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Abstract 

 

Neurodegenerative diseases including Huntington’s disease (HD), the spinocerebellar ataxias 

and C9orf72 associated Amyotrophic Lateral Sclerosis / Frontotemporal dementia (ALS/FTD) 

do not present and progress in the same way in all patients.  Instead there is phenotypic 

variability in age at onset, progression and symptoms.  Understanding this variability is not 

only clinically valuable, but identification of the genetic factors underpinning this variability 

has the potential to highlight genes and pathways which may be amenable to therapeutic 

manipulation, hence help find drugs for these devastating and currently incurable 

diseases.  Identification of genetic modifiers of neurodegenerative diseases is the overarching 

aim of this thesis.  

  

To identify genetic variants which modify disease progression it is first necessary to have a 

detailed characterization of the disease and its trajectory over time.  In this thesis clinical data 

from the TRACK-HD studies, for which I collected data as a clinical fellow, was used to study 

disease progression over time in HD, and give subjects a progression score for subsequent 

analysis.  In this thesis I show blood transcriptomic signatures of HD status and stage which 

parallel HD brain and overlap with Alzheimer’s disease brain. 

  

Using the Huntington’s disease progression score in a genome wide association study, both a 

locus on chromosome 5 tagging MSH3, and DNA handling pathways more broadly, are shown 

to modify HD progression: these results are explored.  Transcriptomic signatures associated 

with HD progression rate are also investigated.  

  

In this thesis I show that DNA repair variants also modify age at onset in spinocerebellar 

ataxias (1, 2, 3, 6, 7 and 17), which are, like HD, caused by triplet repeat expansions, 

suggesting a common mechanism.  Extending this thesis’ examination of the relationship 

between phenotype and genotype I show that the C9orf72 expansion, normally associated 

with ALS/FTD, is also the commonest cause of HD phenocopy presentations.  
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Chapter 1: Introduction 

1.1 Genes and disease 

To better understand the pivotal relationship between genotype and phenotype is core to 

modern biology, and study of factors that control the form of organisms has transformed over 

the past 200 years from Lamarckian views on inheritance of acquired characteristics, to the 

role of the gene in the neodarwinian synthesis, to the use of large scale multi-omic studies.  

Susceptibility to disease is a phenotypic attribute which may be influenced by genes, and 

understanding these genetic influences on disease has the potential to illuminate 

pathogenesis.  By better understanding the molecular cellular processes underpinning disease 

we may be able to define treatment targets.  This, combined by increased affordability of 

large scale genetic studies, has led to a burgeoning interest in disease genetics.     

 

Despite their immense public health burden neurodegenerative diseases remain poorly 

understood in terms of basic biology, and we lack treatments to prevent or slow them.  In this 

thesis I focus on a set of neurodegenerative diseases caused by repeat expansion mutations: 

primarily Huntington’s disease (HD), but also the polyglutamine spinocerebellar ataxias (SCAs) 

and C9orf72 associated Amyotrophic Lateral Sclerosis / Frontotemporal dementia (ALS/FTD).  

While the disease-causing mutations have been identified for these conditions, there is 

variability in how the symptoms developed and how they progress.  It is hoped that 

characterizing and understanding this phenotypic variability will be clinically valuable, and 

assist in finding drugs for these devastating and currently incurable diseases through the 

identification of genes and pathways amenable to therapeutic manipulation.  

 

A common theme among the diseases discussed in this thesis is that they are associated with 

expansions in tracts of repetitive DNA: Huntington’s disease and the polyglutamine SCAs are 

associated with CAG repeat expansions and C9orf72 associated ALS/FTD is associated with a 

GGGGCC repeat expansion.  Tandemly repeated DNA is a common feature of eukaryotic 

genomes and is also seen in prokaryotes (Bichara et al., 2006), and are thought to have arisen 

by expansion of a progenitor sequence. Repetitive DNA elements make up a substantive 

portion of the genome in many organisms, including humans where estimates suggest that 

this represents >65% of the genome (de Koning et al., 2011).  There are various types of 

repetitive elements, ranging from microsatellites up to whole genes (Figure 1).  Microsatellites 

are the shortest type of tandem repeats, they are usually <150 base pairs, and the repeat unit 

is usually 4bp or less but can be up to 6bp, typically repeated 10-20 times.  Microsatellites 
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with a CA repeat make up 0.5% of the genome. Over 30 human developmental and 

neurodegenerative diseases are caused by expansion of unstable microsatellite sequences 

(McMurray, 2010): HD, polyglutamine SCAs and C9orf72 associated ALS/FTD among them.  

 

Figure 1.1: Types of DNA within the human genome. Types of DNA within the human genome. 

Tandem repeats tend to be located in blocks at one or more locations on chromosomes. 

Interspersed repetitive sequences may be widespread over the genome, located over broad 

regions of one of more chromosomes. Bp: base pair. LINE: long interspersed element; SINE: 

short interspersed element. 

 

1.2 Huntington’s disease 

1.2.1 Clinical characteristics and prevalence 

Huntington’s disease is the most common genetically determined neurodegenerative disease 

with a prevalence of at least 12.4 per 100,000 people in the UK (Rawlins, 2010a).  It is an 

autosomal dominant neurodegenerative condition caused by a CAG repeat (translated to 

polyglutamine) expansion in exon 1 of the gene encoding huntingtin (HTT), and is typically 

characterised by a triad of psychiatric, movement and cognitive impairment.  HD can produce 

a wide range of phenotypic presentations, and as the disease progresses, the signs and 

symptoms change. Symptoms usually develop between 35-45 years of age, but onset has 

been described between 2-87 years.  The disease progresses inexorably and, with the 

exception of late-onset cases, is uniformly fatal a median of 18 years from motor onset (Ross 

et al., 2014). The highest prevalence in the world is in Venezuela near Lake Maracaibo: 700 
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per 100 000, and it is the collaboration of people in this region and an international group of 

researchers that was crucial in the identification of the HD gene.   

1.2.2 Motor features 

The cardinal motor symptoms of HD are chorea and dystonia which are present in 90% and 

95% of symptomatic patients respectively (Wild and Tabrizi, 2012, Louis et al., 1999).  Gait is 

impaired, not only due to the chorea and dystonia, but also due to impairment in motor 

control and postural reflexes, making patients prone to falling. Hypophonia, dysarthria and 

dysphagia all cause significant morbidity.  Dysphagia with choking episodes is reported even in 

early disease. Eye movement abnormalities occur early. As the disease progresses head 

thrusting is used to initiate gaze shifts, pursuit is impaired with saccadic instructions and there 

is gaze impersistence.   

1.2.3 Psychiatric features  

Psychiatric problems, particularly anxiety and depression, are a common and major cause of 

morbidity in HD and may occur many years before symptom onset (Paulsen et al., 2005).  

Psychosis is relatively rare, additional familial factors may predispose to schizophrenia-like 

symptoms in HD (Lovestone et al., 1996).  Hypomania, and more rarely mania is seen 

(Craufurd and Snowden, 2002). 

 

Irritability is common (65.4%) (Paulsen et al., 2001a) and some patients become aggressive.  

Apathy is prevalent in both symptomatic HD (55.8%) (Reedeker N, 2011, Paulsen et al., 

2001a), and prior to motor onset (Duff et al., 2010).  Obsessions and compulsions can be 

features of the disease.   

1.2.4 Cognitive features  

The severity of cognitive involvement in HD is variable, and becomes more prevalent and 

marked as the disease progresses.  Cognitive deficits are particularly apparent in executive 

functioning, and also attention, verbal fluency, psychomotor speed, memory and visuospatial 

functioning (Brandt and Butters, 1986, Craufurd and Snowden, 2002).   

 

There often are subtle cognitive differences detectable more than a decade prior to predicted 

motor onset, which gradually decline as motor onsets approaches (Paulsen et al., 2008, 

Paulsen et al., 2001b, Stout et al., 2012, Tabrizi et al., 2012) (Figure 1).  There are 

abnormalities on MRI such as caudate atrophy which can be seen in cross-sectional studies up 

to 15 years prior to predicted motor onset (Tabrizi et al., 2009a, Tabrizi et al., 2012).  The 
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presence of longitudinal change in premanifest disease enables disease progression to be 

assessed, even before a patient has overt symptoms.  

 

Figure 1.2: Longitudinal changes in cognitive measures from the Track-HD study over 24 

months.  Significant change differences relative to controls over 0-12, 12-24, and 0-24 months 

are represented by *p<0.05, **p<0.01 and ***P<0.001. Groups determined at start of study; 

PreHD-A: more than 10.8 years from predicted onset; PreHD-B: less than 10.8 years from 

predicted onset; HD1: early HD & less symptomatic on total functional capacity scale (TFC); 

HD2: early HD and more symptomatic on TFC. Adapted from (Tabrizi et al., 2012), 

Image reproduced with permission of the rights holder, Elsevier Inc. 

1.2.5 Disease onset 

By consensus, disease onset is defined as the point when a person who carries a CAG-

expanded HTT allele develops ‘the unequivocal presence of an otherwise unexplained 

extrapyramidal movement disorder’ (eg chorea, dystonia, bradykinesia, rigidity) (Huntington's 

et al., 1993, Hogarth et al., 2005).  However, the transition from premanifest to manifest HD is 

not abrupt, making the clear delineation of this event more challenging than previously 

assumed, and more open to individual physician or investigator interpretation.  There may be 

more subtle features evident to the careful observer prior to this in the peri-symptomatic or 

prodromal phases of HD. These include delayed initiation of saccades, slower saccades 

particularly on vertical eye movements, irregular finger tapping and a generalised 

restlessness.  Psychiatric symptoms and cognitive changes often occur before motor onset 

(Tabrizi et al., 2009a, Tabrizi et al., 2011, Tabrizi et al., 2012).   

 

The lack of clear transition between premanifest and manifest states, combined with different 

approaches from clinicians about making a formal diagnosis of manifest HD have led to 

concerns with using age at onset data.  Lahiri (Lahiri, 2013) found that motor AAO in the very 

closely monitored TRACK-HD study is two years earlier than the less intensive EHDN Registry 
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study; this difference remains significant when analysis is restricted to matching populations, 

and is not accounted for by CAG.  

1.2.6  HD Genetics 

HD is inherited in an autosomal dominant manner, and is caused by a trinucleotide CAG 

repeat expansion in the huntingtin (HTT) gene on the short arm of chromosome 4 at 4p16.3.    

The expansion is translated into a polyglutamine stretch in the mutant Huntingtin protein 

(mHTT).   

 

Non-disease-associated alleles vary from 10 to 35 repeats, whilst disease-associated alleles 

exceed 35 CAG repeats, with penetrance increasing to ~100% by 40 repeats (Quarrell et al., 

2007) (Table 1.1). Up to 121 CAG repeats have been reported, but there is a marked skew to 

the right in the distribution and most people have 40-44 repeats (Langbehn et al., 2004).  

CAG repeat 

length 

<27 27 – 35 36 – 39 40 55 – 60  

Clinical 

manifestation 

Normal 

 

Intermediate 

repeat allele  

Not generally 

pathogenic 

May expand into 

disease range in 

future generations 

in paternal line 

Reduced 

penetrance but 

pathogenic 

Fully 

penetrant 

Usually 

have 

juvenile 

onset 

Table 1.1: Relationship between size of CAG repeat expansion and clinical outcome. 

1.2.7 Role of CAG repeat length in the phenotype of Huntington’s disease 

There is an inverse relationship between the size of the CAG repeat and the onset and clinical 

manifestation of HD as outlined in Table 1.1, with those with very high CAG repeats 

developing a severe, juvenile onset form of the disease.  Age of onset (AAO) of HD has a 

genetic component with 50-70% of the variance attributable to HTT CAG repeat length (Duyao 

et al., 1993, Brinkman et al., 1997, Wexler et al., 2004b, Langbehn et al., 2004).   

1.2.8 Disease burden score and cumulative probability of disease onset 

In order to explore Huntington’s disease related changes over time several approaches have 

been used to encapsulate the expected burden of pathology, relative to the subject’s age and 

CAG repeat score.  The most notable of these are the ‘disease burden score’ and the 

‘cumulative probability of disease onset’.  The disease burden score is relatively calculable 
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(DBS= age x [CAG-35.5]) but is based on a small number of neuropathological samples 

(Penney, 1997, Sanchez-Pernaute et al., 1999).   

A more widely used measure of the combined contributions of age and CAG on when an 

individual will develop onset is the parametric survival model developed by Langbehn and 

colleagues (Langbehn et al., 2004).  This is based on a cohort of 2913 manifest and 

premanifest HD patients.  The model predicts the probability of motor symptom onset at 

different ages for individual patients with narrow confidence intervals (Figure 1.3). 

Advantages include being based on a large population sample, making no assumption of 

linearity, and taking into account the current age of a subject when predicting their future 

onset probabilities.  

 

Figure 1.3:  Cumulative probability of Huntington’s disease onset curves for various CAG 

lengths. Numbers indicate CAG repeat length. Cum. prob. onset = Cumulative probability of 

onset of Huntington’s disease. From (Langbehn et al., 2004), Image reproduced 

with permission of the rights holder, Wiley-Blackwell. 

. 

1.2.9 Intergenerational and somatic instability of the HTT CAG repeat 

CAG repeat lengths vary from generation to generation, with both expansion and contraction 

of the number of repeats occurring, but with an overall tendency towards expansion. Large 

expansions are associated with transmission down the male line (Telenius H, 1993), and there 

is a familial tendency towards large expansions. The tendency of the CAG expansion to expand 

during transmission underlies the phenomenon of anticipation observed in Huntington’s and 

other neurodegenerative conditions such as SCAs 1, 2, 3, 6, 7 and DRPLA. 
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The HD CAG repeat expansion also exhibits somatic mosaicism which tends to be expansion-

biased and age-dependent (Kennedy et al., 2003).  Repeat instability is also found in other 

repeat disorders such as myotonic dystrophy type 1 (DM1), SBMA and SCAs 1, 2, 3, 7, 12 

(further detail in Chapter 4). Much of the work on repeat instability has been done on DM1 

model systems; DM1 is a multisystem disorder caused by an expanded CTG repeat (CAG on 

the non-coding strand) in the 3′-untranslated region of the DM protein kinase (DMPK) gene.  

Somatic instability is tissue-specific, with particularly high levels found in striatum and cortex 

of people with HD (Kennedy and Shelbourne, 2000, Kennedy et al., 2003), but also is observed 

in liver (Tome et al., 2013a). CAG repeat instability occurs in terminally differentiated, post 

mitotic neurons in several HD mouse models (Gonitel et al., 2008) suggesting a replication 

independent mechanism.  Striatum, the brain area most affected in HD, exhibits the highest 

levels of CAG somatic instability in both mouse models and humans, whereas CAG expansion 

is minimal/absent in the cerebellum (Halliday et al., 1998, Telenius et al., 1994, Kennedy et al., 

2003, Kennedy and Shelbourne, 2000).  Striatal HTT CAG repeat size instability increased in an 

expansion-biased and age-dependent manner (Kennedy and Shelbourne, 2000).  Notably, the 

degree of somatic expansion of the CAG repeat in HD patient brain predicts onset (Swami et 

al., 2009).    

1.3 C9orf72 associated Amyotrophic Lateral Sclerosis / Frontotemporal 

dementia 

1.3.1 Clinical Features 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized clinically 

by upper and motor neuron weakness causing progressive paralysis leading to death from 

respiratory failure, typically within two to three years of symptom onset (Kiernan et al., 2011).  

Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous group of non-

Alzheimer dementias characterised collectively by relatively selective, progressive atrophy 

involving the frontal or temporal lobes, or both (Warren et al., 2013).  There are three main 

clinical syndromes of FTD: behavioural variant FTD, primary progressive aphasia and semantic 

dementia, and there is variable overlap between the syndromes, atypical parkinsonism and 

motor neuron disease.   

1.3.2 Genetics 
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There were several genes known to be associated with FTD including MAPT (microtubule‐

associated protein tau) and progranulin (GRN) when, in 2011, an expanded hexanucleotide 

GGGGCC repeat in the C9orf72 gene was identified in large kindreds with FTLD and ALS 

(DeJesus-Hernandez et al., 2011, Renton et al., 2011).   This expansion is now recognised as 

the commonest genetic cause of ALS and FTLD in many populations (DeJesus-Hernandez et al., 

2011, Renton et al., 2011, Smith et al., 2012, Mahoney et al., 2012).  

 

In addition to C9orf72, mutations in SOD1, TARDBP, FUS, ANG, ALS2, SETX, and VAPB also 

cause familial ALS and contribute to the development of sporadic ALS. The spectrum of genes 

causing ALS / FTD, and the pathological inclusions observed are summarized in Figure 1.4. 

While multiple pathways are involved in disease initiation and progression in ALS and FTD, 

RNA homeostasis has emerged as as a convergent underlying mechanism between ALS and 

FTD (Ling et al., 2013). 

 

Figure 1.4: Clinical, genetic and pathological overlap of ALS and FTD.  (A) ALS and FTD 

represent a continuum of a broad neurodegenerative disorder with each presenting as 

extremes of a spectrum of overlapping clinical symptoms (ALS in red and FTD in purple). 

Major known genetic causes for ALS and FTD are plotted according to the ratio of known 

mutations that give rise to ALS or FTD. (B) Pathological protein inclusions in ALS and FTD, 
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according to the major protein misaccumulated. Inclusions of TDP-43 and FUS/TLS in ALS and 

FTD reflect the pathological overlap of ALS and FTD. From (Ling et al., 2013), 

image reproduced with permission of the rights holder, Cell Press.  

 

1.4 The Spinocerebellar ataxias 

The spinocerebellar ataxias are a heterogeneous group of genetic disorders united by 

occurrence of slowly progressive incoordination of gait, fine motor skill tasks, speech, and eye 

movements (Table 4.1) (Harding, 1984, Jayadev and Bird, 2013). Seven SCAs are due to CAG 

repeat expansions, collectively known as the polyglutamine spinocerebellar ataxias.  The 

phenotypes of these diseases differ. Atrophy of the cerebellum is observed on a frequent 

basis, and the dysfunction of the cerebellum and its associated systems is at the core of the 

clinical symptoms, thus ataxia is a cardinal feature. There is variable involvement of additional 

systems leading to changing frequencies of accompanying features such as optic atrophy, 

neuropathy, retinopathy, extrapyramidal and pyramidal symptoms, seizures, intellectual 

disabilities, dementia, sensorineural deafness, endocrine manifestations and more (Kawai et 

al., 2009, Jayadev and Bird, 2013). 

 

Common features among the polyglutamine spinocerebellar ataxias include autosomal 

dominant inheritance, genetic anticipation, disruption of the normal conformation and 

function of the protein above a threshold repeat size, neuronal involvement and intracellular 

inclusions containing the cognate polyglutamine protein.  The nature and temporal and 

regional expression pattern of the repeat-containing proteins probably leads to the clinical 

variability between these diseases, but the substantial phenotypic variation seen within each 

disease remains only partly explained (Gatchel and Zoghbi, 2005). 

 

A more extensive discussion of the polyglutamine spinocerebellar ataxias along with a table 

summarizing the clinical characteristics of each disease and the causative mutation is given in 

the Introduction to Chapter 4. 

1.5 Genetic analysis  

There are various approaches which can be used to determine what chromosomal location or 

gene is responsible for a particular phenotype. The typical genetic study involves collecting a 

sample of subjects with phenotypic information, genotyping these subjects and then analysing 

the data to determine whether the phenotype is related to the genotypes at various loci 

(Sham and Purcell, 2014).  Genetic linkage analysis was used for years to identify many 
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disease causing genes including the Huntingtin gene (Huntington's et al., 1993, Gusella, 1984): 

it is well suited to identifying the genetic underpinnings of Mendelian disorders which are 

largely caused by protein-coding changes with large effect sizes (Botstein and Risch, 2003).  

Linkage analysis is based on the observation that genes that reside physically close on a 

chromosome remain linked during meiosis, and can be quantified using a LOD score.  This 

technique was developed by Newton Morton, and compares the likelihood of obtaining the 

test data if the two loci are indeed linked, to the likelihood of observing the same data purely 

by chance  (Morton, 1955).  Genetic maps were made by looking at associations between 

genetic variants and diseases or traits, with the distances given in recombination units (the 

centiMorgan [cM]).   

 

To determine whether an association is statistically significant various approaches have been 

used, the most popular is the frequentist significance testing approach, which was proposed 

by Fisher (Fisher, 1925)  and further developed by Neyman and Pearson (Neyman and 

Pearson, 1933).  While some point to the limitations of the use of p-values, and argue for a 

Baysean approach given that it provides a more natural and logically consistent framework for 

drawing statistical inferences, the requirements for prior distributions to be specified for 

model parameters and intensive computation make this challenging (Sham and Purcell, 2014).  

Ensuring that a study has sufficient statistical power to detect an association is important: the 

probability of rejecting H0 when the alternative hypothesis (H1) is true is formalized as the 

statistical power in the Neyman–Pearson hypothesis testing framework.  Technological 

advances mean that we are now able to adopt unbiased approaches in genetic analysis, 

however maximizing power for a given amount of sequencing/genotyping remains important.   

Many factors influence the statistical power of genetic studies.  Some are outside the 

investigator’s control including the complexity of the genetic architecture of the phenotype, 

the effect sizes and allele frequencies of the underlying genetic variants, the inherent level of 

temporal stability or fluctuation of the phenotype, and the history and genetic characteristics 

of the study population (Sham and Purcell, 2014). While factors the investigator may 

manipulate to boost study power include the selection of study subjects, sample size, 

methods of phenotypic and genotypic measurements, and methods for data quality control 

and statistical analyses (Sham and Purcell, 2014). Thus optimal subject selection and careful 

phenotyping can boost study power as well as increasing sample size.  In this thesis I have 

used the approach of careful subject selection and deep clinical phenotyping to facilitate 

genetic analysis.  
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Genetic variants are variable in both their risk allele frequency and the strength of genetic 

effect they have on phenotype/risk of disease (Figure 1.5), meaning that different techniques 

are variably suited to identifying variants with these effect/frequency profiles.   

 

 

Figure 1.5: Feasibility of identifying genetic variants by risk allele frequency and strength of 

genetic effect (odds ratio). From (Manolio et al., 2009), image reproduced with permission of 

the rights holder, Nature Publishing Group. 

 

Whole exome sequencing uses Next Generation Sequencing technologies to provide sequence 

information on the protein-coding genome with high coverage.  It is well suited for the 

identification of variants when there is substantial locus heterogeneity, to identify rare 

structural or coding variants of relatively large effect. While many WES studies adopt the trio 

design to filter out non-causative variants, in the exploratory study described in Chapter 5 I 

used a case control design to see if any variants were enriched in people who progress rapidly 

with HD compared with more slowly progressing subjects. 

 

Linkage based approaches have had limited success in complex diseases due to their low 

power and resolution for variants of moderate or small effect (Pulst, 1999, Sham and Purcell, 

2014).  Candidate gene studies can be used to detect association between genetic variation 

within pre-specified genes of interest and phenotypes or disease states, the work in Chapter 4 

of this thesis is an example of a candidate gene study.  While candidate gene studies have 

been used to investigate complex traits, but by their very nature are incapable of identifying 

new molecules or pathways, and are at best a way of ‘proving’ a suspected molecules’ 

candidature (Gandhi and Wood, 2010). 
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The technique of looking at associations between hundreds of thousands of common genetic 

variants (polymorphisms) in the genome with a phenotype or disease status in people: the 

genome wide association study (GWAS), is based on the principle that common allelic 

variation(s) in a population will underlie the heritability of common diseases.  In Chapter 3 of 

this thesis I present the findings of a GWAS to identify modifiers of disease progression in HD. 

GWASes have yielded many important findings over the past 13 years since the discovery of a 

Complement Factor H Polymorphism associated with Age-Related Macular degeneration 

(Klein et al., 2005).  Some of the results were surprising, and highlighted areas of biology 

which are critical to the pathogenesis of the disease.  While early GWASes tended to be small, 

over time the number of subjects included has grown with the number of GWAS published 

(Figure 1.6).  A turning point for GWAS came in 2007 with the seminal Wellcome Trust Case 

Control Consortium (WTCCC) study (Wellcome Trust Case Control, 2007), which compared the 

sequences of hundreds of thousands of common genetic variants in people with and without 

seven diseases to look for variants associated with these diseases.  This study had large 

sample sizes (2000 in each disease group and 3000 shared controls), necessarily requiring a 

high level of collaboration between groups (Wellcome Trust Case Control, 2007).  Since then 

the trend towards increasing sample size has continued: while Klein et al (Klein et al., 2005) 

detected an association with just 96 cases and 50 controls, many more recent studies have 

over 200,000 subjects (Manolio, 2017). 

 

 

Figure 1.6: Ever-increasing sample sizes for genome-wide association studies (GWAS). This 

graph shows the cumulative number of GWAS involving 10,000 samples or more published 

per year, with those involving different sample sizes indicated in different colours. Graph from 
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(Manolio, 2017); Data taken from www.ebi.ac.uk/gwas., image reproduced with permission of 

the rights holder, Nature Publishing Group. 

 

The reason for the increased size for these genome wide association studies can be 

understood if one considers the genetic architecture of the traits for which associations are 

being sought.  If the effect size of the genetic variant is large, it requires fewer samples to be 

significantly detected; while if the effect size is small, more samples are needed.  As increasing 

numbers of GWASes were performed it became evident that even the most important loci in 

the genome have small effect sizes, and for some time people were perplexed that the 

significant hits only explain a modest fraction of the predicted genetic variance.  This was 

referred to as the mystery of the “missing heritability” (Manolio et al., 2009, Maher, 2008). 

The concept of missing heritability is based on the observation that the portion of phenotypic 

variance in a population attributable to additive genetic factors: the heritability, is higher than 

the combined contribution of identified genetic factors.  For example height has about 80% 

heritability (Visscher et al., 2006), but 40 loci associated with height were found to explain 

around 5% of the phenotypic variance despite studies of tens of thousands of people 

(Visscher, 2008).   

 

It has been observed that common single-nucleotide polymorphisms (SNPs) with effect sizes 

well below the genome wide statistical significance level account for most of the ‘‘missing 

heritability’’ of many traits (Yang et al., 2010a, Shi et al., 2016, Boyle et al., 2017). These SNPs 

are frequently noncoding variants that are thought to affect gene regulation, which is subject 

to many stages and influences (Pickrell, 2014, Li et al., 2016, Hardy and Singleton, 2009).  

Using a network model Pritchard and colleagues (Boyle et al., 2017) explain that for a variety 

of traits, the largest-effect variants are modestly enriched in specific genes or pathways that 

may play direct roles in disease.  These are ‘core’ genes and pathways and their direct 

regulators: modest in number and with specific roles in disease aetiology. Core genes are 

likely to be those that harbour common variants with large clinical or biological effects, and 

genes with a series of disease-associated alleles.  They are also the genes most likely to be 

amenable to targeting therapeutically.  Rather than coming from core genes, the SNPs that 

contribute the bulk of the heritability tend to be spread across the genome and are not near 

genes with disease-specific functions.  This is described as the omnigenic model.  Given the 

key role of core genes, one could argue that variants only picked up with extremely large 

GWASes may be less relevant to therapeutic development.  

 

http://www.ebi.ac.uk/gwas
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The idea that many variants effect phenotype is not a new one: the ‘‘infinitesimal model’’ of 

complex trait genetics was established by Fisher (Fisher, 1918).  The omnigenic model is an 

extension of the infinitesimal model, differing primarily in the mechanistic hypothesis as to 

how a large number of genes with small effects act to influence disease: via regulatory 

networks that act outside of core genes (Plenge, 2017).  Plenge suggests that the Omnigenic 

model has important implications for drug discovery and development: (1) “core genes” 

represent good drug targets (2) regulatory networks identified by “peripheral genes” point to 

specific cell types and mechanism that can be used for phenotypic screens; and (3) new 

approaches are needed to drug cellular networks as the bulk of drug discovery today is an 

attempt to reduce complex mechanisms to individual drug targets. 

In addition to having relevance to how we look for associations between genetic variants and 

disease in GWAS, through a focus on regulatory networks and expression the Omnigenic 

model also points to the value of integrating transcriptomic and genetic analysis: something 

that I have done in this thesis.  

 

1.6 Previous work on Genetic Modifiers of Huntington’s disease 

Though the primary determinant of the Huntington’s disease phenotype is the CAG repeat 

length, kindred studies suggest at least 40% of the residual age-of-onset variability not 

accounted for by disease burden (age(CAGn-35.5)) is determined by other genetic factors 

(Djousse et al., 2003, Wexler et al., 2004b, Penney, 1997). Around two-thirds of the rate of 

functional, motor, and cognitive progression in HD is determined by the same factors that also 

determine age at onset, with CAG repeat–dependent mechanisms having by far the largest 

effect, while around a third of the factors governing progression differ from those 

determining onset (Aziz et al., 2018, Rosenblatt et al., 2012, Rosas et al., 2011).  

 

The huntingtin gene itself has been a region of interest in the search for factors that modify 

Huntington’s disease.  Djousse et al (Djousse et al., 2003)’s work suggested that the smaller 

wild-type HTT allele influences onset in people with large HD repeat sizes (CAG of 47-83), but 

careful statistical analysis revealed that the methods used were prone to false-positive results 

due to susceptibility to outliers (Guesella et al., 2014, Ramos et al., 2012), and a more 

statistically rigorous study of more than 4000 subjects demonstrated no impact of the size of 

the smaller CAG repeat (Lee et al., 2012b). 

 

Other sequence variation at the HTT locus has been defined beyond the 

polymorphic/expanded CAG repeat, including differences that alter the coding sequence 
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(including a polymorphic CCG repeat following the CAG repeat, a deletion polymorphism at 

codon 2642 (Novelletto et al., 1994)), the transcript’s untranslated sequence, intron 

sequences, and sequences flanking the centromeric and telomeric ends of the gene. These 

have been used to define HTT haplotypes (Wall and Pritchard, 2003), each of which 

represents the group of sequence variants found on a particular chromosome that is passed 

on largely intact to subsequent generations because of the lack of recombination events in 

this relatively small segment of the genome (Lee et al., 2012b). The haplotypes that carry 

expanded alleles in HD subjects have revealed that approximately 50% of Europeans with HD 

share a common ancestor, but that multiple independent mutations occurring on different 

chromosomal backbones account for the rest, in both people of European and non-European 

backgrounds (Kay et al., 2016a, Kay et al., 2016b). None of the most frequent haplotypes, 

either on HD chromosomes or on the normal chromosomes in HD heterozygotes, appears to 

modify age at motor diagnosis. Thus, natural sequence variation at HTT has not thus far been 

shown a major source of disease modification in HD (Lee et al., 2012b).  

 

Moving from the HTT gene itself to its regulatory regions, work by Djousse et al suggested the 

presence of an AAO modifier in HD to be linked to the HD gene itself in 4p16 (Djousse et al., 

2004).  Bečanović et al identified a SNP in the HTT promotor which alters NF-κB binding and 

regulates HTT promoter transcriptional activity, and is associated with age at onset in HD 

(Becanovic et al., 2015). The rs13102260 minor variant on the HD disease allele was 

associated with delayed age of onset in a set of familial cases, whereas the presence of the 

rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in 

HD patients in an independent extreme-based cohort. 

 

Early studies looking for HD modifiers took a candidate gene approach, while various 

modifiers were proposed, no results were consistently replicated in larger studies. Candidate 

variants included: 

 A polymorphic TAA repeat in the 3’UTR of GRIK2, the Glutamate receptor subunit 

(Rubinsztein et al., 1997, Zeng et al., 2006, Lee et al., 2012a).   

 Apolipoprotein E (APOE) (Panas et al., 1999) 

 Gln-Ala repeat length in the transcriptional co-activator CA150 (Holbert et al., 2001) 

 Ser18Tyr polymorphism in the Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), an 

abundant neuron-specific deubiquitinating enzyme in the proteasome pathway (Naze 

et al., 2002, Metzger et al., 2006) 

 Val471Ala polymorphism in the autophagy-related gene ATG7 (Metzger et al., 2013, 

Metzger et al., 2010) 
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 Val66Met polymorphism in the neurotrophic factor BDNF (Alberch et al., 2005) 

 Several variants within the mitochondrial regulator PPARGC1A (PGC-1 alpha) and its 

downstream transcription factors NRF-1 and TFAM (Taherzadeh-Fard et al., 2011, 

Ramos et al., 2012, Weydt et al., 2009, Che et al., 2011) 

 Cys1976Thr polymorphism in the ADORA2A gene which encodes an adenosine 

receptor (Dhaenens et al., 2009) 

 

A key study in the understanding of genetic modifiers of HD, and which largely superseded 

previous studies, was that by the Genetic Modifiers of Huntington’s disease (“GeM-HD”) 

Consortium study which looked at genetic modifiers of age of motor onset (GeM-HD-

Consortium, 2015).  In a study of 4082 people with Huntington’s disease they identified three 

genome-wide significant loci, one on chromosome 8 and two on chromosome 15, these are 

thought likely to be associated with RRM2B and FAN1, respectively. The chromosome 8 locus 

hastens onset by 1.6 years, while conditional analysis revealed that the effects at the 

chromosome 15 locus hasten or delay onset by 6 or 1.4 years respectively.  Pathway analysis 

in this study implicated DNA handling in Huntington’s disease modification, as did near-

significant association at the DNA repair gene MLH1. 

1.7 DNA repair and Somatic Instability 

As mentioned above, the CAG repeat tract is subject to somatic instability. Microsatellites, 

which like the HTT CAG repeats, are short tandem repetitive DNA elements, and are 

particularly susceptible to replication errors caused by DNA polymerase slippage over the 

repeat sequence (Mirkin, 2007).  These errors are repaired by mismatch repair pathways 

(MMR), and are frequently observed in colon cancers where MMR proteins are deficient 

(Goellner et al., 1997).  Evidence, primarily in mouse models, links somatic instability in repeat 

disorders to DNA mismatch repair proteins (Manley et al., 1999, Foiry et al., 2006, Dragileva et 

al., 2009, Kovalenko et al., 2012, Pinto et al., 2013, Mason et al., 2014, Pluciennik et al., 2013, 

Iyer et al., 2015, Wheeler et al., 2003, Tome et al., 2013a). 

 

DNA mismatch repair is a conserved process that stabilizes the genome by correcting DNA 

replication errors (specifically of base-base mismatches and insertion and/or deletion loops), 

attenuating chromosomal rearrangements, and mediating the cellular response to certain 

types of DNA damage (Iyer et al., 2015).   

 

There is a high level of interconnectedness between pathways involved in the DNA damage 

response, with proteins being involved in numerous pathways (Pearl et al., 2015).  For 
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example, MMR factors are also required for the repair of mismatches in heteroduplex DNA 

(hDNA) that form as a result of sequence heterologies between recombining sequences 

(Evans and Alani, 2000), and MMR also acts to inhibit recombination between moderately 

divergent (homeologous) sequences (Rogacheva et al., 2014, Evans and Alani, 2000).  Similarly 

FAN1, a protein highly implicated by the GeM GWAS study as mentioned above (GeM-HD-

Consortium, 2015) was initially linked to interstrand cross-link repair, but also interacts with 

MLH1, a protein generally linked to MMR.  

 

Mismatch repair proteins have also been linked to disease progression/onset in model 

systems of Huntington’s disease and other repeat disorders, as will be discussed further in 

Chapter 3 (Wheeler et al., 2003, Kovalenko et al., 2012).   

Aims of this Thesis 

The overarching aim of this thesis is to better understand the genetic factors underpinning 

phenotypic diversity in neurodegenerative diseases, particularly those caused by repeat 

expansion mutations.  Specifically, this thesis will:  

1. Identify genetic modifiers of progression in people with Huntington’s disease using 

genome wide association analysis (Chapter 3) 

2. Investigate whether DNA repair variants implicated as modifiers of age at onset in 

Huntington’s disease also modify onset in the polyglutamine spinocerebellar ataxias 

(Chapter 4)  

3. Look for rarer variants of large effect modifying progression in Huntington’s disease 

using whole exome sequencing (Chapter 5) 

4. Examine loci highlighted by genetic analysis (Chapter 5)  

5. Examine the intergenerational stability of the C9orf72 repeat in families with normal 

range repeat lengths (Chapter 6)  

6. Determine whether the repeat expansion in the C9orf72 associated with 

frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) also 

cause HD phenocopy presentations (Chapter 6)  

7. Investigate the effect of disease status and stage on the transcriptome of 

Huntington’s disease expansion mutation carriers (Chapter 7).  

8. Examine whether there is a transcriptomic signature associated with altered rate of 

progression in Huntington’s disease (Chapter 8). 
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Chapter 2: General Methods 

2.1 Consent and ethics 

All studies mentioned in this thesis were carried out at approved research institutions. Ethical 

approval to undertake these analyses was given by the local NHNN/ION, or University College 

London (UCL)/UCL Hospitals, Joint Research Ethics Committee. All experiments were carried 

out in accordance with the declaration of Helsinki, and informed consent for genetic studies 

was obtained from all participants. 

2.2 Standard assessments commonly used to examine Huntington’s disease 

which are employed in this thesis 

2.2.1 Total Functional Capacity 

The Total Functional Capacity (TFC) Scale (Shoulson and Fahn 1979) is used crudely to ‘stage’ 

the progression of HD (Table 2.1). The scale reflects the progression of the disease, in 

particular the psychosocial and functional effects on the patient and their family. Points are 

assigned according to the individual’s ability to work, to manage money, to perform 

household chores, to perform activities of daily living, and to live at home or in supervised 

care. 

 Stage TFC 

Early HD 1 11 - 13 

Early HD 2 7 – 10  

Moderate HD 3 3 – 6 

Advanced HD 4 1 – 2  

Advanced HD 5 0 

Table 2.1: Total Functional Capacity Scale.  HD: Huntington’s disease.  

2.2.2. Unified Huntington’s Disease Rating Scale (UHDRS) 

The UHDRS was developed by the Huntington Study Group as a clinical rating scale to assess 

four domains of clinical performance and capacity in HD: motor function, cognitive function, 

behavioural abnormalities and functional capacity (Group, 1996b). 

2.2.2.1 UHDRS Functional assessment 

The UHDRS Functional capacity score which is rated from 0 to 100 based on the ability to do 

various tasks, with higher scores indicating better functioning.  
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2.2.2.2. UHDRS Total Motor Score 

The UHDRS total motor score (TMS), measures a range of motor features characteristically 

impaired in HD in a standardized manner, including gait, tongue protrusion, oculomotor 

function, chorea, dystonia and postural stability. Higher scores indicate more severe motor 

impairment than lower scores.  UHDRS raters must be certified by the EHDN UHDRS-TMS 

online certification (www.euro-hd.net). This requires successful rating of three sample 

patients, filmed during UHDRS-TMS application, within a range defined as acceptable by 

experts in the field (as determined by a task force of the EHDN Motor working group). 

2.2.2.3. UHDRS Cognitive assessment  

There is no accepted cognitive battery for the cognitive assessment of HD although most HD 

centers rely on the UHDRS for routine clinical practice, which incorporates the symbol digit 

modality test, the Stroop colour word test, and a verbal fluency test as part of a 

comprehensive examination (Paulsen, 2011).   

 

The Symbol Digit Modalities Test (SDMT) is a test of visuomotor integration, involving visual 

scanning, tracking, and motor speed. The examinee is given 90 seconds to match symbols and 

digits as quickly as possible using the key (specifying which number corresponds to each 

symbol) which is located at the top of the page (Smith, 1968).  SDMT performance declines 

longitudinally in both Premanifest subjects close to predicted onset, and Early HD.  In TRACK-

HD, the SDMT has showed differences in rates of change at both 12 and 24 months in early 

HD, and in those close to onset had a significantly different rate of decline compared to 

controls over 36 months (adjusted mean loss 4.11 points [95% CI 1.49–6.73] greater than 

controls; p=0.003) (Tabrizi et al., 2013a). 

 

The Stroop Test has three conditions that require visual scanning, cognitive control and 

processing speed. Because the Word Reading condition (the first condition normally 

presented) is the most sensitive in premanifest HD, it is the only Stroop condition used in the 

TRACK-HD Cognitive battery. 

2.2.2.4 UHDRS Behavioural assessment 

The behavioural assessment measures the frequency and severity of symptoms related to 

affect, thought content and coping styles.  There are individual subscales for mood, behavior, 

psychosis and obsessiveness.  Higher scores indicate more severe disturbance. (Group, 

1996b). 
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2.3 Description of key studies from which data was used in this thesis 

2.3.1. TRACK-HD  

TRACK-HD was a prospective observational biomarker study collecting deep phenotypic data 

on subjects with early HD, premanifest HD gene carriers and controls.  Data was collected at 

four study sites world-wide: London, Paris, Leiden and Vancouver.  Assessments were 

performed annually between 2008 and 2011 within a one month window.  Site staff training 

and quality control were rigorous, enabling the generation of highly sensitive and specific 

data.   

 

TRACK-HD has been successful in the development of a battery of clinical endpoints which can 

be applied in clinical trials of putative therapeutics in Huntington’s disease (Tabrizi et al., 

2009a, Tabrizi et al., 2011, Tabrizi et al., 2012, Tabrizi et al., 2013a).  It has also generated a 

large body of high quality data about how Huntington’s disease subjects differ from controls, 

and change over time which are improving our understanding of the disease and provide 

avenues for further study such as in this thesis.  

 

There were 366 subjects at baseline: 123 controls, 120 premanifest HD gene carriers and 123 

Early HD subjects, of these 298 completed 36-month follow-up. Subjects with missing values 

or early drop-outs still contributed to the study if they had at least two study visits.  Subjects 

had approximately 7 hours of assessments during one day annually, which included 3T MRI, 

quantitative motor, cognitive, oculomotor, neuropsychiatric, wet biomarker and genetic 

studies (Figure 2.1).  While I did not collect data for the TRACK-HD study I was an investigator 

on the TrackOn-HD study, which followed similar protocols and is described below.  
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Figure 2.1:  Study outline of TRACK-HD.  Study sites, numbers of subjects in each disease group 

at baseline, principle assessment modalities and years assessed are shown.  

2.3.2 TrackOn-HD 

While TRACK-HD had successfully identified clinical endpoints for drug trials, there was 

ongoing interest in changes in Premanifest Huntington’s disease gene expansion mutation 

carriers, and the changes that occur in someone with Huntington’s disease around the time of 

diagnosis.  To further explore these, and increase the longitudinal data available, TRACK-HD 

participants who were still pre-symptomatic at the end of the TRACK-HD project, and all 

TRACK-HD controls, were invited to participate in TrackOn-HD.  Further subjects were 

recruited at each study site so that there were 30 premanifest HD subjects and 30 controls at 

each of the four study sites (London, Paris, Vancouver, Leiden) at the start of TrackOn-HD in 

2012.  I joined the London TrackOn-HD study team in late 2011 as the London site Clinical 

Fellow, my initial role within the study being to recruit subjects both from the existing TRACK-

HD cohort, and new Premanifest subjects and controls.  At the London site, new subjects were 

recruited from the multidisciplinary Huntington’s disease clinic at the National Hospital for 

Neurology and Neurosurgery.   

 

I was responsible for the clinical evaluation and biosample processing at the London site for 

TrackOn-HD.  Clinical evaluation of all subjects occurred at the start of the study visit.  I 

checked that subjects were eligible for the study and gained written consent from all subjects.  

A medical history was performed, checking all previous and current medical problems and 

medications, and a detailed family history was taken.  A Huntington’s disease Clinical 

Characteristics Questionnaire was completed. The UHDRS Motor assessment (Group, 1996b) 

was completed, along with the UHDRS functional assessment and the Shoulson and Fahn 

Total Functional Capacity score (Shoulson and Fahn, 1979).  Blood samples and a buccal swab 

were collected. An outline of the study day is given in Table 2.2. 

Time Assessment 

09:00 

(45 min) 

Consent, Clinical Rating, Neuropsychiatric assessment 

9:45 

(120-150 min) 

Imaging 

12:30 Lunch 

13:30 

(60 min) 

Cognitive 
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14:30 

(70 min) 

Quantitative Motor 

15:40 

(15 min) 

Oculomotor 

15:55 

(10 min) 

Neuropsychiatric & Functional assessments 

16.10 

(75 min) 

Transcranial Magnetic Stimulation 

Table 2.2: Outline of TrackOn-HD assessment day. 

2.3.3 EHDN Registry Study 

The EHDN is a non-profit research network committed to advancing research, facilitating the 

conduct of clinical trials, and improving clinical care in HD. Through the EHDN a platform has 

been created such that basic scientists, clinicians, patients and families can collaborate on 

academic and industry studies to fulfil its mission (EHDN, 2018). 

 

The EHDN REGISTRY study (Orth et al., 2010) was a multisite prospective observational study 

which collected phenotypic data  between 2003 – 2013 on over 13,000 subjects, mostly 

manifest HD gene carriers but also some controls.  The data are less detailed, and follow up 

less complete than in TRACK-HD.  The aim was for annual assessments +/- 3 months, though 

this was variable, and many subjects did not have annually collected data.  The core data 

include: age, CAG repeat length, UHDRS Total Motor Score (TMS) and Total Functional 

Capacity (TFC); some patients have further assessments such as a cognitive battery (Orth et 

al., 2010).  I recruited people to and performed assessments on subjects as a part of the EHDN 

Registry study.  

2.3.4 Neuromics 

During the course of my PhD I was involved, from the opening meeting in January 2014 to the 

closing meeting in May 2017, with Neuromics.  Neuromics was a European Commission 7th 

Framework Programme funded project set up with the aim to revolutionize diagnostics and 

develop new treatments for ten major rare neuromuscular and neurodegenerative diseases. It 

brought together leading research groups in Europe, five highly innovative small and medium 

sized enterprises (SMEs), and overseas experts; using the most sophisticated Omics 

technologies to revolutionize diagnostics and to develop pathomechanism-based treatments 

for ten major neurodegenerative and neuromuscular diseases. Specifically the aims were to: 
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(i) use next generation WES to increase the number of known gene loci for the most 

heterogeneous disease groups from about 50% to 80%, 

(ii) increase patient cohorts by large scale genotyping by enriched gene variant 

panels and NGS of so far unclassified patients and subsequent phenotyping, 

(iii) develop biomarkers for clinical application with a strong emphasis on 

presymptomatic utility and cohort stratification, 

(iv) combine -omics approaches to better understand pathophysiology and identify 

therapeutic targets, 

(v) identify disease modifiers in disease subgroup cohorts with extreme age of onset 

(vi) develop targeted therapies (to groups or personalized) using antisense 

oligonucleotides and histone deacetylase inhibitors, translating the consortiums 

expertise in clinical development from ongoing trials toward other disease groups, 

notably the polyglutamine repeat diseases and other neuromuscular diseases.  

 

Much of the work in this thesis was performed to meet the objectives of the Neuromics 

project, including all HD Whole Exome Sequencing (Chapter 5), TrackHD SNP genotyping and 

GWAS (Chapter 3), work as a part of WP3 (Identification of modifying factors in cohorts 

enriched by deep phenotyping), and the TrackHD RNAseq (Chapter 7) as a part of WP4 

(Identification of hypothesis-driven biomarkers for disease progression).  I also contributed to 

sessions on clinical phenotyping  which is discussed below.   

 

2.4 Clinical Phenotyping 

In addition to my contributions to the large scale HD studies described above, both my work 

on Polyglutamine diseases and Huntington’s disease phenocopies (Chapters 4 and 6 

respectively) required detailed clinical phenotyping.   

 

After consideration of what clinical data was pertinent to the studies and potential future 

studies, clinical notes were interrogated and data inputted into databases.  It was important 

to ensure that all available notes were obtained; some subjects have multiple sets of notes.  

Important pieces of information, such as time of disease onset, were cross checked over 

multiple source documents within the notes were possible to ensure that the most accurate 

data was obtained.  

 

The techniques above were adequate for the clinical phenotyping required for Chapters 4 and 

6 however for many larger scale projects where multiple centres collaborate different 
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approaches are needed.  This applies particularly when searching for the genetic causes of 

rare genetic conditions, one of the key objectives of the Neuromics consortium.  Identifying a 

gene underpinning a particular condition requires resources to be pooled and phenotyping to 

be standardized: the deep phenotyping characterization can be seen as the counterpart to the 

analysis of the biomaterial samples of the respective study participants. A goal of Neuromics 

was to therefore develop a standardized phenotyping protocol for each of the disease groups 

studied.  Essential clinical data was defined for each condition.  The Human Phenotype 

Ontology (HPO) (Köhler et al., 2017) was used to map the clinical features in order to get 

standardized terms. The phenotyping protocols have been implemented in Phenotips (Girdea 

et al., 2013) and followed routinely.  PhenoTips is a database which enables detailed 

phenotypic data to be captured, and offers opportunities for matching patients according to 

their disease, family background or symptoms.  

