causally unordered processes
requires both genuine tripartite entanglement in the initial state as well as nonlocal unitary dynamics. The
requirement of initial entanglement cannot even be lifted if we allow formore nonlocal communication. Initial
entanglement represents a genuine quantummemory of the past, while a nonlocal unitary dynamics allows for a
detectable propagation of this quantummemory. In this sense the obtained results—loosely speaking12—
establish that only genuinely quantumnon-Markovian processes allow for the simulation of causally non-
separable processes via conditioning. This result, however, only holds for the two-party case; ifmore parties are
involved, causal inequalities can be violatedwith purely classical processes [39].

Our results provide a complete picture of the resources that go into the simulation of (two party) causally
non-separable processes via conditioning. The success probability p(μ) of the implementation depends on the
respective choice of circuit (but not on the choice of instruments). It remains an open question if themaximum
success probability for the serial case is—except for trivial cases—always strictly larger than for the parallel case.
This is certainly true for processmatrices that allow for one-way signalling; they can be simulated
deterministically in the serial case, but require conditioning in the parallel one. Determining the relation
between signalling and themaximum success probability is an interesting avenue of future research, whichwe
plan to explore in a futurework.
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A generally agreed upon definition of non-Markovianity in the quantum regime is still subject of debate.
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Appendix. Allowed terms in the processmatrixW B B A A2 1 2 1

Processmatricesmust respect local causality. This requirement is expressed explicitly in (12). The process
matrixW A A B B2 1 2 1 is positive—and henceHermitian. Consequently, it can bewritten in the form [4]


 å s s s s= Ä Ä Ä

abg
abg a b g

=

( )W w A1B B A A B B A A

0

2 1 2 1 2 1 2 1

where thematrices s =
-{ }a

X
a
d

0
1y Xy

2

are generalised Paulimatrices, i.e., they are traceless (except for s =X
X0

y

y
) and

s s d=( ) dtr a
X

b
X

X ab
y y

y
. The prefactorw0000 is equal to d

1

A B1 1

for correct normalisation.Not all positivematrices

W A A B B2 1 2 1 of the form (A1) satisfy the requirement (12) for local causality; in order for (12) to hold for all CPTP
maps M B B2 1 and M W,A A A A B B2 1 2 1 2 1 can only contain terms that do not appear in Ä( ) ( )M MA A B BT T2 1 2 1 (except for
 A A B B2 1 2 1

). Otherwise, it would always be possible tofind two valid CPTPmaps, such that (12) is violated [4].
Using the property =( )MtrX

X X
X2

2 1
1
of CPTPmaps, we can explicitly write down conditions that define the

terms that can appear in the decomposition (A1). In a concise notation, we have



s s s s s

s s s s s s s

= Ä = Ä =

Ä Ä = Ä Ä Ä =

a a b a b

a b g a b g

( ) [( ) ] [( ) ]

[( ) ] [( ) ] ( )

W W W

W W

tr 0, tr 0 tr 0,

tr 0, and tr 0, A2

X X Y X X

X X Y X X Y Y

T T T

T T

2 2 2 2 1

2 1 2 2 1 2 1

wherewe have omitted the respective identitymatrices,  a b g Î≔ { }W W X Y B A, , , , 1, , ,B B A A2 1 2 1 and
¹X Y when they both appear in the same equation. For simplicity of notation, following the convention of [4],

we label terms in the decomposition(A1) of the form  s aÄa ( )1A
A B B

2
1 2 1

byA2, terms of the form
 s s a bÄ Äa b ( ), 1B B

A A
2 1

2 1 by A A2 1, etc. In this notation, for example, the second equation in(A2) states
that terms of the form A A2 1 and B B2 1 cannot appear in a valid processmatrix.
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