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Abstract 

We examine the short term economic impact of tropical cyclones by estimating the effects on 

monthly nightlight intensity within a year of a typhoon strike.  Using as a study area Guangdong 

Province in Southern China, we proxy monthly economic activity using remote sensing derived 

monthly night time lights intensity and combine this with local measures of wind speed using a 

tropical cyclone wind field model.  Our econometric results reveal that there is only a significant 

negative impact in the month of the typhoon strike. 
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1. Introduction 

There is a growing literature that examines the economic impact of tropical cyclones.  Predictions 

that the intensity of typhoons will increase with global warming means that understanding the 

economic consequences of typhoons is of growing importance to academics and policymakers 

(Knutson et al. 2010 and Emanuel 2013).  To date, the evidence from previous research is rather 

mixed, with most studies showing only a small negative and relatively short-lived effect. 1  

Importantly though, previous papers have tended to use low frequency data which, in nearly all 

cases, means using annual data.  However, tropical cyclones are, as with most natural disasters, 

relatively immediate events, where arguably much of the direct and indirect effects happen within 

the first few weeks of the disaster.  The result is that much of the short-term dynamics may be 

lost when only using annual data.2 

The purpose of this paper is to be the first study to examine the very short-term impact of 

tropical typhoons on local economic activity.  Our area of study is Guangdong Province in 

Southern China for the period 1993-2013.  Our empirical approach is to combine a measure of 

monthly nightlight intensity with local measures of wind speed during typhoon strikes estimated 

using a tropical cyclone wind field model.  In this way we are able to estimate the extent of the 

damage caused by typhoons for each of the twelve months following a typhoon strike.3 

We study Guangdong for three reasons.  First, Guangdong is located in the Northwest Pacific 

Basin which has some of the most frequent and intense tropical cyclones in the world.4  Second, 

as Guangdong is in Southern China, the sun sets before 20h30 all year round which allows us to 

                                                           
1 See Felbermayr and Groschl (2014) and duPont and Noy (2016) for recent reviews of the economics of natural 
disasters literature. 
2 The importance of looking at higher frequency data is highlighted by Mohan and Strobl (2017) who examined the 
impact of Typhoon Pam in the South Pacific and found very heterogeneous within year effects.  Unlike our study 
they focus on a single event and only examine aggregate rather than local impacts. 
3 Since Chen and Nordhaus (2011) and Henderson (2011) first used satellite derived nightlight intensity as an 
indicator of local economic activity in an economic context, nightlight intensity has become a popular proxy when 
official data are not available.  For an example of the use of nightlights to examine the local economic impact of 
tropical cyclones using annual data see Elliott et al. (2015). 
4
 Liu et al. (2001) provide a 1,000 year time series of typhoon landfalls that struck Guangdong based on historical 

documentary evidence. 
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use remote sensing derived night time light intensity for every month of the year including the 

crucial summer and early autumn months when typhoons most often make landfall.  Finally, 

Guangdong is home to a large number of small and medium sized manufacturing plants and is 

one of the most economically important provinces in China over this period. 

 

2. Data 

The nightlights data consists of the monthly composites of the United States Air Force Defense 

Meteorological Satellite Program-Operational Linescan System (DMSP-OLS).  The raw data are 

processed to remove cloud obscured pixels and other sources of transient light, and are 

normalized to range between 0 and 63.  Here we use the monthly composites provided for 

satellites F10, F12, F14, F15, F16, and F18, which provide information on the average stable 

monthly nightlight intensity as well as the number of cloud free days from which these averages 

are calculated.  In order to derive unique monthly values for overlapping satellite observations we 

calculate simple averages across satellites for each pixel, which are approximately 1km.  Since the 

images are taken between 20h30 and 22h local time importantly for large parts of China there are 

no measures during the summer months June to August.  As we noted previously, this is one 

reason why we restrict our analysis to the southern province of Guangdong.  The average value 

of nightlights within Guangdong over our sample period 1992 to 2013 is 10.8, with a standard 

deviation of 16.9, derived from images with an average of 5.8 cloud free days.  Figure 1 depicts 

the annual average nightlight intensity relative to changes in GDP for our time period.  As we can 

see, both series follow similar trends. We also depict the 2013 annual average value in Figure 2, 

which suggests the very unequal spatial distribution of economic activity in the province.  