2.5 Progression analysis  

A key element of this thesis is the identification of genetic modifiers of Huntington’s disease 

progression.  Progression scores were specifically developed to address this aim, initially in 

the TRACK-HD cohort, and then in the EHDN REGISTRY cohort with further exploratory 

analysis in the Leiden University Medical Centre HD cohort.  While Professor Douglas 

Langbehn, University of Iowa performed the progression analysis, I was very involved in 

discussions about the approach, data usage and analysis from inception. Progression scores 

were derived using a combination of principal component analysis (PCA) and regression of the 

predictable effects of the HTT CAG repeat length in order to encapsulate the longitudinal 

change not accounted for by CAG and age.  

2.5.1 Progression analysis for the TRACK-HD study 

24 TRACK-HD variables were used in the analysis (Table 2.3).  Among the wide variety of 

potential cognitive and quantitative-motor variables available, we analysed a subset of those 

that were previously used in the TRACK-HD 36-month predefined primary analysis (Tabrizi et 

al., 2013a). A small number of quantitative-motor variables that were substantively redundant 

were eliminated and those with more tractable metric properties were chosen. The 24 

variables were divided a priori into 3 broad domains: (1) brain volume measures, (2) cognitive 

variables, and (3) quantitative-motor variables as shown in Table 2.3. 

TRACK-HD variable Domain 

Symbol digit modality test (number correct)  Cognitive 
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Stroop word reading (number correct)  Cognitive 

Paced Tapping 3 Hz (inverse standard dev)  Cognitive 

Spot the Change 5K  Cognitive 

Emotion Recognition  Cognitive 

Direct Circle (Log annulus length)  Cognitive 

Indirect Circle (Log annulus length)  Cognitive 

Total brain volume  Brain imaging 

Ventricular volume  Brain imaging 

Grey matter volume  Brain imaging 

White matter volume  Brain imaging 

Caudate volume  Brain imaging 

Metronome tapping, nondominant hand (log of tap initiation 

SD for all trials)  Quantitative motor 

Metronome tapping, nondominant hand (inverse tap initiation 

SD for self-paced trials)  Quantitative motor 

Speeded tapping, nondominant hand (log of repetition time 

SD)  Quantitative motor 

Speeded tapping, nondominant hand (log of tap duration SD)  Quantitative motor 

Speeded tapping, nondominant hand (mean intertap time)  Quantitative motor 

Tongue force—heavy (log coefficient of variation)  Quantitative motor 

Tongue force—light (log coefficient of variation)  Quantitative motor 

Grip force, dom. hand, heavy condition (log of mean 

orientation)  Quantitative motor 

Grip force, dom. hand, heavy condition (log of mean position)  Quantitative motor 

Grip force, nondominant hand, heavy condition (log of 

coefficient of variation)  Quantitative motor 

Grip force, dom. hand, light condition (log of coefficient of 

variation)  Quantitative motor 

Grip force, nondominant hand, light condition (log of 

coefficient of variation)  Quantitative motor 

Table 2.3: List of Variables to be used in TRACK-HD progression analyses.  Further detail 
regarding these measures can be found in (Tabrizi et al., 2009a, Tabrizi et al., 2011, Tabrizi et 
al., 2012, Tabrizi et al., 2013a). 
 

10 TRACK-HD subjects were excluded because they had no follow-up data. 15 further subjects 

were excluded because of missing brain MRI data. 
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For each variable the input for analysis was the subject’s random longitudinal slope from a 

mixed effects regression model with correlated random intercepts and slopes for each 

subject. The subject's random slope estimate is a "stabilized" version of the difference 

between observed change versus predicted change: all subjects were represented by one 

slope regardless of the number of visits completed, minimizing the effect of bias due to drop 

outs. This model regressed the observed values on clinical probability of onset statistic (CPO) 

derived from CAG repeat length and age, and its interaction with follow-up length. The 

subjects' random slope estimates thus provided a measure of atypical longitudinal change not 

predicted by age and CAG length.  

 

Principal Component Analyses (PCA: see below) of the random slopes was then used to study 

the dimensionality of these age and CAG-length corrected longitudinal changes.  Our models 

controlled for study site, gender, education, and their interactions with follow-up time, 

consistent with the models used in the TRACK-HD standard analyses which are described 

elsewhere (Tabrizi et al., 2009a, Tabrizi et al., 2011, Tabrizi et al., 2012, Tabrizi et al., 2013a).   

2.5.1.1 Principal Component Analysis (PCA) 

PCA is a technique to reduce the dimensionality of large datasets, while preserving as much 

statistical information (variability) as possible (Jolliffe and Cadima, 2016).  This is done by 

finding variables that are linear functions of those in the original dataset, that successively 

maximize variance, and that are uncorrelated with each other (Jolliffe and Cadima, 2016).  

Given that PCA analysis was used to generate the progression scores which formed an 

important part of this thesis, I will briefly introduce the concept below, based on discussions 

and personal correspondence with Professor Douglas Langbehn (Langbehn, 2012).  

 

Given a dataset of N non-redundant variables, a representation of that data can be given in N-

dimensional space. A set of uncorrelated (right-angled) coordinate axes for the space can be 

created, and we can rotate the set of axes in an arbitrary direction. It is easiest to think of this 

paradigm using the intuition of 3-dimensional space, corresponding to a dataset of 3 

variables.  Think of rotating the x-y-z axes in a 3-D diagram without rotating the rest of the 

diagram. The axes can be rotated so that the variance of the data is greatest along the “x” 

axis. In a sense, this maximizes the average correlation of the original variables with a right-

angled projection of those variables onto the axis. This axis is defined as the first principal 

component. It is described by the angle of rotation or equivalently by the correlation of each 

of the original variables with it.  
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Once the first axis is fixed, then we can further rotate the remaining axes so that, while 

remaining at right angles to each other, one of the axes again maximizes its correlation with 

the data, given that the first PC axis is already fixed. This next axis is the second principal 

component. This procedure can be repeated for subsequent components until the rotation of 

the entire axis system for the data-space is fixed.  

 

We assume that the data variation projected along the first principal component is much 

greater than the variation along the second or subsequent components.  It may be reasonable 

to assume that the first component may summarize the most relevant information within the 

data and subsequent components may reflect noise, however in other cases the higher 

numbered principal components may represent crucial fine detail.  It should be noted that if 

the original variables have little correlation with each other, then little or no dimension-

reduction can be gained via PCA.  (Langbehn, 2012). 

2.5.1.2 Assessing phenotypic clustering 

In order to evaluate whether the data provided evidence for phenotypic clustering in HD we 

performed the analysis twice: firstly with the variables grouped a priori into 3 broad domains: 

(1) brain volume measures, (2) cognitive variables, and (3) quantitative-motor variables; and 

secondly with all variables grouped together.  The results were inspected to look for evidence 

of phenotypic clustering.   

2.5.2 Progression analysis in REGISTRY 

1835 adult subjects from REGISTRY were included in this study on the basis of available 

genotype data (GeM-HD-Consortium, 2015). We collected the following phenotypic variables: 

UHDRS TMS, SDMT, verbal fluency, Stroop colour reading, word reading and interference 

measures, functional assessment score, and TFC.   

 

Follow-up length and frequency was variable and missing data were substantial, making 

longitudinal progression analysis problematic. We therefore examined cross-sectional status 

at last visit, using a single unified motor-cognitive dimension of severity.  In summary we 

performed multiple imputation to fill in missing data, derived PCA severity scores and 

regressed off the predictive effect of age, CAG length, and gender on the PCA severity scores 

derived from this data to obtain the measure of atypical severity at the last visit. This gives a 

single point “severity” score based on how advanced a subject is compared with expectations 

based on their CAG repeat and age, this score was used as the REGISTRY progression score.  
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In order to generate atypical severity scores, three sequential procedures were required: (i) 

Multiple imputation of missing data (ii) Principal Component Analysis (PCA) and severity 

scoring of the combined imputed data replications (iii) Regression of the predictive effect of 

age, CAG length, and gender on the PCA-derived severity scores so that we are left with a 

measure of atypical (or “unexplained”) severity. The steps were taken in the order above; 

given that these steps could be done in different orders we also confirmed that there were 

only minimal differences due to order.  This analysis was performed by Professor Douglas 

Langbehn after discussions to which I contributed about how best to approach the analysis.  

 

We looked only at 1835 subjects who had available genotypic data through the GeM 

consortium. Given that the GeM study focused initially on examining genetic modifiers of 

motor onset in HD, the majority of these participants in REGISTRY had manifest Huntington’s 

disease.  1773 subjects had adequate phenotypic data for progression scoring.  We used a 

square-root transform of TMS to improve approximate multivariate normality of the data.   

 

To deal with the missing data for clinical items, multiple imputation with 25 imputations was 

performed. Age, gender, and CAG expansion length were auxiliary variables for the 

imputations.  Final parameter estimates and statistical significance were estimated by Rubin's 

method (Rubin, 2008). We performed the above using the MI and MIANALYZE procedures of 

SAS/STAT 13.1 (Inc., 2013).  We noted some evidence of study site effects in the eventual 

regressions. Thus we used a random effect for site in models adjusting for age and CAG.  

 

Atypical severity was defined as the residual between each subject's observed and marginal 

predicted value.  The final  averaged multiple imputation model used a 2 degree of freedom 

restricted cubic spline (Harrell, 2001) of cumulative probability of onset (CPO), plus main 

effects of gender and CAG length and a random effect for site. Marginal effects from this 

model, which represent the estimated effects after accounting for site fluctuations, were used 

for all predictions. The knot placement for the clinical probability of onset spline was defined 

a priori using a conventional standard at the 10th, 50th, and 90th percentiles of its observed 

distribution. The corresponding values were (0.131, 0.395, 0.885). Atypical severity was 

defined as the residual between each subject's observed and marginal predicted value.  Final 

parameter estimates, along with estimates of statistical significance adjusted for the multiple 

imputation procedure are shown in the Table 2.4.   
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Parameter gender Estimate Std Error 95% Confidence Limits DF t for H0: P Val 

Intercept   2.075589 0.267283 1.55102 2.60016 897.01 7.77 <.0001 

cpo_1    -0.9142 0.21009 -1.32638 -0.50201 1191.6 -4.35 <.0001 

cpo_2    -7.00283 0.911001 -8.79025 -5.2154 1141.5 -7.69 <.0001 

cag   -0.01919 0.005133 -0.02927 -0.00912 862.96 -3.74 0.0002 

gender F -0.13631 0.042605 -0.21992 -0.05271 1030.1 -3.2 0.0014 

gender M 0 0 . . . . . 

Table 2.4: Parameter estimates of variables in the model used to generate the REGISTRY cross 

sectional severity score.  

Multiple imputation adjusted estimates of statistical significance are given.  CPO_1: clinical 

probability of onset; CPO_2: single transformation of clinical probability of onset. DF: degrees 

of freedom. 

 

We inspected the potential biasing influence of the CAG repeats, by classifying the individual 

in short (CAG < 41) and long (CAG > 55) repeats. We found an overrepresentation of people 

with larger atypical severity scores among those with short CAG, which implies that those with 

a small number of repeats are more likely to be in the study if atypically severely affected. 

This is likely to be due to the disease only being partially penetrant in those with short CAG 

repeats, resulting in bias (Langbehn et al., 2004).  This prompted us to exclude subjects with 

short CAG from the creation of the severity scores, while retaining those with long CAG 

repeats. However, we confirmed that the age-CAG severity function predicted using CAG > 41 

gave sensible estimates for both the short and long ranges, enabling even those subjects with 

short CAG repeats to be used in the final analysis (Figure 2.2).  
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Figure 2.2: Age-CAG severity function against clinical probability of onset (CPO) in REGISTRY.  

A: plot showing predicted values for all subjects.  B: plot of predicted values using only subjects 

in the CAG 41– 55 range. C: Plot based on extrapolating the severity model to subjects with 

CAG in the 36-40 range (the appearance of two rather distinct lines are due to the gender 

effect, with women having lower predicted scores than men). 

 

2.5.3 Progression analysis in Leiden University Medical Centre (LUMC) samples 

Though a collaboration with Willeke van Roon-Mom via Neuromics we had access to a cohort 

of HD and control subjects from LUMC.  The primary objective of the cohort was to investigate 

neuropsychiatric aspects of HD, but the samples from these subjects have been also 

extensively investigated by van Roon-Mom and her team.  The subset of the cohort 

(Mastrokolias et al., 2015) that we used for our RNAseq work (Chapter 7) consisted of 18 

premanifest gene carriers, 56 manifest HD subjects and 27 age and gender-matched controls. 

Motor onset was determined by an experienced neurologist using the same UHDRS standard 

as in TRACK-HD. All premanifest carriers showed no substantial motor signs, with a TMS of 5 

or less and a UHDRS diagnostic confidence level less than 4. All controls were free of known 

medical conditions. 

 

The phenotypic data available for the LUMC samples were: UHDRS TMS (total motor score), 

total functional capacity (TFC) alongside neuropsychiatric variables, age and CAG repeat size.  

Note that because the motor score has a floor at 0 (no motor symptoms = score of 0) and the 

TFC has a ceiling at 13 (functionally normal = score of 13), our ability to look at premanifest 

C 



51 
 

HD is limited.  Given that previous investigation in the TRACK-HD cohort led us to exclude 

neuropsychiatric variables in our progression analysis we did not use them here.  Where 

available, longitudinal data had an interval of roughly 3 years.  

 

We first considered a longitudinal analysis as data obtained at a roughly 3 year interval was 

available for some subjects.  However there was little correlation between the TFC and TMS 

residual changes.  We instead opted to look at cross sectional severity scores in a similar 

approach to that used for the REGISTRY progression analysis described above. To do this we 

tested a variety of models for predicting the severity component, based on various 

combinations of CAG length, age gender, interactions and nonlinear functions. Results were 

robust to the particular choice of model.  We therefore selected a method similar to the 

REGISTRY last-visit cross-sectional model. The main difference from the REGISTRY method is 

that subjects' values from both visits were used, whereas only the last visit was in REGISTRY.  

The concern in REGISTRY was that visits tended to be unevenly spaced and scheduled for 

unclear, possibly inconsistent reasons. In contrast, most Leiden subjects had a baseline and a 

planned 3 year follow-up.  78 subjects had adequate data to generate the LUMC atypical 

severity score.  

 

The severity factor was based on a principal component analysis of only two variables, total 

functional capacity (TFC) and (square root) motor score. After standardizing each variable to 

mean of 0 and standard deviation = 1, both of them receive equal weighting in calculating this 

score since equal weighting is inherent when only 2 variables are used for a PCA. The principal 

component has a correlation of .949 with both the TFC and square root motor score. 

2.6 Assessment of Relatedness 

Family history data was collected as a part of the TRACK-HD clinical evaluation.  I obtained 

these data in the form of family history diagrams, and relationship descriptions.  To enable 

further analysis I converted the data of 38 family histories in which there was more than one 

family member in the study into standard family history formatting (Table 2.5). 
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Column number Column entry 

1 Individual's family ID ('FID') 

2 Individual's within-family ID ('IID'; cannot be '0') 

3 Within-family ID of father ('0' if father isn't in dataset) 

4 Within-family ID of mother ('0' if mother isn't in dataset) 

5 Sex code ('1' = male, '2' = female, '0' = unknown) 

Table 2.5: Format for family history encoding 

A simple example is shown in Figure 2.3 below. 

 

   

Figure 2.3: Family history encoding. A: family history diagram, and B: encoded format of 

family history data for family 1, comprising a mother and daughter pair. Grandchildren not 

coded as not required for analysis in this case.  

 

Of those with family members in TRACK-HD, 28 individuals had at least one family member 

also included in the genome-wide association analysis.  

2.7 General genetics methods  

2.7.1 Genotyping 

Genotyping is the measurement of genetic variation.  Historically, in order to do genetic 

mapping it was necessary to develop techniques for genotyping.  The first type of DNA marker 

to be studied were restriction fragment length polymorphisms (RFLPs).  Restriction fragments 

are produced when a DNA molecule is treated with a restriction endonuclease that cut the 

1 2 3 4 5 

1 1 0 0 1 

1 2 0 0 2 

1 3 1 2 2 

1 4 0 0 1 

1 5 4 3 2 

A 

B 
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DNA at a defined point, eg EcoR1.  The RFLPs can then be detected using Southern 

hybridisation or PCR.  Southern blotting is discussed in the Materials and Methods section of 

Chapter 6. 

 

SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms 

(SNPs) between samples.  SNPs are biallelic and occur approximately every 1,000 base pairs 

(bp) throughout the human genome. SNPs can be readily genotyped using techniques that 

discriminate any two-way combination of adenine, guanine, cytosine, and thymine nucleotide 

bases.  SNP detection is based on oligonucleotide hybridization analysis: the synthetically 

generated oligonucleotide binds to DNA if it is complementary to the DNA, if there is a 

mismatch (alternative version of the SNP) it does not.  There are many different techniques 

that can be employed to detect the SNP genotype of a subject, the choice often being guided 

by the number of samples and number of SNPs to genotype.  To genotype a handful of SNPs 

techniques include microtitre plate based techniques such as Taqman, whereas for large 

numbers of samples high throughput arrays tend to be used.  These genotyping techniques 

may be universal, based on standard SNPs, or customized to the particular SNPs of interest to 

the researcher.  

 

Genotyping by allelic discrimination using the 5’ nuclease (TaqMan®) assay in conjunction with 

Minor Groove Binding probes was used to genotype samples for rs3849942 in Chapter 6.  In 

this technique, a wild-type SNP Allele “A” is amplified separately from the alternative Allele 

“B” using region specific forward and reverse primers and two allele-specific TaqMan® probes 

designed to target the polymorphism (Malkki and Petersdorf, 2012). The amplification is 

performed using a thermal cycler or a real-time PCR system and fluorescent signals are 

interpreted automatically using sequence detection software dedicated to real-time PCR 

instrumentation (Malkki and Petersdorf, 2012). 

 

Custom KASP assays were used for the genotyping of DNA repair gene variants for Chapter 4 

of this thesis, enabling a set of specific SNPs to be examined.  In KASP, the SNP-specific KASP 

Assay mix and the universal KASP Master mix are added to DNA samples, a thermal cycling 

reaction is then performed, followed by an end-point fluorescent read (LGC, 2018). The KASP 

Assay mix contains three assay-specific non-labelled oligonucelotides: two allele-specific 

forward primers and one common reverse primer. The allele-specific primers each harbour a 

unique tail sequence that corresponds with a universal FRET (fluorescence resonant energy 

transfer) cassette, when not quenched the cassette emits fluorescence. Bi-allelic 
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discrimination is achieved through the competitive binding of the two allele-specific forward 

primers. 

 

For the GWAS (Chapter 3) samples were instead genotyped on a chip array: the Illumina Omni 

2.5-8 v1.1 array.  This is an example of a high throughput SNP genotyping technology, in which 

the genotyping is multiplexed, enabling many more SNPs to be genotyped simultaneously on 

a bead array platform both accurately and cost effectively, thus transforming  what is possible 

in genetic studies.  Illumina bead array microarray technology is based on 3-micron silica 

beads that self-assemble in microwells. Each bead is covered with hundreds of thousands of 

copies of a specific oligonucleotide that acts as the capture sequence, in this case the arrays 

have around 2.5 million markers, chosen to provide a comprehensive set of both common and 

rare SNP content from the 1000 Genomes Project (MAF>2.5%) for diverse world populations 

(Illumina, 2017).  The beads are randomly deposited into the wells on a substrate, and the 

array must be decoded to determine which oligonucleotide-bead combination is in which 

well.  This decoding is done using the address segment of the oligonucleotide, and, involves 

sequential hybridization of differentially labelled probes (OHSU, 2017). The differential 

labelling uses three states – carboxyfluorescein (FAM) labelled green, cyanine 3 (Cy3) labelled 

red, and not labelled. During any given cycle of the process, a bead is green, red, or blank.  

Labelled oligonucleotides are hybridized to the arrays at high concentrations which allows for 

rapid hybridizations, followed by washing to remove non-specific signal and background.  

Each round of hybridization adds another digit to the number (Gunderson et al., 2004), until 

there are sufficient digits to uniquely identify each probe (OHSU, 2017). 

2.7.2 Genotyping of polymorphic repeats using fragment analysis 

Repetitive regions of DNA are challenging to genotype and are still not covered by standard 

technologies such as those described above.  Investigation of the hexanucleotide repeat 

C9orf72 for this thesis was done using repeat-primed PCR (More detail is given in  Chapter 6).  

This involves a forward primer unique to a sequence near the repeat and a reverse primer 

composed of several repeat units which can bind anywhere in the repeat region, thus creating 

amplicons of varying sizes. The reverse primer is used in lower concentrations and is 

exhausted in a few cycles, after which an anchor primer takes over as the reverse end starting 

point.  Fragment analysis is then performed, the presence of a characteristic stutter pattern 

indicating the presence of an expansion at the locus of interest.  

2.7.3 Sanger Sequencing  
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Sanger sequencing is the process of selective incorporation of chain-terminating 

dideoxynucleotides by DNA polymerase during in vitro DNA replication.  While these days 

next generation sequencing (NGS) is more widely used Sanger sequencing remains valuable to 

confirm variants identified by NGS.  In Chapter 5 I used Sanger sequencing to investigate a 

genetic locus highlighted by next generation technologies.    

 

Classical Sanger sequencing requires a single-stranded DNA template, a DNA polymerase, a 

DNA primer, normal deoxynucleosidetriphosphates (dNTPs), and modified nucleotides 

(ddNTPs) that terminate DNA strand elongation. For the MSH3 sequencing described in 

Chapter 5 Primer3 (Untergasser et al.) was used to generate the primers.  The ddNTPs lack a 

3′-OH group that is required for the formation of a phosphodiester bond between two 

nucleotides, causing the extension of the DNA strand to stop when a ddNTP is added. The 

DNA sample is divided into four separate sequencing reactions, containing all four of the 

standard dNTPs, the DNA polymerase, and only one of the four ddNTPs for each reaction.  

After rounds of template DNA extension, the DNA fragments that are formed are denatured 

and separated by size using gel electrophoresis with each of the four reactions in one of four 

separated lanes. While gels or X-ray film may be used to read the sequence, in the method I 

used ddNTPs which were fluorescently labelled for detection in an ABI automated sequencing 

machine, and the output was analysed using Sequence Scanner 2 software.   Output 

sequences were then aligned to the reference genome using BLAST.  

2.7.4 Next generation sequencing (NGS) 

Next-generation sequencing refers to non-Sanger-based high-throughput DNA sequencing 

technologies. Millions or billions of DNA strands can be sequenced in parallel, yielding 

substantially more throughput and minimizing the need for the fragment-cloning methods. 

There are several different NGS technologies including: 

 Illumina sequencing 

 Roche 454 sequencing 

 Ion torrent: Proton / PGM sequencing 

 SOLiD sequencing 

These vary on the read lengths and chemistry used.  

Illumina Nextera library pooling method was used to perform the Whole Exome Sequencing  

in this thesis (Chapter 5).  This technology uses the following steps (Illumina, 2018b): 

1. Fragmentation- DNA is simultaneously tagged and fragmented by a transposome 

2. Tagmented DNA is amplified and sequencing indexes are added by PCR 

3. Library pooling of up to 12 libraries (enabling high throughput) 
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4. Biotin-labeled probes specific to the targeted regions are used for two rounds of 

hybridization.  The pool is enriched for the desired regions using streptavidin beads 

that bind to the biotinylated probes.  Biotinylated DNA fragments bound to the 

streptavidin beads are magnetically pulled down from the solution.   

5. Second amplification with PCR 

6. Amplified libraries are cleaned up: fragments are eluted from the beads  

7. Sequencing.  The whole exome sequencing was performed on the Illumina HiSeq 2000 

(Illumina, 2018a) which is based on a proprietary reversible terminator-based method 

that detects single bases as they are incorporated into the growing DNA strands.   

2.7.5 Expression analysis 

The expression analysis in this thesis was done using RNAseq, which employs next generation 

sequencing technology (described above) to reveal the presence and quantity of RNA in a 

biological sample at a given moment.   This enables differential expression between different 

individuals / samples / conditions to be explored, along with novel isoforms and splice 

variants to be identified.  

The detailed methods of the RNAseq in this thesis are described in Chapter 7 in which RNAseq 

is discussed. 

2.7.6 Association testing 

Association analysis is the statistical method in which the association between genotype and 

phenotype is examined.   The classical approach to hypothesis testing developed by Neyman 

and Pearson (Neyman and Pearson, 1933) involves setting up a null hypothesis (H0) and an 

alternative hypothesis (H1), calculating a test statistic (T) from the observed data and then 

deciding on the basis of T whether to reject H0. In genetic studies, H0 typically refers to an 

effect size of zero, whereas H1 usually refers to a non-zero effect size (for a two-sided test) 

(Sham and Purcell, 2014).  If the study were to be repeated many times, each drawing a 

different random sample from the population, then a set of many different values for T would 

be obtained, which can be summarized as a frequency or probability distribution.  The P value, 

which was introduced earlier by Fisher (Fisher, 1925) in the context of significance testing, is 

defined as the probability of obtaining — among the values of T generated when H0 is true — 

a value that is at least as extreme as that of the actual sample (denoted as t) (Sham and 

Purcell, 2014). 

2.7.7 Genome wide association analysis  
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In a genome wide association analysis (GWAS), association analysis is performed, with a 

separate statistical test being performed at each locus to examine whether the locus is 

associated with the variable being tested.   

 

The GWAS approach relies on the foundation of data produced by the International Human 

HapMap Project and the identification of millions of single nucleotide polymorphisms (SNPs) 

in the human genome, and the fact that due to linkage, genetic variance at one locus can 

predict with high probability genetic variance at an adjacent locus (Hardy and Singleton, 2009, 

Gandhi and Wood, 2010).   

 

Some of the earliest genome wide association analyses involved testing for linkage at loci 

spanning a large portion of the genome, but over time more and more markers have been 

included.  As many SNPs are being tested, keeping the significance threshold at the 

conventional value of 0.05 would lead to a large number of false-positive significant results; to 

avoid this, the threshold for significance in linkage analysis was typically chosen so that the 

probability of any single false positive among all loci tested is ≤0.05.  Simulation studies using 

data on HapMap Encyclopedia of DNA Elements (ENCODE) regions to emulate an infinitely 

dense map gave a genome-wide significance threshold of 5 × 10−8.  Other thresholds have 

been suggested however: by subsampling genotypes at increasing density and extrapolating 

to infinite density, a genome-wide significance threshold of 7.2 × 10−8 was obtained; sequence 

simulation under various demographic and evolutionary models found a genome-wide 

significance threshold of 3.1 × 10−8 for a sample of 5,000 cases and 5,000 controls, in which all 

SNPs were selected with minor allele frequency of at least 5%, for a European population; a 

detailed study of the Icelandic population suggested that sequence variants should be 

weighted base on their annotation, and that variable significance thresholds should be used 

based on the annotation (Sveinbjornsson et al., 2016); others propose that q values which are 

similar to the p value, except that it is a measure of significance in terms of the false discovery 

rate rather than the false positive rate (Storey and Tibshirani, 2003) should be used for 

significance testing.  

2.7.8 Gene-set and pathway analysis 

The association analysis described above is based on single genetic markers, by contrast 

pathway analysis aggregates signal from a set of markers.  It was first developed for the 

analysis of transcriptome data, and then transferred to the analysis of GWAS data (Holmans, 

2010). The motivation being that it was noted that genetic variants that confer small disease 

risks are likely to be missed in the most-significant SNPs/genes approach after adjustment for 
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multiple testing, and even those variants that confer a larger effect might not always rank 

among the top 20–50 among hundreds of thousands of markers tested (Wang et al., 2007).  In 

some cases the association signal is spread out over a gene or biological pathway, thus 

methods to aggregate the association signal over a gene or set of genes which form a 

biological pathway can prove a valuable addition to single variant based methods (Wang et 

al., 2007).  

 

In pathway analysis, a set of genes (the “pathway”) is tested for enrichment of association 

signal with a trait (Holmans, 2010, Mooney and Wilmot, 2015).  There are two types of 

pathway analysis, depending on the null hypothesis being tested.  Competitive tests compare 

the association between a gene-set and disease with that of all other gene sets being studied, 

whereas self-contained tests test whether there is significant association between the gene-

set and disease (Holmans, 2010).   There are various different statistical methods used for 

pathway analysis including - 

 Overrepresentation analysis- a comparative test in which the proportion of genes in a 

pathway is compared with the proportion of genes not in the pathway eg DAVID, 

ALIGATOR (Holmans et al., 2009).  The disadvantage is that the threshold to define the 

list of genes/SNPs needs to be set. 

 Gene-set enrichment analysis- a competitive test approach which instead ranks the 

genes in order of significance, then tests for differences between the ranks of genes in 

a pathway compared to other genes eg Bioconductor (Gentleman RC, 2004), GSEA-P 

(Holmans, 2010, Holmans et al., 2009), Gorilla (Eden et al., 2009). 

 Set-based methods- aggregate the association evidence across all genes / SNPs in a 

pathway into one combined test statistic, and then test whether this statistic is larger 

/ smaller than expected under the null hypothesis 

 Modelling methods- attempt to use more sophisticated models of the relationship of 

phenotype and genes/SNPs 

 Network-based methods. In contrast to the methods above which require that the 

pathway is already specified, network-based methods derive pathways or gene 

networks from the data itself, clustering genes based on their co-expression into 

modules/ clusters.  For example weighted co-expression network analysis (WCNA) 

(Zhang and Horvath, 2005, Langfelder and Horvath, 2008) which is employed in 

Chapter 7. 

2.7.8 MAGMA analysis  
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MAGMA analysis (de Leeuw et al., 2015) is a recently developed technique of gene analysis 

which uses a multiple regression approach to incorporate linkage disequilibrium between 

markers and to detect multi-marker effects.  The MAGMA model of gene-set analysis is 

divided into two separate parts: firstly the gene analysis quantifies the degree of association 

each gene has with the phenotype, and the correlations between genes are estimated; 

secondly these gene p-values and gene correlation matrix are used in the gene-set analysis 

(de Leeuw et al., 2015).  It can be used for both aggregating signal across a gene, or a 

biological pathway: both strategies have been employed in this thesis (Chapter 4). 
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Chapter 3: Identification of genetic variants associated with 

Huntington’s disease progression: a genome-wide association 

study 

3.1 Introduction 

While HD is characterised by movement, cognitive and psychiatric problems, the symptoms, 

age of disease onset (AAO) and rate of disease progression vary from person to person (Ross 

and Tabrizi, 2011).  It is the aim of this chapter to identify genetic factors which modulate the 

course of HD.   

 

There is a strong inverse correlation between HTT CAG repeat length and age at motor onset 

which accounts for 50-70% of the observed variance in onset (Chapter 1) (Langbehn et al., 

2004). However studies of extended Venezuelan kindreds suggested that there was residual 

heritability accounting for this difference in onset age, even after accounting for CAG repeat 

(Wexler et al., 2004b), suggesting that other genetic factors may modulate onset.  This was 

confirmed by a recent genome wide association study from the Genetic Modifiers of 

Huntington’s Disease (GeM-HD) Consortium which identified genes in the DNA damage 

response as likely to modify the onset of HD (GeM-HD-Consortium, 2015).   

 

Extensive investigation has shown that the presence of the HD CAG repeat expansion within 

huntingtin perturbs the cellular and physiological system in numerous ways (Bates et al., 

2015, Ross et al., 2014), however it is not established which of these events are critical in 

humans to making the patient unwell, and which can be regarded as epiphenomena.  

Identifying genetic modifiers of progression in HD is likely to illuminate key events, since such 

genetic modifiers by definition are sufficiently pivotal to alter the manifestation of disease.  

And importantly, the genetic variants provide proof of concept that biological factors can be 

manipulated in people to result in a change of the disease trajectory.  Thus they may be good 

drug targets (Plenge et al., 2013).   

 

AAO (Huntington's et al., 1993, Hogarth et al., 2005) reflects the trajectory of disease 

pathology up to the point of motor onset: onset of disease is preceded by a long prodromal 

phase accompanied by substantial brain cell death.  However, as discussed in Chapter 1  the 

transition from premanifest to manifest HD is gradual and fluctuant rather than abrupt (Long 

et al., 2013, Tabrizi et al., 2013a): for example subtle early chorea may be more apparent if 
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the patient is anxious than relaxed.   In the prodromal phase, some clinicians will first 

introduce the patient gently to the idea of them having HD during several consultations rather 

than formally diagnosing HD the first time chorea is noticed.  All these factors make HD onset 

challenging to define, particularly retrospectively from case notes.  In addition to its likely 

inaccuracy, onset is only clinically confirmed in those with unequivocal motor signs.  This is 

likely to cause problems in treatment trials in subjects close to, or before, clinical onset of 

disease, which will be necessary if the course of neurodegeneration is to be slowed or halted 

in HD.   

 

The need for robust biomarkers of disease progression in both manifest and premanifest HD 

has motivated a raft of observational studies (Tabrizi et al., 2013a, Orth et al., 2010, Paulsen 

et al., 2008).  These provide the opportunity to investigate the relationship between onset 

and progression, whether they are influenced by the same biology, and also permit the study 

of subjects before clinical onset.  

 

In comparison to the well-established relationship between HTT CAG repeat size and AAO, the 

relationship between HTT CAG repeat size and progression is less clear.  In an analysis of 335 

subjects, significant associations between CAG repeat length and worsening on several motor, 

cognitive, and functional outcomes were found, however when age was controlled for, these 

effects were not significant (Ravina et al., 2008).  However in a later study of 569 subjects and 

longer follow-up times, CAG repeat length showed a significant but small effect on the 

progression of clinical measures (motor, cognitive and functional), and when age was 

controlled for the correlation increased (Rosenblatt et al., 2012).  Intriguingly it was recently 

demonstrated that mutant HTT CAG repeat size is strongly associated with both age at onset 

and age at death in patients with HD, but not with disease duration defined as the difference 

between the ages at onset and death (Keum et al., 2016).  A recent analysis of 5,821 Enroll 

patients (Aziz et al., 2018, Landwehrmeyer et al., 2016) found that around two-thirds of the 

rate of functional, motor, and cognitive progression in HD is determined by the same factors 

that also determine AAO, and that CAG repeat size alone could account for about half of the 

variation in the rate of deterioration in these domains.  Their data suggest that factors that 

are represented by the age at onset influence progression through their interaction with HTT 

CAG repeat dependent mechanisms (Aziz et al., 2018).  By contrast HTT CAG repeat accounted 

for only a minimal effect on weight loss, while residual onset had no effect (Aziz et al., 2018), 

leading the authors to postulate that weight loss and the pathological process which drive it 

may be linked to age of death in HD in an effort to reconcile their data with Keum et al (Aziz et 

al., 2018, Keum et al., 2016).  
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While the most clearly distinct phenotypic subtype of Huntington’s disease is juvenile onset 

Huntington’s disease (Quarrell, 2014) there has also been discussion in the field about the 

possibility of subtypes within the more typical adult-onset disease (Roos, 2014, Kim et al., 

2015). Furthermore, some have attempted to identify genetic modifiers of specific disease 

subtypes in small candidate gene studies (Vinther-Jensen et al., 2016).  It was therefore 

important for us to establish whether we should be looking for genetic modifiers predisposing 

towards a particular subtype of disease, or whether we should be looking for genetic 

modifiers of Huntington’s disease overall.  We therefore looked for phenotypic clustering 

when performing the progression analysis- questioning whether there is evidence for motor 

dominant vs cognitive dominant HD for example.  

 

TRACK-HD represents the most deeply phenotyped cohort of premanifest and symptomatic 

Huntington’s disease, with annual visits involving clinical, cognitive and motor testing 

alongside detailed brain imaging (Tabrizi et al., 2009a, Tabrizi et al., 2013a).  In this chapter 

the detailed data in TRACK-HD (Tabrizi et al., 2009a, Tabrizi et al., 2013a) is explored to 

establish whether distinct subphenotypes of Huntington’s disease exist.  A novel unified 

Huntington’s disease progression measure was developed (detailed in Chapter 2) and used to 

explore the relationship between HD progression and onset.  We examined whether we could 

detect any genetic association in TRACK-HD using the unified HD progression measure as a 

quantitative trait in the analysis.  We developed a similar measure in subjects from the 

REGISTRY study to replicate our findings (Orth et al., 2010).   

3.2 Materials and Methods 

3.2.1 Study design 

The overall study design is illustrated in Figure 3.1.  Most of the material discussed here was 

recently published in Hensman Moss, Pardiñas et al (Hensman Moss et al., 2017b); the work 

presented was part of a collaborative project and I will indicate my involvement with different 

aspects in the text below.    

 

We first performed progression analysis in TRACK-HD: this analysis is detailed in the General 

Methods (Chapter 2.5.1).  We next performed a GWAS in TRACK-HD using cross domain 

progression as the analytical variable (Basic principles of association testing and Genome 

Wide Association Analysis are introduced in Chapter 2.7.6 and 2.7.7).  To validate these 

findings and investigate further we performed progression analysis in REGISTRY (Chapter 
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2.5.2) then performed a GWAS in REGISTRY using the REGISTRY progression score as the 

analytical variable.  We meta-analysed the results of the TRACK-HD and REGISTRY association 

analyses.  In addition to single variant based analysis we performed pathway based 

approaches.   

 

Figure 3.1: Study Design.  After establishing that brain imaging, quantitative motor and 

cognitive variables are correlated and follow a similar trajectory, we scored the TRACK-HD 

subjects using principal component 1 as a unified progression measure, and used this measure 

to look for genome-wide associations with HD progression. We replicated our findings in the 

EHDN Registry subjects by looking at how far their disease had progressed compared with 
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expectations based on CAG/age, and used this progression measure to look for genome-wide 

associations in REGISTRY. 1835 Registry subjects had genotype data (8). UHDRS TMS: Unified 

Huntington’s Disease Rating Scale Total Motor Score. SDMT: symbol digit modality test. TFC: 

Total Functional Capacity.  (Figure made by me). 

3.2.2 Standard Protocol Approvals, Registrations, and Patient Consents 

All experiments were performed in accordance with the Declaration of Helsinki and approved 

by the University College London (UCL)/UCL Hospitals Joint Research Ethics Committee; 

ethical approval for the REGISTRY analysis is outlined in (Consortium, 2015a).  Peripheral 

blood samples were donated by genetically-confirmed HD gene carriers, and all subjects 

provided informed written consent. 

3.2.3 Case ascertainment 

Subjects for this chapter came from two studies: TRACK-HD and REGISTRY which are more 

extensively described in the Methods (Chapter 2).  

 

TRACK-HD was a prospective observational biomarker study collecting deep phenotypic data 

including imaging, quantitative motor and cognitive assessments on adult subjects. It provided 

annually collected high quality longitudinal prospective multivariate data over three years 

(2008-2011) with 243 adult subjects at baseline: 123 early HD, 120 premanifest HD gene 

carriers and 123 controls (Tabrizi et al., 2009a, Tabrizi et al., 2013a, Tabrizi et al., 2012, Tabrizi 

et al., 2011). 218 Huntington’s gene carriers from TRACK-HD were included in this study on 

the basis of adequate longitudinal data.  I was clinical fellow for the TrackOn-HD study, a three 

year extension of the TRACK-HD study focusing on pre- and peri-manifest HD subjects. 

 

REGISTRY (Orth et al., 2010) was a multisite prospective observational study which collected 

phenotypic data  between 2003 – 2013 on over 13,000 subjects, mostly manifest HD gene 

carriers.  The core data include: age, CAG repeat length, UHDRS Total Motor Score (TMS) and 

Total Functional Capacity (TFC); some patients have further assessments such as a cognitive 

battery (Orth et al., 2010).  1835 adult subjects from REGISTRY were included in this study on 

the basis of available genotype data from the GeM GWAS (Consortium, 2015a).  I enrolled 

people for and did study visits for the REGISTRY study, though the data used here was 

obtained from a large data-cut on subjects also used for the GeM GWAS study.  

3.2.4 Relationship between progression scores used in TRACK-HD and REGISTRY 
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Using the methods described in Chapter 2 (Methods) we generated scores of cross-domain 

progression using data from both the TRACK-HD and REGISTRY studies.  While the 

principalcomponent analysis was performed by Prof Douglas Langbehn I was involved in 

extensive discussions to decide which approach to use for the progression analysis for both 

TRACK-HD and REGISTRY. To ensure that the unified TRACK-HD progression measure and the 

unified REGISTRY progression measure encapsulated similar clinically relevant information we 

explored the relationship between them.  

 

Four measures were common between the TRACK-HD and REGISTRY studies: TMS, symbol 

digit modality score, Stroop word reading score and TFC.  Using these we were able to 

construct a progression score using the REGISTRY cross sectional scoring method with the 

TRACK-HD dataset (the TRACK-HD severity score), and compare this with the score generated 

by the TRACK-HD longitudinal progression analysis method.   

 

We conducted a principal component analysis of the four shared measures at the last TRACK-

HD visit: first principal component accounted for 79.4% of the variance in the PCA and 

correlated approximately equally with each of the four observed variables (Table 3.1).   

 

Factor Pattern 

  Factor1 

Square root of raw 

UHDRS total motor 

score  

-0.91567 

Symbol digit modality 

test (number correct) 

0.90797 

Stroop word reading 

test (number correct) 

0.87904 

UHDRS Total functional 

capacity 

0.86045 

Table 3.1: Proportion of variance among variables present in TRACK-HD and REGISTRY which 

are accounted for by the first PC in the combined analysis.  

 

To calculate the measure of severity unaccounted for by age and CAG length in TRACK, we 

regressed these principal component scores on the same predictors used for the unified 

REGISTRY progression measure. The residuals served as the TRACK-HD severity scores.   

3.2.5 Relationship between progression scores and other clinical measures 
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UHDRS TMS and TFC were not included in the TRACK-HD progression analysis.  To confirm 

that the TRACK-HD progression measure correlated with these, we examined the residual 

change relationships between the progression score and UHDRS TMS change and TFC change 

after controlling for the  clinical probability of onset (CPO). 

3.2.6 Genotyping 

DNA was obtained from blood samples of the 218 TRACK-HD study participants who had 

complete serial phenotype data.  Blood was drawn using an aseptic technique from the 

antecubital fossa; blood for DNA extraction was collected in ACD tubes and shipped on the 

day of collection at ambient temperature to BioRep, Milan, Italy for processing.  (While I did 

not collect blood samples for TRACK-HD I used the same technique when collecting samples 

for TrackOn-HD).  BioRep carried a manual salting out method for DNA extraction: this makes 

use of high salt conditions to selectively precipitate out proteins, leaving DNA in solution to be 

subsequently precipitated with alcohol.  The purified DNA was then stored in TE buffer 

(10mM Tris, 1mM Na2EDTA, pH8).  Spectrophotometric analysis (Nanodrop), agarose gel 

electrophoresis and genotyping for sample identity confirmation (PCR + capillary 

electrophoresis) were done to assure quality control. 

 

I obtained TRACK-HD DNA samples from BioRep and prepared them for genotyping.  

Genotyping was performed in Illumina Omni2.5-8 v1.1 arrays at UCL Genomics, in accordance 

with the Infinium LCG Assay (15023141_A, June 2010) protocol (Illumina Inc, San Diego, USA), 

details of this technique are given in Chapter 2.  

 

I sent the genetic data to Antonio Pardiñas (Cardiff University) who carried out standard 

quality control procedures (Anderson et al., 2010) by using PLINK v1.9 (Chang et al., 2015), 

including controlling for: 

 Coverage and call rates: 5% of missing data allowed per SNP and individual   

 Inbreeding (F < 0.2 required)  

 Hardy-Weinberg equilibrium (SNPs with p < 10-6 in an exact test were removed).  

With these criteria, and after removing one individual of an identical twin pair, a total of 216 

gene positive TRACK-HD subjects were left in the sample who were genotyped for 2.34 million 

genome-wide markers (Figure 3.1). 

3.2.7 Relatedness and Population genetic analysis 

Of those with family members in TRACK-HD, using the family history data (Chapter 2) I 

identified 28 individuals who reported at least one family member also included in the 
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genome-wide association analysis.  Relatedness was also examined by Dr Pardiñas using the 

genetic data (Weir et al., 2006): identity-by-descent analysis showed 9 pairs of individuals 

with a relatedness coefficient (𝜋̂) higher than 0.15, which included 6 putative first degree 

relatives, 2 putative second degree relatives and 1 putative pair of third degree relatives.  

ADMIXTURE analysis with a subset of the 1000 Genomes (1000 Genomes Project Consortium, 

2012) populations revealed 6 individuals with more than 25% of non-European ancestry 

(Figure 3.2).  

 

Figure 3.2: Ancestry analysis of the TRACK-HD cohort (left hand box) in comparison to Finnish, 

Chinese, and Yoruban populations from left to right respectively.  6 subjects had >25%  non-

European ancestry. Figure prepared by Dr Pardiñas.  

 

One member of an identical twin pair was removed from the analysis; otherwise all 

individuals were retained in the TRACK-HD sample, as their relatedness and admixture can be 

accommodated well by using association methods based on mixed linear models (Thornton et 

al., 2014, Shin and Lee, 2015, Yang et al., 2014a). 

3.2.8 Imputation 

As described above almost 2.5 million markers were genotyped using the Illumina arrays.  The 

technique of genetic imputation, in which short stretches of haplotype are used to provide 

useful information about untyped genetic markers, was used to determine information about 

the untyped markers, thus increasing the power of the subsequent GWAS (Li et al., 2009).  

Simplistically, study samples are genotyped, and these genotypes are compared to a 

reference imputation panel of haplotypes that includes detailed information on a much larger 



68 
 

number of markers, this information can be used to predict the genotype of markers that 

were not directly genotyped (Figure 3.3).  In this case, study samples genotyped for almost 2.5 

million genetic markers, were compared to a reference panel of haplotypes that includes 

detailed information around 10 million markers. 

 

 

 

Figure 3.3: Genotype imputation in a sample of apparently unrelated individuals.  A: the 

observed data which consists of genotypes at a modest number of genetic markers in each 

sample being studied and of detailed information on genotypes (or haplotypes) for a reference 

sample. B: the process of identifying regions of chromosome shared between a study sample 

and individuals in the reference panel. When a typical sample of European ancestry is 

compared to haplotypes in the HapMap reference panel, stretches of >100kb in length are 

typically identified. C: observed genotypes and haplotype sharing information have been 
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combined to fill in a series of unobserved genotypes in the study sample. (Figure from (Li et al., 

2009), Image reproduced with permission of the rights holder, Annual Reviews) 

 

 

TRACK-HD was imputed by our collaborators Dr Pardiñas and Professor Peter Holmans in the 

Cardiff University high-performance computing cluster RAVEN (Advanced Research 

Computing @ Cardiff (ARCCA)), using the SHAPEIT/IMPUTE2 algorithms (Howie et al., 2012, 

Delaneau et al., 2013) and a standardised pipeline (van Leeuwen et al., 2015). The 1000 

Genomes phase 3 panel provided by the IMPUTE2 authors (release October 2014), was used 

as the reference imputation panel. Imputation probabilities (“dosages”) were converted to 

best-guess genotypes in fcGENE v1.07(Roshyara and Scholz, 2014) using a minimum 

probability threshold of 80% and a per-SNP missingness threshold of 5% of the sample. After 

this process an INFO score cut-off of 0.8 was applied in order to select well-imputed variants, 

and all monomorphic and singleton markers were excluded. With these filters 9.65 million 

biallelic markers remained in the dataset.  

 

Genotypes for the REGISTRY subjects were obtained from the GeM-HD Consortium 

(Consortium, 2015a) where details of their genotyping and imputation are more extensively 

provided.  DNA samples from the EHDN Registry study were obtained from the BioRep Inc. 

repository (Milan, Italy) and phenotypic data recorded from each of the EHDN Registry sites 

were provided from the central EHDN database.  Genotyping was performed at the Broad 

Institute using Illumina Omni2.5 arrays.  A standard quality control was used: SNPs with 

genotyping call rate >95%, minor allele frequency >1%, Hardy-Weinberg Equilibrium p-value 

>1E-6, and samples with genotyping call rate >95% were identified for subsequent genotype 

imputation. In addition, when data were available, samples with ambiguous gender, DNA 

contamination, and significant discordant genotype between fingerprint data and full data 

were excluded. The MACH program (Abecasis, 2017) was used for haplotype phasing and 

MINIMAC program for genotype imputation (Michegan, Howie et al., 2012). Resulting dosage 

data were transformed into PLINK program compatible genotype data. SNPs with imputation 

quality score (i.e., Rsq) >0.5 were used for the subsequent association analysis.  From the 

GeM dataset we selected all samples from REGISTRY who passed the genetic QC and had 

adequate phenotypic data to generate a progression score on the subject.  The resulting 

REGISTRY dataset harboured 8.94 million biallelic markers of 1,773 individuals (Figure 3.1). 

3.2.9 Mixed linear model GWAS 
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Association analyses was conducted with the mixed linear model (MLM) functions included in 

GCTA v1.26 (Yang et al., 2011), specifically the leave-one-chromosome-out (LOCO) procedure 

(Yang et al., 2014b). MLMs are useful tools for conducting association mapping in the 

presence of sample structure, including geographic population structure, family relatedness 

and/or cryptic relatedness, as the model takes these characteristics into account (Yang et al., 

2014a).  The basic approach involves building a genetic relationship matrix (GRM) that models 

genome-wide sample structure, estimating the contribution of the GRM to phenotypic 

variance using a random effects model (a kind of hierarchical linear model) and computing 

association statistics that account for this component of phenotypic variance.  Phenotypic 

variables already controlled for the relevant clinical co-variates (in the progression analysis).  

Therefore, no covariates were added to the analyses. 

 

In order to transform the results into independent GWAS signals, PLINK was again used to 

perform linkage disequilibrium (LD) clumping (r2 = 0.1, p < 1x10-4; window size < 3 Mb). Due to 

the relatively small size of the TRACK-HD and REGISTRY samples, analyses were restricted to 

SNPs with minor allele frequency >1%.  Small sample sizes also meant that calculation of SNP-

based heritability (h2
SNP) for our tested phenotypes was not possible using either genotyped or 

imputed markers (Yang et al., 2010b, Yang et al., 2015).   

 

Meta-analysis of the GWAS summary statistics from the TRACK-HD and REGISTRY studies was 

carried out by Dr Pardiñas and Professor Peter Holmans using the fixed effects method with 

inverse-variance weights as implemented in METAL (Willer et al., 2010). To control for 

spurious results due to scale differences between the TRACK-HD and REGISTRY progression 

phenotypes, effect sizes from both summary statistics were standardised to have equal 

variances before meta-analysis. 

 

QQ plots of observed log p-values (sorted by value) for each SNP versus their expected values 

in the absence of association are shown for TRACK-HD, REGISTRY and the meta-analysis are 

shown in Figure 3.4. If there is no association, and no systematic inflation in the test statistics 

(for example, from population stratification), the observed log p-values would follow their 

expected values (the red line in Figure 3.4) exactly. Indeed, this is what is observed for the 

majority of data points, which do not show association.  The extent to which such systematic 

inflation exists is measured by the genomic inflation factor λ (Devlin and Roeder, 1999), which 

is the median of the observed test statistics divided by 0.456 (the median of a chi-squared 

distribution on 1df). Values of λ close to 1 – as is the case here – indicate a lack of inflation. 
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The 95% confidence interval for log p-values in the absence of association is shaded grey, and 

the points lying above this in the top right corner indicate genuine associations. 
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Figure 3.4: QQ plots of the (A) TRACK-HD and (B) REGISTRY genome wide association studies. 

And (C) meta-analysis.  λ close to 1 shows there is no systematic inflation of test statistics. 

(Figure prepared by Dr Pandiñas). 

 

Conditional analyses of GWAS summary statistics were carried out using the COJO procedure 

included in GCTA v1.26 (Yang et al., 2012). 

3.2.10 Co-localisation analyses 

In order to discern if our top GWAS signals were mediated by the same SNPs in both TRACK-

HD and REGISTRY, the co-localisation method of Giambartolomei et al. (Giambartolomei et al., 

2014), as implemented by Dr Pardiñas in GWAS-pw v0.21 (Pickrell et al., 2016) was used after 

discussion with Dr Vincent Plagnol. In summary, the GWAS summary statistics of our two 

samples were first divided into approximately independent LD blocks (Berisa and Pickrell, 

2016), and each block was then scanned to estimate the probability (in a hierarchical Bayesian 

framework) of harbouring an association common to the two samples. In contrast to the 

original algorithm, the model priors do not need to be pre-specified in GWAS-pw, as they are 

estimated directly from the summary statistics. This implementation has been thoroughly 

tested by simulation and applied to real data from heterogeneous sources (Pickrell et al., 

2016). By testing the entire genome instead of a small number of candidate regions arising 

from the GWAS clumps, a conservative approach is followed towards estimating co-

localisation, which also has the desirable property of allowing us to compare our candidates 

(to the resolution of single SNPs) with every other region in the genome. 

 



74 
 

A similar procedure was used to test for co-localisation between the region on chromosome 5 

containing GWAS signal in TRACK-HD and REGISTRY and SNPs influencing expression (eQTLs), 

since this may indicate which gene in an association region is causal. Given that eQTLs close to 

the gene (cis-eQTLs) tend to replicate more reliably than those from other parts of the 

genome (Ramasamy et al., 2014), these analyses were restricted to the regions of GWAS 

signal and genes within 1Mb of these regions. These analyses used expression data from 53 

tissues, accessed through GTeX (Consortium, 2015b). To minimise multiple testing, the two 

tissues showing the most significant eQTLs for each gene were used for the co-localisation 

analysis. Additionally, for DHFR and MSH3, analyses were performed using three brain tissues 

(caudate, cerebellum and cortex), since these are the most biologically relevant to HD a priori.  

3.2.11 Gene based analyses 

Gene-wide p-values were calculated by Dr Pardiñas and Professor Peter Holmans using 

MAGMA v1.05 (de Leeuw et al., 2015) on the TRACK-HD and REGISTRY summary statistics, by 

summing the p-values of all SNPs inside each gene. MAGMA aggregates the association 

evidence across all SNPs in a gene, while correcting for LD between SNPs (See Chapter 2, 

General Methods) for an introduction to MAGMA; in this case the European data from Phase 

3 of the 1000 Genomes Project were used as reference). This analysis increases power when a 

gene contains multiple causal SNPs (e.g. as a result of allelic heterogeneity), or when the 

causal SNP is not typed and its signal is partially captured by multiple genotyped SNPs in LD 

with it. We set a window of 35 kb upstream and 10 kb downstream of each gene in order to 

capture the signal of proximal regulatory SNPs (Maston et al., 2006, The Network and 

Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, 2015). 

3.2.12 Gene-set analyses 

The principles behind gene-set analysis and different types of gene-set analysis are described 

in the General Methods (Chapter 2).  To maximise comparability with the GeM GWAS 

(Consortium, 2015a), our primary gene-set analyses used Setscreen (Moskvina et al., 2011).  

Setscreen sums the (log-) p-values of all SNPs in the gene set, similar to Fisher’s method, but 

adjusts the distribution to allow for non-independence of SNPs due to linkage disequilibrium 

(Brown, 1975a).   Significant enrichments from the Setscreen analyses were confirmed using 

the competitive gene-set analysis procedure implemented in MAGMA. This more conservative 

approach tests whether genes in a gene set have more significant gene-wide p-values than 

other genes, correcting for gene size, SNP density and intergenic linkage disequilibrium (de 

Leeuw et al., 2015), but may be less powerful than the Setscreen analysis for small gene sets. 
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Initially, gene set analyses were performed on the 14 pathways found to be significantly 

enriched for association signal in the GeM GWAS (Consortium, 2015a). Many of these 

pathways relate to DNA repair, so we investigated the biological specificity of this signal 

further by analysing 78 gene-sets taken from a recent review of DNA repair (Pearl et al., 

2015).   

 

As a secondary analysis, to potentially uncover areas of novel disease-related biology, the 

same broad list of gene sets used by GeM-HD Consortium (2015) was tested. This comprises a  

collection of 14,706 pathways containing between 3 and 500 genes from the Gene Ontology 

(GO)(Consortium, 2015d), Kyoto Encyclopedia of Genes and Genomes (KEGG)(Kanehisa et al., 

2016), Mouse Genome Informatics (MGI)(Eppig et al., 2015), National Cancer Institute 

(NCI)(Schaefer et al., 2009), Protein ANalysis THrough Evolutionary Relationships 

(PANTHER)(Mi et al., 2013), BioCarta(Nishimura, 2001) and Reactome(Fabregat et al., 2016). 

Multiple testing correction was carried out for this analysis by calculating q-values (Storey and 

Tibshirani, 2003). 

3.2.13 Linking genetic variation to clinical measures 

To explain how our TRACK-HD lead variant (rs557874766) affected commonly used clinical 

measures of HD severity we first correlated TRACK-HD progression score with UHDRS Total 

Motor Score (TMS) and UHDRS Total Functional Capacity (TFC).  We defined “raw” TMS rate 

as TMS change divided by follow-up years and “adjusted” TMS rate as the residual of raw TMS 

rate after regressing off effects of initial TMS, age, sex, CAG. We followed the same procedure 

for TFC.  

 

Regressing these measures on progression gives the following estimates of the amount of 

change for one unit increase in progression (Table 3.2)   

 

Variable Effect of one unit change in subject’s 

progression score on this variable 

Standard Error 

Raw TMS rate 0.71 0.19 

Adjusted TMS 

rate 

0.57 0.18 

Raw TFC rate 0.21 0.047 

Adjusted TFC rate 0.20 0.044 

Table 3.2: Relationship between change in progression score and rate of change in Total 

Motor Score (TMS) and Total Functional Capacity (TFC).  
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3.3 Results 

3.3.1 Phenotypic clusters of Huntington’s disease were not observed 

We first compared the results when all phenotypic variables were combined in a common 

analysis to the results when variables were grouped into brain imaging, quantitative motor 

and cognitive domains.   

 

We performed individual PCA of each domain and found that first PC scores were highly 

correlated between the domains (P < 0·0001 in all cases, Table 3.3). No phenotypic subtypes 

of symptom clusters in motor, cognitive or brain imaging domains were observed; rather, 

longitudinal change in TRACK-HD not predictable by CAG-age was distributed on a correlated 

continuum (Figure 3.5). We therefore repeated PCA of the measures combined across all 

domains. The first PC of this combined analysis accounted for 23.4% of the joint variance, its 

dominance is shown in the Scree plot (Figure 3.6).  This first PC was also at least moderately 

correlated (r>0·4) with most of the variables that contributed heavily to each domain-specific 

first PC (Table 3.4).  

 

We did consider whether to include psychiatric variables in the progression analysis, however 

in exploratory analysis the first psychiatric PC has notably lower correlation with motor and 

cognitive domains and CPO variables, psychiatric variables were therefore excluded. 
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 brainf1 brainf2 brainf3 cogf1 cogf2 cogf3 cogf4 motf1 motf2 motf3 motf4 

brainf1 1 0 0 -0.355 0.077 0.146 -0.068 0.43 0.096 -0.065 -0.139 

p 0 1 1 <.0001 0.26 0.03 0.32 <.0001 0.16 0.34 0.04 

brainf2 0 1 0 -0.097 -0.055 0.12 -0.016 0.005 -0.149 -0.043 0.041 

p 1 0 1 0.15 0.42 0.08 0.81 0.94 0.03 0.53 0.55 

brainf3 0 0 1 0.016 0.064 0.12 -0.009 0.15 0.05 -0.108 -0.161 

p 1 1 0 0.81 0.35 0.08 0.89 0.03 0.46 0.11 0.02 

cogf1    1 0 0 0 -0.434 -0.154 0.035 0.112 

p    0 1 1 1 <.0001 0.02 0.6 0.09 

cogf2    0 1 0 0 0.035 0.07 -0.12 -0.163 

p    1 0 1 1 0.59 0.29 0.07 0.01 

cogf3    0 0 1 0 0.105 -0.017 -0.092 -0.143 

p    1 1 0 1 0.11 0.8 0.16 0.03 

cogf4    0 0 0 1 -0.019 -0.05 -0.011 -0.054 

p    1 1 1 0 0.77 0.44 0.87 0.42 

Table 3.3: Correlations among Domain-Specific Residual Principal Components in the TRACK-HD analysis, showing that the first principal components of each 

domain are significantly correlated.  

The prefaces “brain”, “cog”, and “mot” indicate the domain. The suffix f1, f2, etc, numbers the principal components within each domain.   
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Having approximated the residual longitudinal variability within each of the three domains via 

principal components, we then examined cross-domain relationships among these 

components. For example, after accounting for CAG-age-risk, testing whether residual 

longitudinal change in the brain measures correlated with the Q-motor measures. 

 

 

Figure 3.5: Distribution of progression measure in 218 members of TRACK-HD cohort. Curve is 

the normal distribution approximations of the severity score distributions. (Figure prepared by 

Prof Langbehn, edited by me, version of this figure used in Figure 2 in (Hensman Moss et al., 

2017b)). 
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Figure 3.6: The first principal component accounts for a high proportion of the variance in the 

TRACK-HD progression analysis. (A) Scree Plot and (B) Plot showing proportion of variance 

explained in the TRACK-HD progression principal component analysis: the dominance of the 

first PC is illustrated. Figure prepared by Antonio Pardiñas.  

 

Measure PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Symbol Digit -0.505 -0.027 0.135 0.194 0.034 0.047 -0.394 -0.121 

Stroop Word -0.391 -0.017 0.361 0.468 0.078 -0.232 0.087 0.123 

Paced Tapping 3 Hz 

(inverse std dev) 

-0.054 -0.123 -0.031 -0.066 0.032 0.621 -0.420 0.233 

Spot the Change 5K 0.224 -0.123 0.113 -0.223 -0.016 0.190 0.427 0.479 

Emotion Recognition -0.226 0.188 0.228 0.086 -0.090 -0.415 0.098 0.264 

Direct Circle (Log annulus 

length) 

-0.374 -0.101 0.419 0.199 0.488 0.258 0.060 -0.027 

Indirect Circle (Log 

annulus length) 

-0.406 -0.076 0.407 0.418 0.161 0.336 0.036 0.130 

Total brain volume 0.749 -0.457 0.168 0.077 -0.046 -0.100 -0.115 -0.079 

Ventricular volume -0.545 0.509 -0.079 -0.125 0.094 0.131 0.274 0.043 

Grey matter volume 0.631 -0.491 0.173 -0.050 -0.088 -0.137 0.038 -0.022 

White matter volume 0.699 -0.409 0.252 -0.085 -0.019 -0.048 0.062 0.044 

Caudate volume 0.584 -0.426 0.082 0.223 0.086 0.083 -0.055 0.046 

Metronome tapping, 

nondominant hand (log of 

tap initiation SD for all 

trials) 

0.433 -0.033 -0.206 -0.338 0.104 0.392 0.037 -0.081 

Metronome tapping, 

nondominant hand (inv 

tap initiation SD for self-

paced trials) 

-0.033 -0.212 0.013 0.144 0.116 0.133 0.347 -0.705 

Speeded tapping, 

nondominant hand (log of 

repetition time SD) 

0.380 -0.022 -0.483 0.315 0.554 -0.206 -0.058 0.123 

Speeded tapping, 

nondominant hand (log of 

tap duration SD) 

0.594 0.028 -0.335 0.182 0.437 -0.061 0.027 0.206 

Speeded tapping, 

nondominant hand (mean 

0.316 0.373 -0.219 0.006 0.411 -0.036 -0.002 -0.120 
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intertap time) 

Tongue force—heavy (log 

coefficient of variation) 

0.147 0.016 -0.332 0.586 -0.445 0.177 -0.033 0.012 

Tongue force—light (log 

coefficient of variation) 

0.247 0.114 -0.399 0.451 -0.407 0.191 0.217 0.066 

Grip force, dom. hand, 

heavy condition (log of 

mean orientation) 

0.615 0.488 0.252 0.009 -0.078 -0.014 -0.336 -0.077 

Grip force, dom. hand, 

heavy condition (log of 

mean position) 

0.568 0.518 0.207 0.033 -0.027 -0.051 -0.381 -0.042 

Grip force, nondom. hand, 

heavy condition (log of 

coefficient of variation) 

0.516 0.400 0.213 0.108 0.003 0.122 0.231 -0.145 

Grip force, dom. hand, 

light condition (log of 

coefficient of variation) 

0.681 0.311 0.250 0.034 0.016 0.140 0.188 0.114 

Grip force, nondom. hand, 

light condition (log of 

coefficient of variation) 

0.647 0.430 0.293 0.071 -0.061 0.071 0.163 -0.055 

Variance Explained (%) 23.4 9.5 7.1 6 5.7 5.1 4.9 4.3 

Table 3.4: PCA of Residual Longitudinal Change Among Variables from All 3 Domains in the 

TRACK-HD analysis showing that the variables that correlated with the domain specific 

analyses also correlated with the common principal component analysis. Dom- dominant; 

nondom- nondominant; std dev- standard deviation. 

3.3.2 The progression scores are correlated with change in more widely used 

clinical measures of Huntington’s disease 

The cross-domain first principal component was used as a unified Huntington’s disease 

progression measure in the TRACK-HD cohort (Figure 3.5). To confirm that our progression 

measure correlated with commonly recognised measures of Huntington’s disease severity not 

included in the progression analysis, we examined the residual change relationships between 

the progression score and UHDRS TMS change and TFC change after controlling for the CPO. 

We found a correlation of r=0·448 (p<0·0001) for the residual motor slope and r=-0·421 

(p<0·0001) for the residual TFC slope.  One unit increase in unified Huntington’s disease 

progression measure corresponded to an increase of 0·71 (95% CI=0.34,1.08) units per year in 

the rate of change of TMS, and an increase of approximately 0·2 (95% CI=0.12,0.30) units per 
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year in the rate of change of TFC. The 15 fastest progressing subjects in TRACK-HD showed a 

mean annual rate of decline in the UHDRS TMS of 2·52 more points than would be expected; 

the 15 slowest progressing subjects had an annual TMS decline of 0·45 points less than 

predicted by age and CAG length.   

3.3.3 Cross-sectional severity score used as the progression measure in REGISTRY 

The longitudinal unified HD progression measure developed in TRACK-HD could not be 

transferred directly to REGISTRY subjects due to more limited data. Individual clinical 

measures in REGISTRY showed correlations across the motor, cognitive, and functional 

domains (see Table 3.5 for loading onto PCs), consistent with our finding in TRACK-HD. The 

first principal component, PC1, in the REGISTRY analysis accounted for 75·6% of the variance 

in severity; no other principal components explained any substantial amount of the common 

variance within the measures used (Table 3.5). The dominance of the first principal 

component is shown in Figure 3.7.  

 

Figure 3.7: The first principal component accounts for a high proportion of the variance in the 

REGISTRY progression analysis.  (A) Scree Plot and (B) Plot showing proportion of variance 

explained in the REGISTRY progression principal component analysis: the dominance of the 

first PC is illustrated. Figure prepared by Antonio Pardiñas. 

 

Therefore this first principal component was chosen as a measure of severity in the REGISTRY 

cohort: this is referred to as the unified REGISTRY progression measure. The distribution of 

REGISTRY progression scores in the cohort analysed is given in Figure 3.8.   Higher values of 

this measure mean greater severity than expected at a given time: we infer that this is the 

result of faster progression (Figure 3.9) and we used this as the unified Registry progression 

measure.   
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Variable Variable explanation  Factor1 Factor2 

sqrtmotor Square root of the UHDRS total motor score -0.84233 0.30062 

verfl UHDRS verbal fluency 0.79108 0.24136 

sdmt UHDRS symbol digit score 0.89833 0.1522 

scnt UHDRS Stroop colour naming 0.89596 0.25872 

swrt UHDRS Stroop word reading 0.88978 0.2109 

sit1 UHDRS Stroop interference score 0.87684 0.21789 

tfc UHDRS total functional capacity 0.8746 -0.39367 

fasscore UHDRS functional assessment scale 0.88355 -0.38555 

Table 3.5: Factor pattern of the first two principal component analysis of the REGISTRY 

severity score which was used as a progression score for the Registry data.   

Factor 1 = 1st PC; Factor 2 = 2nd PC.  

 

 

Figure 3.8: Distribution of atypical severity (compared to predicted severity at final visit) in 

1835 members of the REGISTRY cohort.  The curve is the normal distribution approximations of 

the severity score distributions. (Figure prepared by Prof Langbehn, edited by me, version of 

this figure used in Figure 2 in (Hensman Moss et al., 2017b)). 
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Figure 3.9: Assessing progression in Huntington’s disease.  Graphical illustration of the 

trajectory of HD symptoms and signs over time, annotated to show what time period the 

different measures of onset and progression discussed in this paper cover. The TRACK-HD 

progression score uses longitudinal data over 3 years. Given limited longitudinal data in 

REGISTRY, cross-sectional severity at last visit compared to predicted severity was used as a 

proxy for progression. Age at onset occurs when a subject has unequivocal motor signs of 

Huntington’s disease. (Figure prepared by me, version of this figure used in Figure 2 in 

(Hensman Moss et al., 2017b)). 

 

A figurative summary of what time period the TRACK-HD and REGISTRY progression scores 

encapsulate, and the relationship between them and age at onset is given in Figure 3.9 above.  

3.3.4 The TRACK-HD and REGISTRY progression measures are correlated 

To ensure that the unified TRACK-HD progression measure and the unified REGISTRY 

progression measure encapsulated very similar clinically relevant information we explored the 

relationship between them.  Within the TRACK data, the last-visit severity scores had a 

correlation of 0.674 (p<0.0001) with the previously calculated longitudinal progression scores.  

We used a Pearson correlation since it can be shown that the predicted values obtained from 

the TRACK-HD and REGISTRY formulas are nearly linear (Figure 3.10).  

 

We were therefore satisfied that our progression measures for TRACK and REGISTRY reflected 

substantially related elements of phenotype. Further support for this conclusion was given by 

14 subjects present in both studies: we found that there was a correlation of 0.631 (p = 

0.0156) between the progression scores generated by the TRACK-HD longitudinal analysis 
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method, and the REGISTRY cross sectional progression analysis method in these 14 

overlapping subjects.  

 

Figure 3.10:  TRACK-HD and REGISTRY progression scores are correlated.  Linear relationship 

between the longitudinal atypical severity scores used for the TRACK-HD analysis and cross-

sectional atypical severity scores at the last TRACK visit when calculated using the method 

employed for the REGISTRY data (r = .674). 

3.3.5 Progression scores are associated with AAO 

In the TRACK-HD cohort, Huntington’s disease subjects in the early stages of the disease were 

significantly faster progressors on the unified HD progression measure than those still in the 

premanifest phase (p < 0·0001).  Amongst the 96 subjects who had experienced onset, the 

rater AAO showed the expected relation with predicted AAO based on CAG length (Figure 

3.11), and earlier than predicted AAO was correlated with faster progression on our unified 

HD progression measure (r=0·315; p = 0·002). 
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Figure 3.11: Observed versus Expected Age of Onset among those who have Experienced 

Onset in the TRACK-HD analysis: amongst these 96 subjects who had experienced onset, the 

rater AAO showed the expected relation with predicted AAO based on CAG length. Earlier than 

predicted onset age was correlated with faster progression (using the unified HD progression 

measure) (r=-0·315; p = 0·002). rater_aao_age- rater AAO; expbirth- the AAO predicted from 

birth based on HTT CAG repeat.  

 

The unified REGISTRY progression measure and AAO were modestly, but significantly, 

correlated (r = 0·2338; p<0·0001) (Figure 3.12). Interestingly, atypically rapidly or slowly 

progressing subjects tend to become more atypical over time: correlation between time since 

disease onset and REGISTRY progression (-0·3074; p<0·0001) is greater than that between 

AAO and REGISTRY progression. 
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Figure 3.12: REGISTRY progression measure (Residual severity score) and atypical onset age 

(Standardised onset) are modestly correlated in REGISTRY.  Note bias for very late expected 

onset for those with low CAG repeats. SD = Standard deviation. (Figure from Prof Langbehn) 

3.3.6 Genome wide association analysis highlights a locus associated with HD 

progression on chromosome 5 in TRACK-HD 

We performed a genome-wide association analysis using the unified TRACK-HD progression 

measure as a quantitative trait, which yielded a significantly associated locus on chromosome 

5 spanning DHFR, MSH3 and MTRNR2LR in the TRACK-HD study.  The index SNP rs557874766 

is a coding missense variant in MSH3 (p =5·8x10-8; G=0·2179/1091 (1000 Genomes); Figure 

3.13A, Figure 3.14 and Table 3.6), and classed as of moderate-impact, which arguably reduces 

the genome-wide significance threshold to P = 1·2 x 10-7 (Sveinbjornsson et al., 2016).  The 

genes in this locus were the only ones to reach genome-wide gene-wide significance (i.e. 

p<2·5x10-6  (Kiezun et al., 2012)) in a MAGMA analysis (de Leeuw et al., 2015) (MTRNR2L2 

p=2·14x10-9; MSH3 p=2·94x10-8; DHFR p=8·37x10-7; Table 3.7).  
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Figure 3.13: Genome-wide Association Analysis of Progression Score. Green line in A-C: 5.8x10-

8. (A) Manhattan plot of TRACK-HD GWA analysis yielding a locus on chromosome 5. 

Significance of SNPs (log10[p value], y axis) is plotted against genomic location (x axis). (B) 

Manhattan plot of REGISTRY GWA analysis showing suggestive trails on chromosome 15 in the 

same area as the GeM GWAS significant locus, and also on chromosome 5 in the same area as 

the TRACK progression GWAS. (C)  Manhattan plot of Meta-analysis of TRACK and REGISTRY 

progression analysis showing that the meta-analysis strengthens the association at the 

chromosome 5 locus.  (Manhattan plots produced by Dr Pardiñas, figure prepared by me, 

these plots were also adapted for publication as Figure 3 in (Hensman Moss et al., 2017b)) 
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Figure 3.14: Locus zoom plot of the TRACK-HD (top), REGISTRY (middle) and meta-analysis 

(bottom) data showing the structure of linkage disequilibrium (LD) and –log10(p-value)  of the 

significant locus on chromosome. The top image shows the chromosome; the red square 

shows the region which is zoomed in on in the other panels. The colours of the circles are 

based on r2 with the lead SNP in TRACK-HD as shown in the bottom of the plot; intensity of 

colour reflects multiple overlying SNPs. Dashed lines: 5x10-8. (Plots produced by Dr Pardiñas, 

these plots were also adapted for publication as Figure 3 in (Hensman Moss et al., 2017b)) 
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Chr Start (BP) End (BP) Index SNP  A1 A2  MAF INFO 

score 

Beta Standard 

Error 

P-value No. of 

SNPs 

Length 

(KB) 

Gene(s) tagged (+/- 20 KB) 

5 79895438 80196258 rs557874766 G C 0.238 1.000 -0.581 0.107 5.80E-08 380 300.82 DHFR, MSH3, MTRNR2L2 

4 74064920 74362359 rs16849472 T C 0.019 1.000 1.677 0.318 1.34E-07 10 297.44 AFM, AFP, ALB, ANKRD17, 

LOC728040 

3 20860340 20919615 rs111902872 T C 0.012 0.920 2.419 0.460 1.47E-07 2 59.276 none 

1 239493679 239917976 rs115206404 A G 0.009 0.805 2.598 0.503 2.46E-07 2 424.3 CHRM3, CHRM3-AS2 

13 89829918 89856005 rs546753686 A G 0.009 0.949 2.610 0.506 2.50E-07 2 26.088 none 

6 31892827 31895971 rs188144048 G C 0.016 1.000 -1.923 0.380 4.30E-07 2 3.145 C2, CFB, LOC102060414 

4 52815077 52815077 rs151302971 C T 0.060 0.998 0.963 0.192 4.98E-07 1 0.001 none 

10 132818509 132881313 rs150136271 T C 0.007 0.845 2.881 0.582 7.38E-07 3 62.805 TCERG1L 

8 128074135 128092501 rs76712904 T A 0.009 1.000 2.532 0.512 7.68E-07 13 18.367 PCAT2, PRNCR1 

6 147033320 147049507 rs76605780 G A 0.009 1.000 2.524 0.512 8.42E-07 4 16.188 ADGB 

Table 3.6: Independent association signals from the TRACK-HD Progression GWAS (at p-value < 10-5).  

Chr- chromosome; MAF- minor allele frequency; index SNP according to dbSNP b146 build; A1: Reference Allele; A2: Alternate Allele. (Top 10 signals shown, full 

data available at http://hdresearch.ucl.ac.uk/data-resources/)

http://hdresearch.ucl.ac.uk/data-resources/
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Entrez Gene Symbol Chr Start End p(TRACK) p(REGISTRY) p(META) p(GeM) 

4437 MSH3                 5 79950467 80172634 2.94E-08 9.52E-04 8.89E-11 1.98E-02 

1719 DHFR                 5 79922045 79950800 8.37E-07 8.45E-04 1.04E-09 6.46E-02 

100462981 MTRNR2L2             5 79945819 79946854 2.15E-09 1.20E-03 1.88E-09 N/A 

7852 CXCR4                2 136871919 136875725 3.96E-04 6.46E-03 4.40E-06 8.22E-02 

54893 MTMR10               15 31231144 31283807 3.01E-01 3.49E-07 1.42E-05 2.74E-11 

10873 ME3                  11 86152150 86383678 5.07E-03 5.81E-02 2.19E-05 4.78E-01 

118 ADD1                 4 2845584 2931803 5.84E-02 2.82E-03 2.95E-05 1.16E-03 

8605 PLA2G4C              19 48551100 48614109 3.53E-03 1.90E-01 6.73E-05 5.82E-02 

9209 LRRFIP2              3 37094117 37217851 5.37E-02 3.16E-04 6.98E-05 3.19E-04 

8690 JRKL                 11 96123158 96126727 4.37E-05 5.29E-02 8.39E-05 8.91E-01 

2788 GNG7                 19 2511218 2702746 1.02E-01 3.62E-03 1.11E-04 7.83E-02 

22909 FAN1                 15 31196055 31235311 5.30E-01 2.16E-06 1.15E-04 1.68E-09 

4292 MLH1                 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 3.91E-04 

79780 CCDC82               11 96085929 96123083 2.34E-03 5.99E-02 1.30E-04 7.39E-02 

9852 EPM2AIP1             3 37027357 37034795 7.94E-02 4.29E-04 1.53E-04 1.39E-03 

4308 TRPM1                15 31293264 31453476 4.78E-01 1.77E-05 1.83E-04 8.33E-04 

115509 ZNF689               16 30614686 30621682 1.86E-02 7.52E-03 1.85E-04 9.53E-01 

23167 EFR3A                8 132916356 133025889 3.90E-02 1.26E-02 2.32E-04 2.19E-01 

146540 ZNF785               16 30591994 30597092 1.17E-01 1.53E-02 2.45E-04 9.39E-01 
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909 CD1A                 1 158223927 158228059 1.60E-01 5.96E-04 3.27E-04 4.85E-01 

Table 3.7: Gene-wide p-values for top genes in TRACK-HD, REGISTRY, the TRACK-REGISTRY meta analysis (p(META)), and GeM from the MAGMA analysis.  

(Top 20 genes only; full data available at http://hdresearch.ucl.ac.uk/data-resources/) 

http://hdresearch.ucl.ac.uk/data-resources/
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Analyses conditioning on the most significant SNP (rs557874766) failed to show evidence for a 

second independent signal in the chromosome 5 region in TRACK-HD (Figure 3.15). 

 

Figure 3.15: Regional plot of TRACK-HD and REGISTRY meta-analysis GWAS signal in the 

MSH3-DHFR region before (top) and after (bottom) conditioning on the most significant SNP in 

TRACK-HD (rs557874766). The lack of significant association after conditioning on this SNP is 

consistent with here being only one association signal in the region. (Figure by Dr Pardiñas) 

3.3.7 The chromosome 5 signal is replicated in a genome wide association study in 

REGISTRY, and strengthened in meta-analysis 

Performing a genome-wide association analysis in REGISTRY using the progression score 

replicated the signal identified in TRACK-HD (p = 1·39 x 10-5) on a narrower locus 

(chr5:79902336-79950781), but still tagging the same three genes (Figure 3.13B, 3.14). No 

genes reach genome-wide significant gene-wide association in the MAGMA analysis, though 
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DHFR and MSH3 were still in the top 50 most associated genes (DHFR p=8·45x10-4, MSH3 

p=9·36x10-4, MTRNR2L2 p=1·20x10-3, Table 3.11).  

Co-localisation analyses between TRACK-HD and REGISTRY showed this locus was likely 

influenced by the same SNPs (posterior probability 74.33%), although conditioning REGISTRY 

on rs55787466 did not remove the association signal entirely (Figure 3.16). 

 

Figure 3.16: Regional plot of REGISTRY GWAS signal in the MSH3-DHFR region before (top) 

and after (bottom) conditioning on the most significant SNP in TRACK-HD (rs557874766). The 

significance of association is largely unaffected by conditioning on this SNP. This indicates that 

rs557874766 does not explain the REGISTRY association signal in this region. 

 

Meta-analysis of TRACK-HD and REGISTRY strengthened the signal of both individual SNPs in 

this region, encompassing the first three exons of MSH3 along with DHFR and MTRNR2L2 

(Figures 3.13 and 3.14, Table 3.8), and also genic associations over MSH3, DHFR, and 

MTRNR2L2 (Table 3.7). The most significant SNP in the meta-analysis is rs1232027, which 

reaches genome-wide significance (p=1.12x10-10), with the p-value of rs557874766 being 
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1.58x10-8. No other regions attained genome-wide significance (Table 3.8). Rs557874766 is 

nominally significant in REGISTRY (p=0.010), with a direction of effect consistent with that in 

TRACK-HD. Analyses conditional on rs1232027 largely removed the association in this region 

(Figure 3.17A), suggesting that there is only one signal. Conditioning on rs557874766 has a 

similar effect (Figure 3.17B), so this SNP remains a plausible causal variant.  

 

Index SNP P-value Clump coordinates 

Clump 
size 
(KB) Gene(s) tagged 

rs1232027 1.12E-10 chr5:79895438..80198404 302.967 DHFR, MSH3, MTRNR2L2 

rs73786719 8.53E-07 chr6:147034576..147037984 3.409 ADGB 

rs114688092 1.51E-06 chr3:47026101..47315538 289.438 
CCDC12, KIF9, KIF9-AS1, KLHL18, 
NBEAL2, NRADDP, SETD2 

rs79029191 1.67E-06 chr18:8053863..8080538 26.676 PTPRM 

rs932428 1.79E-06 chr20:37518361..37876772 358.412 
DHX35, FAM83D, LOC339568, 
PPP1R16B 

rs3889139 2.13E-06 chr11:6885429..6917038 31.61 
OR2D2, OR10A2, OR10A4, 
OR10A5 

rs114643193 2.65E-06 chr4:2844682..2939191 94.51 
ADD1, MFSD10, NOP14, NOP14-
AS1, SH3BP2 

rs6882169 2.72E-06 chr5:167668230..167668230 0.001 CTB-178M22.2, TENM2 

rs80260687 2.92E-06 chr8:97232364..97304966 72.603 MTERFD1, PTDSS1, UQCRB 

rs28406206 3.13E-06 chr14:105680474..105688082 7.609 BRF1 

rs4736525 3.37E-06 chr8:132924474..133030989 106.516 EFR3A, OC90 

rs78621558 4.44E-06 chr5:80012735..80012735 0.001 MSH3 

rs72715653 4.80E-06 chr4:178641337..178730329 88.993 LINC01098, LINC01099 

rs4720024 4.94E-06 chr7:30941255..30942312 1.058 AQP1, FAM188B, INMT-FAM188B 

rs117933444 5.75E-06 chr6:167362873..167410443 47.571 FGFR1OP, MIR3939, RNASET2 

rs116220136 5.82E-06 chr5:23353255..23436446 83.192 none 

rs8031584 8.15E-06 chr15:31185616..31292023 106.408 FAN1, MTMR10, TRPM1 

rs3013648 9.10E-06 chr13:85296644..85374146 77.503 none 

rs11197481 9.12E-06 chr10:117708803..117708803 0.001 ATRNL1 

rs117440785 9.15E-06 chr10:17411451..17531334 119.884 ST8SIA6, ST8SIA6-AS1 

Table 3.8: Independent association signals from the meta-analysis of TRACK-HD and REGISTRY 

Progression GWAS (at p-value < 10-5). 
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Figure 3.17: Conditional analysis. (A) Regional plot of TRACK-HD and REGISTRY meta-analysis 

GWAS signal in the MSH3-DHFR region before(top) and after (bottom) conditioning on the 

most significant SNP in the meta-analysis (rs1232027). The lack of significant association after 

conditioning on this SNP is consistent with here being only one association signal in the region. 

(B) Regional plot of TRACK-HD and REGISTRY meta-analysis GWAS signal in the MSH3-DHFR 

region before (top) and after (bottom) conditioning on the most significant SNP in TRACK-HD 

(rs557874766). The lack of significant association after conditioning on this SNP is consistent 

with here being only one association signal in the region. 

 

3.3.8 Variants associated with slower HD progression are associated with decreased MSH3 
expression 

 
One of the ways in which genetic variants may result in phenotypic variation is via effects on 

the transcript levels of genes.  Loci which are responsible for the genetic control of expression 

levels and patterns are known as expression quantitative trait loci (eQTLs) (Majewski and 

Pastinen, 2011, Nica and Dermitzakis, 2013).  Co-localisation analyses with the GTeX 

expression data (Consortium, 2015b) showed strong evidence (posterior probability 96-99%) 

that SNPs influencing progression in TRACK-HD were also eQTLs for DHFR in brain and 

peripheral tissues (Figure 3.18A).  

A A B 
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Figure 3.18: Expression analysis. A: Regional plot of TRACK-HD GWAS signal in the MSH3-

DHFR region (top, red), along with GTeX eQTL associations with DHFR expression in (top-

bottom) whole blood, skeletal muscle, cerebellum, cortex. B: Regional plot of REGISTRY GWAS 

signal in the MSH3-DHFR region (top, blue), along with GTeX eQTL associations with MSH3 

expression in (top-bottom) whole blood, transformed fibroblasts. 

 

Conversely, there was strong evidence (posterior probability=97·8%) that progression SNPs in 

REGISTRY were eQTLs for MSH3 in blood and fibroblasts (Table 3.9, Figure 3.18B). Despite the 

lack of co-localisation between the TRACK GWAS and MSH3 expression signal, several of the 

most significant GWAS SNPs were associated with decreased MSH3 expression and slower 

progression (Table 3.9). Thus, the signal on chromosome 5 could be due to the coding change 

in MSH3, or to expression changes in MSH3, DHFR or both, and both effects may operate in 

disease. 

  

A B 
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rs863215 79948005 T C 8.29E-08 -0.5441 1.12E-15 -0.4645 1.43E-13 -0.5248 0.0487 -0.1887 0.00857 -0.2471 0.00042 -0.4224 T C 

rs1478834 79949575 A C 8.29E-08 -0.5441 1.12E-15 -0.4645 1.43E-13 -0.5248 0.0487 -0.1887 0.00857 -0.2471 0.00042 -0.4224 A C 

rs1382539 79952154 A G 8.70E-08 -0.5432 1.12E-15 -0.4645 1.43E-13 -0.5248 0.0487 -0.1887 0.00857 -0.2471 0.00042 -0.4224 A G 

rs1677703 79957737 T C 1.13E-07 -0.5342 6.12E-17 -0.4823 4.06E-15 -0.5518 0.0487 -0.1887 0.00857 -0.2471 0.00042 -0.4224 T C 

rs1650667 79962226 T C 1.13E-07 -0.5342 3.55E-16 -0.4642 3.58E-15 -0.543 0.0487 -0.1887 0.00705 -0.247 0.00063 -0.3989 T C 

rs1650666 79962439 A G 1.13E-07 -0.5342 3.55E-16 -0.4642 3.58E-15 -0.543 0.0487 -0.1887 0.00705 -0.247 0.00063 -0.3989 A G 

rs857287 80098957 C G 2.63E-07 -0.5296 1.92E-11 0.40096 8.39E-10 0.443 0.6642 0.0396 0.05648 0.18319 0.01774 0.28212 G C 

rs863214 79984714 G A 3.09E-07 -0.5302 6.00E-14 -0.44 6.09E-13 -0.5053 0.1665 -0.1406 0.01627 -0.2326 0.00142 -0.4023 G A 

rs1222809 79917517 G A 3.14E-07 -0.5355 3.02E-16 -0.4728 1.08E-12 -0.5022 0.1065 -0.16 0.01615 -0.2273 0.00052 -0.4288 G A 

rs836794 80012251 A C 4.01E-07 -0.5367 2.63E-14 -0.4445 7.40E-13 -0.509 0.1628 -0.1404 0.03621 -0.1998 0.00132 -0.3996 A C 

Table 3.9: Significant (p<0.001) SNPs from TRACK-HD GWAS chromosome 5 region showing direction of effect (beta) on progression (GWAS) and expression (eQTL).  

Negative beta means the reference allele associated with reduced progression or expression. Only 10 most significant SNPs are shown here, full data available at 

http://hdresearch.ucl.ac.uk/data-resources/ 

  

http://hdresearch.ucl.ac.uk/data-resources/
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3.3.9 REGISTRY association analysis highlights locus on chromosome 15 

The second most significant association region in REGISTRY (Figure 3.13, Table 3.8) tags a 

locus on chromosome 15 which has been previously associated to HD AAO (Consortium, 

2015a). Five genes were highlighted, two of which reached genome-wide genic significance 

(MTMR10 p=2·51x10-7; FAN1 p=2·35x10-6; Table 3.7).   

 

Interestingly, another DNA repair gene, MLH1 on chromosome 3 contains SNPs approaching 

genome-wide significance (p = 2.2 x 10-7) in GeM-HD (8), and also shows some association in 

the REGISTRY progression gene-wide analysis (p = 3·97x10-4; p = 1.28x10-4 in the meta-

analysis).  

3.3.10 The observed associations with progression are not all driven by age at 

onset 

As noted above, both TRACK-HD and REGISTRY progression measures are correlated with 

AAO. Thus, to test whether there is an association with progression independent of AAO, we 

repeated the REGISTRY progression GWAS conditioning for the AAO measure previously 

associated with this locus in GeM in the individuals (N=1,314) for whom we had measures of 

both progression and AAO. Both MTMR10 (p=1·33x10-5) and FAN1 (p=1·68x10-4) remained 

significant.  Furthermore, the most significant SNP (rs10611148, p=2·84x10-7) was still 

significant after conditioning on AAO (p=2·40x10-5).  

 

Notably, the genic associations at the MSH3 locus in the TRACK-HD sample also remain 

significant after correcting for AAO (Table 3.10), as does the association with rs557874766 

(p=6·30x10-6). A similar pattern is observed at the MSH3 locus in the meta-analysis. Thus, the 

associations reported here are mainly due to disease progression, rather than AAO.   
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Entrez Gene Symbol Chr Start End p(TRACK) p(TRACKcond) p(REG) p(REGcond) p(META) p(METAcond) 

100462981 MTRNR2L2             5 79945819 79946854 2.15E-09 6.97E-07 1.20E-03 5.51E-02 1.88E-09 3.24E-06 

4437 MSH3                 5 79950467 80172634 2.94E-08 4.98E-06 9.52E-04 6.24E-02 8.89E-11 6.86E-07 

1719 DHFR                 5 79922045 79950800 8.37E-07 3.74E-05 8.45E-04 4.42E-02 1.04E-09 2.20E-06 

8339 HIST1H2BG            6 26216428 26216872 1.56E-05 4.40E-03 5.10E-01 7.88E-01 2.31E-02 1.14E-01 

387638 C10orf113            10 21414692 21435488 2.45E-05 1.46E-05 6.00E-01 3.42E-01 1.65E-01 2.22E-01 

8690 JRKL                 11 96123158 96126727 4.37E-05 1.30E-03 5.29E-02 4.40E-02 8.39E-05 1.06E-03 

55269 PSPC1                13 20248892 20357159 4.80E-05 4.79E-04 5.80E-01 8.84E-01 7.95E-02 4.28E-02 

3007 HIST1H1D             6 26234440 26235216 6.67E-05 2.82E-03 5.51E-01 8.13E-01 9.04E-03 6.40E-02 

1553 CYP2A13              19 41594356 41602100 7.81E-05 4.06E-05 6.62E-01 6.74E-01 1.96E-03 4.41E-03 

8369 HIST1H4G             6 26246839 26247205 8.49E-05 2.36E-03 5.83E-01 8.08E-01 1.18E-02 7.36E-02 

Table 3.10: Gene-wide p-values for all genes in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-analysis after conditioning on AAO [p(TRACKcond); 

p(REGcond), p(METAcond) respectively], compared to their values without conditioning.  

Only 10 most significant SNPs are shown here, full data available at http://hdresearch.ucl.ac.uk/data-resources/  

http://hdresearch.ucl.ac.uk/data-resources/
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3.3.11 Effect of index MSH3 SNP on clinical measures 

We found that the top MSH3 SNP in TRACK (rs557874766) is associated with a difference in 

the rate of change of widely used clinical measures: the Total Motor Score (TMS) and Total 

Functional Capacity (TFC) after controlling for the CPO.  

 

The effect size at the top MSH3 SNP in TRACK (rs557874766) is -0.58 (S.E. =0.087) units of 

progression per copy of the minor allele G – this corresponds to a change of -0.33 (95% CI 

=0.10, 0.56) to -0.41 (0.16,0.66) units in TMS rate compared to the major allele C, which can 

be interpreted as a reduction in the rate of TMS increase by 0.33-0.41 units per year for each 

copy of the G allele.  Similarly, this corresponds to a reduction in the rate of TFC change of 

0.12 (0.06,0.18) units per year per G allele. 

3.3.12 Pathway analysis shows association between HD progression and genes 

involved in DNA repair  

Gene set analysis of the 14 pathways highlighted by the GeM-HD paper (Consortium, 2015a) 

show that the four most significant pathways in the TRACK-HD progression GWAS are related 

to mismatch repair, and all show significant enrichment of signal in REGISTRY (Table 3.11). 

This enrichment is strengthened in the meta-analysis (Table 3.11). Notably, the top two 

pathways in TRACK-HD are also significant in the MAGMA competitive gene-set analysis 

(GO:32300 p=0·010, KEGG:3430 p=0·00697). MSH3 (2.94x10-8) and POLD2 (7·21x10-4) show 

association in TRACK, with MSH3 (9·52x10-4) and MLH1 (3·97x10-4) showing association in 

REGISTRY (http://hdresearch.ucl.ac.uk/data-resources/).  

 

Pathway p(TRACK) p(REGISTRY) P(META) p(GeM) Description 

GO:   

32300 

3·46E-09 8·34E-04 1.14E-11 3·82E-

05 

mismatch repair complex                                                                                                                                                                                  

KEGG    

3430 

2·79E-07 4·80E-02 1.34E-16 6·65E-

06 

KEGG_MISMATCH_REPAIR                                                                                                                                                                                     

GO:   

30983 

6·66E-07 4·20E-04 3.17E-11 7·43E-

06 

mismatched DNA binding                                                                                                                                                                                   

GO:    

6298 

3·53E-06 4·59E-02 6.54E-09 3·25E-

06 

mismatch repair                                                                                                                                                                                          

GO:   1·82E-02 1·10E-01 6.40E-04 5·74E- MutSalpha complex binding                                                                                                                                                                                
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32407 05 

GO:   

32389 

2·25E-02 4·69E-02 5.23E-04 1·66E-

05 

MutLalpha complex                                                                                                                                                                                        

GO:   

33683 

8·01E-02 5·87E-04 6.74E-03 1·69E-

06 

nucleotide-excision repair, DNA 

incision                                                                                                                                                                 

GO:   

90141 

3·32E-01 5·93E-02 7.87E-01 2·30E-

06 

positive regulation of 

mitochondrial fission                                                                                                                                                             

GO: 

1900063 

4·10E-01 7·29E-01 6.93E-01 8·39E-

05 

regulation of peroxisome 

organization                                                                                                                                                                    

GO:   

90200 

4·58E-01 5·44E-01 5.28E-01 8·89E-

08 

positive regulation of release of 

cytochrome c from mitochondria                                                                                                                                         

GO:   

90140 

5·39E-01 3·32E-01 8.10E-01 1·57E-

05 

regulation of mitochondrial 

fission                                                                                                                                                                      

GO:   

10822 

6·21E-01 6·28E-01 8.53E-01 7·63E-

05 

positive regulation of 

mitochondrion organization                                                                                                                                                        

GO:    

4748 

9·64E-01 6·97E-01 9.79E-01 2·66E-

05 

ribonucleoside-diphosphate 

reductase activity, thioredoxin 

disulfide as acceptor                                                                                                                         

GO:   

16728 

9·64E-01 6·97E-01 9.79E-01 2·66E-

05 

oxidoreductase activity, acting on 

CH or CH2 groups, disulfide as 

acceptor                                                                                                                               

Table 3.11: Setscreen enrichment p-values for the 14 pathways highlighted in GeM-HD (8).  