To measure the destruction due to tropical cyclones we employ the index proposed by Emanuel 

(2011) that proxies the fraction of property damaged: 
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where Vij  is the maximum wind experienced at point i due to storm j, Vthresh is the threshold 

below which no damage occurs, and Vhalf is the threshold at which half of the property is 

damaged.  Following Emanuel (2011) we use a value of 93 km (i.e. 50kts) for Vthres and a value of 

203 km (i.e. 110kts) for Vhalf.  At points i we take the centroids of the 136,378 DMSP nightlight 

cells that fall within Guangdong Province.  To measure wind speed at each of these points we use 

a modified version of Holland’s (1980) wind field model following Elliott et al. (2015).  Our final 

sample consists of 69 storms that struck Guangdong Province between 1993 and 2013 and had a 

wind speed exposure above the threshold of 93km.  These 69 storms resulted in average values 

of f of 0.02 (i.e. 2% damage) with a maximum value of 0.46 (i.e. 46% damage).  We depict their 

tracks in Figure 2.  Table 1 provides details on the main typhoons to strike Guangdong during 

this period, their location and wind speed. 

 

3. Results 

The results from estimating the impact of f for up to one year after the strike on logged values of 

cell level nightlight intensity, including accounting for cell level fixed effects and time specific 

effects are shown in Table 2.5  Standard errors are calculated according to Driscoll and Kraay 

(1998) to allow for serial and cross-sectional correlation.  Our results in Column (1) show that 

there is only a contemporaneous, and not a lagged, effect on nightlight intensity.  Taken at face 

                                                           
5 We add 1 to all values so cells with zero values are not dropped. 
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value it implies that, on average, a damaging storm reduces the average nightlights by 1%, while 

the largest observed value would have reduced our proxy of economic activity by 24%. 

We conduct a number of robustness checks in the remaining columns of Table 2.  First, we 

include cell level measures of rainfall and temperature, including up to 12 lags, since these 

weather phenomena may be correlated with storm occurrence.  However, as can be seen from 

Column (2), this only marginally changes the coefficient on the contemporaneous measures and 

does not make any of the lags significant.  The coefficients on our monthly rainfall and 

temperature controls were not significant and are not reported for reasons of space.  In Column 

(3) we include the number of cloud free days as a control for how many daily images each cell’s 

monthly average was based on, since these may be reduced by the occurrence of a tropical storm.  

Although more cloud free days implies greater average nightlight intensity, it does not alter the 

effect of f.  Finally, following Emmanuel (2011) in Column (4) we experiment with using a higher 

Vhalf, namely 278 km/hr.  While this changes the coefficient due to the different functional form, 

the qualitative results remain the same.  The coefficients imply an average contemporaneous 

reduction of 3 per cent and a maximum of 27% which are broadly similar to our Column (1) 

results. 

 

4. Conclusions 

This paper is the first to examine the short-term impact of tropical storms using monthly 

nightlight imagery and simulated storms damages.  Our analysis is undertaken for the case of the 

Guangdong province for the period 1993-2013.  Our results show that, on average over our 

sample period there is only a significant and negative effect within the month of the typhoon 

strike and no evidence of a build back better effect within twelve months of a typhoon.  Arguably, 

this has important policy implications as it suggests that resources that are provided quickly are 
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able to counter-act any negative effects of storms.  The limited effect suggests that China’s well-

established emergency response mechanisms and early warning release platforms have been 

effective in reducing the short-term economic damage from typhoons. 
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Figure 1: Average Cell Nightlight Intensity vs. Annual GDP (1992-2013) 
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Figure 2: Cyclone Tracks (1992-2013) and Nightlight Imagery (2013) of Guangdong Province 

 

Note: (a) Guangdong outline in blue; (b) 2013 average annual nightlight imagery; (c) Orange portion of cyclone track is non-damaging (<92km/hr), red portion is 

damaging (92km/hr+)  
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Table 1: The main typhoons affecting Guangdong Province, 1993-2013 