The GO and KEGG terms in the first column refer to pathways of biologically related genes in 

the Gene Ontology Consortium (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes and 

Genomes (Kanehisa and Goto, 2000) databases respectively. The p-values in columns 2 – 4 

refer to the association between the pathway indicated and rate of progression described in 

this paper (TRACK- TRACK-HD study; REGISTRY- REGISTRY study; META- meta-analysis).  

P(GeM) refers to the association between the indicated pathway and age at motor onset in 

the GeM-HD study (8).  

 

These findings are supported by analysis of DNA damage response pathways derived from 

Pearl et al. (Pearl et al., 2015) (Figure 3.19A, Table 3.12) where two mismatch repair 

pathways are significantly associated with the unified TRACK-HD progression measure after 

correction for multiple testing of pathways. Again, the meta-analysis strengthens the 

enrichment (Figure 3.19B, Table 3.12).  Genes from the two significant pathways in TRACK-HD 
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are shown in Table 3.13, with the significant genes being very similar to those from the GeM 

pathways in Table 3.12.  A complete list of genes in the Pearl et al. (Pearl et al., 2015) 

pathways is given in http://hdresearch.ucl.ac.uk/data-resources/. 

http://hdresearch.ucl.ac.uk/data-resources/
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Gene Set p(TRACK) p(REGISTRY) p(META) p (GeM) Description1 Description 2 Description 3 Description 4 

2071015 9.05E-07 4.43E-03 2.93E-11 2.01E-02 Repair pathway                                     SSR                                                MMR                                                Mismatch & loop 
recognition factors              

2071000 2.43E-06 6.85E-02 1.49E-14 5.15E-04 Repair pathway                                     SSR                                                MMR                                                                                                

2070000 5.77E-03 4.76E-02 3.32E-07 1.42E-02 Repair pathway                                     SSR                                                                                                                                                

2071017 1.95E-02 2.44E-02 5.84E-05 8.92E-08 Repair pathway                                     SSR                                                MMR                                                MutL homologs                                      

2111513 4.71E-02 2.55E-01 8.12E-01 2.86E-03 Repair pathway                                     Associated process                                 TLS                                                DNA polymerases                                    

2070600 5.02E-02 7.99E-01 1.10E-01 2.92E-01 Repair pathway                                     SSR                                                NER                                                                                                

2070607 5.18E-02 7.61E-01 3.02E-02 2.26E-01 Repair pathway                                     SSR                                                NER                                                TCR (Transcription coupled 
repair)                 

2071104 5.35E-02 3.90E-01 2.07E-02 5.37E-02 Repair pathway                                     SSR                                                BER                                                LONG PATCH-BER factors                             

2022100 6.69E-02 3.19E-02 7.21E-04 7.29E-02 Repair pathway                                     DSR                                                Alt-NHEJ                                                                                           

1100000 7.52E-02 6.14E-01 1.94E-01 6.13E-01 Associated process                                 DNA replication                                                                                                                                    

1080700 8.99E-02 8.35E-01 2.82E-01 4.92E-01 Associated process                                 Checkpoint factors                                 S-CC phase                                                                                         

1051930 1.02E-01 5.68E-01 1.30E-01 7.62E-01 Associated process                                 Ubiquitin response                                 Ubiquitin- conjugating 
enzymes (E2)                

UBL-conjugating enzymes                            

2000000 1.13E-01 2.60E-01 1.03E-03 1.11E-02 Repair pathway                                                                                                                                                                                     

2070605 1.14E-01 5.00E-01 8.14E-01 4.64E-01 Repair pathway                                     SSR                                                NER                                                DNA polymerase epsilon                             

1030000 1.59E-01 1.90E-01 3.59E-01 2.63E-01 Associated process                                 Telomere 
maintenance                               

                                                                                                

2070606 1.60E-01 9.56E-01 6.55E-01 5.49E-01 Repair pathway                                     SSR                                                NER                                                DNA polymerase kappa                               

2071020 1.73E-01 3.14E-01 9.86E-03 7.97E-02 Repair pathway                                     SSR                                                MMR                                                Other MMR factors                                  
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Table 3.12: Setscreen enrichment p-values for the Pearl et al. (2015) pathways in TRACK-HD, REGISTRY, the TRACK-HD meta-analysis and GeM. 

 

Entrez 

Gene 

Symbol Chr Start End p(TRACK) p(REG) p(META) p(GeM) Pathways 

4437 MSH3                 5 79950467 80172634 2.94E-08 9.52E-04 8.88E-11 1.98E-02 

Repair pathway/SSR/MMR/Mismatch and loop 

recognition factors  

5425 POLD2                7 44154279 44163169 7.21E-04 3.12E-01 2.75E-03 5.17E-01 Repair pathway/SSR/MMR 

3978 LIG1                 19 48618703 48673560 1.65E-02 8.28E-02 5.35E-04 6.39E-02 Repair pathway/SSR/MMR 

27030 MLH3                 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.39E-03 Repair pathway/SSR/MMR 

5395 PMS2                 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.76E-05 Repair pathway/SSR/MMR 

4439 MSH5                 6 31707725 31730455 4.35E-02 8.54E-01 7.73E-01 5.11E-01 Repair pathway/SSR/MMR 

5982 RFC2                 7 73645832 73668738 4.80E-02 5.91E-01 2.02E-02 4.44E-01 Repair pathway/SSR/MMR 

6119 RPA3                 7 7676575 7758238 6.55E-02 7.22E-01 9.17E-02 4.37E-01 Repair pathway/SSR/MMR 

4292 MLH1                 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 3.91E-04 Repair pathway/SSR/MMR 

 

Table 3.13: Gene-wide p-values for the most significant genes in the two Pearl et al.  pathways showing significant enrichment in TRACK (Pearl et al., 2015). 

1051900 1.97E-01 7.69E-01 1.71E-01 8.19E-01 Associated process                                 Ubiquitin response                                 Ubiquitin- conjugating 
enzymes (E2)                

                                                

2071023 2.15E-01 1.73E-01 7.67E-02 5.90E-01 Repair pathway                                     SSR                                                MMR                                                RPA (replication factor A)                         
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Figure 3.19: Significant genes are functionally linked and may cause somatic expansion of the 

HTT CAG repeat tract.  STRING diagram showing all proteins from the Pearl et al (20) dataset 

with gene-wide p-values for association with Huntington’s disease progression < 0.02 in A: the 

TRACK-HD dataset and B, the meta-analysis of TRACK-HD and REGISTRY (Table 3.8).  Genes 

with p<0.02 coloured; 10 further interactors in grey, confidence of interaction is shown in the 

‘Edge confidence’ box, homo sapiens protein data used: http://string-db.org/cgi/ accessed 

October 2016 and January 2017 (36). (Figure prepared by me) 

 

Since MSH3 is a member of all the most significantly enriched pathways, we tested whether 

MSH3 was individually responsible for the pathway enrichments by removing it and repeating 

the analyses. GO:32300 and KEGG:3430 are still nominally significant in TRACK (p=0.0413, 

p=0.0452 respectively) but not in REGISTRY. Neither of the two Pearl pathways is significant in 

TRACK or REGISTRY. The only pathways nominally significant both in TRACK and REGISTRY are 

GO:32389 (MutLalpha complex) and Pearl pathway 

“Repair_pathway/SSR/MMR/MutL_homologs”, neither of which contain MSH3. Thus, it 

appears that the mismatch repair pathway enrichments are mainly driven by MSH3. However, 

in the TRACK-REGISTRY meta-analysis, the Pearl et al. MMR pathway (p=1.27x10-4), GO:32300 

(p=1.02x10-3), KEGG 3430 (1.07x10-4) and GO:30983 are at least nominally significant without 

MSH3. Pathway enrichments without MSH3 are shown in Table 3.14 for the 14 GeM pathways 

and can be found at http://hdresearch.ucl.ac.uk/data-resources/ for the Pearl et al. pathways. 

 

http://hdresearch.ucl.ac.uk/data-resources/
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Pathway p(TRACK) 

p(TRACK no 

MSH3) p(REGISTRY) 

p(REGISTRY no 

MSH3) p(META) 

p(META no 

MSH3) Description 

GO:   32300 3.455E-09 0.04127 0.0008336 0.07162 1.13E-11 0.001024 mismatch repair complex 

KEGG    3430 2.794E-07 0.04521 0.04795 0.1471 1.34E-16 0.000107 KEGG_MISMATCH_REPAIR 

GO:   30983 6.661E-07 0.1001 0.0004195 0.009264 3.17E-11 0.000274 mismatched DNA binding 

GO:    6298 0.000003533 0.2446 0.04589 0.1839 6.54E-09 0.0729 mismatch repair 

GO:   32407 0.01818 0.01818 0.1101 0.1101 0.000640 0.000640 MutSalpha complex binding 

GO:   32389 0.02249 0.02249 0.04688 0.04688 0.000523 0.000523 MutLalpha complex 

GO:   33683 0.08014 0.08014 0.0005874 0.0005874 0.00675 0.00675 nucleotide-excision repair, DNA incision                                                                                                                                                                 

GO:   90141 0.3318 0.3318 0.05934 0.05934 0.7872 0.7872 positive regulation of mitochondrial fission                                                                                                                                                             

GO: 1900063 0.4103 0.4103 0.7287 0.7287 0.6926 0.6926 regulation of peroxisome organization                                                                                                                                                                    

GO:   90200 0.4582 0.4582 0.544 0.544 0.5280 0.5280 

positive regulation of release of cytochrome 

c from mitochondria                                                                                                                                         

 
Table 3.14: Effect of removing MSH3 on the Setscreen enrichment p-values for the top 14 GeM pathways in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-

analysis. (Only top 10 pathways shown, full table can be found at http://hdresearch.ucl.ac.uk/data-resources/) 

http://hdresearch.ucl.ac.uk/data-resources/
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Setscreen gene set analysis of the large set of pathways analysed by the GeM-HD Consortium 

(2015) is shown in Table 3.15. There were 26 pathways showing significant (q<0.05) 

enrichment in TRACK after correction for multiple testing of pathways. These pathways mainly 

relate to DNA repair and binding, and none is more significant than GO:32300 (mismatch 

repair complex). The genes in these 26 pathways are shown in 

http://hdresearch.ucl.ac.uk/data-resources/, and are similar to those in Table 3.7. Thus, 

analysis of the large set of pathways does not appear to throw up any novel areas of biology 

outside those indicated by the GeM paper. 

 

Pathway p(TRACK) q(TRACK) p(REGISTRY) Description 

     GO:   32300 3.46E-09 1.22E-05 8.34E-04 mismatch repair complex                                                                                                                                                                                  

     GO:   43570 8.02E-09 1.41E-05 3.20E-03 maintenance of DNA repeat 

elements                                                                                                                                                                       

     GO:   32135 2.13E-08 2.50E-05 6.99E-03 DNA insertion or deletion 

binding                                                                                                                                                                        

     GO:     710 4.59E-08 4.05E-05 1.19E-02 meiotic mismatch repair                                                                                                                                                                                  

     GO:   51095 9.01E-08 6.35E-05 1.52E-02 regulation of helicase activity                                                                                                                                                                          

     GO:     404 1.14E-07 6.70E-05 3.38E-03 loop DNA binding                                                                                                                                                                                         

    KEGG   3430 4.04E-07 2.03E-04 4.80E-02 KEGG MISMATCH REPAIR                                                                                                                                                                                     

     GO:   32138 5.69E-07 2.31E-04 1.28E-02 single base insertion or deletion 

binding                                                                                                                                                                

     GO:   19237 5.91E-07 2.31E-04 5.97E-03 centromeric DNA binding                                                                                                                                                                                  

     GO:   30983 6.66E-07 2.35E-04 4.20E-04 mismatched DNA binding                                                                                                                                                                                   

     GO:   32142 9.05E-07 2.90E-04 4.43E-03 single guanine insertion binding                                                                                                                                                                         

     GO:     403 1.87E-06 5.14E-04 7.03E-03 Y-form DNA binding                                                                                                                                                                                       

REACTOME   

1234 

1.90E-06 5.14E-04 2.66E-02 REACT:TETRAHYDROBIOPTERIN 

(BH4) SYNTHESIS                                                                                                                                                                

     GO:   32139 2.85E-06 7.16E-04 2.45E-04 dinucleotide insertion or 

deletion binding                                                                                                                                                               

     GO:    6298 3.53E-06 8.30E-04 6.74E-03 mismatch repair                                                                                                                                                                                          

REACTOME    

656 

4.76E-06 1.05E-03 8.13E-02 REACT:METABOLISM OF FOLATE 

AND PTERINES                                                                                                                                                                  

     GO:  217 7.69E-06 1.59E-03 2.91E-02 DNA secondary structure 

binding                                                                                                                                                                          
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     GO:   16447 1.13E-05 2.18E-03 3.66E-02 somatic recombination of 

immunoglobulin gene segments                                                                                                                                                    

     GO:   51096 1.18E-05 2.18E-03 5.93E-03 positive regulation of helicase 

activity                                                                                                                                                                 

     GO:   16445 1.36E-05 2.39E-03 4.55E-02 somatic diversification of 

immunoglobulins                                                                                                                                                               

REACTOME 

452 

3.99E-05 6.70E-03 9.11E-02 REACT:G1 S- SPECIFIC 

TRANSCRIPTION                                                                                                                                                                        

     GO:   45910 5.44E-05 8.71E-03 5.43E-03 negative regulation of DNA 

recombination                                                                                                                                                                 

    KEGG   790 6.00E-05 9.19E-03 1.93E-02 KEGG FOLATE BIOSYNTHESIS                                                                                                                                                                                 

     GO:   16444 7.07E-05 9.96E-03 8.28E-02 somatic cell DNA recombination                                                                                                                                                                           

     GO:    2562 7.07E-05 9.96E-03 8.28E-02 somatic diversification of 

immune receptors via germline 

recombination within a single 

locus                                                                                                             

     GO:    2200 1.15E-04 1.55E-02 1.02E-01 somatic diversification of 

immune receptors                                                                                                                                                              

REACTOME 

659 

7.20E-04 9.07E-02 1.16E-01 REACT:METABOLISM OF NITRIC 

OXIDE                                                                                                                                                                         

REACTOME   

367 

7.20E-04 9.07E-02 1.16E-01 REACT:ENOS ACTIVATION AND 

REGULATION                                                                                                                                                                     

     GO:   35825 8.81E-04 1.03E-01 7.04E-02 reciprocal DNA recombination                                                                                                                                                                             

     GO:    7131 8.81E-04 1.03E-01 7.04E-02 reciprocal meiotic 

recombination                                                                                                                                                                         

Table 3.15: Setscreen enrichment p-values for the large set of GeM pathways in TRACK-HD 

and REGISTRY.   

Top 30 pathways shown; the full table can be found at http://hdresearch.ucl.ac.uk/data-

resources/.   

3.4 Discussion 

The evidence from the work presented in this chapter suggests that MSH3 is likely to be a 

modifier of disease progression in Huntington’s disease. With collaborators, I undertook an 

unbiased genetic screen using a novel disease progression measure in the TRACK-HD study, 

and identified a significant locus on chromosome 5, which encompasses three genes: 

http://hdresearch.ucl.ac.uk/data-resources/
http://hdresearch.ucl.ac.uk/data-resources/
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MTRNR2L2, MSH3 and DHFR (Hensman Moss et al., 2017b). This locus replicated in an 

independent group of subjects from the European Disease Huntington’s Disease Network 

REGISTRY study using a parallel disease progression measure, and was genome-wide 

significant in a meta-analysis of the two studies (p=1.12x10-10) (Hensman Moss et al., 2017b). 

The lead SNP in TRACK-HD, rs557874766, is a coding variant in MSH3 (5.80 x 10-08), and it is 

classed of moderate impact. Furthermore, eQTL analyses show association of lower MSH3 

expression with slower disease progression.   

 

Genetic modifiers of disease in people highlight pathways for therapeutic development; any 

pathway containing genetic variation that ameliorates or exacerbates disease forms a pre-

validated relevant target.  The proportion of drug mechanisms with direct genetic support 

increases significantly across the drug development pipeline from 2.0% at the preclinical 

stage, to 8.2% among mechanisms for approved drugs (Nelson et al., 2015), suggesting that 

genetic data may be valuable in highlighting drugs that will successful.  The classic example is 

the target for statins, HMGCR, which has been associated with serum cholesterol level 

(Kathiresan et al., 2009), though there are increasing examples, particularly in musculoskeletal 

and metabolic disease of therapeutic targets being identified through genetic analysis (Nelson 

et al., 2015). The correlation between successful drug targets and underlying genetic evidence 

may be because genes that result in notable phenotypic changes when altered genetically are 

also the most responsive to drug-induced alterations.  

 

The classical case-control design to examine complex disease has yielded multiple genetic 

associations highlighting relevant biology for novel treatment design (Plenge et al., 2013), 

however studies of potential genetic modifiers in genetically simple Mendelian diseases have 

been difficult to conduct. The diseases are rare and show gene and locus heterogeneity, thus 

finding genuine modifying associations in such a noisy background is inherently difficult.  

However, variants that modify disease in the context of a Mendelian causative gene may not 

be under negative selection pressure in the general population, thus may be relatively 

common.  Recent successful identifications of modifiers have been made in specific genetic 

subtypes of disease (Trinh et al., 2016) or in relatively large samples with consistent clinical 

data (Corvol et al., 2015, GeM-HD-Consortium, 2015).    

 

One way to increase the power of genetic studies is to obtain a more accurate measure of 

phenotype (Sham and Purcell, 2014). Prospective multivariate longitudinal measures such as 

those collected in TRACK-HD are ideal (Sham and Purcell, 2014). Our analysis of Huntington’s 

disease progression showed that motor, cognitive and brain imaging variables typically 
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progress in parallel and that patterns of loss are not sufficiently distinct to be considered sub-

phenotypes for genetic analysis.  The first psychiatric PC has notably lower correlation with 

motor and cognitive domains and CPO variables, suggesting that psychiatric symptoms 

showed a different trajectory. This may be because the data were less quantitative, and that 

psychiatric symptoms of Huntington’s disease are relatively amenable to treatment which 

may be started during the course of the study, making progression analysis problematic.  We 

therefore developed a single progression measure excluding the psychiatric data.  It would be 

interesting to explore whether genes and pathways linked to psychiatric diseases more 

broadly also influence the psychiatric manifestation of HD.   

We found that AAO was correlated with the unified progression measure but did not explain 

the genetic associations observed with progression (Hensman Moss et al., 2017b). Thus, 

progression seems to be measuring a different aspect of disease to AAO, or a similar aspect of 

disease, but with greater precision. The latter option seems more plausible given that AAO 

itself reflects disease trajectory over a subject’s lifespan up till disease onset (Figure 3.9). The 

data available in REGISTRY are less comprehensive; therefore we used a different approach by 

comparing cross-sectional severity at the most recent visit with that expected based on age 

and CAG. The unified progression measures in TRACK-HD and REGISTRY are correlated and 

again, the genetic associations in REGISTRY are not completely driven by AAO, demonstrating 

the utility of retrospective composite progression scores in genetic analysis.  Prognostic 

indices for motor onset have been developed (Long et al., 2017), and the development of 

progression scores for prospective use, for example to empower drug trials by stratifying 

patients by predicted rate of progression warrants further attention.  

 

The work described in this chapter has a number of limitations.  TRACK-HD has the same 

standardised detailed phenotypic information on nearly all participants, but in only 243 HD 

gene mutation carrying subjects.  The REGISTRY study is much larger but the phenotypic data 

are less complete (Table 3.16), often not collected at regular intervals and not on everyone in 

the study, and in multiple centres which will inevitably lead to intrinsic variation.  

Medications, particularly starting or changing the dose of neuroleptics may impact subject 

ratings, however medication use was not included in the progression analysis models due to 

prior work which showed little convincing evidence of causal effects of medication on clinical 

performance once confounding factors were controlled for in the TRACK-HD cohort (Keogh et 

al., 2016).  However this would be worth further analysis if larger cohorts become available in 

the future.  Subjects with comorbid neurological disease were excluded from TRACK-HD, and 

the presence of other comorbidities was not included in the progression analysis.  
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Nevertheless, the progression measures show the expected relationship with change in TMS 

and TFC in both TRACK-HD and REGISTRY indicating their clinical relevance.  However, future 

development of the progression statistic and confirmation of the genetic association in 

subjects from ongoing large studies such as ENROLL (Landwehrmeyer et al., 2016), with data 

collected more systematically than in REGISTRY but in less detail than TRACK-HD, would be 

ideal. 

Variable N Missing Values 

Count Percent 

Motor 1744 91 4.96 

Verbal Fluency 1145 690 37.6 

Stroop Color 1052 783 42.67 

Stroop Color 1116 719 39.18 

Stroop Word 1104 731 39.84 

Stroop Interference 1092 743 40.49 

TFC 1758 77 4.2 

FAS score 1616 219 11.93 

Table 3.16: Summary of missing data in REGISTRY 

 

The genetic locus identified by the unified TRACK-HD progression measure association 

includes three genes, but MSH3 is the likeliest candidate. Firstly, the lead SNP is a coding 

variant in exon 1 of MSH3, MSH3 Pro67Ala, with the potential to affect function (SNiPA 

(Arnold et al., 2015) accessed 10/11/2016). Clinically, each copy of the minor allele (G) at this 

SNP corresponds to a decrease of approximately 0.4 (95% CI=0.16,0.66) units per year in the 

rate of change of TMS, and a reduction of approximately 0.12 (95% CI=0.06,0.18) units per 

year in the rate of change of TFC. Secondly, MSH3 has been extensively implicated in the 

pathogenesis of HD in both mouse and cell studies, though this is the first human study to link 

MSH3 to HD.  

 

MSH3 is a neuronally expressed member of a family of DNA mismatch repair (MMR) proteins 

(Gonitel et al., 2008); the proteins that mediate the MMR pathway are highly conserved from 

bacteria through to humans, though there are also some features which are unique to higher 

eukaryotes (Modrich, 2006, Larrea et al., 2010).  While DNA repair more broadly was 

highlighted by our pathway analysis, MMR in particular which was associated with 

progression in HD (see also General Introduction, Chapter 1) (Tables 3.14 and 3.15).   
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Much of the work on mismatch repair has been done in prokaryotes.  In the prokaryotic 

model system E.coli, MutS binds as an asymmetric clamp to DNA containing the mismatch, 

then the MutL homodimer couples MutS recognition to distinguishing the template and 

nascent DNA strands (Larrea et al., 2010).  In eukaryotes there are several different MutS and 

MutL homologs with different specificities.  MSH3 is a MutS homolog which forms a 

heteromeric complex with MSH2 to form MutSβ, this recognises insertion-deletion loops of 

up to 13 nucleotides (Figure 3.20).  MSH2 also forms a complex with MSH6 to form the MutSα 

complex which repairs mispaired bases and smaller mispaired loops (Figure 3.20).  The MutL 

heterodimer is also present in a number of forms, including the MutLα complex, which is 

made up of MLH1 and PMS2 proteins, the MutLβ heterodimer (MLH1 and PMS1), and MutLγ 

(MLH1 and MLH3).  Of these MutLα has the primary role in mismatch correction (Martin et al., 

2010). 

 

Figure 3.20: Schematic of DNA damage recognized by the MMR pathway. A, the MutSα 

(MSH2/MSH6) heterodimer recognizes base-base mismatches and B, small insertion-deletion 

loops (IDL). The MutSβ (MSH2/MSH3) heterodimer recognizes single nucleotide IDLs and C, 

longer IDLs (10-nucleotide loops). In association with the MutL heterodimer and other 

associated proteins, these mismatches are excised and repaired. Figure from (Martin et al., 

2010), image reproduced with permission of the rights holder, AACR Journals. 
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As discussed in the General Introduction, Chapter 1, somatic instability of CAG repeats occurs 

in various repeat expansion disorders.  Variants in DNA repair pathways contribute to age of 

onset modification of multiple CAG repeat expansion diseases as will be discussed in Chapter 

4 (Bettencourt et al., 2016) implicating the CAG repeat itself as the source of modification in 

these diseases rather than a factor specific to huntingtin.  

The reason for the tissue specificity of somatic expansion is not clear.  While several groups 

found that stoichiometric levels of repair proteins are associated with variable levels of CAG 

instability between the striatum and cortex of HD mice, another study of 14 different mouse 

tissue types revealed widely varying levels of MMR proteins between tissues and no clear 

correlation with CAG expansion levels (Tome et al., 2013b).  In human embryonic stem cell 

lines derived from oocytes and sperm of DM1 and HD patients, somatic instability is seen and 

correlates with expression of MMR proteins (Du et al., 2013).  In this stem cell system, the 

overall tendency of triplet repeats to expand ceased on differentiation into differentiated 

embryoid body or neurospheres (Du et al., 2013).  It will be critical to determine whether 

somatic instability occurs predominantly during development, or throughout the lifespan as 

suggested by murine model systems (Gonitel et al., 2008), as this has implications for the 

likely mechanism and whether the pathway would be amenable to therapeutic manipulation. 

Abnormal secondary structures including hairpins and G-quadruplexes have also been linked 

to G-rich sequences, and are associated with stalled replication forks (Mirkin, 2013).  It has 

been proposed that formation of unusual and non-B-form DNA structures by CAG 

trinucleotide repeats underlies the phenomenon of repeat expansion, but the molecular basis 

for expansion, either through the germ-line or in somatic cells remains poorly understood (Liu 

and Wilson, 2012, Mirkin, 2007).   Liu and Wilson (Liu and Wilson, 2012) suggest a role for 

oxidative damage in the base excision repair pathway in TNR expansion through the 

generation of gaps and hairpin structures.  TNRs hairpin structures are stabilized by mismatch 

repair MSH2/MSH3 complexes (Owen et al., 2005), and MSH2/MSH3 interfere with flap 

processing to produce small incremental expansion events (Kantartzis et al., 2012).    

 

The importance of Msh3 was shown in 2002 in a myotonic dystrophy mouse model where 

Msh 3 deficient background abolished is CTG repeat instability (van den Broek et al., 2002).  It 

has subsequently been demonstrated that Msh3 is required for both somatic expansion of 

HTT CAG repeats and for enhancing an early disease phenotype in mouse striatum (Dragileva 

et al., 2009), and expansion of CAG and CTG repeats is prevented by msh3Δ in Saccharomyces 

cerevisiae (Williams and Surtees, 2015a).   These data suggest a plausible mechanism, via 

effect on CAG somatic expansion, through which variation in MSH3 could operate in HD 



115 
 

(Figure 3.21A and B).  In patients with DM1 an MSH3 variant was recently associated with 

somatic instability in blood DNA of patients (Morales et al., 2016).  
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Figure 3.21: A Schematic diagram showing how DNA mismatch repair proteins may be involved in somatic expansion of the CAG tract. Proteins with p<0.01 in the 

meta-analysed progression GWAS are coloured red. (i) The CAG repeat DNA is partly unwound by lesions, constraints of the CAG tract structure or by transcription. 

(ii) This unwound DNA is recognised by MutSbeta (MSH2/MSH3) which recruits the endonuclease MutLalpha (PMS2/MLH1) and cleaves the DNA.  (iii) Repair of the 

strand break leads to erroneous expansion of the CAG repeat. In neurones of the striatum somatic expansion is an ongoing process that occurs throughout life and 

variants in MSH3 may promote or inhibit repeat recognition, binding or repair. B Potential link between degree of somatic expansion over a patient’s lifespan and 

rate of Huntington’s disease progression. (Figures from(Hensman Moss et al., 2017b), and made by me).  

B A 
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As touched upon above, other proteins have been linked to trinucleotide repeat instability.  

MSH2 in particular has been shown to be essential for somatic expansion of the CAG repeat in 

HTT to occur in model systems (Manley et al., 1999, Wheeler et al., 2003, Kovalenko et al., 

2012). MSH2 forms a heterodimeric complex with MSH3 or MSH6 (Figure 3.21). We did not 

find any association between MSH2 variants and progression in HD (gene-wide p-value 0.7034 

in the meta-analysis (http://hdresearch.ucl.ac.uk/data-resources/)).  It may be that MSH2’s 

association with both colonic and extra-colonic malignancy (Martin et al., 2010) mean that 

variants within it that would influence trinucleotide repeat instability are also selected against 

due to their oncogenic potential.   

 

In the study described in this Chapter the proteins of the MutL complex were also highlighted 

as nominally significant, MLH1 had a gene-wide p-value of 1.28x10-4 in the meta-analysis; 

PMS2 had a gene-wide p-value of 8.84x10-3 in the meta-analysis; by contrast MLH3 had a 

gene-wide p-value of 1.47x10-1 in the meta-analysis (Table 3.7) (Hensman Moss et al., 2017b).  

As noted above, MLH1 and PMS2 are MutL homologs, together they form a MutLα 

heterodimer which associates with the MutSα or MutSβ complex after the MutS complex has 

bound the mismatched DNA (Cannavo et al., 2007). MLH1 can bind two other human MutL 

homologues, PMS1 and MLH3, to form the heterodimers MutLβ and MutLγ, respectively 

(Cannavo et al., 2007).  Mutations in MLH1 and PMS2 predispose to a range of tumorigenic 

conditions, including hereditary nonpolyposis colon cancer (Martin et al., 2010). MLH1 was 

previously implicated in modifying onset in HD: in the GeM GWAS a SNP tagged to MLH1 

approached significance (p= 2.2x10-7) (GeM-HD-Consortium, 2015), and was significant in 

replication by Lee et al (Lee et al., 2017). It has also been implicated in model systems: the 

mouse homolog, Mlh1, was highlighted in a genome-wide genetic screen to modify somatic 

instability of the CAG repeat and the timing of CAG length-dependent phenotypes in the 

striatum of genetic HD replica CAG knock-in mice (Pinto et al., 2013).  

 

Other proteins which play a part in mismatch repair are also implicated in the study described 

here.  LIG1, which had a gene-wide p-value of 5.35x10-4 in the meta-analysis, ligates nicked 

DNA fragments following replication and/or repair (Schmidt and Pearson, 2016) and is 

involved in the repair of slipped strand DNA intermediates (Mason et al., 2014). CAG/CTG 

repeat instability is modulated by the levels of LIG1, and its interaction with PCNA (Lopez 

Castel et al., 2009).  POLD2, which encodes the catalytic subunit of DNA polymerase delta, had 

a gene-wide p-value of 2.75x10-4 in the meta-analysis (Hensman Moss et al., 2017b).  
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Interestingly, FAN1, which was associated with the two most significant signals in the GeM 

AAO GWAS (GeM-HD-Consortium, 2015), was just highlighted by our REGISTRY GWAS 

(p=2·35x10-6).  The absence of signal in TRACK-HD may be due to the lower sample size:  the 

MAF of the index SNP in GeM is 1.1% in European populations which would be hard to pick up 

in a sample of 216.  The second signal on chromosome 15 in GeM had a MAF of 30.2% in 

European populations, though the effect size at this locus was lower (GeM-HD-Consortium, 

2015).  A more extensive discussion about the role of FAN1 is in Chapter 5.  

 

This chapter describes the first study to use a measure of progression to look for modifiers of 

a neurodegenerative Mendelian disorder.  We detected association with a coding variant on 

chromosome 5, reaching genome-wide significance given its annotation (Sveinbjornsson et al., 

2016) in just 216 subjects, which replicated and strengthened in a larger independent sample 

and strengthened on meta-analysis. This indicates that either our progression measure 

developed in TRACK-HD is an excellent reflection of disease pathophysiological progression or 

that this is a locus with a very large effect size, or, most likely, both. While there are three 

genes at the locus, the most significant variant gives a coding change in MSH3, which together 

with the prior biological evidence makes it the most likely candidate.    Somatic expansion of 

the CAG repeat through alterations in MSH3 is a plausible mechanism for pathogenesis in HD 

which can be followed up in functional experiments in HD models. These data provide 

additional support for the therapeutic targeting of Huntingtin and the stability of its CAG 

repeat. While variants in or loss of the mismatch repair proteins MSH2, MLH1, PMS2 and 

MSH6, predispose to a range of tumorigenic conditions, including hereditary nonpolyposis 

colon cancer, also known as Lynch syndrome, MSH3 has not been generally linked to 

malignancy.  Furthermore MSH3 is not essential given that it can tolerate loss of function 

variation (Lek et al., 2016) (suggesting that it is not constrained by selection pressures).  These 

factors make it an attractive therapeutic target in HD.  
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Chapter 4: DNA repair pathways underlie a common genetic 

mechanism modulating onset in polyglutamine diseases  

4.1 Introduction  

The polyglutamine repeat disorders include the SCAs and HD as discussed in Chapter 1, other 

neurodegenerative disorders also caused by CAG repeat expansions are Dentatorubral-

pallidoluysian atrophy (DRPLA) and spinal and bulbar muscular atrophy (SBMA).  These repeat 

disorders, whose clinical features are summarised in Table 4.1 form the focus of this chapter.   
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Repeat 

disorder 
Gene 

Prevalence 

(per 100,000 

European 

population) 

Phenotype 

Variance in AAO explained by 

repeat length (heritability of 

residual variability) 

Normal 

range 

Pathogenic 

range 

Somatic 

instability 

HD HTT 

3-10 (Wood, 

2012, Rawlins, 

2010b, Bates et 

al., 2014, 

Warby et al., 

2014) 

Involuntary movements, 

cognitive impairment 

50-60% (Gusella et al., 2014, 

Persichetti et al., 1994, Snell et al., 

1993, Andrew et al., 1993, Duyao 

et al., 1993)   

(40-60%) (Djousse et al., 2003, 

Wexler et al., 2004a) 

6-35 40-121 Yes 

SCA1 ATXN1 
0.16 (Durr, 

2010) 

Ataxia, ophthalmoplegia, 

pyramidal and 

extrapyramidal features 

(Subramony, 2012) 

64-76% (Ranum et al., 1994, 

Tezenas du Montcel et al., 2014b, 

Globas et al., 2008, van de 

Warrenburg et al., 2002, van de 

Warrenburg et al., 2005)  

(no significant heritable 

component) (van de Warrenburg 

et al., 2005)) 

6-38 45-83 

Yes 

(Hashida et 

al., 1997) 
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SCA2 ATXN2 0.2 (Durr, 2010) 

Ataxia, neuropathy, 

ophthalmoplegia, 

extrapyramidal features 

(Kawai et al., 2009, Burk, 

1999, Storey et al., 1999, 

Sokolovsky et al., 2010) 

50-80% (Giunti et al., 1998, 

Tezenas du Montcel et al., 2014b, 

Velazquez Perez et al., 2009, 

Globas et al., 2008, Hayes et al., 

2000, Geschwind et al., 1997, Pulst 

et al., 2005, van de Warrenburg et 

al., 2002, van de Warrenburg et al., 

2005, Lorenzetti et al., 1997)  

(17-59%) (Pulst et al., 2005, van de 

Warrenburg et al., 2005) 

15-31 33-500 

Yes 

(Matsuura 

et al., 1999) 

SCA3 ATXN3 0.4 (Durr, 2010) 

Ataxia, pyramidal signs, 

neuropathy, extrapyramidal 

features,  ophthalmoplegia 

(Durr et al., 1996) 

45-80% (Bettencourt and Lima, 

2011, Durr et al., 1996)  

(46%) (van de Warrenburg et al., 

2005) 

12-44 52-87 

Yes 

(Hashida et 

al., 1997) 

SCA6 CACNA1A 
0.04 (Durr, 

2010) 
Ataxia (Rub et al., 2013) 

26-52% (Tezenas du Montcel et al., 

2014a, van de Warrenburg et al., 

2005)  

(no significant heritable 

component) (van de Warrenburg 

et al., 2005) 

4-18 20-33 Unknown 
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SCA7 ATXN7 
0.12 (Durr, 

2010) 

Ataxia, macular 

degeneration, 

ophthalmoplegia, pyramidal 

and extrapyramidal features 

(Sokolovsky et al., 2010) 

71-88% (Rub et al., 2013, Tezenas 

du Montcel et al., 2014a) 

(no significant heritable 

component) (van de Warrenburg 

et al., 2005) 

3-19 37-460 
Yes (Trang 

et al., 2015) 

SCA17 TBP 
<0.02 (Durr, 

2010) 

Ataxia, pyramidal signs, 

dementia, seizures, 

extrapyramidal features 

(Schneider et al., 2006, Rolfs 

et al., 2003) 

Unknown 25-40 49-66 Unknown 

SCA12 PPP2R2 <0.02 Ataxia, tremor, neuropathy Unknown 4-32 40-78 Yes 

DRPLA ATN1 0.005-0.04 
Myoclonus, epilepsy, ataxia, 

dementia (Tsuji, 1999) 

50-68% 

(Wardle et al., 2009, Potter, 1996) 
6-35 48-93 

Yes 

(Hashida et 

al., 1997) 

SBMA AR 

0.65-2 (Udd et 

al., 1998, 

Spada, 2014) 

Limb and bulbar weakness, 

neuropathy, endocrine 

features (Atsuta et al., 2006, 

Kennedy et al., 1968, Rhodes 

et al., 2009) 

29% 

(Sinnreich et al., 2004) 
9-34 38-72 

Yes (Tanaka 

et al., 1999) 

Table 4.1: Characteristics of the polyglutamine diseases showing epidemiology, clinical features, and CAG repeat ranges of polyglutamine diseases.  

HD: Huntington’s disease (MIM #143100), SCA1: spinocerebellar ataxia 1 (MIM #164400), SCA2:  spinocerebellar ataxia  2(SCA2, MIM #183090), 

SCA3: spinocerebellar ataxia 3 (MIM #109150; also known as Machado-Joseph disease (MJD)), SCA6: spinocerebellar ataxia 6 (MIM#183086), SCA7: 
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spinocerebellar ataxia 7 (MIM #164500), SCA12: spinocerebellar ataxia 12 (MIM #604326), SCA17: spinocerebellar ataxia 17 (MIM #607136), 

dentatorubral-pallidoluysian atrophy (DRPLA, MIM #125370) and spinal and bulbar muscular atrophy 

(SBMA, MIM #313200). 
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Longer CAG repeat tracts lead to earlier age at onset (AAO) in the polyglutamine diseases 

though the exact relationship between repeat length and AAO varies between diseases (Table 

4.1) (Tezenas du Montcel et al., 2014b, Wexler et al., 2004a). Not all of the difference in age at 

onset is accounted for by CAG repeat length, and in Huntington’s disease (HD) (Wexler et al., 

2004a) and spinocerebellar ataxia (SCA) types 2 and 3 (van de Warrenburg et al., 2005)  it has 

been established that a substantial portion of this residual variance is heritable, suggesting 

the existence of additional modifying factors within the genome. It is likely, though remains to 

be established, whether there is a residual heritability for the other conditions.  The Genetic 

Modifiers of Huntington’s Disease (GeM-HD) genome-wide association study (GWAS) 

(discussed in Chapter 1)(GeM-HD-Consortium, 2015) found two genome-wide loci associated 

with age of motor onset on chromosomes 15 and 8, with two independent signals at the same 

locus on chromosome 15 and a  significant association with variants in DNA repair pathways.  

There are few known candidate modifiers of the spinocerebellar ataxias (Bettencourt et al., 

2011, van de Warrenburg et al., 2005, Tezenas du Montcel et al., 2014b), and no GWAS have 

been reported. 

 

Genetic anticipation, whereby successive generations become symptomatic at a younger age, 

occurs in the polyglutamine repeat diseases because the repeats are meiotically unstable, and 

tend to expand over successive generations (Hughes and Jones, 2014). Most of these 

conditions also show tissue-specific instability of repeat length in the somatic tissues (somatic 

instability) (Lopez Castel et al., 2010) (Table 4.1). In HD somatic instability is expansion-biased 

and age-dependent, with larger tracts more susceptible to expansion (Iyer et al., 2015, 

Gomes-Pereira and Monckton, 2006). It occurs in post-mitotic neurons and is prominent in 

striatum and cortex, tissues which are particularly affected in HD (Gonitel et al., 2008). 

Expansion of the repeat is ameliorated if the repeated sequence is interrupted by other 

codons (Jones et al., 2017, Choudhry et al., 2001, Calabresi et al., 2001). Somatic instability 

has been linked to disease onset and progression in both human (Swami et al., 2009) and 

mouse HD-studies (Dragileva et al., 2009) and decreasing somatic expansion in HD model mice 

delays phenotype progression (Budworth et al., 2015). Many of the principles of somatic 

instability in HD extend to SCAs (McMurray, 2010, Lopez Castel et al., 2010).  Somatic 

instability (Mason et al., 2014, Pearson et al., 2005, Gomes-Pereira and Monckton, 2006) has 

been attributed to the actions of DNA repair proteins, as discussed in the General 

Introduction, in addition to individually significant variants, the GeM-HD GWAS found 

significant association between age at motor onset and several DNA repair pathways overall 

(GeM-HD-Consortium, 2015). These GeM-HD GWAS findings, along with evidence for somatic 
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instability in other polyglutamine diseases (Table 4.1), led to the hypothesis that variants in 

DNA repair genes have a universal effect modifying AAO in all polyglutamine diseases.  

 

There are currently no disease-modifying treatments for these devastating conditions, and 

particularly given that many are extremely rare making their study challenging, a 

pharmacological approach which could be applied across the diseases is very desirable.  

The work described in this chapter was a collaborative project led by researchers from Cardiff 

and UCL, with important collaborators elsewhere.  I was involved in the project from 

inception, taking part in discussions around study design, obtaining phenotypic data from the 

clinical notes from University College London Hospital/ National Hospital for Neurology and 

Neurosurgery subjects, collating spreadsheets and writing the manuscript of the resultant 

paper which was published in Annals of Neurology (Bettencourt et al., 2016).  I am a co-first 

author on this paper.  

4.2 Materials and Methods 

4.2.1 Cohort 

We collaborated with a multinational group of investigators to assemble an independent 

cohort of subjects with Huntington’s disease (HD) and the spinocerebellar ataxias (SCAs) types 

1, 2, 3, 6, 7, and 17 (Table 4.2).  Subject cohorts were gathered from the Neurogenetics Unit 

of the National Hospital for Neurology and Neurosurgery (NHNN) (London, UK), TRACK-HD 

(Europe)(Tabrizi et al., 2013b), SPATAX network (France), the University of Athens Medical 

School/Eginition Hospital (Athens, Greece), the National Institute of Neurology and 

Neurosurgery, Manuel Velasco Suarez (Mexico), and the University of Azores (Ponta Delgada, 

Portugal)(Table 4.2). Of these, I helped clinically phenotype the NHNN samples from their 

patient records, and with Professor Sarah Tabrizi contributed TRACK-HD samples to the 

analysis.  While we also collected subjects with DRPLA and SBMA, very few samples were 

available to us so these diseases were not included in the analysis.  182 subjects with C9orf72 

expansion mutations were collected, but were excluded on the basis of them not having sizing 

data of the expansion. 

 

1699 subjects with HD, and SCA1, 2, 3, 6, 7, 17 and DRPLA were genotyped, of which age at 

onset (AAO) and CAG repeat size was available for 1462 who were used in the analysis (Table 

4.2). Given the varied phenotypes of polyglutamine diseases, motor onset (HD) or the onset of 

the first progressive symptom as reported by the patient was used to determine AAO 
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throughout all cohorts. Given the small number of patients, SCA17 was only considered in the 

combined SCA analysis. 
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Cohort 
Disease Gender Ethnicity 

HD SCA1 SCA2 SCA3 SCA6 SCA7 SCA17 Total Male Female Unavailable Caucasian Other Unavailable 

Athens, 

Greece 
351 0 0 0 0 0 0 351 174 177 0 351 0 0 

Azores, 

Portugal 
0 0 0 91 0 0 0 91 48 43 0 91 0 0 

London, UK 0 30 66 45 69 7 1 218 103 82 33 109 72 37 

Mexico 0 0 113 0 0 66 6 185 91 94 0 0 185 0 

Paris, France 0 147 115 261 0 0 0 523 279 244 0 463 42 18 

TRACK-HD, 

Europe 
94 0 0 0 0 0 0 94 46 48 0 90 4 0 

Total 445 177 294 397 69 73 7 1462 741 688 33 1104 303 55 

  

Mean AAO ± 

SD (range) 

45 ± 

12.1 

(6-

82) 

37 ± 

10.5 

(16-

65) 

33 ± 

12.9 

(8-73) 

39 ± 

11.6 

(9-74) 

57 ± 

10.5 

(18-

76) 

35 ± 

17.6 

(5-84) 

30 ± 

13.4 

(8-44) 

 

Mean (CAG)n 

length ± SD 

(range) 

44 ± 

5.0 

(37-

92) 

48 ± 

5.3 

(39-

66) 

42 ± 

4.5 

(33-

64) 

71 ± 

4.4 

(50-

82) 

22 ± 

0.9 

(21-

26) 

48 ± 

11.1 

(36-

100) 

51 ± 

6.4 

(42-

58) 

 

Table 4.2: Cohort characteristics: HD – Huntington’s disease; SCA – spinocerebellar ataxia; AAO – age at onset; SD – standard deviation.
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4.2.2 Selection of SNPs 

SNPs for genotyping were selected from the most significant genes (gene-wide p<0.1) in the 

“DNA repair pathway cluster” from the GeM-HD analysis (GeM-HD-Consortium, 2015). We 

also included SNPs from the genome-wide significant chromosome 8 locus comprising RRM2B 

and UBR5, both members of GO:6281 “DNA Repair”.  These were nominally significant in 

GeM, but did not reach q<0.05 and were therefore not used to create the pathway cluster, 

but both lie within a genome-wide significant association peak in GeM-HD, and both have 

significant gene-wide p-values (see Table S5 of the GeM-HD paper (GeM-HD-Consortium, 

2015)). 

 

Specifically, within the DNA repair cluster, we genotyped SNPs from members of the DNA 

mismatch repair pathway GO: 32300, along with LIG1 which was included in the KEGG 

MISMATCH REPAIR pathway and which had a low p-value in GeM (best p= 0.00559) (Table 

4.3).  We were unable to design a successful assay for MSH2, a member of the mismatch 

repair pathway.  SNPs were also selected from the two most significant genes in the GO:33683 

(nucleotide-excision repair, DNA incision) pathway: FAN1 and ERCC3.  For each gene, the most 

significant SNP was selected, along with a small number of proxy SNPs in close LD (r2>0.8) with 

the most significant SNP that also showed association in GeM-HD. Where possible, these 

proxy SNPs were chosen to have functional annotation 

(http://browser.1000genomes.org/index.html: accessed 12/6/14). If a gene contained two 

independent significant signals in GeM-HD (for example, FAN1), then the lead SNP for the 

second signal was included. Note that this selection procedure is not intended to give 

comprehensive coverage of the genes in question, but instead to highlight SNPs likely to be 

disease relevant in the context of finite resources.  To guard against the effects of population 

stratification, SNPs were removed from the analysis if they had a Hardy-Weinberg p-value 

<0.001 in the whole dataset. These procedures yielded 22 genotyped SNPs with success rates 

ranging from 94.2-98%, as described in Table 4.3.   

http://browser.1000genomes.org/index.html
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SNP ID Chr: position (bp) (GRCh37/hg19) Gene symbol Functional annotation 
P  

(GeM-HD) 
MAF* Genotype call rate* 

 P  

(HWE)* 

rs1800937 2:48025764 MSH6                 Stop gained 4.30E-03 0.074 0.973 0.840 

rs4150407 2:128049631 ERCC3                Intron variant 4.60E-04 0.479 0.964 0.003 

rs5742933 2:190649316 PMS1                 NMD transcript variant 9.49E-04 0.205 0.972 1.000 

rs1799977 3:37053568 MLH1                 Missense variant 7.16E-07 0.28 0.966 0.354 

rs6151792 5:80056961 MSH3                 Intron variant 2.09E-04 0.117 0.978 0.706 

rs115109737 5:80102444 MSH3                 Intron variant 4.50E-04 0.041 0.980 0.489 

rs71636247 5:80118976 MSH3                 Intron variant 2.55E-04 0.034 0.976 1.000 

rs1805323 7:6026942 PMS2                 Missense variant 3.04E-02 0.043 0.975 0.736 

rs12531179 7:6028687 PMS2                 Intron variant 3.84E-05 0.169 0.971 0.925 

rs3735721 8:103217695 RRM2B                3’_UTR_variant 5.68E-07 0.083 0.971 0.058 

rs1037700 8:103250775 RRM2B                Intron variant 5.03E-08 0.094 0.973 0.002 

rs5893603 8:103250839 RRM2B                Frameshift variant 4.28E-08 0.093 0.973 0.007 

rs1037699 8:103250930 RRM2B                Missense variant 2.70E-08 0.094 0.976 0.002 

rs16869352 8:103306033 UBR5                 Synonymous variant 4.01E-07 0.08 0.975 0.030 

rs61752302 8:103311153 UBR5                 Synonymous variant 3.03E-03 0.026 0.977 0.621 

rs72734283 14:75495059 MLH3                 Intron variant 4.32E-03 0.089 0.971 0.623 

rs175080 14:75513828 MLH3                 Missense variant 7.72E-03 0.435 0.971 0.447 

rs146353869 15:31126401 FAN1                 Intron variant 4.30E-20 0.017 0.973 1.000 
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rs114136100 15:31197976 FAN1                 Synonymous variant 8.49E-16 0.019 0.976 0.423 

rs150393409 15:31202961 FAN1                 Missense variant 9.34E-18 0.013 0.975 1.000 

rs3512 15:31235005 FAN1                 3’_UTR_variant 5.28E-13 0.283 0.973 1.000 

rs20579 19:48668830 LIG1 NMD transcript variant 6.65E-03 0.134 0.942 0.732 

Table 4.3: Characteristics of single nucleotide polymorphisms (SNPs) used in this study.  

SNPs were selected from the most significant genes (gene-wide p<0.1) in the “DNA repair pathway cluster” from the GeM-HD analysis(Consortium, 2015c) (listed in 

Table S4 of GeM-HD).  Genes annotated by the SNPs are indicated. *Refers to the current study. Chr = chromosome; MAF = minor allele frequency; HWE = Hardy–

Weinberg equilibrium.  
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4.2.3 Genotyping  

SNP genotyping was performed using custom KASP assays at LGC Genomics (Hertfordshire, 

UK). Gene level sense sequences were used to design SNP assays (Table 4.4). The assays for 

several SNPs were designed in reverse orientation to the chromosome (rs4150407, 

rs1805323, rs1037700, rs1037699, rs3512, and rs20579). For this reason, for all SNPs in 

reverse orientation to the chromosome (rs4150407, rs1805323, rs1037700, rs1037699, 

rs3512, and rs20579) genotypes resulting from these KASP assays will be complementary to 

those using HGVS nomenclature. This is reflected in Table 4.6, where the minor allele for 

these SNPs differs from GeM-HD which uses HGVS nomenclature (GeM-HD-Consortium, 

2015), but corresponds to the same allele. 
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SNPs HGVS Names 
SNP to 

Chromosome 
Seed sense sequences for KASP assay design 

rs1800937 NC_000002.11:g.48025764C>T Forward TTGCCTGGCAGGTAGGCACAACTTA[C>T]GTAACAGATAAGAGTGAAGAAGATA 

rs4150407 NC_000002.11:g.128049631T>C Reverse AGTACACAATGGGAAGGTGGTCCAT[A>G]GACAAGAGCCTTCACCAGAAACTGA 

rs5742933 NC_000002.11:g.190649316G>C Forward GTAATTGCCTGCCTCGCGCTAGCAG[G>C]AAGGTAGTGTGGTGTGACTAACGGG 

rs1799977 NC_000003.11:g.37053568A>G Forward CTCAACCGTGGACAATATTCGCTCC[A>G]TCTTTGGAAATGCTGTTAGTCGGTA 

rs6151792 NC_000005.9:g.80056961C>T Forward TCACACAGCCATGTAAAATTAGGCC[C>T]GCAGACAATTCGAAGGAGGAGAAAA 

rs115109737 NC_000005.9:g.80102444G>A Forward GAATCACACAAGCTTATTTGCTATA[G>A]CATTATAATAACTTTTTACATCTGT 

rs71636247 NC_000005.9:g.80118976A>G Forward TGTATAAATATATGTGGAGAAAACC[A>G]TCTAGATAGAAGGCTTATTCCAAAA 

rs1805323 NC_000007.13:g.6026942G>T Reverse TCCAGTCACGGACCCAGTGACCCTA[C>A]GGACAGAGCGGAGGTGGAGAAGGAC 

rs12531179 NC_000007.13:g.6028687C>T Forward ATTTTTAGTAGAGACAGAGTTTCAC[C>T]GTGTTAGATAGTCTCGATCTCCTGA 

rs3735721 NC_000008.10:g.103217695A>G Forward GCTGGGGCCAGCTTAGTTGTAAGAA[A>G]AACTATTATTGTATATAATTGGACA 

rs1037700 NC_000008.10:g.103250775G>C Reverse GGCCTCAGGCCGGGGTGAGACTTAC[C>G]CCTGCGTTTATCCGCCTCACGCTCT 

rs5893603 

NC_000008.10:g.103250839_103

250840insG Forward TTGGCTGGCCCCGGGGCAGAGCAGC[->G]GAGCGGGACGCAAACCCAAAGTCAG 

rs1037699 NC_000008.10:g.103250930C>T Reverse AGGACAGGCCTGTCCGCCCGCCCTC[G>A]CCGCAGCCTGGCTTCGTCGTTGCGA 

rs16869352 NC_000008.10:g.103306033T>C Forward CAGCGTAAGGTAGCAATGCTTGGAA[T>C]ACACGCTTGCATTTTCCAATTGGCT 

rs61752302 NC_000008.10:g.103311153C>T Forward ACAATTTCAATATAAAATGAGCATT[C>T]GCCTTTCGATCCTTGGATTCTACTA 

rs72734283 NC_000014.8:g.75495059A>G Forward ATTATTTTATGATTTGACCTTGACA[A>G]CCCATCTAGCCAACTCCCATCCAGT 
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rs175080 NC_000014.8:g.75513828G>A Forward GGTCATAGGACTTTCTCTCAAACTA[G>A]GCATCTGTTGTTCTAAACAATCTTC 

rs146353869 NC_000015.9:g.31126401C>A Forward AATGGTATGTATTAAAATGTGAATC[C>A]CAAGAGTGATGTGTCACTGTGCACT 

rs114136100 NC_000015.9:g.31197976C>T Forward GCTGCAATGGTCCTGGTCAAACAAC[C>T]GGTCATCCTTACTACCTTCGGAGTT 

rs150393409 NC_000015.9:g.31202961G>A Forward GCCTTTCTCAAATTGGCCAAACAGC[G>A]TTCAGTCTGCACTTGGGGCAAGAAT 

rs3512 NC_000015.9:g.31235005G>C Reverse ACAGAGAGCGTTAAAAGTAAAGGCA[C>G]TTCCAAGAGTAACACTGCTAATGCG 

rs20579 NC_000019.9:g.48668830G>A Reverse GCTGGACAGGAAGGGAGAATTCTGA[C>T]GCCAACATGCAGCGAAGTATCATGT 

Table 4.4: Seed sense sequences for SNP KASP assay design.   

Note that genotypes for SNPs in reverse orientation to chromosome given by our KASP assays (highlighted in red) are complementary (reverse) to HGVS 

nomenclature. 
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4.2.4 Statistical analysis 

Given the major effect of CAG repeat length on AAO, it was important to remove this effect in 

order to look for secondary genetic modifiers.  Ages of onset for all diseases were corrected 

for repeat length using a similar method to the GeM-HD GWAS (GeM-HD-Consortium, 2015).  

A linear regression was performed for each disease separately of ln(AAO) on expanded repeat 

length, this analysis was done by Professor Peter Holmans, Cardiff University. The regression 

parameters are given in Table 4.5. These parameters were used to construct an expected 

value of AAO for each individual, based on their repeat length, which was subtracted from 

their actual AAO to give a residual.  The effect of gender on AAO (after accounting for CAG 

length) was also tested. Since this was nonsignificant for all disorders, gender was not 

included in the calculation of residuals.  

Disease Sample N A B P  

HD 445 6.119939 -0.052966 <2e-16 

SCA1 177 5.682974 -0.043694 <2e-16 

SCA2 294 5.799343 -0.056682 <2e-16 

SCA3 397 7.137211 -0.049477 <2e-16 

SCA6 69 5.96740 -0.08686 0.00268 

SCA7 73 4.643231 -0.026023 2.94e-5 

SCA17 7 2.38659 0.01716 0.70 

Table 4.5: Effects of repeat length of the expanded allele on the age at onset.  

Results of fitting a linear regression   ln(AAO) = A + B*(CAG)n. P-value refers to the significance 

of the regression parameter (B) indexing the effect of repeat length. 

 

Association of each SNP with AAO was tested by performing a linear regression of the 

residuals from the AAO analysis on the number of minor alleles in the genotype in PLINK 

(Purcell et al., 2007), this analysis was also done by Prof Holmans. 

 

The primary analysis in this report tested whether there was an overall association of AAO 

across all 22 SNPs. This was done by combining the association p-values for each SNP using 

Brown’s method (Brown, 1975b), which is essentially Fisher’s method for combining p-values, 

corrected for linkage disequilibrium (LD) between SNPs. While Fisher’s method is a way of 

combining the information in the p-values from different statistical tests so as to form a single 

overall test, this requires that the individual test statistics should be statistically independent 

which is not the case if the SNPs are in linkage disequilibrium.  Brown proposed the idea of 
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approximating X using a scales X2 distribution cX2(k’) with k’ degrees of freedom (Brown, 

1975b). The primary analysis used one-sided p-values for association in the same direction as 

that observed in GeM-HD. In order to assess the overall directionality of the associations, we 

compared the significance to that obtained from a similar analysis using two-sided p-values. 

The analyses were performed on eight disease groups: all (HD+SCAs), HD, all SCAs, SCA1, 

SCA2, SCA3, SCA6 and SCA7. P-values were Bonferroni corrected for eight tests – this is 

conservative since the disease groups are not independent. Individual SNPs significantly 

associated with AAO in each disease group were also noted. 

 

Due to small sample size, SCA17 was not analysed independently, but was included in the 

analyses of all SCAs and HD+SCAs.  

4.3 Results 

4.3.1 There is a combined effect of 22 DNA repair gene SNPs on Age at Onset  

Significant associations (after Bonferroni correction for 8 tests) were observed for HD+SCAs 

(p=1.43x10-5), HD (p=0.00194), All SCAs (p=0.00107), SCA2 (p=0.00350), and SCA6 (p=0.00162) 

(Table 4.6). The increased significance of these associations compared to an undirected test 

using two-sided SNP p-values (see Table 4.6) indicates concordance in the direction of effects 

across SNPs between these samples and GeM-HD. Importantly, the observed association with 

HD is a convincing replication of the GeM-HD results in an independent sample. 

Disease 

Group 

GeM-HD 

concordance? 

P (All SNPs) P (High LD SNPs 

removed) 

P (rs3512 

removed) 

ALL 

(HD+SCAs) 

non directional 4.74x10-4 2.26x10-4 0.00492 

Same as GeM-HD 1.43x10-5 6.98x10-6 2.26x10-4 

HD non directional 0.0226 0.00775 0.0364 

Same as GeM-HD 0.00194 4.63x10-4 0.00394 

SCAs non directional 0.0188 0.0236 0.0771 

Same as GeM-HD 0.00107 0.00142 0.00667 

SCA1 non directional 0.376 0.386 0.444 

Same as GeM-HD 0.416 0.287 0.524 

SCA2 non directional 0.0230 0.0629 0.0233 

Same as GeM-HD 0.00350 0.0138 0.00442 

SCA3 non directional 0.176 0.114 0.355 

Same as GeM-HD 0.0809 0.0381 0.205 
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SCA6 non directional 0.00588 0.0735 0.00506 

Same as GeM-HD 0.00162 0.0340 0.00163 

SCA7 non directional 0.155 0.217 0.297 

Same as GeM-HD 0.0447 0.0885 0.113 

Table 4.6: Results of combined analysis of SNPs.  

P-values in this table obtained by combining single-SNP p-values using Brown’s method 

(Brown, 1975b), allowing for LD between SNPs. Non-directional analysis combines two-sided p-

values. “Same as GeM-HD” analyses combine one-sided p-values in the same direction as the 

SNP effects observed in GeM-HD study(Consortium, 2015c). In the “High LD SNPs removed” 

analysis, rs1037700, rs5893603 and rs16869352 were removed due to high LD (r2>0.8) with 

more significant SNPs in GeM-HD. P-values coloured red satisfy Bonferroni correction for 8 

disease group tests. Note that SCA17 was included in the “HD+SCAs” and “All SCAs” grouped 

analyses, but was not tested independently due to small sample size. 

4.3.2 Individual SNPs were also significantly associated with onset 

Individual SNP associations were also examined. Three of these were significant after 

Bonferroni correction for 8 disease combinations and 22 SNPs (Table 4.3, Table 4.7): rs3512 in 

FAN1 with All SCAs and HD+SCAs and rs1805323 in PMS2 with HD+SCAs. Each association was 

in the same direction as in GeM-HD. We did not replicate the most significant signal in GeM-

HD, rs146353869 (p = 4.30x10-20, associated with 6.1 years earlier age of motor onset of HD). 

This is likely due to our sample being much smaller than GeM-HD and thus less well powered 

to find associations with SNPs with relatively low frequency  MAF such as rs146353869 

(MAF=0.017). However, rs3512, the most significant individual SNP in this study, indexes the 

second significant chromosome 15 signal in GeM-HD (p=5.28x10-13, associated with 1.4 years 

later onset of HD), and is in the 3’UTR of FAN1.  

 

Three SNPs (rs1037700, rs5893603, rs16869352) were found to be in high LD (r2>0.8) in our 

sample with more significant SNPs from GeM-HD. Removing these SNPs reduced the 

significance of the multi-SNP associations with SCA2 and SCA6, although these remained 

nominally significant (see Table 4.6). Finally, all the significant multi-SNP associations from the 

primary analysis remained significant after removing the most significant single SNP (rs3512) 

(Table 4.6), suggesting that the signal enrichment is not being driven by a single SNP.  
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Table 4.7: Single SNP associations.   

Beta denotes the effect size – that is, the number of years added to or subtracted from the expected age at onset for each copy of the minor allele (A1). MAF 

denotes the frequency of the minor allele in GeM-HD (3) (MAF [GeM HD]) and the present study (MAF [All]). P values highlighted green satisfy Bonferoni correction 

for 22 SNPs; those highlighted red satisfy Bonferoni correction for 8 disease groups and 22 SNPs. Note that for SNPs in reverse orientation to chromosome 

(rs4150407, rs1805323, rs1037700, rs1037699, rs3512, and rs20579) genotypes given by KASP assays (current study) are complementary to those obtained in 

GeM-HD, which uses HGVS nomenclature (Table 4.3), corresponding to the same allele. 

SNP Chr Pos
A1

(GeM-HD)

A2

(GeM-HD)

MAF

(GeM-HD)

Beta

(GeM-HD)

P

(GeM-HD)
A1(All) A2(All) MAF(All) Beta(All) P(All) Beta(HD) p(HD) Beta(SCA1) P(SCA1) Beta(SCA2) P(SCA2) Beta(SCA3) P(SCA3) Beta(SCA6) P(SCA6) Beta(SCA7) P(SCA7) Beta(AllSCA) P(AllSCA)

rs1800937 2 48025764 T C 0.092 0.820 4.30E-03 T C 0.074 0.490 4.75E-01 0.520 6.21E-01 -0.571 6.51E-01 -0.459 8.18E-01 2.455 4.47E-02 0.614 8.25E-01 -10.050 5.34E-01 0.438 6.13E-01

rs4150407 2 128049631 C T 0.444 0.575 4.60E-04 G A 0.479 0.064 8.50E-01 -0.585 2.53E-01 -0.574 3.91E-01 1.384 1.03E-01 -0.013 9.85E-01 -2.129 2.55E-01 -2.702 3.83E-01 0.260 5.48E-01

rs5742933 2 190649316 C G 0.206 -0.699 9.49E-04 C G 0.205 -0.725 9.59E-02 -0.732 2.49E-01 1.102 2.19E-01 -2.333 3.69E-02 -1.005 2.19E-01 0.939 6.76E-01 0.551 8.77E-01 -0.714 2.03E-01

rs1799977 3 37053568 G A 0.319 0.847 7.16E-07 G A 0.280 -0.359 3.55E-01 0.531 3.39E-01 -0.241 7.58E-01 -2.555 2.20E-02 1.081 1.31E-01 -1.424 4.17E-01 -5.899 1.44E-01 -0.698 1.68E-01

rs6151792 5 80056961 T C 0.099 -1.049 2.09E-04 T C 0.117 -0.662 2.16E-01 -1.395 7.99E-02 -0.436 7.30E-01 0.495 6.79E-01 -1.347 2.21E-01 -1.577 5.07E-01 -0.116 9.77E-01 -0.350 6.09E-01

rs115109737 5 80102444 A G 0.060 -1.289 4.50E-04 A G 0.041 -2.095 1.81E-02 -3.014 2.10E-02 1.321 5.13E-01 -4.651 8.59E-02 0.100 9.50E-01 -5.197 1.41E-01 -5.756 2.87E-01 -1.726 1.28E-01

rs71636247 5 80118976 G A 0.054 -1.398 2.55E-04 G A 0.034 -2.208 2.63E-02 -1.917 1.89E-01 -1.974 4.39E-01 -6.400 4.86E-02 0.324 8.52E-01 -3.813 2.82E-01 -7.123 2.49E-01 -2.329 6.76E-02

rs1805323 7 6026942 T G 0.038 -0.950 3.04E-02 A C 0.043 -3.605 3.14E-05 -3.890 3.14E-04 -5.677 1.67E-03 -1.835 3.94E-01 -2.307 2.70E-01 -2.123 5.50E-01 -17.190 1.44E-01 -3.305 6.62E-03

rs12531179 7 6028687 T C 0.147 0.938 3.84E-05 T C 0.169 0.579 2.16E-01 1.070 1.23E-01 0.039 9.67E-01 1.137 3.08E-01 0.083 9.32E-01 -0.320 8.83E-01 -0.798 8.07E-01 0.367 5.39E-01

rs3735721 8 103217695 G A 0.085 -1.529 5.68E-07 G A 0.083 -0.389 5.25E-01 0.354 6.56E-01 0.692 5.13E-01 -3.278 6.32E-02 1.308 3.11E-01 -15.150 2.35E-03 -3.035 5.89E-01 -0.790 3.47E-01

rs1037700 8 103250775 C G 0.097 -1.541 5.03E-08 G C 0.094 -0.817 1.54E-01 -0.012 9.87E-01 1.046 2.46E-01 -4.132 2.11E-02 0.863 4.72E-01 -14.250 5.47E-04 -8.021 1.55E-01 -1.235 1.11E-01

rs5893603 8 103250839 G - 0.097 -1.548 4.28E-08 G - 0.093 -0.983 8.89E-02 -0.092 9.05E-01 0.914 3.13E-01 -4.189 1.84E-02 0.537 6.59E-01 -11.770 2.13E-03 -9.077 1.24E-01 -1.441 6.45E-02

rs1037699 8 103250930 T C 0.096 -1.570 2.70E-08 A G 0.094 -0.819 1.53E-01 -0.006 9.94E-01 0.758 4.13E-01 -3.519 3.97E-02 0.896 4.55E-01 -14.260 4.86E-04 -9.077 1.24E-01 -1.228 1.11E-01

rs16869352 8 103306033 C T 0.083 -1.528 4.01E-07 C T 0.080 -0.464 4.57E-01 0.691 3.98E-01 0.756 4.36E-01 -2.854 1.25E-01 0.681 6.27E-01 -10.850 3.24E-02 -7.745 1.64E-01 -1.067 2.09E-01

rs61752302 8 103311153 T C 0.023 -1.671 3.03E-03 T C 0.026 -0.150 8.92E-01 -0.520 7.46E-01 0.567 7.10E-01 -1.045 6.76E-01 4.882 1.18E-01 -8.015 1.69E-01 NA NA 0.019 9.89E-01

rs72734283 14 75495059 G A 0.099 0.858 4.32E-03 G A 0.089 0.898 1.40E-01 2.057 1.14E-02 1.585 1.82E-01 -1.099 5.41E-01 -0.650 5.88E-01 -1.686 5.59E-01 10.770 3.82E-02 0.318 6.98E-01

rs175080 14 75513828 A G 0.466 -0.434 7.72E-03 A G 0.435 -0.671 5.66E-02 -1.245 1.61E-02 0.279 7.16E-01 -0.090 9.23E-01 0.397 5.62E-01 -0.927 5.84E-01 -4.356 1.66E-01 -0.405 3.70E-01

rs146353869 15 31126401 A C 0.017 -6.107 4.30E-20 A C 0.017 -2.362 8.17E-02 -1.804 3.28E-01 1.980 5.64E-01 -8.999 3.81E-02 -1.537 4.94E-01 -3.496 5.52E-01 7.338 6.60E-01 -2.610 1.48E-01

rs114136100 15 31197976 T C 0.018 -5.073 8.49E-16 T C 0.019 -2.101 9.20E-02 -1.188 4.88E-01 1.609 6.00E-01 -1.168 7.89E-01 -3.519 8.25E-02 -3.464 5.55E-01 6.909 6.73E-01 -2.521 1.27E-01

rs150393409 15 31202961 A G 0.016 -5.765 9.34E-18 A G 0.013 -2.735 7.03E-02 -2.909 1.39E-01 -0.354 9.28E-01 -4.224 4.88E-01 -3.176 1.92E-01 -0.912 8.99E-01 7.443 6.57E-01 -2.551 2.17E-01

rs3512 15 31235005 C G 0.309 1.325 5.28E-13 G C 0.283 1.680 1.52E-05 1.297 2.94E-02 1.388 8.70E-02 1.020 3.03E-01 2.156 2.36E-03 0.886 6.37E-01 9.647 5.00E-03 1.809 2.22E-04

rs20579 19 48668830 A G 0.124 0.769 6.65E-03 T C 0.134 0.427 4.09E-01 0.119 8.82E-01 1.244 2.84E-01 0.412 7.55E-01 1.099 2.17E-01 -7.791 2.19E-02 -0.216 9.54E-01 0.515 4.28E-01
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4.3.3 Looking at the combined effect of the SNPs in a polygenic score 

To visualise the combined effect of our SNPs on residual AAO a polygenic “age at onset score” 

was derived by Prof Holmans, defined as the sum of the number of minor alleles at each locus 

weighted by their effect size in GeM (note that negative scores here correspond to earlier 

AAO). The residual AAO for each quartile of this risk score was plotted in Figure 4.1. As 

expected, there was a positive correlation between residual AAO in our data and increasing 

age at onset score, although the effect was small – the score accounts for approximately 1% 

of the variance of residual AAO. 

 

Figure 4.1: Boxplot of residual AAO (across all samples) by quartiles of polygenic age at onset 

score. Polygenic score calculated by summing the number of minor alleles (weighted by their 

effect on age at onset in the GeM GWAS) across the 22 SNPs. Note that lower scores 

correspond to earlier than expected AAO, and thus smaller residuals.  Figure devised and 

produced by Professor Peter Holmans for publication in (Bettencourt et al., 2016). 

4.4 Discussion 

In the study discussed in this chapter, we showed that DNA repair genes as a group 

significantly modify AAO in HD, in all  SCAs as a group, and in SCA2 and SCA6 independently. 

Additionally, we have identified potential modifier SNPs in HD, SCA1 and SCA6.  

 

The data suggest that polyglutamine diseases are modulated by a general mechanism which 

operates at the level of the CAG repeat tract rather than being a huntingtin specific 
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phenomenon.  As shown in Figure 4.2, the variants genotyped lie in a set of functionally 

related genes involved in DNA damage repair.  In addition to supporting the findings of the 

GeM-GWAS linking DNA repair genes to HD onset, our data suggest a common mechanism by 

which genetic variation in DNA repair pathways underlies age at onset in the polyglutamine 

diseases as a group.  Alterations in DNA repair pathways could predispose to earlier onset by 

interacting with polyglutamine aetiology at various levels (Massey and Jones, 2018, Bras et al., 

2015). Repair pathways might operate directly on repeat sequences by licensing or inhibiting 

repeat expansion in neurons.  Alternatively, or in addition, because intriguingly many of the 

genes containing pathogenic CAG repeats encode proteins that themselves have roles in the 

DNA damage response, it is possible that repeat expansions impair specific DNA repair 

pathways. DNA damage could then accrue in neurons, leading to further expansion at repeat 

loci, thus setting up a vicious cycle of pathology.  

 

Figure 4.2: String diagram illustrating the functional connection between the proteins included 

in this study. Nodes represent proteins while edges represent protein-protein interactions and 

are the intensity of the lines reflect low (0.150), medium (0.400), high (0.700) and highest 

(0.900) confidence).  Homo sapiens data used.  String-db.org accessed 24/05/2017 (Szklarczyk 

et al., 2015). (Diagram devised and produced by me). 

 

There are several ataxias caused by mutations in genes involved in the DNA damage response, 

the first noted being ataxia telangiectasia, a rare recessive childhood neurodegenerative 

disease caused by mutations in the ataxia-telangiectasia mutant serine/threonine kinase gene 

(ATM) (Jones et al., 2017). This gene controls cell-cycle arrest after DNA double-strand breaks, 

often leading to apoptosis and, thus, neurodegeneration (Paull, 2015).  Mutations in other 
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genes that cause incorrect resolution of DNA double-strand breaks lead to severe 

developmental disorders of the nervous system, such as ataxia-telangiectasia-like disease 

(hMre11)(OMIM, 2017a), Seckel syndrome 1, involving the ataxia-telangiectasia and Rad3-

related protein gene (ATR)(OMIM, 2017b), and Nijmegen breakage syndrome involving 

(NBN)(Pearl et al., 2015, McKinnon, 2009).  These disorders also have widespread systemic 

effects, in contrast to those resulting from mutations in genes involved in the repair of DNA 

single-strand breaks, which usually have effects limited to the nervous system, although still 

with serious clinical outcomes (Paull, 2015). Spinocerebellar ataxia with axonal neuropathy is 

caused by mutations in the tyrosyl-DNA phosphodiesterase 1 gene (TDP1) and the recessive 

ataxias with oculomotor apraxia 1, 2, and 4 are caused by mutations in the aprataxin (APTX), 

senataxin (SETX), and polynucleotide kinase 3-phosphatase (PNKP) genes (Bras et al., 2015) 

respectively. TDP1 repairs stalled topoisomerase I–DNA complexes, APTX and PNKP46 operate 

on nucleotides, and SETX encodes a helicase involved in transcriptional termination (Yuce and 

West, 2013, Hatchi et al., 2015).  The relationship between DNA damage and the nervous 

system, and particularly the cerebellum, is a fascinating outstanding question.    

 

Considering the CAG-repeat disorders, we know that repetitive sequences can form unusual 

secondary DNA structures (Mirkin, 2007) such as hairpin loops, slipped strands, G-

quadruplexes and R-loops.  These structural perturbations of DNA have been implicated in 

both the normal regulation of cellular functions, such as chromatin organization and gene 

expression, and in the aberrant DNA processing that can lead to genomic instability (Massey 

and Jones, 2018). DNA mismatch repair proteins bind to these abnormal structures, and in the 

process of attempting repair cause somatic instability (often expansion) of the CAG repeats. 

We know that larger CAG repeats are associated with more severe pathology and earlier 

disease onset in affected patients, therefore somatic expansion of the repeat length provides 

a plausible mechanism by which the genetic variation we identify here can alter AAO of 

disease (Figure 4.3). 
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Figure 4.3: Potential mechanism by which variants in DNA repair could influence somatic 

expansion of CAG repeats.  Hypothesised mechanism of somatic expansion of the CAG repeats 

in polyglutamine diseases due to variation in genes encoding DNA repair proteins. The 

accessibility of repetitive DNA sequences during replication, transcription, etc., allows the 

formation of secondary DNA structures: SNPs in genes encoding DNA repair proteins may alter 

the kinetics or activity of DNA repair complexes (pink bobble). After endonuclease activity on 

the opposite strand (nick indicated by the grey arrow), such impaired repair may lead to 

further expansion of the repeat tracts by consequent gap filling synthesis by DNA polymerase 

(blue bobble). Figure prepared by Dr Bettencourt, and is published in (Bettencourt et al., 2016).  

 

The prospect of a common mechanism relating to DNA repair driving disease progression 

across a series of devastating diseases has exciting therapeutic implications since a treatment 

targeting this pathway in one disease may be transferrable to the other polyglutamine 

diseases.  Some of these diseases are extremely rare, making studying them alone and 

conducting large scale clinical trials particularly challenging, and the repurposing of drugs from 

one disease to another is attractive.  Using genetics to stratify patients by likely rate of 

progression also has the potential to improve clinical trial design by stratifying subject 

variability. 

 

This study described in this chapter had various limitations which likely reduced the power to 

detect association, and indeed the effects of the studied SNPs on AAO are quite small (Figure 

4.3).  The small sample sizes for many of the SCAs reduces power both in terms of modelling 

the relationship between age at onset to CAG repeat length, and in determining the genetic 

associations themselves.  There is likely to be heterogeneity in term of the effect of CAG on 

AAO for each disease which is why we modelled the effect separately for each disease- but 
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necessarily reducing the sample size in each disease group, but there may also be other 

aspects that we have not been able to consider.  

 

The number of SNPs genotyped was limited primarily by financial considerations, thus not all 

genes in the DNA repair cluster were genotyped, and for most genes only one SNP was 

genotyped.  This limited our ability to interrogate the effect of DNA repair gene variants on 

AAO.  

 

Additionally, we could not account for interruptions of pure CAG repeat tracts, which may 

stabilize repeat instability (Menon et al., 2013, Wheeler et al., 2016), thus our power to detect 

effects mediated by somatic instability may have been reduced. 

 

Notwithstanding these issues, it was demonstrated that DNA repair genes do modulate onset 

in multiple polyglutamine disease.   The ongoing aim of several people who worked on this 

project is now to replicate the findings with more samples and to genotype more extensively 

to further explore this relationship.  The shared mechanisms uncovered in this study may 

extend to diseases associated with non-CAG and non-translated repeats, most likely in those 

that show somatic instability.  It would therefore be interesting to look in diseases such as 

myotonic dystrophy and C9orf72 associated ALS/FTD to see if there is a relationship between 

DNA repair protein variants and disease manifestation in these conditions.  However to do 

this it will be necessary to adequately establish and control for the effect of repeat size: a 

considerable challenge in these disorders associated with large expansion mutations.  
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Chapter 5: Use of sequencing to look for rare variants of larger 

effect and identify sequence variants in loci highlighted by genetic 

analysis in Huntington’s disease 

5.1 Introduction 

As explained in Chapter 1, if sequence variation effecting phenotype is rare but having a large 

effect size it is unlikely to be picked up by GWAS, which are more commonly used to detect 

common variants of modest effect. When I started this study in 2013, little was known about 

the genetic architecture of modifiers of HD, so an exploratory analysis to look at this 

architecture was therefore of great interest.   Furthermore, while genome wide association 

studies are able to highlight regions of the genome which are associated with a particular 

trait, they do not tell you what sequence variant is driving the signal: there are many 

strategies used to try and understand the important variants and their mechanism (Chapter 

1).  Advances in high throughput sequencing technologies now enable the efficient and cost-

effective collection of vast amounts of fine-scale genomic data to complement genome wide 

association studies (GWAS), and localize causal variants accounting for GWAS hits.   

 

I therefore had two main objectives to be explored by the targeted exome sequencing of the 

TRACK-HD cohort: 

 To look for rare variants of large effect which modify HD 

 To look for sequence variation underlying the signal in GWA studies of onset and 

progression in HD 

 

Successfully sequencing candidates at phenotypic extremes to find rare alleles influencing a 

genetically complex quantitative trait was previously demonstrated with blood lipid levels 

(Cohen et al., 2004), and was used to identify a genetic modifier of cystic fibrosis progression 

(Drumm et al., 2005).  Thus in the analysis to look for rare variants of large effect which 

modify HD I opted to focus on phenotypic extremes.  I conducted whole exome sequencing 

(WES) of the fastest and slowest progressing subjects in TRACK-HD, and compared the 

variants in a case/control fashion, looking for variants that were enriched in either the fast or 

slow progressing group.   

 

When the GeM GWAS data became available in 2015 (GeM-HD-Consortium, 2015), and with 

my own genome wide analysis of progression in 2016-7 (Chapter 3), I examined the WES data 
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specifically in the regions highlighted in the genome wide analysis.  Rare coding or structural 

variants may modify HD onset or progression, and could potentially be identified by exome 

sequencing (Majewski et al., 2011, Kiezun et al., 2012).  The approaches are complimentary 

since the GWAS, given their higher sample sizes, have greater power, while the WES data 

provide valuable sequence data of patients with HD, and enable the possibility of locus 

heterogeneity to be investigated.  

 

Two loci are the focus of the work in this chapter: the locus on chromosome 5 overlying the 

DNA mismatch repair (MMR) protein MutS Homolog 3 (MSH3) (Habraken et al., 1997, New et 

al., 1993, Miret et al., 1993) (Chapter 3), and the recently identified DNA interstrand cross link 

repair protein FANCD2 and FANCI associated nuclease 1 (FAN1)(Huang and D'Andrea, 2010, 

MacKay et al., 2010, Smogorzewska et al., 2010, O'Donnell and Durocher, 2010, Kratz et al., 

2010, Liu et al., 2010) implicated by the chromosome 15 signals in the GeM GWAS (GeM-HD-

Consortium, 2015).  FAN1 is a DNA endo/exonuclease involved in DNA repair that is highly 

expressed in the brain (MacKay et al., 2010, Consortium, 2015b).  

 

These two DNA damage response (DDR) proteins have also been implicated in other DNA 

repair pathways (Jin and Cho, 2017, Brown et al., 2016, Cannavo et al., 2007, Schmutte et al., 

2001, Sugawara et al., 1997), and interactions between mismatch repair (MMR) and 

interstrand cross link (ICL) DNA repair pathways have been reported (Goold et al., 2019) ,with 

FAN1 capable of compensating for loss of EXO1 MMR activity under some circumstances 

(Desai and Gerson, 2014). Therefore, FAN1 and MMR components may modulate HD AAO 

through a shared mechanism.  A stable physical interaction between FAN1 and MutLα 

components MLH1 and PMS2 further supports this hypothesis (MacKay et al., 2010).  The 

putative role of MSH3 and FAN1 in Huntington’s disease and other repeat disorders is 

discussed at greater length in Chapters 3 and 4.  

 

5.2 Materials and Methods 

5.2.1 Whole Exome Sequencing  

5.2.1.1 Subject selection 

My objective was to identify the most extreme subjects in terms of progression for focused 

genetic analysis.  The principal component analysis data (Chapter 2), performed in 

collaboration with Prof Douglas Langbehn, was used to guide the choice of fast and slow 
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progressing subjects, with the age at onset data used as supporting data.  I calculated 

expected AAOs from the Langbehn equation (Langbehn et al., 2004).  

Principal Component (PC) Score alone was used as the basis for the selection of the 25 fastest 

progressing subjects. The subject with the 21st lowest principal component score was not 

included on the basis of them having symptom onset later than would have been predicted at 

birth which is not consistent with them having atypically fast progression.    

 

The selection of the slow progressors was based on not only the Principal Component 

progression score, but also the Age at Onset (AAO) data.  This is because there is less 

sensitivity of the measures to differentiate change between individuals among this group 

because they were less clearly ‘atypical’ (Figure 5.1).  Thus there was a less clear delineation 

of the slow progressors.   

 

Figure 5.1: Distribution of the Progression scores in the TRACK-HD cohort, showing that there 

were more fast progressors than slow progressors who were clearly atypical.   

 

13 subjects (the very slowest), were chosen on the basis of having extremely slow progression 

based on their Progression score.  A further 10 subjects were chosen on the basis of them 

having onset more than 3 years later than expected: expected AAOs were calculated from the 

Langbehn equation (Langbehn et al., 2004). This has been done in two groups, firstly, those 

subjects who given their age would be expected to have symptoms but do not (n=2), and 

secondly people who have symptoms but who developed them later than their expected AAO 

(n=8).  Subjects were excluded if their progression score was not consistent with them being a 

slow progressor even though their AAO data suggested that they were.  
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5.2.1.2 Sample collection and DNA extraction 

All biosamples were collected during TRACK-HD visits.  I was responsible for collecting and 

processing biosamples from London site TrackON-HD subjects which was a follow-up study to 

TRACK-HD and followed very similar protocols to TRACK-HD study. 

 

Blood for DNA was collected from the antecubital fossa in one ACD (Acid Citrate Dextrose) 

tube.  After the blood draw, the tube was inverted 10 times then placed upright at room 

temperature.  Samples were then shipped overnight at ambient temperature to Biorep, Milan, 

Italy.  The cells were used to generate lymphoblastoid cell lines.  

 

A manual salting-out procedure was used to extract DNA at Biorep, for the WES 

lymphoblastoid cell line DNA was used.  The routine quality control tests performed consist of: 

spectrophotometric analysis (Nanodrop) to quantify and estimate the DNA quality by OD 

260/OD 280 ratios, gel electrophoresis to establish the integrity of the DNA, and sample 

identity was confirmed by gender and microsatellite analysis. 

 

5.2.1.3 Sequencing pipeline 

I arranged for the DNA to be shipped on dry ice to DeCODE Genetics, Iceland.  This sequencing 

was done through our membership of the European Commission Neuromics consortium for 

which DeCODE was a partner.  DNA quality was assessed using picogreen measurements.  

Sequencing libraries were prepared using the Illumina Nextera Exome method which involves 

pooling of up to 12 samples for exome enrichment (see Chapter 2). The target region is 

approximately 62Mb of exons, untranslated regions and noncoding RNA.  Pooled libraries 

were validated using the LibraryQC workflow of the MiSeq sequencing instruments. Validation 

includes assessment of cluster densities, insert size of each sample within the pool and the 

relative distribution of each sample within a pool.  Finally, validated pooled libraries were 

sequenced on a HiSeq 2000 (paired-end, 2x100 cycles). 

 

5.2.1.4 Bioinformatics pipeline  

Raw fastq files were shipped to me and I transferred them to Dr Vincent Plagnol, UCL Genetics 

Institute, for bioinformatic analysis as a part of the UCL exomes consortium.   Raw fastq files 

were aligned to the GRCh37 reference genome using novoalign version 2.08.03. Duplicate 

reads were marked using Picard tools MarkDuplicates. Calling was performed using the 

haplotype caller module of GATK (https://www.broadinstitute.org/gatk , version 3.3-0), 

https://www.broadinstitute.org/gatk
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creating gVCF formatted files for each sample. The individual gVCF files for the exomes 

discussed in this study, in combination with ~ 3,000 clinical exomes (UCL-exomes consortium), 

were combined into merged VCF files for each chromosome containing on average 100 

samples each.  The final variant calling was performed using the GATK Genotype GVCFs 

module jointly for all samples (cases and controls). Variant quality scores were then re-

calibrated according to GATK best practices separately for indels and SNPs. Resulting variants 

were annotated using ANNOVAR based on Ensembl gene and transcript definitions. Candidate 

variants were filtered based on function (non-synonymous, presumed loss-of-function or 

splicing variants, defined as intronic sites within 5 bp of an exon-intron junction) and minor 

allele frequency (< 0.5% minor allele frequency in our internal control group, as well as the 

NHLBI exome sequencing dataset).  Prediction tools including PolyPhen-2 (Adzhubei et al., 

2010), SIFT(Kumar et al., 2009), Mutation Assessor(Reva et al., 2007), Mutation 

Taster(Schwarz et al., 2010) and PhyloP (Pollard et al., 2010) were used to help stratify 

variants of unknown significance (Ng, 2008),  and OMIM used to investigate potential 

associated phenotypes. 

 

The 25 fast Huntington’s disease progressors and 23 slow Huntington’s disease progressors 

were compared in a case control design.  Fast progressors were defined as cases, and slow 

progressors as controls, and were compared using bi-allelic tests.  Control population 

frequencies were taken into account: the primary analysis looked for an excess of rare 

variants in cases compared to controls.  Both external and internal population frequencies 

were used: external to define a frequency filter (around 25% of controls), and the internal set 

was used in the case control analysis. The case control tests were done both in terms of single 

variant, and also at the gene based level.  

 

For the biallelic test, samples were marked as “1” if they contain at least 2 somewhat rare 

(MAF < 0.5%) putatively functional variants. Note that this is done without specific knowledge 

of whether these variants are on the same, or on different, haplotypes. Homozygous 

individuals for such rare variants count as two alleles.  There was a minimum read depth of 5 

or more for the homozygous calls.  

 

A disease modifier of a disease such as HD may only be deleterious in the presence of mutant 

huntingtin so while we focus on rare variants more common variants are also considered in 

the case control analysis. 
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5.2.2  Pathway analysis of WES data 

Sequence kernel association test (SKAT) is a SNP-set (e.g., a gene or a region) level test for 

association between a set of rare (or common) variants and dichotomous or quantitative 

phenotypes, SKAT aggregates individual score test statistics of SNPs in a SNP set and 

efficiently computes SNP-set level p-values, e.g. a gene or a region level p-value, while 

adjusting for covariates, such as principal components to account for population stratification 

(Wu et al., 2011).  Importantly, SKAT allows for a mixture of risk and protective rare alleles in 

the same gene (Sham and Purcell, 2014).   

 

The SKAT gene-wide results from the TRACK-HD fast vs slow progressor WES analysis were put 

through GSEA (Chapter 2) using the pathways significant at p>0.05 in GeM GWAS(GeM-HD-

Consortium, 2015).   

5.2.3  eQTL analysis of MSH3 variant 

Braineac (UKBEC, 2015, Ramasamy et al., 2014) was used to evaluate the effect on MSH3 

expression of having the rs184967 variant using the stratify expression by SNP function, data 

accessed December 2014, rechecked 29/08/2018.  

5.2.4 Sanger sequencing of MSH3 region of interest 

MSH3 FASTA sequence data was obtained from ENSEMBLE, GRCh37. I used SNPmasker 1.1 to 

mask repeats to prevent excess primer binding, then used Primer3 (Untergasser et al.) to 

design primers around 100bp either side of the repeat; with melt temperature set to 600C.  

- Left primer: TTGCCCTGCCATGTCTCG 

- Right primer: TCCCACCTTCCCCTTCTTCA 

 

I carried out the PCR and sequencing reactions using a standard protocol (Appendix 1).  

Specifically, 1μg genomic DNA was used as a template in a final volume of 25μl with MegaMix 

Blue (Clint Life Science) and 0.5μM stock primer. They were run with the following cycling 

conditions: (a) 95ºC for 1 min (b) 95ºC for 30 secs (c) 58ºC for 30 secs ( d) 72ºC for 1 min (e) 

Go to step b) for an additional 34 cycles. PCR product was cleaned-up using microCLEAN (Clint 

Life Science).   

 

Sequencing was conducted using 1µl BigDye (Thermo Fisher Scientific), 5µl BetterBuffer (Clint 

Life Science) and 7.25μl 18MΩ ddH20, 0.75μl sequencing primer (at 5µM concentration) and 

1μl of PCR product.  They were run with the following cycling conditions a) 96ºC for 1 min (b) 

96ºC for 10 secs (c) 50ºC for 5 secs (d) 60ºC for 3 mins (e) Go to step b) for an additional 24 
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cycles.  The sequencing product was cleaned using EDTA and ethanol.  Samples were 

resuspended in Hi-Di formamide and heated to denature before electrophoresis on an ABI 

3730xl DNA Analyzer (Thermo Fisher Scientific). 

 

Given the difficulty analysing repetitive DNA sequences, I extracted the sequence data using 

Sequence Scanner, then used nucleotide BLAST to align the sequences to wild type homo 

sapience MSH3 using the somewhat similar sequence option.  The output showed the 

presence or absence of the deleted region, however it was challenging to differentiate 

homozygous from heterozygous sequences.  

5.2.6  Interrogation of RD-Connect database 

The RD-Connect (Thompson et al., 2014) database of 1280 WES and whole genome 

sequencing (WGS) samples was interrogated, looking for subjects who held the MSH3 SNPs 

rs557874766 and rs1382539 which were highlighted by the HD Progression GWAS (Hensman 

Moss et al., 2017b), and also deletions in this region, data accessed 19/06/2017.  I had access 

to RD-Connect through my involvement in the Neuromics Project which was part of an allied 

European Commission FP7 Grant, but access is freely available via an application process.  

5.2.7 MSH3 structural prediction 

I used the FASTA MSH3 protein sequence, both with and without the AAAAAAPPA deletion to 

look at the predicted effect of the presence of this deletion on the protein. I inputted the 

sequences into Raptorx, a web portal for protein structure and function prediction (Källberg et 

al., 2012) (accessed May 2017).  This predicts structure properties of a protein sequence 

without using templates, including 3-/8-state secondary structure, solvent accessibility, and 

disordered regions.  The 3 state structures feature helix, sheet and coil whereas the 8 state 

structures feature α helix, 3-helix, 5-helix (π helix), extended strand β ladder, isolated β 

bridge, hydrogen bonded tern, bends and coils. Raptorx also does structural prediction: 

creating tertiary structures based on templates from the Protein Data Bank (PDB), and contact 

map prediction: which uses a deep learning model to create a contact map and tertiary 

structure, which doesn’t use template information. 

5.2.8 Phylogenetic analysis 

Using Uniprot (The UniProt, 2017) I ran a BLAST (Basic Local Alignment Search Tool) of the 

wild type human MSH3 protein sequence, then investigated the alignment against other ape 

MSH3 or MutS homolog 3 sequences. Default parameters were used: the default transition 
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matrix is Gonnet, gap opening penalty is 6 bits, gap extension is 1 bit.  Glustal-Omega uses the 

HHalign algorithm and its default settings as its core alignment engine (Soding, 2005).   

5.3 Results 

5.3.1 Whole Exome Sequencing  

25 fast and 23 slow progressing TRACK-HD subjects underwent WES.  All samples were 

sequenced at deCODE Genetics, Iceland, with a mean sequence depth of 97-fold, an average 

uniformity of 89% of targets with ≥20 reads, and an average of 44% of reads on target. 

5.3.2 Several DNA repair pathways nominally associated with HD progression in 

the WES fast vs slow analysis.   

Pathways with a p<0.05 in the GSEA of the TRACK-HD WES fast vs control analysis are shown 

in Table 5.1.  Although the sample size is too small to infer much from these data and no 

results are significant after correcting for multiple comparisons, it is notable that the 

mismatch repair complex and several other DNA repair pathways reach nominal significance 

(in bold in Table 5.1).  Other pathways of potential interest include those related to the 

extracellular matrix and RNA capping.  

Pathway Num

ber of 

genes 

GSEA p 

(TRAC

K) 

p (AAO-

meta) 

Description 

GO: 31012 366 0.0042 0.02214 extracellular matrix                                                                                                                                                                                     

GO: 32300 8 0.0052 0.00000 mismatch repair complex                                                                                                                                                                                  

GO: 6370 25 0.0078 0.01801 7-methylguanosine mRNA capping                                                                                                                                                                           

GO: 35035 13 0.0104 0.07773 histone acetyltransferase binding                                                                                                                                                                        

GO: 48742 43 0.0144 0.01939 regulation of skeletal muscle fibre development                                                                                                                                                          

MGI: 11073 11 0.0168 0.08094 Abnormal macrophage apoptosis                                                                                                                                                                            

GO: 9452 28 0.0194 0.03728 7-methylguanosine RNA capping                                                                                                                                                                            

GO: 36260 28 0.0194 0.03728 RNA capping                                                                                                                                                                                              

REACTOME   

715 

23 0.0196 0.01534 REACT:MRNA_CAPPING                                                                                                                                                                                       

REACTOME 

1035 

21 0.0200 0.01446 REACT:RNA POL II CTD PHOSPHORYLATION AND 

INTERACTION WITH CE                                                                                                                                             

NCI: 126 26 0.0212 0.06995 NCI: PROTEOGLYCAN SYNDECAN-MEDIATED 

SIGNALING EVENTS                                                                                                                                                     
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KEGG  53 24 0.0214 0.06268 KEGG ASCORBATE AND ALDARATE METABOLISM                                                                                                                                                                   

GO: 5954 4 0.0228 0.06342 calcium- and calmodulin-dependent protein 

kinase complex                                                                                                                                                 

GO: 5578 320 0.0244 0.02156 proteinaceous extracellular matrix                                                                                                                                                                       

GO: 32138 4 0.0248 0.00154 single base insertion or deletion binding                                                                                                                                                                

GO: 217 11 0.0278 0.01587 DNA secondary structure binding                                                                                                                                                                          

GO: 51297 43 0.0308 0.07898 centrosome organization                                                                                                                                                                                  

GO: 10595 40 0.0314 0.07721 positive regulation of endothelial cell migration                                                                                                                                                        

GO: 30198 274 0.0334 0.06379 extracellular matrix organization                                                                                                                                                                        

GO: 33013 54 0.0366 0.01982 tetrapyrrole metabolic process                                                                                                                                                                           

REACTOME  

580 

77 0.0370 0.00302 REACT: INTEGRIN CELL SURFACE INTERACTIONS                                                                                                                                                                 

GO: 43062 275 0.0378 0.06438 extracellular structure organization                                                                                                                                                                     

GO: 403 5 0.0402 0.05498 Splayed Y-form DNA binding                                                                                                                                                                                       

GO: 32389 4 0.0418 0.00010 MutLalpha complex                                                                                                                                                                                        

GO: 51153 66 0.0426 0.07427 regulation of striated muscle cell differentiation                                                                                                                                                       

REACTOME  

387 

142 0.0456 0.09237 REACT: EXTRACELLULAR MATRIX 

ORGANIZATION                                                                                                                                                                  

GO: 51096 4 0.0466 0.02983 positive regulation of helicase activity                                                                                                                                                                 

GO: 6281 308 0.0488 0.09386 DNA repair                                                                                                                                                                                               

GO: 43566 166 0.0492 0.04560 structure-specific DNA binding                                                                                                                                                                           

GO: 51567 10 0.0500 0.06351 histone H3-K9 methylation                                                                                                                                                                                

Table 5.1: Pathways with an association to age of onset in the GeM GWAS (p<0.05) that also 

are associated with HD progression (p<0.05) in the TRACK-HD WES analysis.   