Name Wind Speed Start date End date Location 

Tasha  13/08/1993 22/08/1993  Yangxi County 
Becky  13/09/1993 18/09/1993  Yangjiang City 
Sally 120 knots 02/09/1996 09/09/1996  
Dujan 80 knots 29/08/2003 03/09/2003 Huidong County 
Damery 80 knots 21/09/2005 28/09/2005  
Fengshen 44 knots 19/06/2008 26/06/2008  Shenzhen City 
Kalmagegi 65 knots 15/07/2008 21/07/2008  Xiapu County 
Fung-wong 75 knots 25/07/2008 31/07/2008  Fuqing City 
Kammuri 50 knots 05/08/2008 08/08/2008  Yangxi County 
Nuri 75 knots 18/08/2008 23/08/2008  Sai Kung Town 
Hagupit 90 knots 19/09/2008 26/09/2008  Dianbai County 
Higos 35 knots 30/09/2008 04/10/2008  Wuchuan City 
Molave 65 knots 16/07/2009 20/07/2009  Shenzhen City 
Morakot 75 knots 09/08/2009 12/08/2009  Xiapu County 
Koppu 65 knots 13/09/2009 16/09/2009  Taishan City 
Parma 100 knots 29/09/2009 14/10/2009  Wanning City 
Nida 70 knots 12/07/2010 18/07/2010   
Chanthu 70 knots 19/07/2010 23/07/2010  Wuchuan City 
Meranti 55 knots 08/09/2010 11/09/2010  Shishi 
Megi 125 knots 13/10/2010  24/10/2010  Zhangpu County 
Nanmadol 100 knots 23/08/2011  31/08/2011  Jinjiang City 
Nesat 80 knots 24/09/2011  30/09/2011  Xuwen County 
Nalgae 95 knots 28/09/2011  05/10/2011  Wanning City 
Vicente 80 knots 21/07/2012  25/07/2012  Taishan City 
Kai-tak 65 knots 13/08/2012  18/08/2012  Tsankiang 
Utor 105 knots 10/08/2013  18/08/2013 Yangxi County 
Usagi 110 knots 17/09/2013  23/09/2013  Shanwei City 
Wutip 65 knots 27/09/2013  01/10/2013   
Nari 75 knots 09/10/2013  15/10/2013   
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Table 2: Regression Results 

 (1) (2) (3) (4) 

f -0.730* -0.767* -0.728* -2.763* 
 (0.343) (0.304) (0.310) (1.202) 
f(t-1) -0.315 -0.264 -0.256 -0.940 
 (0.229) (0.270) (0.282) (1.072) 
f(t-2) -0.257 -0.269 -0.318 -1.175 
 (0.275) (0.321) (0.330) (1.241) 
f(t-3) -0.581 -0.710 -0.662 -2.501 
 (0.363) (0.383) (0.384) (1.488) 
f(t-4) 0.0796 -0.0723 -0.0893 -0.299 
 (0.176) (0.187) (0.188) (0.703) 
f(t-5) -0.245 -0.408 -0.406 -1.602 
 (0.230) (0.238) (0.237) (0.824) 
f(t-6) 0.0237 -0.0898 -0.103 -0.421 
 (0.205) (0.213) (0.202) (0.835) 
f(t-7) 0.105 0.0930 0.0919 0.334 
 (0.565) (0.551) (0.530) (2.258) 
f(t-8) -0.394 -0.467 -0.405 -1.560 
 (0.212) (0.237) (0.235) (0.843) 
f(t-9) -0.199 -0.0898 -0.0938 -0.346 
 (0.136) (0.165) (0.166) (0.632) 
f(t-10) -0.935 -0.857 -0.856 -3.117 
 (0.447) (0.450) (0.459) (1.771) 
f(t-11) -0.427 -0.442 -0.413 -1.501 
 (0.227) (0.239) (0.240) (0.937) 
f(t-12) 0.106 0.0277 0.0434 0.256 
 (0.284) (0.282) (0.276) (1.058) 
Cloud-free Days   0.00662** 0.00664** 
   (0.00201) (0.00201) 

Rainfall controls No  Yes Yes Yes 
Temperature controls No  Yes Yes Yes 

Observations 29,366,056 29,304,494 29,304,494 29,304,494 
Number of groups 136,378 136,104 136,104 136,104 
F-test 2.86** 1.76** 1.82** 1.86** 

Notes: (1) Driscoll and Kraay (1998) Standard errors in parentheses. (2) ** p<0.01, * p<0.05. (3) 
Time specific effects included in all specifications. 
 