Several pathways from the DNA repair pathway cluster (highlighted in bold) are nominally 

significant in both studies. 

5.3.3 Sequence variants in FAN1 were identified from the exome sequence data  

A region of interest on chromosome 15 in the region of the FAN1 gene was previously 

highlighted (GeM-HD-Consortium, 2015).   

 

I compared the number of variants identified in cases (fast progressors) in each of the genes 

near this chromosome 15 region of interest.  Though the numbers are too small for robust 

analysis it is evident that there are more variants in FAN1 than in any of the surrounding 

genes or pseudogenes (Table 5.2). 
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Gene/ pseudogene Number of variants 

GOLGA8J 0 

GOLGA8T 0 

KFZP434L187 0 

CHRFAM7A 0 

GOLGA8R 0 

GOLGA8H 0 

ARHGAP11B 0 

OC100288637 0 

HERC2P10 0 

FAN1 5 

MTMR10 1 

MIR211 0 

TRPM1 2 

RP11-16E12.2 0 

KLF13 0 

OTUD7A 0 

CHRNA7 0 

GOLGA8K 0 

ULK4P3 0 

ULK4P1 0 

ULK4P2 0 

GOLGA8O 0 

ARHGAP11A 0 

SCG5 0 

Table 5.2: Number of variants identified in cases showing an excess of rare variants in FAN1 

compared to other genes in the Ch15 region of interest highlighted by the GeM-GWAS (GeM-

HD-Consortium, 2015). 

 

The gene based summary of the Case vs Control analysis showed several variants in FAN1 

(Table 5.3).  The variants are well covered and have good quality scores.  
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Group Variant Progression 

rank of 

subject with 

variant 

AAO 

residual 

(onset 

minus 

expected 

onset) 

Protein 

domain 

MAF p in 

GeM 

GWAS 

 

Prediction of functional effects 

 

Amino 

acid 

cDNA SNP ID SIFT 

(Kumar et 

al., 2009). 

Polyphen2 

(Adzhubei 

et al., 

2010) 

Mutation 

Assessor 

(Reva et 

al., 2007) 

Fast  p.R145H c.G434A rs146408181 9 -10.05 UBZ-SAP 0.0002 >1E-5 

or not 

present 

Tolerated Benign Neutral 

Fast p.E240K c.G718A rs150748572 5 -10.22 UBZ-SAP 0.0012 >1E-5 

or not 

present 

Tolerated Benign Low 

Fast p.R507H c.G1520A rs150393409 10 -7.22 SAP 0.0028 9.339E-

18 

Damaging Possibly 

damaging 

Low 

Fast p.Q829H c.G2487C Novel 7 -9.34 TPR-VRR - >1E-5 

or not 

present 

Damaging Possibly 

damaging 

 

Fast p.F762F c.C2286T rs200756403 16 No onset TPR-VRR 0.0002 >1E-5 

or not 

present 

Tolerated -  

Slow (n=2) p.P894S c.C2680T rs80120912 170, 209 +1.5 VRR 0.008 >1E-5 Tolerated Benign  



154 
 

or not 

present 

Slow  p.R377W c.C1129T rs151322829 204 No onset UBZ-SAP 0.0014 >1E-5 

or not 

present 

Damaging Damaging Medium 

 Table 5.3: FAN1 variants identified in fast (n=5) and slow (n=3) progressing subjects from the TRACK-HD cohort.  Standard nomenclature is used for 

the amino acids: R = arginine; H = histidine; E = glutamic acid; K = lysine; Q = glutamine; F = phenylalanine; P = proline; S = serine; W = tryptophan. SIFT 

(Sorting Tolerant From Intolerant algorithm) (Kumar et al., 2009). Domains - UBZ: ubiquitin-binding zinc finger; SAP: SAF-A/B, Acinus and PIAS; TPR: 

tetratricopeptide repeat; VRR: virus type replication-repair nuclease. 
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Assessing the potential functional impact of variants is performed by a variety of prediction 

tools as a part of the bioinformatic analysis pipeline, and various tools are available which aim 

to pinpoint phenotypically causal variants (Cooper and Shendure, 2011).  I have summarised 

the results of these tools on the variants listed above in Table 5.3. 

5.3.4 Two MSH3 variants were highlighted by the WES fast vs slow analysis 

The case control analysis of fast vs slow HD progressors highlighted two variants in the DNA 

mismatch repair gene MSH3 among the 15 most significant variants.  I was initially interested 

in these variants given the DNA mismatch repair pathway is highlighted by the GWAS (and 

WES) pathway analysis and conducted some preliminary analysis.  Following the results of the 

HD progression GWAS(Hensman Moss et al., 2017b) which highlighted the region around the 

N-terminus of MSH3 as significantly associated with HD progression I went back to these data 

to explore further; the results of these analyses will be presented together here.  

 

The first MSH3 variant highlighted by the case control analysis was rs184967. pE949R in exon 

21, changing an uncharged to a positive residue.  Fisher P value = 0.000217 (Table 5.4).  The 

Minor Allele Frequency (MAF) of A = 0.098/490 (dbSNP). The minor allele is associated with 

slower progression. The read depth is good and there are calls for all subjects.  rs184967 is not 

significantly associated with AAO in HD according to the GeM GWAS (GeM-HD-Consortium, 

2015) (p=0.169).  However given that there was an overlap of samples used for my HD 

Progression GWAS it is not surprising that the p-value for rs184967 = 1.06x10-4 in this study 

(Hensman Moss et al., 2017b). 

 Fast progressors Slow progressors 

Frequency of G allele 46 27 

Frequency of A allele 4 19 

Table 5.4: Frequency of MSH3 variant rs184967 alleles in fast and slow progressors 

 

rs184967 is associated with variability in MSH3 expression in the thalamus according to 

BRAINEAC data (UKBEC, 2015).  The minor allele (A), which is found in higher frequency in the 

slow progressors, is associated with lower MSH3 expression in the thalamus, raising the 

possibility that progression is slowed in those with the A allele via this eQTL (Figure 5.2). 



156 
 

 

Figure 5.2: Influence of rs184967 allele status on brain expression of MSH3. eQTL analysis of 

rs184967 using Braineac database (UKBEC, 2015).   Genotype (AA/AC/CC) shown on x-axis; 

expression levels in log2 scale shown on y axis. 

 

The second MSH3 variant highlighted by the case control analysis was rs201874762, a 27 base 

pair non-frameshift deletion variant in exon 1.  The read depth in the WES is poor, and the 

variant hasn’t been called for all subjects (Table 5.5), but despite this there is association 

between the deletion and fast vs slow status, Fisher P value = 0.000528. 

 

 Fast progressors Slow progressors 

GCAGCGGCTGCAGCGGCC 20 15 

- (deletion)  2 19 

Table 5.5: Frequency of rs201874762 in TRACK-HD fast and slow progressors 

 

rs201874762 is not detailed in 1000 genomes according to SNAP.  This variant was neither 

genotyped nor imputed in the GeM GWAS.  I therefore looked at variants in a 10kb window 

around the transcript boundaries of MSH3 (as defined by NCBI: 79950467-80172634) in the 

GeM GWAS study (GeM-HD-Consortium, 2015).  The SNP with the lowest P-value in MSH3 in 

the GeM GWAS is rs6151792, p=1.47x10-4, MAF 0.1.  
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5.3.5 MSH3 coding variant rs557874766, the index SNP from TRACK-HD GWAS 

was not found in exome sequence data  

The data from the HD Progression GWAS highlighted MSH3, and specifically rs557874766 in 

the N-terminal region of the protein (Chapter 3) as being associated with slower progression 

in HD. According to dbSNP rs557874766 encodes a Pro67Ala change in MSH3 and has a 

(reported) MAF of G=0·2179/1091 (1000 Genomes). Of note, rather than being directly 

genotyped it was a SNP which was imputed in the GWAS.  I re-interrogated the WES data of 

48 fast and slow progressing TRACK-HD subjects to look at this region of high association in 

MSH3.  However, when I looked at the WES sequence data on the DeCODE browser is was 

clear that no subjects had this rs557874766 variant. Instead people either do/ don’t have a 

small deletion (rs144629981) over this exact location (Figure 5.3).  rs557874766 is very close 

(24 bases) to the deletion that came out of our WES fast / slow analysis described above: 

rs201874762 (Figure 5.3).  Neither rs557874766 nor rs144629981 are on the reference panels 

meaning that obtaining LD data from online resources was not possible, however in my 

analysis there were co-segregated.  A colleague attempted to SNP genotype samples for the 

presence of rs557874766 but no samples had it (personal communication, data unpublished).   

Comparison of the WES data with the SNP genotyping used for the GWAS showed that 25/25 

people who are homozygous wild type according to the GWAS data have no deletions at the 

locus, whereas 6/6 of those who are homozygous variants have a deletion.  The data for the 

17 heterozygotes was more difficult to interpret particularly as coverage of this region was 

low.  rs144629981 was called in 16/17 expected heterozygotes, but is clearly evident in the 

sequence data from the other person.  rs201874762 is less well covered and called, it is called 

in 8/17 expected heterozygotes.    

5.3.6 SNP in high linkage disequilibrium with rs557874766 was identified 

Based on the data above I hypothesised that the presence of the deletion(s) rather than the 

rs557874766 SNP is observed in slow progressors and driving the GWAS signal.  I therefore 

identified a SNP in high linkage disequilibrium: rs1382539, to facilitate identification of 

subjects expected to have the haplotype associated with slow progression.  rs1382539 has an 

r2=0.91 with rs557874766 according to SNiPa (Arnold et al., 2015), and P=8.7013e-08 in the 

TRACK-HD progression GWAS (Hensman Moss et al., 2017b); P=5.278e-09 in the TRACK-

HD/REGISTRY meta-analysis (Hensman Moss et al., 2017b)(Chapter 3).    

5.3.7 Sanger sequencing of TRACK-HD subjects provided further evidence for the 

presence of deletions in people expected to have rs557874766 
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To further explore this region of MSH3 I performed Sanger sequencing of 125 members of the 

TRACK-HD cohort of which 103 were successfully sequenced (Table 5.6). Not one subject had 

the rs557874766 variant. Interestingly most of those that failed sequencing had the full wild 

type sequence while none with deletions failed sequencing. As with the WES it was more 

difficult to call the sequences of the subjects expected to be heterozygotes.   

 

rs557874766 

genotype 

according to the 

GWAS (Hensman 

Moss et al., 2017b) 

TRACK-

HD 

subject 

(n=125) 

Number 

with net 

27 bp 

deletion  

Number 

without 

net 27bp 

deletion 

Inconsistencies 

between forward 

& reverse strand / 

split alignment 

Number 

failed 

sequencing 

Wild type  79 0 60  19 

Heterozygote 33  10 20 3 

Homozygote 

deletion 

13 13 0  0 

Totals 125 27 70 20 22 

Table 5.6: Results from the Sanger sequencing of TRACK-HD cohort subjects, showing the 

expected genotypes based on the GWAS, and whether deletions were found.  

 

Together the Sanger and exome sequencing data provided sequence information on a total of 

173 TRACK-HD subjects, who had all also been included in the GWAS. All 75 sequenced 

subjects who were wild type at rs557874766 had no deletion, while all 19 homozygote variant 

at rs557874766 had a deletion at the locus.  These data suggest that subjects who were 

driving the GWAS signal and thought to have the rs557874766 variant instead had either one 

large or a pair of deletions at this locus making up a total of 27 deleted base pairs.  A more 

extensive investigation of this region of MSH3 has been undertaken by colleagues as a follow-

up to my findings above, but is beyond the scope of this thesis (Flower et al., 2019).  

5.3.8 rs557874766 was not found in sequence data of 1280 individuals 

I interrogated the RD-Connect database of 1280 WES and whole genome sequencing (WGS) 

samples for rs557874766, rs1382539 and the deletions, and found that there were no 

samples holding the rs557874766 SNP.  Given its reported allele frequency (0.2179) one 

would have expected around 279 samples to hold the SNP, and indeed there were 386 

subjects who had the SNP rs1382539 which was thought to be in high LD with rs557874766 

(see above).   
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396 samples were found to have the 9bp deletion rs144629981, while 460 people had a 18bp 

deletion which starts 1bp in the N-terminal direction to rs201871762 

(TGCAGCGGCTGCAGCGGCC) which from the data appeared to be a data calling issue.  This 

provided further evidence that there was likely to be an issue with the calling and alignment 

of this N-terminal region of MSH3 in published databases.  

5.3.9 Structural predictions show that slow progressors have lost an alpha-helical 

region in the N-terminus of MSH3 

The mutated region of interest within MSH3 maps to an intrinsically disordered N-

terminal region of the protein.  Secondary structure predictions show that in the wild type 

protein there is an alpha-helical region between residues 49-60, however, in the subjects who 

have the deletion associated with slower progression, (and genotyped as having rs557874766 

in the GWAS) this alpha-helical structure is lost (Figure 5.3).   

 

 

 

Figure 5.3: Secondary structure predictions for MSH3 in the wild type form (A) and with the 

deletion (B) which is seen in the slow progressing subjects who drive the progression GWAS 

B 

A 
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signal showing that an alpha-helical region is lost in the deleted form at residues 49-50.  The 

rest of the protein appeared to be the same between the two forms.  The 8 state version of 

Raptorx was used (Källberg et al., 2012) and was accessed 22/06/17.  Only residues 1 – 400 

are shown however the whole protein sequence was inputted.  The Legend for the secondary 

structures is shown above within the figure.  

 

Solvent exposure prediction analysis suggests that the region of interest is exposed in both 

wild type and deleted forms (Figure 5.4).  However in the wild type form with (Ala)12 the 

residues have a 60-85% odds of being exposed whereas  in the deleted form with (Ala)6 the 

residues have a 55-85% odds of being exposed.  

 

 

Figure 5.4: Predicted solvent exposure for MSH3 wild type (A) and with deletion (B) using 

Raptor (Källberg et al., 2012) (accessed 22/06/17) showing that the region containing the 

deletion is predicted to be exposed both with and without the deletion present. Only residues 1 

– 320 are shown however the whole protein sequence was inputted.  The Legend for the 

solvent accessibility is shown above within the figure. 

 

B 

A 
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The published crystal structure does not include the N-terminal domain that we are 

particularly interested in: Gupta et al used residues 219-1134 complexed to MSH2 and a 4 

base loop of DNA to produce their structures (Gupta et al., 2012).  There are no templates on 

the Protein Data Bank which include the disordered N-terminal region that has been 

highlighted by our genetic analysis.  However the structure of the protein from residue 211 to 

1128 according to RaptorX is shown in Figure 5.5.  

 

 

Figure 5.5: Tertiary structure predictions of MSH3 from residue 211 to 1128 generated by 

Raptorx (Källberg et al., 2012) accessed 22/06/17 .   

5.3.10 Phylogenetic data suggest that the polyalanine can be viewed as a recent 

insertion  

Data was available for Pan troglodytes (Chimpanzee) (A0A2J8NN13), Pongo abelii (Sumatran 

orangutan) (A0A2J8UWT4), Pan paniscus (Bonobo) (A0A2R9B289), Gorilla gorilla gorilla 

(Western lowland gorilla)(G3R048) and Nomascus leucogenys (Northern white-cheeked 

gibbon) (G1RRE8).  Overall there was 91.9% identity between the sequences.  The cladogram 

produced is shown in Figure 5.6. 
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Figure 5.6: Cladogram of the apes showing the MSH3 protein sequence at the repetitive region 

of interest in six different ape species, showing that the presence of 12 alanines is novel to the 

human lineage.  Gibbons, lower apes which diverged earlier from the lineage have just three 

consecutive alanines and also the most divergent sequence overall; orangutans also just have 

three alanines while gorillas and both types of chimpanzee have six. Sequence data is from 

UniProt (The UniProt, 2017). The sequence is shown from residue 51 which is an alanine 

conserved among the apes, to a phenylalanine which is also conserved.  A: alanine, P: proline, 

F: phenylalanine.  (A)3 delineates three consecutive alanine residues. Approximate times of 

lineage divergence (Locke et al., 2011) are shown on the right hand side. Myr: million years.  

 

  5.4 Discussion 

In this chapter I have discussed the use of sequencing technologies to follow up on findings 

from large scale association studies which have implicated the DNA damage response (DDR) 

proteins FAN1 and MSH3 as modifiers of Huntington’s disease.  The work presented in this 

chapter is limited in its small sample sizes and largely exploratory nature, however it provided 

important information about several variants which had been highlighted by previous 

association studies which has subsequently been followed up by other members of the Tabrizi 

group and collaborators.  

 

While case control analysis of the WES data of the fastest and slowest progressing subjects in 

TRACK-HD did not yield any statistically significant variants or genes, one of the variants in 
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MSH3 highlighted by that analysis was subsequently given greater scrutiny following the 

results of the HD progression GWAS (Chapter 3)(Hensman Moss et al., 2017b), and several 

sequence variants within FAN1 were identified for functional follow-up in the laboratory.  

FAN1 was first described in four papers in 2010 (O'Donnell and Durocher, 2010): it was 

identified by virtue of its interaction with mismatch repair proteins (Cannavo et al., 2007, 

Kratz et al., 2010) domain homology (Liu et al., 2010, MacKay et al., 2010) and from a 

mitomycin C (MMC) sensitivity RNA interference screen (Smogorzewska et al., 2010).  FAN1 

exhibits domain architecture suggestive of a role in DNA repair, bearing a RAD18-like 

ubiquitin-binding (UBZ) domain, a putative DNA-binding (SAP) domain, a protein-protein 

interaction motif and a nuclease domain of the VRR_nuc family. All four studies uncovered a 

conserved role for FAN1 in DNA interstrand cross-link (ICL) repair, demonstrating that FAN1 

deficiency sensitizes human cells and nematodes to crosslinking agents such as MMC and 

increases chromosome instability.  FAN1 orthologs are members of the ancient restriction 

endonuclease-like superfamily.  FAN1 cleaves DNA: it preferentially cleaves branched DNA 

structures that mimic intermediates of DNA repair, with a strong preference for the 5’ DNA 

flap; it also possesses 5’-3’ exonuclease activity.  FAN1 is known to interact with both 

mismatch repair proteins and ICL repair proteins including MLH1, MLH3, PMS1, and PMS2, 

FANCD2, and FANCI.  However, some evidence suggests that FAN1 may be pivotal to ICL repair 

but not mismatch repair (MacKay et al., 2010).  Rather than trinucleotide repeat somatic 

expansion operating exactly via the pathways of DNA mismatch repair, or interstrand cross-

link repair, it seems more likely that there is a pathway specific to trinucleotide repeat 

instability which employs DNA repair proteins from the mismatch and other repair pathways.  

This is a topic of ongoing investigation. 

 

The work on FAN1 which is described in this Chapter fed into ongoing work by our group 

which I assisted with, investigating the mechanism through which FAN1 variants modulate 

HD.  Given the association between somatic instability of the CAG repeat, and HD onset and 

progression which has been discussed elsewhere (Chapters 3 and 4) we hypothesized that 

FAN1 also has a role in the stability of the CAG repeat.  In work that is beyond the scope of 

this thesis, we demonstrated that increased FAN1 expression is significantly associated with 

delayed AAO in HD (Goold et al., 2019). This finding was based firstly on a Transcription Wide 

Association Study (TWAS) in which gene expression values were imputed from 452 

dorsolateral prefrontal cortex samples from the Common Mind Consortium into the GeM 

GWAS of AAO in HD and the TRACK-HD and Registry HD Progression GWAS which I describe in 

Chapter 3, and secondly on the finding that FAN1 trends towards significance in the TRACK-HD 

cohort such that decreased FAN1 expression is associated with faster progression and earlier 
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onset (Goold et al., 2019, Hensman Moss et al., 2017a).  Recent evidence demonstrates Fan1 

protects against expansion of the CGG repeat tract in the Fmr gene in a mouse model of 

Fragile X (Zhao and Usdin, 2018). A similar stabilization of the HTT CAG repeat tract would 

reduce somatic expansion of the HTT CAG repeat tract and could underlie the effect of FAN1 

on HD course.  Colleagues found that FAN1 expression stabilizes the CAG repeat in U20S HTT 

exon 1 cells and regulates the stability of the endogenous HTT repeat in patient derived 

induced pluripotent stem cells (Goold et al., 2019). Of the FAN1 variants described in this 

chapter, the p.R507H FAN variant which according to the genetics (GeM-HD-Consortium, 

2015) is associated with earlier disease onset has received particular interest.  Goold et al 

found that the p.R507H FAN variant does not affect HTT CAG repeat stability in U20S cells 

(Goold et al., 2019): although U20S HTT exon 1 (118 CAG) cells expressing p.R507H showed 

reduced CAG repeat expansion rates compared to those expressing WT forms, which trended 

toward significance, these changes were likely related to differences in FAN1 expression 

levels.  They also found that FAN1 associates with CAG repeats in HTT and other proteins, 

both with and without the pR507H variant (Goold et al., 2019).  It may be that the assay 

systems used are not sensitive to pick up the small changes in activity that pR507H may 

engender.  

 

The pathway analysis of the WES data, while not statistically significant, supported the 

findings of the pathway analysis of the GWAS studies (GeM-HD-Consortium, 2015, Hensman 

Moss et al., 2017b), and provides further support that common genes and biological 

processes influence both HD age-at-onset and disease progression.  

 

My work described in Chapter 3 highlighted MSH3 as a genetic modifier of disease 

progression in HD (Moss et al., 2017), and it was recently identified as a modifier of somatic 

instability in DM1 (Morales et al., 2016).  The index SNP in the chromosome 5 region of high 

signal in the GWAS of HD progression was rs55787476, an imputed SNP, located within a 9 bp 

tandem repeat sequence in exon 1 of MSH3, which is also in the 5’UTR of dihydrofolate 

reductase (DHFR) on the opposite strand (Tome et al., 2013a). The MSH3 and DHFR genes are 

arranged in a head-to-head orientation and share a common promoter that divergently drives 

transcription (Tome et al., 2013a). 

 

The WES and Sanger sequencing analysis presented here suggest that rs557874766 is an 

alignment artefact and corresponds to a deletion corresponding to 3 alanines in the protein 

sequence relative the wild type version.  At the protein level, in silico modelling predicts that 
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the deletion allele results in the loss of a surface α-helix (Kallberg et al., 2012) at the N-

terminus of MSH3, as compared to the reference sequence. 

The region of interest in MSH3 exon 1 is GC rich and repetitive as shown in Figure 5.7.  

Although the configuration of deletions shown in Figure 5.7 is what the deCODE platform and 

our UCL WES pipeline generates, the deleted region(s) can actually be placed in various 

different positions to get the same net sequence results, with the effect of generating 

different SNPs in the surrounding region (Figure 5.8A), thus rs557874766 can be viewed as an 

alignment artefact.  The net effect at the protein level is a variable number of alanine residues 

(Figure 5.8B). 

 

Figure 5.7: Excerpt of the MSH3 exon 1 sequence showing the positions of the rs557874766, 

rs201874762 and rs144629981 variants. 

 

Figure 5.8: Alternative MSH3 deletions achieve the same protein sequence result. A: Short 

excerpt of the MSH3 exon 1 coding sequence showing alternative deletions which generate the 

same net sequence at the DNA sequence level, the option shown in Figure 5.3 above is listed as 

option 1.  B: Short excerpt of the amino acid sequence that results from the deletions shown in 

(A): p.A57_p.65del. Ala: alanine; Pro: proline.  

 

Interestingly a 9-bp repeat polymorphism in exon 1 of the MSH3 gene was previously 

described in the Japanese population which corresponds to the deletion we identified 

(Nakajima et al., 1995).  The Japanese data suggest that the region is highly polymorphic, with 

variable numbers of repeats corresponding to between 3 and 7 alanines reported.  The most 
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common allele in the East Asian populations was 6 alanines and the second most common 7 

alanines, while the 3 alanine version associated with slower HD progression in my study is also 

relatively common (Table 5.7) .  Subsequent work from our group which is beyond the scope 

of this thesis shows that the region can be viewed as being composed of a variable number of 

different 9bp blocks (Flower et al., 2019).   

Repeats Sizes (bp) N (total 116) Frequencies 

3 171 18 0.155 

4 180 5 0.043 

5 189 1 0.009 

6 198 70 0.603 

7 207 22 0.190 

Table 5.7: Allelic sizes and frequencies at exon 1 of the hMSH3 gene in 58 unrelated Japanese 

individuals, from Nakajima et al (Nakajima et al., 1995). 

 

In a review of published binding sites, I found that the MSH3 N-terminal region of interest is 

close to the Exo1 binding site at 75–297 according to one study (Schmutte et al., 2001) (Figure 

5.9).  Exo 1 also binds to MSH2 and MLH1 (Schmutte et al., 2001), while  MSH2 binds MSH3 in 

two places (Guerrette et al., 1998) to form the MutSβ heterodimer (Figure 5.9).   PCNA, a DNA 

clamp which acts as a scaffold to recruit proteins involved in DNA replication, repair and 

epigenetics binds MSH3 at the N-terminus  close to the region of interest (Kleczkowska et al., 

2001, Clark et al., 2000, Flores-Rozas et al., 2000, Finn et al., 2016) (Figure 5.9).   
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Figure 5.9: Figure of MSH3 showing the putative binding domains for proteins with which it interacts, and the ATP binding site. The location on the deletion we 

identified is also shown, illustrating that the Exo1 and PCNA binding sites are very close to the deletion. 
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Both Exo1 and PCNA are involved in DNA mismatch repair (Kleczkowska et al., 2001). PCNA is 

a sliding clamp that participates in DNA replication, but in MMR it delivers MSH proteins to 

mismatches and increases binding specificity (Flores-Rozas et al., 2000). Exonuclease 1 (EXO1) 

excises the daughter strand after mismatch recognition, as well as being involved in end 

resection during homologous recombination (Goellner et al., 2015).  

 

Given the proximity of the repeat region to MMR protein binding domains (Figure 5.9), the 

deletion-containing allele may change the secondary structure (Figure 5.3) and alter MSH3 

function in the recognition and repair of insertion-deletion loops, double strand breaks or 

single strand annealing (Lyndaker and Alani, 2009, Schmidt and Pearson, 2016). It is also 

possible that the deletion variant alters the important quaternary structure in MSH3’s binding 

to MSH2.  As discussed in Chapter 4, repetitive DNA sequences form unusual secondary 

structures such as slipped strands, hairpin loops, G-quadruplexes and R-loops (Mirkin, 2007, 

Neil et al., 2017), the stability of which correlates with expansion (Gacy et al., 1995). MSH3 

may recognise these structures (Owen et al., 2005), and initiate repair, during which out of 

register synthesis could result in repeat expansion (Neil et al., 2017, Khan et al., 2015), the 

presence of the deletion may alter the kinetics, resulting in reduced somatic expansion of the 

CAG tracts and slower HD progression: this hypothesis is under ongoing investigation. 

 

It is interesting that a further MSH3 variant was highlighted in the case control analysis of the 

TRACK-HD WES (rs184967, pE949R in exon 21): while this result may be spurious given the 

small sample size, it may also point to some locus heterogeneity in MSH3, with more than one 

variant modulating the onset/progression of HD.  Tome et al used different mouse strains to 

show that MSH3 polymorphisms and protein expression levels affect CAG repeat instability in 

HD mice, and suggest that the T321I variant may be responsible (Tome et al., 2013a): a 

different MSH3 variant to those discussed here and one in a different domain of the protein.  

The region surrounding the exon 1 27bp deletion is poorly conserved between species (Figure 

5.6).  There are increased numbers of alanines in the polyalanine section in apes more closely 

related to humans, while the number of ‘PPA’s seems to vary in a way that differs from their 

phylogenetic relatedness, perhaps suggesting that this represents an old polymorphism.  The 

deletion variant which is associated with slower HD progression, (A)6 PPA PA, is the version 

described in Chimpanzees and Gorillas thus may be an ancestral version of the protein.   

 

However, the lack of evolutionary constraint observed suggests functional redundancy in the 

MMR pathway and a lack of effect of variation at the MSH3 N-terminus outside of the context 

of a repeat expansion disease.  Unlike other MMR components, germline heterozygous MSH3 
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mutations and MSH3 depletion are not particularly associated with increased risk of cancer, 

most likely because MutSα (MSH2/MSH6) can also initiate repair at replication errors (Haugen 

et al., 2008, Edelmann et al., 2000, Jiricny, 2006).  Therefore, modulation of MSH3 has 

significant therapeutic potential in a range of neurodegenerative diseases. 
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Chapter 6-  C9orf72 repeat expansion disease: examination of 

intergenerational repeat stability and expansion of the known 

phenotype to encompass HD phenocopy presentations   

6.1 Introduction 

Both FTD and ALS are neuropathologically characterized by the presence of neuronal 

inclusions containing TDP-43 protein (Tar DNA binding protein-43), and commonalities 

between the two diseases have been increasingly appreciated (Karch et al., 2018).  As outlined 

in the General Introduction, an expanded hexanucleotide GGGGCC repeat in the C9orf72 gene 

has been established as a major cause of both FTD and ALS (DeJesus-Hernandez et al., 2011, 

Renton et al., 2011, Smith et al., 2012, Mahoney et al., 2012).  The mutation is intronic, in a  

highly conserved gene (DeJesus-Hernandez et al., 2011, Morris et al., 2012) which has 

homology with the DENN-like superfamily suggesting a role as regulator of membrane traffic 

(Levine et al., 2013, Zhang et al., 2012, Morris et al., 2012), and which may be involved in 

other neurological conditions (Friedland et al., 2012).  Several hundred-thousands of repeats 

have been documented in pathogenic expansions (Beck et al., 2013).  Elucidating the 

pathogenic mechanism of this expansion has generated much interest; several non-mutually 

exclusive possibilities exist (Mori et al., 2013, Reddy et al., 2013, Fratta et al., 2012, Lashley et 

al., 2013, Ash et al., 2013, DeJesus-Hernandez et al., 2011):  1) C9orf72 haploinsufficiency- 

expanded repeats interfere with transcription or translation of the gene, leading to decreased 

expression of C9orf72 protein; 2) RNA gain of function- RNA foci formed by sense and 

antisense transcripts of expanded repeats interact and sequester essential RNA binding 

proteins, causing neurotoxicity; 3) Repeat associated non-ATG initiated (RAN) translation of 

GGGGCC repeat expansion- RAN translation of expanded sense and antisense repeats 

produces potential toxic dipeptide repeat protein (DPR) (Ash et al., 2013, Lashley et al., 2013).   

As discussed in Chapter 4, many diseases associated with expansions in sequences of 

repetitive DNA are characterised by intergenerational and somatic mosaicism of the repeat 

size.  In work described in this chapter and published in Beck et al (Beck et al., 2013) I look at 

the intergenerational stability of GGGGCC repeats in families without disease-associated 

expansions.   
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As discussed in Chapter 1, HD is an autosomal dominantly inherited neurodegenerative 

condition typically characterised by a triad of psychiatric, movement and cognitive 

impairment.  In many cases where HD is suspected clinically, patients lack the CAG repeat 

expansion that causes HD (Andrew S. E., 1994, Persichetti F., 1994, Wild, 2007, Huntington's 

et al., 1993).  Such individuals are said to have HD phenocopy syndromes or HD-like disorders 

(Moore R. C., 2001).  Wild & Tabrizi (Wild, 2007) reviewed genes identified in different HD 

phenocopy cohorts to determine that Spinocerebellar ataxia 17 (TBP) accounts for 1.1%, 

Huntington’s Disease-Like 2 (HDL2) for 0.7%, Friedreich’s ataxia (JPH3) for 0.35% and inherited 

prion disease (PRNP) for 0.24% of HD phenocopies. Testing for these mutations is now 

routinely performed; however the majority of HD phenocopy patients still do not attain a 

formal genetic diagnosis.    

 

Given the established phenotypic variability of C9orf72 associated disease it was my aim in 

the study described in this chapter to examine whether the C9orf72 expansion is also a cause 

of HD phenocopy clinical presentations, and hence whether testing for it should be 

considered in the routine genetic work-up of this patient group.  The results of this work have 

been published as Hensman Moss et al (Hensman Moss et al., 2014).   
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6.2 Materials and Methods 

6.2.1 Standard Protocol Approvals, Registrations, and Patient Consents 

Ethical approval to undertake these analyses was given by the local NHNN/ION ethics 

committee. Informed consent for genetic studies was obtained from all participants. 

6.2.2 Case ascertainment: Control samples for intergenerational stability analysis  

DNA samples were obtained from the Fondation Jean Dausset-Centre d’Etude du 

Polymorphisme Humain (CEPH) (Dausset et al., 1990): 802 individuals from 61 families in the 

CEPH family series were analysed to determine the size of repeat at the C9orf72 locus. 

6.2.3 Case ascertainment: HD phenocopy subjects 

As previously described (Wild et al., 2008), subjects were classified as having HD phenocopy 

syndromes on the basis of a clinical presentation consistent with HD when assessed by an 

experienced neurologist or neurogeneticist, and a negative test for the expanded CAG repeat 

in the HTT gene which causes HD (<36 repeats).    At the Neurogenetics Unit of the National 

Hospital for Neurology and Neurosurgery (NHNN), London, UK, 63.5% of diagnostic HD tests 

(those done on symptomatic patients) are negative for HD.  A cohort of 514 HD phenocopy 

cases who underwent negative diagnostic genetic testing for HD at NHNN were identified.   

6.2.4 Clinical phenotyping 

I reviewed clinical summaries for all cases, and reviewed all available clinical case notes for 

cases positive for the C9orf72 expansion mutation.  Demographic data, family history, 

examination findings, first symptoms and age of onset were recorded.  Where available, 

neuropsychometry reports were reviewed, and additional investigations were documented 

including electrophysiological assessments, MRI, CSF and tissue biopsies.  HTT CAG repeat 

length was recorded.  I used Fisher’s exact test (Stata software) to examine the relationship 

between the presence of particular clinical signs and gene test outcome.  

 

I gave all C9orf72-positive cases a modified Goldman score (Goldman et al., 2005, Beck et al., 

2008) (Table 6.1), which was used to quantify the strength of the autosomal dominant family 

history.  Scoring was modified to give a score of 0 for no data, 4 for definitely no family 

history, and 4.5 for unknown or undescribed family history.  

 

Score Description of family history structure 
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1 Autosomal dominant FHx, 3 affected+ in 2 generations with 1 as first-degree relative 

2 Familial aggregation of 3 or more family members with dementia not meeting 1 

3 1 other affected family member (AAO >65) 

3.5 1 other affected family member (AAO 65+) 

4 Definitely no FHx 

4.5 Unknown/ undescribed FHx 

0 No data 

Table 6.1: Modified Goldman scoring system. FHx: Family History. AAO: Age At Onset of 

symptoms.  

6.2.5 Repeat primed PCR  

To test for the presence of an expansion at C9orf72, I carried out repeat primed PCR (rpPCR) 

using the previously described methods (Renton et al., 2011). Specifically, 100 ng of genomic 

DNA were used as template in a final volume of 28 ml containing 14 ml of FastStart PCR 

Master Mix (Roche Applied Science, Indianapolis, IN, USA), and a final concentration of 0.18 

mM 7-deaza-dGTP (New England Biolabs, Ipswich, MA, USA), 13 Q-Solution (to facilitate 

amplification of GC-rich templates) (QIAGEN, Valencia, CA, USA), 7% DMSO (Sigma- Aldrich), 

0.9 mM MgCl2 (QIAGEN), 0.7 mM reverse primer consisting of four GGGGCC  repeats with an 

anchor tail, 1.4 mM 6FAM-fluorescent labelled forward primer located 280 bp telomeric to 

the repeat sequence, and 1.4 mM anchor primer corresponding to the anchor tail of the 

reverse primer.  A touchdown PCR cycling program was used where the annealing 

temperature was gradually lowered from 70OC to 56 OC in 2 OC increments with a 3 min 

extension time for each cycle. 

 

The repeat-primed PCR is designed so that the reverse primer binds at different points within 

the repeat expansion to produce multiple amplicons of incrementally larger size. The lower 

concentration of this primer in the reaction means that it is exhausted during the initial PCR 

cycles, after which the anchor primer is preferentially used as the reverse primer (Renton et 

al., 2011). 

 

I undertook fragment length analysis on an ABI 3730xl automated sequencer.  Analysis of 

repeat primed PCR electropherograms was performed using Peak Scanner v1.0 (ABI).  

Expansions with a characteristic ‘saw-tooth’ pattern were identified and put forward for 

Southern blotting.  
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To determine the size of the expansion in those identified as having it, fluorescent-labelled 

PCR was followed by fragment-length analysis on an ABI 3730xl automated sequencer (Beck 

et al., 2013). The PCR used 20 ng gDNA in FastStart PCR master mix (Roche Applied Science) 

supplemented with 13 Q solution (Roche Applied Science), 5% dimethyl sulphoxide, 0.2 mM 7-

deaza-2-deoxy guanosine triphosphate, and 1 mM MgCl2 in a 20 ml final volume. Thermal 

cycling included initial denaturation for 5 min and 35 subsequent cycles of 30 s denaturation 

at 95 oC, 30 s annealing at 60 oC, and 1 min elongation at 72oC. 

6.2.6 rs3849942 genotyping 

DeJesus-Hernandez et al described a surrogate marker rs3849942 associated with an 

increased risk of mutation (DeJesus-Hernandez et al., 2011, Beck et al., 2013).  Samples were 

genotyped for this SNP by allelic discrimination using the 5’ nuclease assay in conjunction with 

Minor Groove Binding (MGB) probes.  The assay was performed on the SDS7500 Fast Real 

Time PCR system (ABI) and genotyping calls were made using software v2.0.6. An introduction 

to SNP genotyping is given in Chapter 2. 

6.2.7 Microsatellite genotyping 

Microsatellite analysis was performed using ten markers spanning approximately 13.1Mb of 

genomic DNA centred around the C9orf72 gene (Beck et al., 2013). PCR amplicons were 

generated using fluorescently end labelled primers at 500nM for microsatellite markers 

D9S1814(VIC), D9S976(FAM), D9S171(NED), D9S1121(VIC), D9S169(FAM), D9S263(HEX), 

D9S270(FAM), D9S104(FAM), D9S147E(NED) and D9S761(FAM) in MegaMix Royal hot start 

cocktail (Microzone). Thermal cycling conditions included an initial preheat at 95°C for 5 

minutes, followed by 35 cycles of 95°C 30”, 58°C 40”, 72°C 1’.  A loading mix of 1μl amplicon 

diluted 1:50 in ddH2O, 9.5μl HiDi formamide (ABI) and 0.5μl 500LIZ size standard was 

prepared and DNA products were electrophoresed on an ABI 3730xl automated sequencer. 

Data was analysed using ABI GeneMapper software v4.0 (Applied Biosystems (ABI)). 

6.2.8 Southern hybridisation 

A recently described Southern hybridisation protocol was used by my collaborator Mr Mark 

Poulter to estimate expansion size (Beck et al., 2013). This combined the use of an 

oligonucleotide (GGGGCC)5 probe which targets multiple sites within the expansion and 

genomic DNA (gDNA) digested with two frequently cutting restriction endonucleases whose 

sites closely flanked the repeat region. Hexanucleotide repeat number was estimated by 

interpolation of autoradiographs using a plot of log10 base pair number against migration 

distance which was created in Microsoft Excel. 
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6.3 Results 

6.3.1 C9orf72 repeat intergenerational instability is seen in those with longer 

repeat lengths 

I examined the stability of the size of the C9orf72 hexanucleotide repeat region in 802 

individuals from 61 families in the CEPH family series, a panel of reference families which has 

proved an important resource for the characterization of DNA polymorphisms and the 

construction of the human genetic map (Dausset et al., 1990). No large expansions (>30 

repeats) were identified via repeat primed PCR. In 1,046 transmissions, three changes in 

repeat size between generations were identified. In the CEPH families, the largest repeat (22 

repeats) changed size twice in the same family: from 21 in the paternal grandparent to 22 in 

the father and from 22 in the father to 20 in the son (Figure 6.1). There were no unstable 

maternal transmissions. The overall intergenerational repeat change rate was 0.29%. 

Interestingly, all intergenerational changes occurred from a starting repeat length > 10. These 

changes were verified by repeat rpPCR and fluorescent-labeled PCR size fractionation 

(although alteration of flanking sequences cannot be excluded).   
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Figure 6.1:  Fragment analysis of CEPH families with inter-generational repeat slippage. Data 

from fluorescent labelled PCR followed by fragment length analysis on an ABI 3730xl 

automated sequencer from 2 CEPH families showing evidence of inter-generational repeat 

slippage. For clarity, the numbers of base pairs of alleles demonstrating slippage are also 

shown with repeat size in red text. (a) CEPH family 1423 results showing slippage from 

paternal grandfather’s 21 repeats up to father’s 22 and then down to 20 repeats in his son. (b) 

CEPH family 1420 showing slippage from father’s 11 repeats to his daughter’s 12 repeats. 

6.3.2 Identification of C9orf72 expansion in HD phenocopy cases 

Of the 514 HD phenocopy cases screened, 10 probands (1.95%, 95% CI 1-4) were positive for 

the C9orf72 expansion, making this mutation the commonest identified cause of HD 

phenocopy syndromes in a UK cohort (Wild et al., 2008, Hensman Moss et al., 2014).   

No C9orf72-positive cases had intermediate sized HD CAG repeats in the Huntingtin gene, and 

there was no correlation between the larger HD normal allele and age of onset.  

 

Subject Age at 

onset 

Rs3849942 

genotype 

Expansion size 

estimated by 

southern 

hybridisation 

Goldman 

score 

1 60 AA 4010 4.5 

2 56 GA 3441 1 

3 55 AA 3682 1 

4 36 AA 3180 1 

5 50 GA 2939 3 

6 56 GA 2939 0 

7 8 GA 3186 3 

8 44 GA  3518 3 

9 19 AA insufficient DNA 4.5 

10 58 GA insufficient DNA 3 

Table 6.2: Age at onset and genetic results of C9orf72 expansion positive cases 

 

Southern hybridisation (Table 6.2 and Figure 6.2) of 8/10 subjects for whom there was 

sufficient DNA demonstrated that the size of expansion in this HD Phenocopy case series was 

not significantly different from that found in series with other clinical presentations of the 
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C9orf72 expansion (Beck et al., 2013).  There was no significant difference in expansion size 

between those with and without chorea/dystonia.   

 

 

Figure 6.2: Southern Blot of eight HD phenocopy patient DNAs, blot produced by Mark Poulter.  

Southern Blot of eight HD phenocopy patient DNAs, showing that C9orf72 repeat expansions 

can be seen in all cases. The asterisk indicates a GGGGCC containing a short-tandem-repeat 

genome motif unrelated to C9orf72.  The samples are ordered from 1 – 8 from left to right; 

there was insufficient DNA to blot samples 9 and 10.  

6.3.3 Presence of risk haplotype in those with expansion mutations and with 

intergenerational repeat instability  

Previous reports have linked the C9orf72 expansion mutation with the rs3849942 A allele: all 

individuals with the expansion were either heterozygous or homozygous for rs3849942 A 

(DeJesus-Hernandez et al., 2011, Beck et al., 2013).  Genotyping of the C9orf72-positive HD 

phenocopy cases demonstrated that all were heterozygous or homozygous for the rs3849942 

A allele, thus our data are consistent with previous reports (DeJesus-Hernandez et al., 2011) 

(Table 6.2).   
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In order to examine whether all expansion positive cases share an ancient common ancestor 

all cases in our lab were tested for 10 microsatellites over 13.1 Mb surrounding C9orf72.  I 

examined these microsatellites on my HD phenocopy cases, these data supported the finding 

of a lack of association between the risk associated SNP rs3849942 and any microsatellite 

marker.  In one case the microsatellite data supported findings from the sizing assay that the 

case was homozygous for the C9or72  expansion.  This case (case 4) is discussed in detail in 

Fratta et al, which I am a co-author on (Fratta et al., 2013). 

6.3.4 Clinical data 

The average age at onset in this cohort was 48.8 years in those with precise onset data (SD 

19.3, N=176).  300 subjects were seen at NHNN, 214 at other hospitals.  Of those seen at 

NHNN, 45.3% were seen by a Movement Disorders Consultant, 15.3% by a Cognitive Disorders 

Consultant, 14.3% by a Neurogenetics Consultant and 25% by other Consultant Neurologists.    

Of the entire cohort, 19.5% had a family history of similar neurodegenerative disease whereas 

70% of C9orf72-positive cases had a positive family history (see Goldman scores, Table 6.1 & 

6.2).  These results suggest that there is a predominance of those with family history, but 

sporadic C9orf72-positive cases may be possible.   

 

Of the C9orf72-positive cases the mean age of onset was 42.7 years, range 8-60.  Early 

psychiatric and behavioural problems were common; they were the first recorded symptoms 

in six of the cohort.  Depression occurred in four, obsessions in two, apathy in two and 

psychosis in two cases.   

 

Movement disorders were a prominent feature - three exhibited chorea, four dystonia, four 

myoclonus and three tremor (Table 6.3).  Six of the ten subjects had rigidity and five 

bradykinesia.  Chorea was observed periorally in one, was generalised with predominant head 

and arm involvement in one, and in the left arm and leg in another.  Of the four subjects with 

dystonia, three were observed to have torticollis.  In four of the ten subjects upper motor 

neuron signs were noted; lower motor neuron signs were not observed in any.   

Cognitively, executive dysfunction was noted in six subjects, and memory impairment was 

present in six; in subject 6 for whom limited history was available, ‘cognitive impairment’ was 

noted. 

 

Of eight cases with available MRI reports four had generalised atrophy. 
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Case 4 was found to be homozygous for the C9orf72 expansion mutation and has been 

described in detail in Fratta et al (Fratta et al., 2013).  

 

 Case 

Clinical feature 1 2 3 4 5 6 7 8 9 10 

Chorea     √  √  √  

Myoclonus √   √ √  √    

Dystonia    √ √  √  √  

Tremor     √   √  √ 

Rigidity   √ √ √  √ √  √ 

Bradykinesia    √ √  √ √  √ 

Torticollis    √ √   √   

UMN signs    √ √   √  √ 

Depression   √ √ √   √   

Anxiety √ √         

Apathy    √ √      

Executive dysfunction √ √ √ √    √  √ 

Impaired memory  √ √ √ √  √   √ 

Impaired face recognition  √ √    √    

Impaired verbal fluency √    √     √ 

Table 6.3: Summary of the clinical features of ten C9orf72 expansion-positive cases. UMN = 

upper motor neuron. 

6.3.5 Comparisons between C9orf72 positive cases and the rest of the HD 

phenocopy cohort 

To examine whether there are particular HD phenocopy cases in whom C9orf72 testing should 

be prioritized, I compared the frequencies of symptoms and signs between the whole cohort 

and those with the expansion (Table 6.4).  Fisher’s exact test was performed to investigate 

association between each clinical feature and the outcome of the C9orf72 genetic test.  The 

presence of cognitive and psychiatric features, and some movement disorder features 

(dystonia, bradykinesia/rigidity, tremor, myoclonus and upper motor neuron features), were 

significantly associated with a positive C9orf72 test (Table 6.4).  Though there may be some 

degree of ascertainment bias as more clinical detail was recorded for positive cases, it remains 

clear that many symptoms characteristic of HD phenocopies are associated with a C9orf72 

gene expansion.   
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 Number in 

C9orf72 negative 

cases (N=504) 

(Percentage) 

Number in 

C9orf72 positive 

cases (N=10) 

(Percentage) 

Number in whole 

HD phenocopy 

cohort (N=514) 

(Percentage) 

P value 

(Fisher's 

exact test) 

All movement 

disorder 

features 

394 (78%) 8 (80%) 402 (78%) 1 

Chorea 154 (31%) 3 (30%) 157 (31%) 1 

Dystonia 53 (11%) 4 (40%) 57 (11.1%) 0.017 

Bradykinesia/ 

rigidity 

78 (15%) 6 (60%) 84 (16%) 0.002 

Tremor 39 (8%) 3 (30%) 42 (8%) 0.041 

Ataxia 72 (14%) 1 (10%) 73 (14%) 1 

Myoclonus 31 (6%) 4 (40%) 35 (7%) 0.003 

UMN features 18 (4%) 4 (40%) 24 (5%) <0.001 

LMN features 8 (1.6%) 0 (0%) 8 (2%) 1 

Psychiatric 

problems 

53 (11%) 7 (70%) 60 (12%) <0.001 

Depression 17 (3%) 4 (40%) 21 (4%) 0.035 

Anxiety 4 (0.8%) 2 (20%) 6 (1%) 0.005 

Cognitive 

impairment 

167 (33%) 9 (90%) 176 (34%) <0.001 

Executive 

dysfunction 

19 (4%) 6 (60%) 25 (5%) <0.001 

Memory 

problems 

29 (6%) 9 (90%) 176 (34%) <0.001 

Family history 98 (19%) 7 (70%) 105 (20%) 0.001 

Table 6.4: Phenotypic features of C9orf72 negative & positive cases within HD phenocopy 

cohort, and outcome of Fisher's exact test to test for association between clinical feature and 

genetic test outcome. 

 

6.3.6 An illustrative case 



181 
 

Case 5, a right-handed Caucasian woman, had a normal birth and development and was 

university educated.  She worked in a professional job and was well until a sudden 

bereavement when she was fifty after which she became depressed.  

At around 55y increasing fatigue was noted and she had her first falls, initially backwards.  She 

stopped working, and developed a change in personality with decreased interest in her 

environment and child-like behaviour.  She developed hypophonia and slurred speech.   

By 58y she was having difficulty mobilizing and within 12 months went from independent-

living to being mute, profoundly bradykinetic and requiring a hoist to transfer. She developed 

dystonic posturing of her feet and hands, and involuntary movements and a tremor in her 

lower limbs.   

 

In her family history, her father died of dementia without motor problems aged 69y.  

She was admitted to hospital for investigation aged 60y.  On examination there was akinetic 

mutism with marked axial rigidity.  There was left laterocollis, minor right torticollis, perioral 

movements and occasional right cheek movements. There was broken pursuit and slow 

broken saccades.  There was moderate rigidity with spasticity in the upper limbs and severe 

rigidity in the lower limbs.  Plantars were extensor.  Palmomental and pout reflexes were 

present.  There was perseveration and frontal features.  MMSE (mini mental state 

examination) was 16/25.   

 

There was no other significant medical history.  Blood tests did not reveal any haematological, 

biochemical, endocrine, immunological or infective cause of the presentation.  CSF was 

unremarkable; CSF specific proteins: 14-3-3 negative, S100 0.19, Tau 169, A-beta 1-42 313.  

MRI brain the year prior to admission showed small vessel disease only.  CT brain: generalised 

volume loss of cerebrum and cerebellum, with no specific predilection and mild-moderate 

small vessel disease.  Electroencephalography: normal background rhythm. Dopamine 

Transporter imaging/ DAT scan: suboptimal study. 

  

6.3.7 An unusual case 

Case 7, a right-handed Caucasian man, had a normal birth and early development.  Aged three 

at nursery school, it was noted that he did not mix well with the other children.  At primary 

school aged five he was found to have slight difficulties with writing; aged six he was unable to 

follow basic lessons.  Soon thereafter he was seen by an educational psychologist and was 

diagnosed as having moderate learning difficulties and was transferred to special needs 

school.  
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By age 8y, he had abnormal movements under stress, particularly affecting his hands and 

head.  These became a lot more prominent from 21y when they affected his walking. 

Occasionally his right leg was noted to jerk uncontrollably from under him, and he had some 

falls.  The ‘fidgeting’ and jerking movements of hands and neck deteriorated.  From 21y he 

had increased frustration and aggression. 

 

His parents are non-consanguineous.  His maternal grandmother died of motor neuron 

disease; both parents were well.   

 

Aged 23y he was admitted to hospital for investigation.  Gait was slightly broad based, with 

both arms tending to hold slightly dystonic postures, particularly on the right.  There was 

decreased arm swing, nuchal more than axial rigidity, unsteadiness on heel-toe walking, and 

Romberg’s test was negative.   Eye movements were abnormal, with poor gaze initiation, 

impaired pursuit, saccadic hypometria with head thrusts, and reduced vertical up-gaze.  There 

was generalised chorea with mainly head and arm involvement, oro-buccal chorea, myoclonic 

movements of the head and neck, and some additional dystonic elements with mild 

bradykinesia.  In the limbs there were prominent irregular myoclonic jerks, exacerbated by 

movement and stimuli.  Reflexes and sensation were normal.   

 

MMSE was 20/28.  On Neuropsychological examination, the Wechsler Adult Intelligence Scale-

Revised was within the defective range consistent with learning difficulties.  There was 

evidence of memory impairment for visual and verbal memory.   

 

MRI scan showed one small lacune.  Nerve conduction studies and electromyography were 

normal. Electroencephalography revealed a diffuse and non-specific excess of theta activity 

with only a trace of alpha like activity.  Although the bursts of high voltage slow activity had a 

bursting paroxysmal quality no definite epileptiform activity was seen.  A very extensive set of 

blood tests including white cell enzymes, amino acid profiling did not reveal any 

haematological, biochemical, endocrine, immunological or infective cause of the presentation.   

 

Genetic testing excluded mitochondrial mutations, DRPLA and HD, and karyotyping was 

normal.  Cerebrospinal fluid, skeletal muscle biopsy, axillary skin biopsy, blood films, bone 

marrow aspirate and trephine analysis were all unremarkable.   

6.3.8 A homozygous case 
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As described more extensively in (Fratta et al., 2013) clinically this patient developed early-

onset fronto-temporal dementia, thus the presentation was severe, but not out of the normal 

range of presentations for C9orf72. Neuropathological analysis showed c9FTD/ALS 

characteristics, with abundant p62-positive inclusions in the frontal and temporal cortices, 

hippocampus and cerebellum, as well as less abundant TDP-43-positive inclusions.  

6.4 Discussion  

In this chapter I have presented a large case series which not only demonstrates that the 

C9orf72 expansion is the most frequent cause of HD phenocopy presentations in this UK-

based population, but also that the phenotype of the C9orf72 encompasses a diversity of 

movement disorders, and a younger age of onset than previously recorded.  Interestingly, and 

tying into the work above on somatic instability in repeat disorders, I also found that 

intergenerational repeat instability of the unexpanded C9orf72 repeat occurred on the same 

haplotype background, and in alleles with high normal numbers of repeats. The question of 

whether it is the haplotype, repeat or the interaction of the two which drives the instability 

warrants further investigation.  It seems likely that it is the repeat size that is important here, 

given that in Huntington’s disease there is a relationship between CAG repeat size and 

propensity for intergenerational expansion in HD: sperm from individuals with CAG repeats of 

34 and 35 were at higher risk of expansion than those with lower intermediate repeats 

(Semaka et al., 2013).  Also that larger repeat tracts are known to be more susceptible to 

somatic expansion (Williams and Surtees, 2015b, Veitch et al., 2007, Pluciennik et al., 2013), 

and it is plausible that at least some of the mechanisms that lead to somatic instability and 

intergenerational stability are shared: this would be another interesting topic for future study.  

 

In those in whom HD is suspected, but patients do not have a CAG repeat expansion in HTT, 

attaining genetic diagnosis has been rare (2.8% (Wild et al., 2008)).  The data presented in this 

chapter demonstrate that the C9orf72 expansion is the commonest-identified genetic cause 

of HD phenocopy presentations in this UK cohort, with a prevalence of 1.95% (95% CI 1-4).   

HD is an autosomal dominant condition, classically presenting with a triad of movement, 

cognitive and psychiatric symptoms.  However there is clinical heterogeneity, particularly 

early in disease, and not all characteristic features may be apparent:  90% of adults with HD 

develop chorea, but the clinical spectrum is broad, including Parkinsonian akinetic-rigid 

syndromes and relatively pure dystonic, ataxic and psychiatric presentations (Bates, 2002).   

Around 8% of patients with HD present without an apparent family history of HD (Schneider 

et al., 2007).  Because of this clinical diversity, it is accepted (Wild, 2007, Wild et al., 2008) that 

any definition of Huntington’s disease phenocopy syndromes need encompass not only the 
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classical triad of HD but also syndromes having a major degree of overlap with HD, and those 

without a known autosomal dominant family history.  Those patients with a clear family 

history of HD and with classical manifest HD are more likely to have HD, however many 

patients seen by Neurologists do not present in such a clear cut manner.  Our cohort is 

composed of patients seen by experienced neurologists in whom the diagnosis of HD was 

considered thus it reflects clinical reality.  It is UK-based, and given that UK-based cohorts 

have similar ethnic descent to other European, Australian and North American cohorts, our 

findings are likely to be representative of cohorts from these areas.  In patients of African 

origin (particularly Southern Africans), JPH3 expansion remains the commonest cause of HD-

like presentations (Magazi et al., 2008).   

 

Identifying the causes of HD phenocopy syndromes is of importance to the diagnosis and 

management of patients with these presentations, as well as the counselling of such 

individuals and their relatives in matters of genetic testing, life choices and reproduction 

(Wild, 2007).  Diagnostic tests for the C9orf72 mutation are now available.  Many symptoms 

characteristic of HD were associated with the subject being C9orf72 positive; given this, and 

the high frequency of C9orf72 expansion among HD phenocopies mean that we believe that it 

should be tested for in all HD phenocopy cases.  In the future it is likely that multi-gene 

‘disease panels’ will supersede the need for sequential genetic testing, however since 

C9orf72, like many other causes of HD phenocopies is an expansion mutation, it will remain 

important for the clinician to be aware of which tests are most appropriate for different 

patients and request them accordingly.  In view of our findings I proposed a revised clinico-

genetic algorithm for the investigation of HD phenocopy cases, shown here in Figure 6.3 

(Hensman Moss et al., 2014). 
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Figure 6.3: Algorithm for the investigation of HD phenocopy cases.  Proposed clinico-genetic 

algorithm for the work-up of Huntington’s disease phenocopy patients, highlighting key 

diagnoses to be considered.  SCA, Spinocerebellar ataxia; HDL2, Huntington’s disease-like 2, 

DRPLA, dentatorubral-pallidoluysian atrophy; NBIA, Neurodegeneration with Brain Iron 

Accumulation.  (Produced by me after (Wild, 2007), published in (Hensman Moss et al., 2014), 

image reproduced with permission of the rights holder, the American Academy of Neurology.  

 

 

The effects of the C9orf72 expansion are known to be both clinically and pathologically varied 

(Murray et al., 2011) and it is the major cause of both familial and sporadic ALS and FTLD, 

which are themselves phenotypically heterogeneous conditions.    Parkinsonism, particularly 

rigidity and bradykinesia, has been previously noted in C9orf72-positive individuals (O'Dowd 

et al., 2012, Dejesus-Hernandez et al., 2012, Boeve et al., 2012); the C9orf72 mutation has 

been found in some cohorts of patients with Parkinson’s disease (Lesage et al., 2013) and not 

others (Yeh et al., 2012, Akimoto et al., 2012, Dejesus-Hernandez et al., 2012).  In this study 

we have demonstrated that the clinical phenotypes caused by C9orf72 expansion mutations 

are broader than previously noted to date.  It can present with a movement disorder including 

chorea, dystonia, myoclonus and tremor. The combination of movement disorder, cognitive 

decline and psychiatric and behavioural problems, often with a family history of similar 
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problems, explains why C9orf72-positive cases can have a presentation very similar to HD.  It 

is notable that ALS-type symptoms were relatively infrequent in the HD phenocopy C9orf72 

cases: none had lower motor neuron signs, while 40% had upper motor neuron signs.  By 

contrast, symptoms more characteristic of FTLD such as cognitive impairment were much 

more prevalent, suggesting that there is more overlap between the HD-like and FTLD-like 

cases.  

 

The average age of onset for C9orf72 in published reports is around 57 years (Mahoney et al., 

2012, Renton et al., 2011, Majounie et al., 2012, Boeve et al., 2012), in this study it is lower at 

42.7 years, with range 8 – 60, suggesting that the condition should be considered in the 

differential diagnosis not only in a wider range of clinical presentations, but in a wider 

demographic group than previously identified.    

 

We examined whether the difference in phenotype could be accounted for by a different size 

of expansion by Southern hybridisation: the size of expansion in our HD phenocopy cohort 

was not significantly different from that of other cohorts (Beck et al., 2013).  Furthermore, 

among the 8 C9orf72-positive subjects examined here, there is no statistically significant 

association between expansion size and age of onset.  Case 7, who had motor onset at 8y, 

underwent whole-exome sequencing; no large-scale structural abnormalities were detected.  

An important caveat is that there is evidence of reduced penetrance of the C9orf72 expansion 

given that the population frequency of C9orf72 expansion is 1 in 691 (Beck et al., 2013) in the 

UK population, so there is a small possibility of false positives accounting for one or more of 

these unusual presentations of C9orf72 mutations. 

 

Among the ten HD phenocopy C9orf72 cases, there was a tendency for those with chorea and 

dystonia to have younger ages of onset than those without them: the average age of onset of 

subjects with chorea/ dystonia in this cohort is 28.3, whereas the average age of onset of 

those without them is 54.8 (P=0.019, Independent samples Mann-Whitney U-test).  This may 

reflect our ascertainment criteria, since HD-phenocopy cases are more likely to be young and 

have movement disorders than FTLD or ALS cases. However, it is possible that the C9orf72 

expansion with these motor symptoms manifests with earlier onset.   

 

Incomplete penetrance has been previously suggested in C9orf72 expanded individuals 

(Pamphlett et al., 2012, Friedland et al., 2012, Boeve et al., 2012) which has important 

implications for genetic testing.  In this case series there was no reported family history in 
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three cases, and case 7’s family history is compatible with incomplete penetrance – the 

subject’s maternal grandmother had MND, but the mother was well. 

 

One of the subjects discussed in this study was found to be homozygous for the C9orf72 

expansion mutation.  Given that the clinical phenotype of this subject was within the range of 

other presentations of the disease, rather than much more severe or completely different this 

supports a gain-of-function mechanism being operational in C9orf72 expansion disease.  
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Chapter 7: Investigations of the effect of disease status, stage and 

rate of progression on the transcriptome in Huntington’s disease 

7.1 Introduction 

As discussed in Chapter 1, HD manifests itself clinically with various changes within an 

individual which develop over time including motor, cognitive and psychiatric dysfunction.  

However, how the expanded CAG repeat in the huntingtin protein effects downstream 

biology and results in the disease phenotype is incompletely understood.  One area of interest 

is the ways in which the transcriptome is altered in HD- the expression pattern of proteins 

within a cell.  Transcriptional dysregulation is a central feature of HD pathogenesis (Hodges, 

2006). Expression levels of specific genes, differential splicing and allele-specific expression of 

transcripts can be accurately determined by RNA sequencing (RNA-Seq) experiments, and it 

also can quantify low expressed transcripts ((Reviewed in Wang et al., 2009)). Studies using 

RNA-Seq have already altered our view of the extent and complexity of eukaryotic 

transcriptomes (Hensman Moss et al., 2017b). 

 

HD research has largely focused on the brain due to the presence of characteristic mutant 

huntingtin protein aggregates in the brain (Bates et al., 2015), and because the prominent 

symptoms and signs can be linked to neurodegeneration in the basal ganglia and cerebral 

cortex (van der Burg et al., 2009). However, mutant HTT is ubiquitously expressed (Trottier et 

al., 1995) and mounting evidence suggests it has direct effects in peripheral tissues (van der 

Burg et al., 2009, Carroll et al., 2015), though whether these effects are distinct, or parallel 

those in the brain remains unclear. Clinically, HD patients demonstrate peripheral immune 

dysfunction pre-symptomatically (Tai et al., 2007, Bjorkqvist et al., 2008, Kwan et al., 2012c, 

Träger et al., 2015), as well as weight loss that leads to cachexia with advancing disease 

(Carroll et al., 2015). There is progressive muscle wasting (Busse et al., 2008), endocrine 

dysfunction (Saleh et al., 2009) liver impairment (Carroll et al., 2015), cardiac dysfunction 

(Lanska et al., 1988, Mihm et al., 2007, Pattison et al., 2008). Mutant HTT protein aggregates 

can be found in the peripheral tissues of HD mice (Orth et al., 2003), as well as advanced 

patients (Turner et al., 2007). These peripheral features may contribute to CNS pathology, 

disease progression and mortality (Carroll et al., 2015, van der Burg et al., 2009), and strongly 

suggest that HD is a systemic disorder.  

 

Peripheral tissues have the research advantage that they can be sampled minimally invasively 

and inexpensively from living patients, enabling longitudinal study throughout disease course.  
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This is in contrast to brain tissue, the availability of which is limited and is mostly from post-

mortem subjects with end-stage disease (Montanini et al., 2013, Tomita et al., 2004).   

While blood has been used for transcriptomic studies, studies of gene expression changes in 

HD blood have been inconsistent. Using microarray technology, Borovecki et al. (2005) 

identified 12 upregulated transcripts, seven of which were also upregulated in brain. 

However, subsequent studies did not replicate these results (Runne et al., 2007, Lovrecic et 

al., 2009, Mastrokolias et al., 2015). Using tag-based serial analysis of gene expression (SAGE) 

in blood, Mastrokolias et al. (2015) found 167 genes differentially expressed by motor score, 

40 of which had previously been reported in at least one microarray study. 

 

We therefore conducted a transcriptomic analysis of whole blood in human HD using RNA-

Seq. We studied differential expression of individual gene transcripts and enrichment of 

differential expression in gene sets in two independent cohorts from Track-HD (Tabrizi et al., 

2009b) and Leiden, looking for transcriptional signatures relating to disease status and disease 

stage. We then investigated whether transcriptional changes seen in blood parallel those from 

previous studies in HD brain.   

 

One of the main aims of this thesis is to identify factors which modulate the progression of 

Huntington’s disease, and the identification of genetic variants modulating progression is 

discussed in Chapters 3-5.  However, many genetic variants of small effect are likely to be 

regulatory rather than coding variants.  In addition many non-genetic effects are likely to 

manifest in altered gene expression mediated by epigenetic changes (Lee et al., 2013, Horvath 

et al., 2016, Roubroeks et al., 2017, Majewski and Pastinen, 2011, Feil and Fraga, 2011). 

Therefore, in addition to investigating disease status related changes in transcript levels, in 

the second part of this chapter I discuss work to investigate whether there are transcriptional 

changes which correlate with the rate of disease progression in HD.   

 

Regarding my involvement in the work in this chapter, much of the work was collaborative, 

and I was involved in this study from inception.  I was responsible for the reporting and 

collaborative working within the Neuromics Consortium which funded the work. I selected the 

subjects to sequence, obtained permissions to use their samples, and arranged for it to be 

shipped to DeCODE in Iceland for sequencing.  I was involved in setting up collaborations with 

Dr Vincent Plagnol and his postdoctoral assistant Dr Kitty Lo for bioinformatics support, and 

was involved in the discussions about the analysis plan with them.  I helped set up the 

collaboration with Dr Willeke van Roon-Mom at Leiden University Medical Centre.  Pathway 

and gene co-expression analysis was conducted by collaborators at Cardiff University led by 
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Professor Peter Holmans.  I assisted with writing the manuscript reporting the data for the 

effect of disease status and stage, with the help of Dr Michael Flower and collaborators as I 

was on Maternity leave while we were writing the final manuscript, this paper was published 

in Scientic Reports (Hensman Moss et al., 2017a).  Bioinformatic, pathway and gene co-

expression analysis was conducted by collaborators.  The material examining the role of 

disease progression on the transcriptome in HD has not been published elsewhere and much 

of the work is my own.  

7.2 Materials and methods 

All experiments we performed in accordance with the Declaration of Helsinki and approved by 

the University College London (UCL)/UCL Hospitals Joint Research Ethics Committee and the 

LUMC IRB. Peripheral blood samples were donated by genetically-diagnosed HD patients and 

controls, and all subjects provided informed written consent. 

7.2.1 Cohorts 

The Track-HD cohort is described in General Methods, Chapter 2.  I pre-selected a 

representative sample from the Track-HD study (Table 7.1), to assure a wide range of disease 

risk, severity and progression rate. Control subjects were age and gender matched to 

individuals in the premanifest and manifest groups, and selected from spouses or partners to 

ensure consistency of environments. The sample from the Track-HD cohort consisted of 54 

premanifest gene carriers, 63 manifest HD subjects and 23 controls. Manifest subjects 

demonstrated motor abnormalities that were unequivocal signs of HD, as rated by the 

assessor and supported by total motor scores (TMS) over 5 on the Unified Huntington’s 

Disease Rating Scale (UHDRS). Premanifest gene carriers had a burden of pathology score (age 

x [CAG – 36.5)) (Penney et al., 1997) greater than 250, and a TMS of 5 or lower and a 

diagnostic confidence score (DCS) less than 4 on the UHDRS (Group, 1996a), indicating no 

substantial motor signs (Tabrizi et al., 2009b). The unified Huntington’s disease progression 

score (Chapter 2) was used to select TRACK-HD subjects with fast, average and slow 

progression from both the Premanifest and manifest HD groups (Table 7.1) in order to get the 

maximum phenotypic range for analysis.  Age and clinical scores at the time of blood 

collection were used in this analysis.   

 

Through a collaboration I helped set up with Willeke van Roon-Mom (Leiden University 

Medical Centre, LUMC) as a part of the European Commission funded Neuromics project we 

had access to LUMC samples. The LUMC cohort (Mastrokolias et al., 2015) consisted of 18 

premanifest gene carriers, 56 manifest HD subjects and 27 age and gender-matched controls. 
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Motor onset was determined by an experienced neurologist using the same UHDRS standard 

as in TRACK-HD. All premanifest carriers showed no substantial motor signs, with a TMS of 5 

or less and a UHDRS diagnostic confidence level less than 4. All controls were free of known 

medical conditions. Blood sample collection protocols, storage, and analysis methods, 

described below, were identical for the two cohorts. 

 

In order to conduct progression analysis on the LUMC samples, a novel cross sectional severity 

based progression measure was developed to assess progression within this cohort.  Given 

this progression score was developed for this purpose, the full range of progression scores are 

reflected in this study. 
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Cohort Group N Mean age, y ± SD 

(range) 

Gender (male/ 

female) 

Mean (CAG)n length ± 

SD (range) 

Mean TMS ± SD 

(range) 

Mean TFC ± 

(range) 

Rate of progression 

(n) 

Fast Average Slow 

TRACK-

HD 

HD 112 46 ± 10 (22-64) 50/62 44 ± 3 (39-59) 14 ± 13 (0-45)  12 ± 2 (7-13)    

     

Premanifest 

50 42 ± 9 (22-64) 24/26 43 ± 3 (39-52) 2 ± 2 (0-8) 13 ± 0 (12-13) 16 14 20 

Manifest 62 48 ± 10 (23-64) 26/36 44 ± 3 (39-59) 23 ± 11 (5-45) 11 ± 2 (7-13) 27 13 22 

Control 22 45 ± 5 (34-53)         

LUMC 

HD 74 53 ± 11 (29-79) 34/40 44 ± 3 (39-53) 32 ± 31 (0-102) 8 ± 5 (0-13)    

     

Premanifest 

18 46 ± 10 (29-63) 5/13 42 ± 2 (39-47) 3 ± 2 (0-5) 12 ± 1 (10-13)    

Manifest 56 55 ± 11 (35-79) 29/27 44 ± 3 (39-53) 42 ± 30 (6-102) 7 ± 5 (0-13)    

Control 27 43 ± 11 (26-65)  13/14       

Combined 
HD 186 48 ± 11 (22-79) 84/102 44 ± 3 (39-59) 21 ± 24 (0-102) 10 ± 4 (0-13)    

Control 49 44 ± 9 (26-65) 22/27       

Table 7.1: Track-HD and Leiden cohorts for RNA-Seq analysis.  

Manifest subjects demonstrated motor abnormalities that were unequivocal signs of HD. Premanifest gene carriers had a total motor score of 5 or lower and a 

diagnostic confidence score (DCS) less than 4 on the UHDRS, indicating no substantial motor signs. The HD group consists of the combined premanifest and 

manifest subjects. Controls were matched for age and gender. Age and clinical scores considered for the analysis were at time of blood collection. SD – standard 

deviation; TFC – Total Functional Capacity; TMS – Total Motor Score. 
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7.2.2 Sample collection 

Whole blood was collected in two PAXGene Blood RNA tubes (PreAnalytix, Qiagen/BD 

Company) per subject, and immediately placed upright at room temperature. They were 

checked at 5 hours for incomplete mixing or separation, and any showing separation were 

remixed with a further 10 inversions. Tubes were stored overnight at -20C and transferred to 

-80C the following morning. TRACK-HD samples were sent on dry ice to Biorep within 30 

days.  LUMC samples were stored on site until transfer to deCODE, Iceland.  

7.2.3 RNA preparation 

RNA preparation for the TRACK-HD cohort was done by Biorep, Italy; and for the LUMC 

samples it was done by deCODE, Iceland, however both followed the same standard protocol.  

Total RNA extraction was performed using the PAXGene Blood RNA kit (catalog N. 762174; 

PreAnalytix, Qiagen/BD Company), following the supplier’s instructions.  Each solution in the 

kit was divided into aliquots to process batches of 12 samples.  Replicate tubes for each 

subject were processed on different days.  RNA was stored at -80oC before proceeding with 

the quality measurements and further use.  RNA was collected by centrifugation, washing 

with 70% ethanol, and resuspended in buffer.  Quality measurements of total RNA were made 

using spectrophotometric analysis (Nanodrop), 260/280 ratio denaturing agarose gel, and the 

RNA 6000 Nano kit for the Agilent Bioanalyzer (catalog N. 5067-1511, Agilent Technologies).  

Erythrocytes contain high levels of haemoglobin, and globin transcripts are highly expressed 

so can constitute up to 76% of total mRNA: Van Roon-Mom and colleagues established that 

depletion of globin transcripts from whole can enrich data obtained from next generation 

sequencing-based expression profiling (Mastrokolias et al., 2012). Samples for this project 

were therefore globin reduced using the GLOBINclearTM method (catalog N. AM1980, 

ThermoFisher Scientific).  Quality control measures were made on globin-reduced samples on 

the Bioanalyzer RNA 6000 Nano kit (Catalog N. 5067-1511, Agilent Technologies). 

7.2.4 RNA Sequencing 

RNA sequencing for all samples was done by DeCODE, Iceland.  Indexed cDNA sequencing 

libraries were prepared using the TruSeqTM Poly-A mRNA method (Illumina)(Illumina, 2014). 

Using this method the poly-A containing mRNA molecules are purified using oligo-dT attached 

magnetic beads: the adenines form complementary base pairs to thymines.  The purified RNA 

is fragmented into small pieces using divalent cations under elevated temperature.  The 

cleaved RNA fragments are copied into cDNA using reverse transcriptase and random 
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hexamer primers (a mixture of oligonucleotides representing all possible sequence for that 

size).  DNA Polymerase and RNAase H catalyze the synthesis of the second cDNA strand.  The 

cDNA fragments then go through an end repair process to convert the overhangs into blunt 

ends.  An ‘A’ base is then added to the 3' end of the blunt phosphorylated DNA fragments 

which prepares the next step in which DNA fragments are ligated to the adapters, which have 

a single ‘T’ base overhang at their 3' end.  The cDNA templates are purified on a gel, then 

enriched with PCR to create the final cDNA library.  

 

Paired-end sequencing of indexed cDNA libraries on a HiSeq 2500 generated at least 50 M 

reads per sample. Sequencing was performed using sequencing by synthesis (SBS) and cluster 

kits from Illumina. With SDS sequencing, a fluorescently labelled reversible terminator is 

imaged as each deoxy-NTP (nucleotide triphosphate) is added, and then cleaved to allow 

incorporation of the next base, enabling each base to be detected as they are incorporated 

into the DNA template strands. Since all 4 reversible terminator-bound dNTPs are present 

during each sequencing cycle, natural competition occurs minimizing incorporation bias 

(Illumina, 2015). Indexed samples were de-multiplexed and FASTQ files were generated. 

7.2.5 Quality control 

Sequencing failed for six TRACK-HD samples, including four premanifest, one manifest and 

one control subject. Quality control analysis was performed using the RNA-SeQC package 

(DeLuca et al., 2012), ensuring measures including rRNA rate, mapping rate, concordance 

mapping rate and uniqueness rate were within acceptable ranges. Globin depletion was 

checked by inspecting read counts mapped to HBB, HBA1 and HBA2, confirming they made up 

less than 2% of reads for all samples. Four TRACK-HD and six Leiden samples failed quality 

control for duplication rate over 75%, GC bias or 5’ bias, and were removed, leaving 48 

premanifest, 61 manifest and 21 control subjects in the TRACK-HD cohort and 15 premanifest, 

54 manifest and 26 control subjects in the Leiden cohort. 

7.2.6 Gene expression analysis 

After planning meetings and discussions which I helped organize and took part in, the gene 

expression analysis was performed by Dr Kitty Lo under the supervision of Dr Vincent Plagnol, 

UCL Genetics Institute.  The result of sequencing is multiple fragments of DNA.  A critical step 

in the RNA-seq data analysis is the alignment of partial transcript reads to a reference genome 

sequence- to establish where the sequence comes from. Reference-based alignment methods 

use the sequence of each read to find a potential mapping location either by an exact match 

for a reference or by scoring sequence similarity. Our RNA-Seq data were aligned to the 
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human reference genome hg19 using TopHat2 (Kim et al., 2013, Trapnell et al., 2009, Trapnell 

et al., 2012), which maps reads to the reference with Bowtie. TopHat2 can align reads of 

various lengths, and allow for various length indels and fusion breaks which can occur after 

genetic translocation.  Read counts were summarized using HTSeq, keeping any duplicates 

and using the Ensembl transcript/gene database 

(http://www.ensembl.org/info/data/ftp/index.html, obtained in gtf format, genome build 

GRCh38.3, gene build (updated in June 2015). To remove residual batch effects the R package 

svaseq was used (Leek, 2014). Using the cleaned count data, differential expression analysis 

was conducted using the R package DESeq2 (Love et al., 2014) which uses shrinkage 

estimation for dispersions and fold changes to improve stability and interpretability of 

estimates. Outlier counts were removed using a Cooks distance cutoff of 5 in DESeq2 (Cooks 

distance is a statistical technique of evaluating the effect of outliers which may distort 

analysis). After filtering by the mean of normalized counts, 18,257 transcripts were detected.  

For the analysis of HD stage: firstly disease status: Premanifest / manifest / control, then all 

HD / control were used as categorical variables in DEseq2 and age and gender were used as 

covariates in the analysis.  For the progression score analysis the unified Huntington’s disease 

progression score (see Chapters 2.5 and 3) was used as a numeric variable in DESeq2, and 

disease stage (HD / preHD) was used as a covariate.  

7.2.7 Pathway analysis 

Enrichment of differential expression among gene sets corresponding to biological hypotheses 

(pathways) was tested using the Gene Set Enrichment Analysis (GSEA) method (Subramanian 

et al., 2005) by Professor Peter Holmans, Cardiff University as a part of our collaborative 

project. Pathway analysis is introduced in General Methods, Chapter 2.7.8.  Rather than 

defining a list of significant genes, GSEA ranks all genes in order of their differential expression 

statistic, and tests whether the genes in a particular gene set have a higher rank overall than 

would be expected by chance. The analysis is weighted by the differential expression statistic, 

thus giving more weight to more significant genes. Significance of enrichment was obtained 

by randomly permuting gene-wide association statistics among genes. One-sided p-values 

were calculated separately for differential upregulation and downregulation of expression in 

HD, and these were then converted into the corresponding chi-square statistic for use in the 

GSEA analysis. To avoid making a priori assumptions, a large pathway set from publicly 

available pathway databases was collected, including Gene Ontology (GO) (Consortium, 2016), 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (KEGG, 2016), Mouse Genome Informatics 

(MGI) (MGI, 2016), PANTHER (PANTHER, 2016), BioCarta (BioCarta, 2016), REACTOME 

(REACTOME, 2016) and NCI (Institute, last updated: 18 September 2012). This resulted in a 

http://www.ensembl.org/info/data/ftp/index.html
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total of 14,706 functional gene sets, many with overlapping members, containing between 3 

and 500 genes. To correct for multiple testing of pathways we converted the GSEA p-values 

into q-values (Storey and Tibshirani, 2003), which can be interpreted as the minimum false 

discovery rate at which that q-value would be counted as significant. 

 

I also interrogated the gene lists for evidence of enrichment within particular pathways using 

the online software GOrilla (Eden et al., 2009). This uses the order within the list of genes, 

which in my analysis were ranked according to differential expression with a given phenotype 

(see also Chapter 2.7.6).   

Enrichment (N, B, n, b) is defined as follows: 

N - is the total number of genes 

B - is the total number of genes associated with a specific GO term 

n - is the number of genes in the top of the user's input list or in the target set when 

appropriate 

b - is the number of genes in the intersection 

Enrichment = (b/n) / (B/N) 

 

For both the TRACK-HD and LUMC progression analysis GOrilla recognized 19115 genes out of 

19184 gene terms entered, 19115 genes were recognized by gene, 219 duplicate genes were 

removed (keeping the highest ranking instance of each gene) leaving a total of 18896 genes. 

Only 17097 of these genes are associated with a GO term, so N= 17097 in these analyses.  

7.2.8 Gene co-expression networks 

The use of public databases to provide pathways is limited by the pathway curation: due to 

poor annotation of many genes and limitations in our biological knowledge.  To overcome this 

annotation gap, we also tested the sets of gene co-expression modules for enrichment of 

dysregulation, this part of the project was done by Professor Peter Holmans in Cardiff.  Gene 

co-expression modules are constructed on the basis of similar expression patterns across 

samples (Stuart et al., 2003).  Their co-expression suggests that they are controlled by the 

same transcriptional regulatory program, are functionally related, or are members of the 

same pathway or protein complex (Langfelder and Horvath, 2008) (Stuart et al., 2003).  The 

following four sets of data were used for this work: 

1. A set of 124 HD brain expression modules derived by Neueder and Bates (2014), who 

applied weighted gene correlation network analysis (WGCNA) (Langfelder and 

Horvath, 2008) to the Hodges et al. (2006) microarray brain expression data set of 44 

human HD and 36 matched control brains. They generated networks for four brain 
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regions; the caudate nucleus (CN), BA4 region of the frontal cortex, which has motor 

function (FC-BA4), BA9 region of the frontal cortex, involved in association and 

cognitive functions (FC-BA9), and cerebellum (CB). 

2. The set of 117 co-expression modules derived from the Gibbs et al. (2010) dataset, 

comprising microarray expression data from 150 human control individuals measured 

in four brain regions: cerebellum (CB), frontal cortex (FC), caudal pons (Pons) and 

temporal cortex (TCTX). Modules were generated using WGCNA as described in 

(International Genomics of Alzheimer's Disease, 2015). 

3. We generated a set of 213 co-expression modules from Braineac (2016), which 

consists of microarray expression data for 12 brain regions from 134 control brains; 

occipital cortex, frontal cortex, temporal cortex, hippocampus, intralobular white 

matter, cerebellar cortex, thalamus, putamen, substantia nigra, and medulla (inferior 

olivary nucleus). For each brain region, the array data was normalised in the R 

statistical-programming environment using the RMA algorithm (Carvalho and Irizarry, 

2010). Principal Component Analysis (PCA) and hierarchical clustering were used to 

identify single outlier arrays for removal. In addition, small outlier clusters (<6 arrays) 

that were distinct from most of the other arrays were removed (i.e. small clusters 

appearing at the top of the dendrogram). Once outlier arrays were removed, the 

arrays were re-normalized and inspected again and re-processed if necessary until a 

homogenous dataset was produced. WGCNA was performed using the R package to 

derive modules (Langfelder and Horvath, 2008). Multiple probesets of the same gene 

were collapsed to a single value using the collapseRows() function, using default 

settings and based on gene annotation provided by Affymetrix (Affymetrix, 2016). 

Scale independence and mean connectivity were plotted to derive a soft threshold 

power of 6. Networks were unsigned. 

4. The set of 111 co-expression modules from Zhang et al. (2013), generated using 

microarray expression data on 1,647 postmortem samples from three brain regions of 

late-onset Alzheimer’s disease (LOAD) and control subjects; prefrontal cortex (BA9), 

primary visual cortex (BA17), and cerebellum. 

7.2.9 Concordance of fold change in gene expression between HD blood and cortex 

Labadorf et al. (2015a) analyzed the transcriptome of human postmortem prefrontal cortex 

Brodmann area 9 (BA9) from 20 HD subjects and 49 controls using next-generation 

sequencing, identifying dysregulation of immune and developmental genes. Of the 15,834 

genes common to both the combined Track-HD and Leiden blood dataset and the Labadorf et 

al. (2015a) prefrontal cortex dataset, 8447 had a fold change >1 (i.e. upregulated) in blood 
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and 7860 had a fold change >1 in cortex. Thus, if fold changes in the two datasets were 

assumed to be unrelated, the expected probability that a gene would show concordant fold 

change is equal to 

(
8447

15834
) ×  (

7860

15834
) +  (

7387

15834
) ×  (

7974

15834
)  = 0.4997 

The number of genes with concordant fold change in the absence of a relationship between 

the datasets is thus distributed as a binomial (15834, 0.4997) distribution. In the actual data, 

8425 genes were observed to have concordant direction of fold change, significantly higher 

than the number expected by chance (7912). 

7.3 Results: Effect of HD gene status and stage of disease on the 

transcriptome 

7.3.1 No differential expression of individual transcripts in HD whole blood 

between disease stages or states 

Attempting to identify both HD specific and stage-specific changes in gene expression (mRNA) 

level we compared premanifest, manifest and control subjects, whilst controlling for age and 

gender. Premanifest gene carriers had a mean total motor score (TMS) of 2 and total 

functional capacity (TFC) of 13 (Table 7.1), indicating no substantial motor signs. Manifest 

subjects demonstrated motor abnormalities that were unequivocal signs of HD. No transcripts 

were significantly differentially expressed (FDR < 0.05) between premanifest and manifest HD 

in either the Track-HD (Tabrizi et al., 2009b) or the independently collected Leiden cohort, or 

when they these cohorts combined (data for Track-HD shown in Table 7.2).  

Gene ID 
Basic p-

value 

Adjusted 

p-value 
z-score 

Condition 

Premanifest 

Average 

count: 

Manifest 

Average 

count: 

Premanifest 

PHGDH 5.79E-06 0.1044 4.53381 0.4688 237.78 325.33 

SPAG1 4.66E-04 1 -3.49935 -0.4093 422.76 320.67 

GATSL1 6.10E-04 1 -3.42713 -2.0503 1.54 0.38 

IGF1 1.19E-03 1 3.24199 1.2629 4.69 11.56 

IGSF23 1.46E-03 1 -3.18292 -0.6685 20.53 13.20 

OTOGL 1.53E-03 1 -3.16988 -4.4884 0.49 0.02 

MIR29B2 1.57E-03 1 -3.16142 -0.3314 125.69 100.47 

ANKUB1 1.69E-03 1 -3.13974 -0.5821 37.86 25.07 

HIST1H3J 2.02E-03 1 3.08728 1.0005 2.08 4.02 
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ARMC9 2.58E-03 1 3.01333 0.5361 13.81 19.33 

GP5 3.39E-03 1 2.92997 0.3355 140.15 174.27 

HIST1H2AG 3.56E-03 1 2.91473 0.4295 20.10 26.93 

TREM2 3.83E-03 1 -2.89183 -0.6085 9.71 6.36 

RPGRIP1 3.86E-03 1 -2.88954 -0.2727 720.69 604.40 

FOXJ1 4.37E-03 1 2.84985 0.5063 19.95 27.87 

ADAMTS4 4.47E-03 1 2.84315 0.3578 33.71 42.89 

C11orf93 4.86E-03 1 -2.81617 -0.7836 5.51 3.24 

Table 7.2: Differential expression of transcripts for the TRACK-HD manifest HD vs premanifest 

HD samples showing that there are no individually significant differentially expressed 

transcripts.  Only transcripts with unadjusted p-values <0.005 are shown.  

 

As expression changes did not differ significantly between disease stages, all mutant HTT gene 

carriers were combined to increase the analytical power in a comparison of HD and controls. 

Once again there were no individually significant transcripts in independent or combined 

cohorts; the differential expression analysis in the combined cohort is given in Table 7.3.  

Entrez gene ID Gene Symbol p (diffexp) q (diffexp) log2(FC) 

722 C4BPA 7.81E-06 1.41E-01 1.371 

2297 FOXD1 9.09E-05 7.02E-01 -0.785 

3805 KIR2DL4 1.93E-04 7.02E-01 0.651 

196394 AMN1 2.11E-04 7.02E-01 0.208 

94137 RP1L1 2.47E-04 7.02E-01 -1.350 

158248 TTC16 2.67E-04 7.02E-01 -0.347 

100422824 MIR3128 2.86E-04 7.02E-01 0.930 

5797 PTPRM 3.12E-04 7.02E-01 -0.359 

84692 CCDC54 4.79E-04 9.58E-01 2.532 

889 KRIT1 7.30E-04 9.58E-01 -0.081 

54221 SNTG2 7.51E-04 9.58E-01 -0.689 

22979 EFR3B 8.17E-04 9.58E-01 0.494 

56934 CA10 8.42E-04 9.58E-01 2.036 

8763 CD164 9.53E-04 9.58E-01 0.098 

597 BCL2A1 1.06E-03 9.58E-01 0.423 

4940 OAS3 1.12E-03 9.58E-01 0.688 

49 ACR 1.13E-03 9.58E-01 1.237 

9262 STK17B 1.19E-03 9.58E-01 0.132 
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54407 SLC38A2 1.19E-03 9.58E-01 0.124 

285590 SH3PXD2B 1.26E-03 9.58E-01 0.414 

60370 AVPI1 1.49E-03 9.58E-01 0.273 

6425 SFRP5 1.49E-03 9.58E-01 0.634 

387849 REP15 1.49E-03 9.58E-01 1.526 

283726 FAM154B 1.53E-03 9.58E-01 0.748 

143502 OR52I2 1.54E-03 9.58E-01 2.469 

1999 ELF3 1.58E-03 9.58E-01 -0.343 

54957 TXNL4B 1.65E-03 9.58E-01 0.088 

23446 SLC44A1 1.65E-03 9.58E-01 0.116 

693213 MIR628 1.65E-03 9.58E-01 -0.365 

375757 SWI5 1.68E-03 9.58E-01 0.114 

728340 GTF2H2C 1.69E-03 9.58E-01 0.206 

146713 RBFOX3 1.86E-03 9.58E-01 -0.434 

26834 RNU4-2 1.89E-03 9.58E-01 1.028 

79725 THAP9 1.93E-03 9.58E-01 0.149 

164668 APOBEC3H 1.98E-03 9.58E-01 -0.323 

Table 7.3: Differential expression analysis in HD (premanifest and manifest combined) versus 

controls for the combined Track-HD and Leiden cohorts.  

p (diffexp) – p value for differential expression between HD and controls; q (diffexp) – q value 

shows correction for multiple testing in the combined dataset; Log2(FC) – log2 of the ratio of 

the mean counts in HD and controls. Transcripts with P<0.002 are shown.  

7.3.2 Pathways are dysregulated in HD blood compared with controls 

We next asked whether networks of genes with similar functional annotation were 

dysregulated in HD relative to controls. Pathway annotations were collated from publicly 

available gene ontology databases to form a set of generic pathways using the same method 

as the recent HD genome-wide association study (GWAS) of modifiers of age at onset 

(Consortium, 2015a) (see General Methods, Chapter 2.7.8). The number of pathways 

significantly dysregulated in both Track-HD and Leiden blood datasets was significantly higher 

than would be expected by chance (Table 7.4). Our findings indicate shared biology between 

the two independent cohorts despite differences in demographic and disease stage; Leiden 

subjects were on average 7 years older and had correspondingly higher TMS (mean 32 versus 

14 in Track-HD) and lower TFC (mean 8 versus 12 in Track-HD). The significance of the overlap 

was greatly increased in analyses specifying the direction of dysregulation (increased or 
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decreased expression) (Table 7.4). Therefore, directional analyses were used in the combined 

dataset as the primary analysis. 

Reference 

dataset 

Comparison 

dataset 

Direction of 

dysregulation 

in HD 

Number of pathways significant in both 

datasets (p value) 

Generic 

pathways 

HD brain 

modules 

Control 

brain 

modules 

LUMC TRACK-HD Nondirectional  69 (4.6E-02) - - 

Downregulated 139 (<1.0E-

03) 

4 (1.1E-01) 24  (<1.0E-

03) 

Upregulated 219 (<1.0E-

03) 

9  (<1.0E-

03) 

23  (<1.0E-

03) 

LUMC TRACK-HD Nondirectional  69 (1.4E-01) - - 

Downregulated 130 (1.7E-

02) 

4 (3.5E-02) 24 (<1.0E-

03) 

Upregulated 217 (<1.0E-

03) 

10 (<1.0E-

03) 

21 (<1.0E-

03) 

 

Table 7.4: Overlap analysis of Track-HD and LUMC cohorts shows that a significant excess of 

pathways are associated with HD (p < 0.05) in both datasets.  

Significance of overlap is greatest when directionality is taken into account. There is an excess 

of significantly enriched pathways and modules in the reference dataset conditional on the 

pathway being enriched (p < 0.05) in the comparison dataset. The generic pathways gene set 

is collated from publicly-available databases including GO and KEGG. HD brain modules are 

derived from Neueder and Bates (2014). Control brain modules are from the Braineac (2016) 

and Gibbs et al. (2010) expression datasets. 

 

Gene set enrichment analysis (GSEA), with a false discovery rate (q-value) threshold of q < 

0.05 to correct for multiple testing, identified 53 upregulated (Figure 7.1 and Table 7.5) and 

14 downregulated pathways (Figure 7.2 and Table 7.6) that are at least nominally significant 

in both cohorts. Multiple immune-related pathways were upregulated, and RNA processing, 

ATP metabolism and DNA repair were notably downregulated, and T cell related pathways 

approached significance for downregulation. The 10 most dysregulated genes (p < 0.01) from 

the significantly up or downregulated generic pathways (q < 0.05) are listed in Table 7.7.  

Notably, the significantly upregulated pathways contain some of the most differentially 
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expressed transcripts (Table 7.3), with several more contained in pathways reaching nominal 

significance (p < 0.05) for dysregulation. Genes highlighted by MGI pathways appear distinct 

from other pathway databases, likely because they are based on knockout studies in mice.  



203 
 

 

Pathway Number of 

dysregulated genes 

p-value 

(combined) 

q-value 

(combined) 

p-value 

(Track-

HD) 

p-value 

(Leiden) 

Description 

MGI: 2419 434 3.03E-10 4.32E-06 5.10E-05 3.01E-05 abnormal innate immunity                                                                                                                                                                                 

MGI: 3009 432 5.78E-09 4.13E-05 5.96E-06 1.65E-04 abnormal cytokine secretion                                                                                                                                                                              

GO: 50792 117 2.59E-08 1.23E-04 1.12E-02 7.24E-05 regulation of viral process                                                                                                                                                                              

GO: 9615 208 1.22E-07 4.36E-04 3.06E-02 5.34E-06 response to virus                                                                                                                                                                                        

MGI: 2451 278 1.68E-07 4.80E-04 1.26E-02 9.51E-06 abnormal macrophage physiology                                                                                                                                                                           

GO: 19221 308 2.38E-07 5.45E-04 4.60E-05 1.71E-04 cytokine-mediated signalling pathway                                                                                                                                                                      

GO: 2252 365 3.10E-07 5.45E-04 7.01E-03 1.14E-04 immune effector process                                                                                                                                                                                  

MGI: 5025 406 3.44E-07 5.45E-04 5.91E-05 2.02E-04 abnormal response to infection                                                                                                                                                                           

MGI: 1793 372 4.33E-07 5.82E-04 5.93E-05 2.42E-04 altered susceptibility to infection                                                                                                                                                                      

MGI: 8568 305 4.49E-07 5.82E-04 4.79E-05 6.25E-05 abnormal interleukin secretion                                                                                                                                                                           

GO: 48525 48 6.05E-07 7.09E-04 1.83E-02 6.41E-05 negative regulation of viral process                                                                                                                                                                     

MGI: 8250 462 6.46E-07 7.09E-04 4.99E-04 4.84E-03 abnormal myeloid leukocyte morphology                                                                                                                                                                    

REACTOME 287 264 8.59E-07 8.76E-04 1.24E-03 3.86E-05 REACT:CYTOKINE SIGNALLING IN IMMUNE SYSTEM                                                                                                                                                                

GO: 71345 403 1.15E-06 1.08E-03 4.41E-05 4.82E-04 cellular response to cytokine stimulus                                                                                                                                                                   

GO: 45069 53 1.21E-06 1.08E-03 1.37E-02 2.99E-05 regulation of viral genome replication                                                                                                                                                                   

GO: 45071 37 2.30E-06 1.93E-03 1.19E-02 1.36E-04 negative regulation of viral genome replication                                                                                                                                                          
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GO: 1817 409 2.76E-06 2.19E-03 2.64E-03 1.81E-03 regulation of cytokine production                                                                                                                                                                        

MGI: 8251 387 3.12E-06 2.34E-03 6.32E-04 2.83E-03 abnormal phagocyte morphology                                                                                                                                                                            

GO: 31347 430 4.73E-06 3.38E-03 7.31E-04 6.90E-04 regulation of defence response                                                                                                                                                                           

MGI: 2406 317 6.87E-06 4.67E-03 1.11E-03 1.33E-03 increased susceptibility to infection                                                                                                                                                                    

GO: 50778 403 7.29E-06 4.73E-03 1.50E-02 3.41E-02 positive regulation of immune response                                                                                                                                                                   

MGI: 8835 258 8.31E-06 5.16E-03 1.25E-02 1.67E-04 abnormal intercellular signalling peptide or protein level                                                                                                                                                

MGI: 2444 438 1.14E-05 6.69E-03 8.89E-03 6.28E-03 abnormal T cell physiology                                                                                                                                                                               

MGI: 5005 243 1.21E-05 6.69E-03 1.05E-03 1.25E-04 abnormal self-tolerance                                                                                                                                                                                  

MGI: 1844 242 1.28E-05 6.69E-03 8.83E-04 1.07E-04 autoimmune response                                                                                                                                                                                      

MGI: 8713 253 1.35E-05 6.69E-03 1.24E-02 3.66E-04 abnormal cytokine level                                                                                                                                                                                  

GO: 5773 379 1.36E-05 6.69E-03 7.03E-03 9.19E-03 vacuole                                                                                                                                                                                                  

GO: 323 318 1.41E-05 6.69E-03 5.94E-03 8.00E-04 lytic vacuole                                                                                                                                                                                            

GO: 5764 318 1.41E-05 6.69E-03 5.94E-03 8.00E-04 lysosome                                                                                                                                                                                                 

MGI: 5000 246 1.63E-05 7.52E-03 1.07E-03 1.71E-04 abnormal immune tolerance                                                                                                                                                                                

MGI: 8195 412 1.94E-05 8.41E-03 3.20E-03 1.90E-04 abnormal antigen presenting cell morphology                                                                                                                                                              

MGI: 8469 437 2.68E-05 1.08E-02 2.01E-02 2.07E-04 abnormal protein level                                                                                                                                                                                   

GO: 2253 325 2.92E-05 1.13E-02 3.85E-02 4.33E-02 activation of immune response                                                                                                                                                                            

REACTOME 589 161 3.02E-05 1.14E-02 2.65E-03 5.75E-04 REACT:INTERFERON SIGNALLING                                                                                                                                                                               

MGI: 2441 257 3.42E-05 1.25E-02 1.02E-02 9.51E-03 abnormal granulocyte morphology                                                                                                                                                                          

MGI: 2462 180 4.09E-05 1.40E-02 6.48E-04 2.50E-02 abnormal granulocyte physiology                                                                                                                                                                          
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GO: 71357 61 4.20E-05 1.40E-02 1.17E-02 8.60E-05 cellular response to type I interferon                                                                                                                                                                   

GO: 60337 61 4.20E-05 1.40E-02 1.17E-02 8.60E-05 type I interferon-mediated signalling pathway                                                                                                                                                             

GO: 43903 134 4.28E-05 1.40E-02 1.11E-02 5.23E-04 regulation of symbiosis, encompassing mutualism through parasitism                                                                                                                                       

MGI: 8248 307 4.39E-05 1.40E-02 4.16E-03 6.89E-03 abnormal mononuclear phagocyte morphology                                                                                                                                                                

GO: 44437 243 4.50E-05 1.40E-02 6.10E-04 1.03E-02 vacuolar part                                                                                                                                                                                            

GO: 5765 135 4.97E-05 1.51E-02 1.88E-04 7.32E-03 lysosomal membrane                                                                                                                                                                                       

MGI: 2446 240 5.88E-05 1.75E-02 1.30E-03 1.97E-02 abnormal macrophage morphology                                                                                                                                                                           

REACTOME 587 61 6.00E-05 1.75E-02 6.87E-03 1.32E-04 REACT:INTERFERON ALPHA BETA SIGNALLING                                                                                                                                                                    

MGI: 2425 192 7.94E-05 2.27E-02 2.34E-03 3.21E-04 altered susceptibility to autoimmune disorder                                                                                                                                                            

MGI: 10210 188 8.70E-05 2.44E-02 2.09E-02 7.63E-03 abnormal circulating cytokine level                                                                                                                                                                      

GO: 34340 62 8.95E-05 2.46E-02 1.33E-02 6.41E-05 response to type I interferon                                                                                                                                                                            

MGI: 2463 126 9.20E-05 2.48E-02 2.79E-03 1.49E-02 abnormal neutrophil physiology                                                                                                                                                                           

MGI: 2498 226 1.01E-04 2.66E-02 1.18E-02 1.69E-02 abnormal acute inflammation                                                                                                                                                                              

MGI: 2459 402 1.11E-04 2.77E-02 2.28E-02 1.08E-03 abnormal B cell physiology                                                                                                                                                                               

KEGG 5164 158 1.14E-04 2.80E-02 5.13E-02 2.53E-03 KEGG INFLUENZA A                                                                                                                                                                                         

MGI: 8704 106 1.54E-04 3.66E-02 4.76E-03 9.41E-03 abnormal interleukin-6 secretion                                                                                                                                                                         

MGI: 8705 48 2.00E-04 4.68E-02 4.43E-02 4.94E-02 increased interleukin-6 secretion                                                                                                                                                                        

Table 7.5: 53 ‘generic’ pathways which are significantly upregulated in HD versus control blood GSEA.  A total of 14,706 Generic pathways, each containing 

between 3 and 500 genes, were collated from publicly-available databases including GO and KEGG. Pathways are significantly dysregulated after multiple testing 

correction (q < 0.05). Enrichment p values in the current study for the Track-HD, Leiden and combined datasets are shown. 



206 
 

 

 

Figure 7.1: Upregulated pathways in HD versus control blood. Schematic representation of 

pathways collated from publicly available databases that are significantly upregulated in HD 

versus controls after correction for multiple testing (q < 0.05). Modules with similar gene 

content and functional annotation have been consolidated. Nodal shading is inversely 

proportional to false discovery rate threshold (q value); deep shades have low q values and 

pale shading is close to the 5% threshold. The weight of connecting lines is proportional to the 

number of genes shared between pathways. Figure prepared by T. Stone, from (Hensman 

Moss et al., 2017a). 
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Pathway Number of 

dysregulated genes 

p-value 

(combined) 

q-value 

(combined) 

p-value 

(Track-HD) 

p-value 

(Leiden) 

Description 

GO: 8380 282 5.22E-08 7.45E-04 4.25E-05 7.24E-05 RNA splicing                                                                                                                                                                                             

GO: 6397 359 2.38E-07 1.70E-03 1.48E-04 4.14E-04 mRNA processing                                                                                                                                                                                          

GO: 16887 329 1.37E-06 5.48E-03 1.96E-04 3.34E-02 ATPase activity                                                                                                                                                                                          

GO: 6200 333 1.54E-06 5.48E-03 2.42E-04 3.36E-02 ATP catabolic process                                                                                                                                                                                    

GO: 46034 361 5.36E-06 1.53E-02 1.74E-04 4.45E-02 ATP metabolic process                                                                                                                                                                                    

GO: 16607 144 9.06E-06 2.15E-02 4.68E-04 4.61E-03 nuclear speck                                                                                                                                                                                            

GO: 6281 356 1.66E-05 2.75E-02 2.00E-03 1.18E-04 DNA repair                                                                                                                                                                                               

GO: 16604 271 2.08E-05 2.75E-02 5.59E-03 2.46E-03 nuclear body                                                                                                                                                                                             

GO: 4386 135 2.12E-05 2.75E-02 2.83E-02 4.81E-02 helicase activity                                                                                                                                                                                        

GO: 375 184 2.40E-05 2.86E-02 1.14E-03 2.05E-03 RNA splicing, via transesterification reactions                                                                                                                                                          

MGI: 5094 219 4.60E-05 3.88E-02 1.87E-02 2.34E-02 Abnormal T cell proliferation                                                                                                                                                                            

GO: 398 180 6.25E-05 3.88E-02 2.12E-03 2.01E-03 mRNA splicing, via spliceosome                                                                                                                                                                           

GO: 377 180 6.25E-05 3.88E-02 2.12E-03 2.01E-03 

RNA splicing, via transesterification reactions 

with bulged adenosine as nucleophile                                                                                                                     

GO: 5681 143 7.29E-05 4.34E-02 4.66E-03 3.52E-03 spliceosomal complex                                                                                                                                                                                     

Table 7.6: 14 ‘generic’ pathways which are significantly downregulated in HD versus control blood GSEA.  A total of 14,706 Generic pathways, each containing 

between 3 and 500 genes, were collated from publicly-available databases including GO and KEGG. Pathways are significantly dysregulated after multiple testing 

correction (q < 0.05). Enrichment p values in the current study for the Track-HD, Leiden and combined datasets are shown. 
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Figure 7.2: Downregulated pathways in HD versus control blood. Schematic representation of 

pathways collated from publicly available databases that are significantly downregulated in 

HD versus controls after correction for multiple testing (q < 0.05). Modules with similar gene 

content and functional annotation have been consolidated. Nodal shading is inversely 

proportional to false discovery rate threshold (q value); deep shades have low q values and 

pale shading is close to the 5% threshold. The weight of connecting lines is proportional to the 

number of genes shared between pathways. Figure prepared by T. Stone, from (Hensman 

Moss et al., 2017a). 
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Direction Entrez 

gene ID 

Gene 

Symbol 

p 

(Comb) 

log2FC 

(Comb) 

p 

(Track-

HD) 

log2FC 

(Track-

HD) 

p 

(Leiden) 

log2FC 

(Leiden) 

Pathway membership (q < 0.05) 

Genes in 

upregulated 

pathways 

722 C4BPA 7.81E-06 1.371 1.29E-01 0.437 7.36E-01 0.187 GO:2252, GO:2253, GO:5773, GO:31347, GO:44437, 

GO:50778 

8763 CD164 9.53E-04 0.098 2.97E-01 0.083 5.57E-03 0.101 GO:323, GO:5764, GO:5765, GO:5773, GO:44437 

597 BCL2A1 1.06E-03 0.423 8.85E-02 0.319 1.20E-02 0.393 MGI:1793, MGI:2419, MGI:2462, MGI:2463, MGI:5025 

4940 OAS3 1.12E-03 0.688 5.14E-02 0.602 6.45E-02 0.455 GO:2252, GO:9615, GO:19221, GO:34340, GO:43903, 

GO:45069, GO:45071,GO:48525, GO:50792, GO:60337, 

GO:71345, GO:71357, KEGG:5164, 

REACTOME:287,REACTOME:587, REACTOME:589 

49 ACR 1.13E-03 1.237 7.54E-03 1.417 1.79E-01 0.768 GO:5773, GO:44437 

9262 STK17B 1.19E-03 0.132 4.42E-02 0.134 3.56E-02 0.136 MGI:1844, MGI:2425, MGI:2444, MGI:3009, MGI:5000, 

MGI:5005, MGI:8568 

164668 APOBEC3H 1.98E-03 -0.323 1.41E-01 -0.208 4.33E-03 -0.476 GO:2252, GO:9615, GO:43903, GO:45069, GO:45071, 

GO:48525, GO:50792 

79026 AHNAK 2.12E-03 -0.169 1.48E-02 -0.201 1.27E-01 -0.106 MGI:1793, MGI:2406, MGI:2444, MGI:3009, MGI:5025, 

MGI:8568 

6614 SIGLEC1 4.39E-03 0.634 3.58E-01 0.291 9.79E-02 0.552 MGI:2459, MGI:8195 

875 CBS 4.42E-03 0.592 1.15E-01 0.439 2.38E-02 0.681 MGI:8469, MGI:8713, MGI:8835 
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Genes in 

downregulated 

pathways 

9262 STK17B 1.19E-03 0.132 4.42E-02 0.134 3.56E-02 0.136 MGI:5094 

54957 TXNL4B 1.65E-03 0.088 2.99E-02 0.088 2.67E-02 0.090 GO:5681, GO:6397, GO:8380 

375757 SWI5 1.68E-03 0.114 3.22E-02 0.112 2.67E-02 0.130 GO:6281 

146713 RBFOX3 1.86E-03 -0.434 3.81E-02 -0.396 7.65E-02 -0.357 GO:6397, GO:8380 

79026 AHNAK 2.12E-03 -0.169 1.48E-02 -0.201 1.27E-01 -0.106 MGI:5094 

29890 RBM15B 2.67E-03 -0.055 9.18E-02 -0.048 8.98E-02 -0.044 GO:6397, GO:8380 

9987 HNRNPDL 3.38E-03 -0.078 2.98E-02 -0.088 9.41E-03 -0.098 GO:5681 

23499 MACF1 3.72E-03 -0.120 4.52E-03 -0.172 2.15E-01 -0.068 GO:6200, GO:16887, GO:46034 

146754 DNAH2 4.04E-03 -0.621 1.82E-01 -0.415 2.39E-02 -0.723 GO:6200, GO:16887, GO:46034 

10236 HNRNPR 5.92E-03 -0.069 1.15E-01 -0.053 5.62E-02 -0.074 GO:375, GO:377, GO:398, GO:5681, GO:6397, GO:8380 

Table 7.7: The 10 most significantly dysregulated genes (p<0.01) in up or downregulated generic pathways (q<0.05). p (Comb/Track-HD/Leiden) – p value for 

differential expression between HD and controls in the combined, Track-HD or Leiden datasets; Log2FC – log2 of the ratio of mean counts in HD and controls. 
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7.3.3 Pathway dysregulation in HD whole blood overlaps with HD myeloid cells 

In a related RNA-Seq study led by James Miller, in which I assisted with design, sample 

collection and analysis, we investigated the effect of pro-inflammatory stimulation on HD and 

control monocytes.  Primary monocytes of 30 manifest HD patients and 33 control subjects 

were cultured with and without pro-inflammatory stimulation, and then RNAseq was 

performed using the same sequencing technologies as described above.  Transcriptional 

dysregulation was observed in unstimulated monocytes from HD cases relative to controls 

(Miller et al., 2016b): pathway analysis revealed widespread resting enrichment of 

proinflammatory functional gene sets in HD monocytes.  The pathway enrichment analyses in 

the Miller et al study used the same set of pathways used in the Hensman Moss et al work 

(Hensman Moss et al., 2017a).  We investigated whether the same pathways were 

dysregulated in the HD monocytes to the HD whole blood.  We found a significant excess of 

pathways to be significantly (p<0.05) enriched for dysregulation in both the Miller et al. 

(2016a) data and the combined TRACK-HD and Leiden whole blood data (Table 7.8). This 

overlap was attributable to a significant excess of pathways enriched for upregulation in both 

datasets. Overlap in downregulated pathways was not significantly larger than expected by 

chance. The 15 pathways most significantly (p<0.05) enriched for up and downregulation in 

both myeloid and whole blood are listed in Table 7.9. Pathways that are significantly enriched 

for upregulation relate mainly to immunity. 

 

Direction of dysregulation in 

HD 

Number of pathways significant in both datasets 

(p value) 

Nondirectional 132 (0.009) 

Downregulated 36 (0.113) 

Upregulated 339 (<1.0E-03) 

Table 7.8: Number of pathways nominally significantly enriched (uncorrected p<0.05) in both 

the combined Track-HD/Leiden blood dataset and the unstimulated myeloid data of Miller et 

al. (2016a). The p-value measures whether there is an excess of significantly enriched 

pathways in the blood dataset conditional on the pathway being enriched (p < 0.05) in the 

myeloid dataset. The set of pathways was collated from publicly-available databases including 

GO and KEGG. 
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Direction of 

dysregulation in HD 

Pathway Number 

of genes 

p 

(blood: London+ 

Leiden) 

p 

(myeloid un-

stimulated) 

p 

(blood & myeloid 

combined) 

Description 

Upregulated 

MGI: 2419 434 3.03E-10 3.77E-08 4.44E-16 abnormal innate immunity 

MGI: 3009 432 5.78E-09 4.26E-07 8.54E-14 abnormal cytokine secretion 

GO: 31347 430 4.73E-06 8.96E-09 1.35E-12 regulation of defence response 

GO: 9615 208 1.22E-07 9.68E-07 3.64E-12 response to virus 

MGI: 2451 278 1.68E-07 1.83E-06 9.16E-12 abnormal macrophage physiology 

GO: 2252 365 3.10E-07 1.95E-06 1.76E-11 immune effector process 

MGI: 1793 372 4.33E-07 2.30E-06 2.85E-11 altered susceptibility to infection 

MGI: 8568 305 4.49E-07 3.26E-06 4.13E-11 abnormal interleukin secretion 

MGI: 5025 406 3.44E-07 4.42E-06 4.28E-11 abnormal response to infection 

MGI: 8835 258 8.31E-06 1.92E-07 4.49E-11 abnormal intercellular signalling peptide 

or protein level 

MGI: 8713 253 1.35E-05 2.72E-07 1.01E-10 abnormal cytokine level 

GO: 51607 138 3.28E-07 1.34E-05 1.19E-10 defence response to virus 

GO: 1817 409 2.76E-06 1.68E-06 1.26E-10 regulation of cytokine production 

REACTOME 287 264 8.59E-07 6.56E-06 1.52E-10 REACT:CYTOKINE SIGNALING IN 

IMMUNE SYSTEM 

GO: 6954 352 2.72E-05 2.38E-07 1.73E-10 inflammatory response 
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GO: 50792 117 2.59E-08 4.23E-04 2.88E-10 regulation of viral process 

Downregulated 

GO: 43202 66 4.25E-02 2.47E-04 1.31E-04 lysosomal lumen 

GO: 10921 88 1.48E-03 2.41E-02 3.99E-04 regulation of phosphatase activity 

GO: 38024 57 1.91E-03 3.51E-02 7.10E-04 cargo receptor activity 

GO: 16874 450 1.70E-03 4.11E-02 7.38E-04 ligase activity 

MGI: 358 276 2.71E-02 6.37E-03 1.67E-03 abnormal cell morphology 

REACTOME 596 10 3.98E-03 4.49E-02 1.72E-03 REACT:INTERLEUKIN-7 SIGNALING 

GO: 6399 126 4.03E-02 7.24E-03 2.67E-03 tRNA metabolic process 

GO: 2285 55 1.71E-02 2.09E-02 3.20E-03 lymphocyte activation involved in 

immune response 

GO: 6457 185 3.37E-02 1.10E-02 3.29E-03 protein folding 

GO: 70286 8 2.03E-02 1.83E-02 3.30E-03 axonemal dynein complex assembly 

GO: 6302 99 1.46E-02 3.04E-02 3.88E-03 double-strand break repair 

GO: 30165 75 4.59E-02 1.06E-02 4.18E-03 PDZ domain binding 

MGI: 2419 434 2.06E-02 2.47E-02 4.37E-03 abnormal innate immunity 

MGI: 1701 56 1.05E-02 4.94E-02 4.45E-03 incomplete embryo turning 

GO: 19320 66 2.34E-02 2.67E-02 5.22E-03 hexose catabolic process 

KEGG 4146 77 1.92E-02 4.05E-02 6.35E-03 KEGG PEROXISOME 

Table 7.9: Pathways significantly (p<0.05) upregulated in both the combined Track-HD and Leiden whole blood data and the unstimulated myeloid cell dataset of 

Miller et al. (2016a). Pathways are ordered by their combined p-value, which was obtained by combining the blood and myeloid p-values by Fisher’s method. 
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7.3.4 Gene co-expression modules from HD striatum are significantly enriched for 

dysregulation in HD blood 

A limitation of using curated pathways from databases is the incomplete or incorrect 

annotation. One way to overcome this is to use gene co-expression, because genes that are 

co-expressed often have related functions. WGCNA identifies clusters (modules) of genes with 

highly correlated expression, constructing original, unbiased gene co-expression networks 

based on observed data (Gibbs et al., 2013). HD brain expression modules were generated by 

Neueder and Bates (2014), who applied WGCNA to Hodges et al. (2006) data and annotated 

each module that was associated with HD disease status. To further fill the annotation gap 

and better define functional biological pathways, collaborators Timothy Stone and Amelia 

Guinee generated co-expression modules for control brain from the Braineac (2016) and 

Gibbs et al. (2010) datasets (Hensman Moss et al., 2017a). 

 

The full list of up and downregulated modules reaching nominal significant in both datasets is 

given in Table 7.10. A list of genes from the modules in Table 7.10 that are themselves 

nominally significantly dysregulated (p < 0.05) in the combined dataset is given in Table 7.11.  
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Direction Brain 

expression 

gene set 

Module Brain region Annotation Number of 

dysregulated 

genes 

p 

(Combined) 

p 

(Track-HD) 

p 

(Leiden) 

 Cor 

(HD) 

BH 

(HD) 

Upregulat

ed 

HD 111 FC_BA9 Immune response 514 7.81E-12 1.27E-04 7.53E-05 - - 

HD 69 

(FC4pos1) 

FC_BA4 Inflammatory response 712 3.77E-08 3.05E-05 1.32E-03 0.61 3.77E-

03 

Control (B) 712 TCTX Inflammatory response 213 1.41E-07 3.40E-05 8.14E-04 - - 

HD* 48 

(CNpos2)

* 

CN Lipid 

metabolism/regulation of 

transcription 

1785 2.03E-07 3.85E-03 6.33E-03 0.72 2.21E-

11 

Control (B) 110 FCTX  Inflammatory response 173 8.94E-07 1.04E-03 2.50E-03 - - 

Control (B) 909 White 

Matter 

Activation of immune 

response 

265 2.12E-06 1.24E-03 2.48E-02 - - 

Control (B) 610 Substantia 

Nigra 

Inflammatory response 178 1.21E-05 8.56E-04 5.57E-04 - - 

Control (B) 811 Thalamus Inflammatory response 142 1.61E-05 3.94E-03 2.89E-03 - - 

Control (G) 56 Pons Lipoprotein/ immune 

response /GTPase 

regulator activity 

207 1.97E-05 2.44E-04 4.19E-02 - - 

Control (B) 911 White 

Matter 

Inflammatory response 159 3.00E-05 8.42E-04 1.39E-02 - - 

HD 28 CB Immune response 209 3.11E-05 1.07E-02 1.19E-02 - - 

Control (B) 713 TCTX Activation of immune 171 4.02E-05 2.39E-02 4.67E-02 - - 
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response 

HD 33 CB Immune response 255 4.34E-05 1.08E-02 1.37E-02 - - 

Control (B) 505 Putamen Ether lipid metabolism 500 6.28E-05 3.16E-03 2.06E-02 - - 

HD 68 

(CNpos5) 

CN Cilium 1268 1.09E-04 3.05E-02 5.00E-02 0.54 7.74E-

06 

Control (B) 516 Putamen Cellular response to 

cytokine stimulus 

133 3.07E-04 1.44E-02 1.71E-02 - - 

HD 64 

(CNpos6) 

CN Inflammatory response 114 3.13E-04 1.18E-02 3.80E-02 0.46 2.28E-

04 

HD 124 FC_BA9 NA 1176 2.91E-03 1.19E-02 2.37E-02 - - 

Downreg

ulated 

Control (G) 22 CB Pro-rich region 831 1.83E-08 2.49E-03 2.06E-02 - - 

Control (G) 28 FC  Intra-cellular 

transport/mitochondrion 

3178 2.10E-08 6.30E-04 7.66E-05 - - 

Control (B) 304 Medulla mRNA metabolic process 1811 2.91E-08 5.00E-15 4.01E-02 - - 

HD* 66 

(CNneg1)

* 

CN Synapse/ion channels 2645 2.71E-07 1.51E-04 2.13E-02 -0.80 6.03E-

15 

Control (B) 804 Thalamus Regulation of cell 

morphogenesis 

857 1.31E-06 4.03E-02 4.13E-04 - - 

Control (B) 522 Putamen Regulation of RNA splicing 64 4.44E-06 6.26E-03 2.66E-04 - - 

Control (G) 74 Pons Transcription/acetylation/p

rotein transport 

1183 9.22E-06 3.85E-08 7.44E-04 - - 

Control (B) 702 TCTX Antigen processing: 4602 3.87E-04 1.22E-03 2.47E-02 - - 
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ubiquitination and 

proteasome degradation 

Control (G) 48 FC Transcription 

corepressor/cell 

morphogenesis 

648 4.65E-04 7.83E-03 2.05E-02 - - 

Control (B) 202 Hippocampu

s 

Mitochondrial membrane 2737 4.75E-04 1.16E-07 1.54E-02 - - 

HD 19 CB Protein binding 155 7.44E-04 2.66E-02 2.26E-02 - - 

Control (B) 906 White 

Matter 

Uridyltransferase activity  416 1.12E-03 2.53E-02 1.12E-02 - - 

Control (G) 93 Pons Mitochondrion/nuclear 

lumen 

317 1.30E-03 9.85E-03 8.74E-04 - - 

Control (B) 812 Thalamus Transport of mature 

transcript to cytoplasm 

114 1.42E-03 1.99E-02 4.70E-02 - - 

HD 102 FC_BA9 Cytoplasm 1908 1.47E-03 7.57E-03 1.31E-04 - - 

Control (B) 706 TCTX Microtubule organising 

centre 

481 1.93E-03 3.70E-05 3.80E-03 - - 

Control (G) 52 Pons Acetylation/fatty acid 

metabolism 

1590 3.28E-03 2.23E-02 1.31E-02 - - 

HD 3 

(CBneg2) 

CB mitochondrion 1164 3.19E-02 2.56E-02 1.29E-05 -0.45 1.66E-

03 

Control (G) 25 CB RNA binding  648 8.02E-01 1.72E-04 3.62E-02 - - 
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Table 7.10: All WGCNA brain expression modules significantly dysregulated (p < 0.05) in both Track-HD and Leiden datasets in HD versus control 

blood.  

HD brain modules were defined by Neueder and Bates (2014), and Control brain modules were derived from Braineac (2016) or Gibbs et al. (2010) 

expression data. Neueder and Bates (2014) module identifiers are given in brackets where available. * denotes the caudate modules that were highly 

positively and negatively correlated with HD in their study. HTT is part of modules 66 (CNneg1) and 3 (CBneg2). HD  co-expression modules defined by 

Neueder and Bates (2014); CTRL (B) – control brain co-expression modules from Braineac (2016); CTRL (G) – control brain co-expression modules from 

Gibbs et al. (2010). p (Combined/Track-HD/Leiden) – p value for differential expression between HD and controls in the combined, Track-HD or Leiden 

datasets; BH (HD)  the Benjamini Hochberg significance value1 of correlation with HD in Neueder and Bates (2014) brain expression analysis, corrected 

for multiple comparisons; Cor (HD)  the direction and size of correlation of a module with HD in Neueder and Bates (2014); CN – caudate nucleus; FC – 

frontal cortex; FC_BA4 - BA4 region of the frontal cortex; FC_BA9 – BA9 region of the frontal cortex; CB – cerebellum; TCTX – temporal cortex. 

                                                           

1
 The Benjamini and Hochberg correction is a powerful method for dealing with multiple comparisons by controlling the false discovery rate which was used in the 

Neueder and Bates, 2014 paper NEUEDER, A. & BATES, G. P. 2014. A common gene expression signature in Huntington's disease patient brain regions. BMC Med 
Genomics, 7, 60.. (This is an alternative method to the more widely recognized Bonferroni correction which instead controls the familywise error rate) 
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Entrez 

gene ID 

Gene 

Symbol 

p 

(Comb) 

log2FC 

(Comb) 

p 

(Track-

HD) 

log2FC 

(Track-

HD) 

p 

(Leiden) 

log2FC 

(Leiden) 

Module membership 

2297 FOXD1 9.09E-05 -0.785 1.10E-02 -0.685 1.69E-03 -1.014 HD 48 (CNpos2), HD 111 

3805 KIR2DL4 1.93E-04 0.651 2.57E-03 0.823 1.52E-02 0.533 CTRL (B) 702 

196394 AMN1 2.11E-04 0.208 1.87E-02 0.205 9.25E-03 0.195 CTRL (B) 202, CTRL (B) 702 

5797 PTPRM 3.12E-04 -0.359 5.26E-03 -0.381 2.82E-03 -0.448 CTRL (B) 202, CTRL (B) 702, CTRL (B) 904, HD 66 (CNneg1) 

889 KRIT1 7.30E-04 -0.081 1.59E-02 -0.097 7.86E-02 -0.057 CTRL (B) 304, CTRL (G) 28, HD 102 

22979 EFR3B 8.17E-04 0.494 6.02E-03 0.603 2.07E-02 0.496 CTRL (B) 702, CTRL (B) 904, HD 66 (CNneg1) 

56934 CA10 8.42E-04 2.036 1.21E-02 2.020 8.42E-02 1.945 CTRL (B) 702, CTRL (B) 902, HD 66 (CNneg1), HD 102 

8763 CD164 9.53E-04 0.098 2.97E-01 0.083 5.57E-03 0.101 HD 68 (CNpos5) 

597 BCL2A1 1.06E-03 0.423 8.85E-02 0.319 1.20E-02 0.393 CTRL (B) 110, CTRL (B) 217, CTRL (B) 516, CTRL (B) 610, CTRL (B) 712, 

CTRL (B) 811, CTRL (B) 911,HD 33, HD 68 (CNpos5), HD 69 (FC4pos1), 

HD 111 

4940 OAS3 1.12E-03 0.688 5.14E-02 0.602 6.45E-02 0.455 CTRL (B) 702, CTRL (B) 902 

Table 7.11: Ten most significantly dysregulated genes (p<0.05) from the WGCNA brain expression modules that were dysregulated (up or down) in HD blood.  

p (Comb/Track-HD/Leiden) – p value for differential expression between HD and controls in the combined, Track-HD or Leiden datasets; Log2FC – log2 of the ratio 

of the mean counts in HD and controls; HD  co-expression modules defined by Neueder and Bates (2014); CTRL (B) – control brain co-expression modules from 

Braineac (2016); CTRL (G) – control brain co-expression modules from Gibbs et al. (2010). 
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In addition to reinforcing the biological conclusions, the significantly dysregulated modules 

from Table 7.10 also share genes with the top pathways, as illustrated in Figures 7.3 and 7.4. 

We then investigated whether gene sets that are dysregulated in HD brain (Neueder and 

Bates, 2014) are also disrupted in peripheral blood. Table 7.12 lists the modules that were 

significantly dysregulated (after correcting for multiple testing of modules) in both HD brain 

(Neueder and Bates, 2014) and in our combined TRACK-HD and Leiden blood expression 

dataset. The direction of dysregulation in brain is shown by the correlation between the 

module eigengene and HD status (with a positive correlation corresponding to upregulation in 

the HD brain). Notably, two of the most significantly dysregulated modules in HD caudate 

(Neueder and Bates, 2014) were also significantly dysregulated in the same direction in blood 

(Table 7.5), not only in the combined dataset, but in each of the Track-HD and Leiden datasets 

independently; these being module 48 (CNpos2), which is upregulated in HD, and module 66 

(CNneg1), which is downregulated. 

 

Mod

ule 

Brain 

Regio

n 

Modu

le 

name 

Numb

er of 

genes 

p 

(combin

ed) 

p  

(TRAC

K-HD) 

p  

(LUM

C) 

cor  

(HD 

brai

n) 

p  

(HD 

brai

n) 

Description 

69 FC_B

A4 

FC4po

s1 

712 3.77E-08 3.05E

-05 

1.32E

-03 

0.61

0 

3.77

E-03 

Inflammatory 

response 

48 CN CNpos

2 

1785 2.03E-07 3.85E

-03 

6.33E

-03 

0.72

4 

2.21

E-11 

Lipid 

metabolism/regu

lation of 

transcription 

64 CN CNpos

6 

114 3.13E-04 1.17E

-02 

3.80E

-02 

0.46

3 

2.28

E-04 

Inflammatory 

response 

66 CN CNne

g1 

2644 2.71E-07 1.51E

-04 

2.13E

-02 

-

0.80

0 

6.03

E-15 

Synapse 

Table 7.12: Brain expression modules significantly dysregulated both in HD brain and HD 

blood. All modules in this table are significantly dysregulated after correction for multiple 

testing (q < 0.05) in the combined blood sample, and are nominally significantly dysregulated 

(p<0.05) in both Track-HD and Leiden datasets separately. Cor(HD brain) – the correlation 

between module eigengene and HD status observed by Neueder and Bates (2014) in brain 
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expression data, with a positive correlation corresponding to upregulation in HD. p(HD brain)  

is the p-value for that correlation (corrected for multiple testing of modules). 
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Figure 7.3: Network diagram of the relationship between significantly (q<0.05) upregulated gene modules (Table 7.10) and generic biological pathways (Table 7.5) 

based on shared gene membership. The thickness of the edges corresponds to the proportion of overlap from the smaller term to the larger (overlap coefficient). 

Intensity of shading indicates p-value (darker colours have lower p-values), node size indicates size of gene content, node shape indicates origin of data (modules or 

pathways). For clarity, biological pathways with similar gene content are grouped together, and the shading reflects the most significant pathway in the group. 

Nodes are arranged such that the distance between them reflects similarity in gene content. Diagram rendered in Cytoscape, from (Hensman Moss et al., 2017a), 

prepared by T. Stone. 
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Figure 7.4: Network diagram of the relationship between significantly (q<0.05) downregulated 

gene modules (Table 7.10) and generic biological pathways (Table 6) based on shared gene 

membership. The thickness of the edges corresponds to the proportion of overlap from the 

smaller term to the larger (overlap coefficient). Intensity of shading indicates p-value (darker 

colours have lower p-values), node size indicates size of gene content, node shape indicates 

origin of data (modules or pathways). For clarity, biological pathways with similar gene 

content are grouped together, and the shading reflects the most significant pathway in the 

group. Nodes are arranged such that the distance between them reflects similarity in gene 

content. Diagram rendered in Cytoscape, from (Hensman Moss et al., 2017a), prepared by T. 

Stone. 

 

The module membership (kME) of a gene is measured by the correlation of its expression with 

the eigengene, which is representative of all gene expression profiles in the module 

(Langfelder and Horvath, 2008); highly connected ‘hub’ genes have high kME values. 

Interestingly, among genes in module 48 (CNpos2), the Neueder and Bates (2014) HD caudate 

module that was also significantly upregulated in blood, there was a significant (p = 7.6 x 10-4) 

correlation between dysregulation p-value in the direction of interest (positive) in HD blood 

and degree of module membership (kME) (Neueder and Bates, 2014). This suggests that 
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highly connected “hub” genes in this module may play a role in transcriptional dysregulation 

in HD. Genes in module 48 (CNpos2) that are dysregulated (p < 0.05) in both blood and 

caudate are shown in https://www.nature.com/articles/srep44849#supplementary-

information.  A similar, although much stronger, effect was noted in caudate (Neueder and 

Bates, 2014). There was no significant correlation in module 66 (CNneg1).  

7.3.5 Expression changes in HD blood replicate those in HD prefrontal cortex 

Labadorf et al. (2015a) identified dysregulated expression of immune and developmental 

genes in human HD postmortem prefrontal cortex (BA9). Fold changes in expression of 

individual genes in the combined Track-HD and Leiden data were compared by Timothy Stone 

and Amelia Guinee to those observed in Labadorf et al. (2015a), and were found to be in the 

same direction for 8,425 out of the 15,834 genes present in both datasets. This is a highly 

significant (p < 2.2x10-16) excess (see Materials and Methods, 7.2.9), suggesting some 

concordance in signal at the individual gene level. Furthermore, a significant excess of generic 

pathways was found to be significantly (p < 0.05) dysregulated in both datasets, most 

markedly in the positive (p < 0.001) direction, but also in the negative (p = 0.028), thus 

showing an overlap in biological signal. Pathways significantly upregulated in both datasets 

are mainly related to immune response (Table 7.13 and Hensman Moss et al Table S12 

https://www.nature.com/articles/srep44849#supplementary-information (Hensman Moss et 

al., 2017a)), a pattern also observed in the upregulated brain co-expression modules 

(Hensman Moss et al Table S13 https://www.nature.com/articles/srep44849#supplementary-

information (Hensman Moss et al., 2017a)). Pathways downregulated in both datasets are 

shown in Table 7.13 and Hensman Moss et al Table S14 

https://www.nature.com/articles/srep44849#supplementary-information (Hensman Moss et 

al., 2017a), with downregulated modules in Hensman Moss et al Table S15 

https://www.nature.com/articles/srep44849#supplementary-information (Hensman Moss et 

al., 2017a). Notably, several modules related to the synapse and neuron projection are 

downregulated in both datasets. The two HD-related caudate modules from Neueder and 

Bates (2014) that were significantly dysregulated in blood were also significantly dysregulated 

in the same direction in Labadorf et al. (2015a). Module 48 (CNpos2) was significantly 

upregulated (p < 1x10-16, Table S13) and module 66 (CNneg1) significantly downregulated (p < 

1x10-16), as are several other significant modules from Neueder and Bates (2014). 

https://www.nature.com/articles/srep44849#supplementary-information
https://www.nature.com/articles/srep44849#supplementary-information
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Direction of 

effect 

Pathway Number of 

dysregulated 

genes 

Blood p 

(Combined) 

Brain p 

(Labadorf) 

Description 

Upregulated 

MGI: 2459 402 1.11E-04 1.39E-13 abnormal B cell physiology 

MGI: 2419 434 3.03E-10 2.05E-12 abnormal innate immunity 

MGI: 1800 361 5.45E-04 2.58E-12 abnormal humoral immune response 

MGI: 8195 412 1.94E-05 8.78E-12 abnormal antigen presenting cell morphology 

MGI: 2490 333 8.00E-04 3.52E-11 abnormal immunoglobulin level 

MGI: 8250 462 6.46E-07 4.04E-11 abnormal myeloid leukocyte morphology 

MGI: 4939 381 3.31E-03 1.68E-10 abnormal B cell morphology 

GO: 50778 403 7.29E-06 2.11E-10 positive regulation of immune response 

MGI: 8251 387 3.12E-06 3.29E-10 abnormal phagocyte morphology 

MGI: 3009 432 5.78E-09 5.24E-10 abnormal cytokine secretion 

Downregulated 

GO: 5874 327 4.97E-05 8.10E-05 microtubule 

GO: 86 120 8.11E-03 1.70E-04 G2/M transition of mitotic cell cycle 

GO: 48812 455 3.45E-02 2.20E-04 neuron projection morphogenesis 

PAN-PW 29 120 4.80E-02 2.67E-04 Huntington disease 

GO: 15631 187 4.14E-04 2.84E-04 tubulin binding 

GO: 7017 372 7.94E-04 4.13E-04 microtubule-based process 

MGI: 1828 233 1.66E-04 7.14E-04 abnormal T cell activation 
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REACTOME 214 68 3.16E-03 1.12E-03 REACT:CENTROSOME MATURATION 

REACTOME 952 68 3.16E-03 1.12E-03 REACT:RECRUITMENT OF MITOTIC CENTROSOME PROTEINS AND COMPLEXES 

REACTOME 636 59 1.87E-03 1.48E-03 REACT:LOSS OF NLP FROM MITOTIC CENTROSOMES 

Table 7.13: Ten most significantly upregulated and downregulated generic pathways in both HD blood and prefrontal cortex. Comparing gene expression changes 

in the combined Track-HD and Leiden HD blood dataset with HD prefrontal cortex from Labadorf, et al. (Labadorf et al., 2015b), a significant (p < 0.001) excess of 

generic pathways are significantly upregulated (p < 0.05) in both datasets; there is also a significant (p = 0.028) excess of generic pathways are significantly 

downregulated (p < 0.05) in both datasets. Blood/brain p the p value for pathway enrichment in HD relative to controls in the combined Track-HD and Leiden blood 

dataset (Combined) or the prefrontal cortex dataset (Labadorf). 
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7.3.6 Pathways dysregulated in the blood of HD subjects are associated with 

motor score 

We investigated the effect of disease severity by testing for correlation between gene 

expression and UHDRS total motor score (TMS) in the 112 gene positive Track-HD subjects 

(Table 7.14). After correcting for multiple testing, expression of phosphatidylcholine transfer 

protein (PCTP) was significantly positively correlated with TMS. However, this was not found 

to be significantly correlated with TMS by Mastrokolias et al (Mastrokolias et al., 2015). 

 

Entrez gene ID Gene Symbol p (corr-TMS) q (corr-TMS) log2(FC) 

58488 PCTP 1.82E-06 3.25E-02 8.00E-03 

51060 TXNDC12 4.42E-05 1.79E-01 5.30E-03 

57096 RPGRIP1 4.64E-05 1.79E-01 1.25E-02 

9258 MFHAS1 5.12E-05 1.79E-01 -8.40E-03 

3667 IRS1 6.73E-05 1.79E-01 -1.37E-02 

158293 FAM120AOS 6.88E-05 1.79E-01 3.80E-03 

84263 HSDL2 7.01E-05 1.79E-01 6.30E-03 

56925 LXN 1.01E-04 2.22E-01 1.05E-02 

118881 COMTD1 1.12E-04 2.22E-01 -8.10E-03 

597 BCL2A1 1.44E-04 2.35E-01 1.44E-02 

23002 DAAM1 1.58E-04 2.35E-01 -7.80E-03 

3655 ITGA6 1.58E-04 2.35E-01 -8.00E-03 

137835 TMEM71 1.96E-04 2.53E-01 7.00E-03 

Table 7.14: Correlation between gene expression and TMS in gene positive Track-HD subjects. 

Genes with p<0.0002 are shown (full table: S16 in Hensman Moss et al (Hensman Moss et al., 

2017a)).  p (corr-TMS)  – p value for correlation between expression and TMS; q (corr-TMS) – q 

value shows correction for multiple testing of genes; Log2(FC) – the change in log2 

(expression) per unit increase of TMS. 

 

We then tested whether generic pathways, that were significantly enriched for upregulated 

(Table 7.5) or downregulated (Table 7.6) genes, for enrichment of genes correlated with TMS 

in the expected direction using a similar method to that previously used to test for 

enrichment of differentially expressed genes (Table 7.15). Several immune related pathways 

were positively correlated with TMS, including MGI:2419, the most significantly dysregulated 
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pathway in HD blood. Downregulated pathways that correlated with TMS were related to T-

cells, ATP metabolism and DNA repair. 

 

Similarly, we tested whether modules dysregulated in HD blood relative to controls (Table 

7.10) also correlated with TMS in the expected direction (Table 7.16). Many modules 

significantly correlated with TMS, including 68 (CNpos5) and 66 (CNneg1), which were also 

dysregulated in the HD caudate (Neueder and Bates, 2014). 
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Direction of effect Pathway p 

(combined-diffexp) 

p 

(TRACK-diffexp) 

p 

(TRACK-TMS) 

Description 

Positively correlated with TMS 

MGI: 2419 3.03E-10 5.10E-05 2.18E-03 Abnormal innate immunity 

GO: 10942 8.79E-02 4.70E-02 3.21E-03 positive regulation of cell death 

MGI: 2462 4.09E-05 6.48E-04 6.39E-03 Abnormal granulocyte physiology 

MGI: 8556 6.85E-04 8.68E-03 7.91E-03 Abnormal tumour necrosis factor secretion 

MGI: 2463 9.20E-05 2.79E-03 8.99E-03 Abnormal neutrophil physiology 

MGI: 8704 1.54E-04 4.76E-03 9.56E-03 abnormal_interleukin-6_secretion 

GO: 5773 1.36E-05 7.03E-03 1.62E-02 vacuole 

GO: 50792 2.59E-08 1.12E-02 1.64E-02 regulation of viral process 

MGI: 5351 6.95E-03 2.20E-02 2.76E-02 Decreased susceptibility to autoimmune disorder 

GO: 44437 4.50E-05 6.10E-04 3.48E-02 vacuolar part 

MGI: 3627 5.45E-02 3.61E-02 3.62E-02 Abnormal leukocyte tethering or rolling 

GO: 50427 1.64E-01 4.26E-02 4.30E-02 3'-phosphoadenosine 5'-phosphosulfate metabolic process 

GO: 34035 1.64E-01 4.26E-02 4.30E-02 purine ribonucleoside bisphosphate metabolic process 

MGI: 2451 1.68E-07 1.26E-02 4.33E-02 Abnormal macrophage physiology 

GO: 6024 1.39E-02 2.77E-02 4.56E-02 glycosaminoglycan biosynthetic process 

Negatively correlated with TMS 
GO: 45786 8.92E-04 1.88E-02 3.23E-05 negative regulation of cell cycle 

MGI: 706 9.70E-02 1.11E-02 9.09E-05 Small thymus 
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MGI: 2364 6.81E-02 1.14E-02 2.57E-04 Abnormal thymus size 

MGI: 5018 6.50E-04 5.94E-03 2.70E-04 Decreased T cell number 

MGI: 2435 1.95E-04 6.87E-03 2.79E-04 Abnormal effector T cell morphology 

MGI: 8081 1.48E-03 5.61E-03 3.83E-04 Abnormal single-positive T cell number 

MGI: 2145 1.19E-03 5.67E-03 8.68E-04 Abnormal T cell differentiation 

MGI: 2444 3.61E-04 7.95E-03 8.74E-04 Abnormal T cell physiology 

MGI: 2432 6.45E-04 3.48E-02 1.01E-03 Abnormal CD4-positive T cell morphology 

MGI: 6387 8.81E-05 4.95E-03 1.31E-03 Abnormal T cell number 

MGI: 8083 7.34E-03 3.36E-02 1.77E-03 Decreased single-positive T cell number 

MGI: 8077 7.89E-03 3.31E-02 2.14E-03 abnormal_CD8-positive_T_cell_number 

MGI: 1823 5.18E-02 4.61E-02 2.15E-03 Thymus hypoplasia 

GO: 6200 1.54E-06 2.42E-04 2.34E-03 ATP catabolic process 

GO: 46034 5.36E-06 1.74E-04 2.56E-03 ATP metabolic process 

Table 7.15: Enrichment of up or downregulated pathways from HD vs. control blood with TMS in the combined Track-HD and Leiden cohort. p(combined-diffexp) – 

enrichment p-value for upregulated genes in the combined Track-HD and Leiden sample. p(TRACK-diffexp) - enrichment p-value for upregulated genes in the Track-

HD sample alone. p(TRACK-TMS) - enrichment p-value for genes positively correlated with TMS in the TRACK-HD sample. 
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Direction Brain 

expression 

gene set 

Module Brain 

region 

Annotation Number of 

dysregulated 

genes 

p 

(Combine

d-diffexp) 

p 

(TRACK-

diffexp) 

p 

(TRACK-

TMS) 

 Cor 

(HD) 

BH 

(HD) 

Upregulated HD 68 

(CNpos5) 

CN Cilium 1268 1.09E-04 3.05E-02 5.52E-07 0.54 7.74E-

06 

Control (B) 909 White 

Matter 

Activation of immune response 265 2.12E-06 1.24E-03 8.22E-04 - - 

Control (B) 713 TCTX Activation of immune response 171 4.02E-05 2.39E-02 1.69E-03 - - 

HD 111 FC_BA9 Immune response 514 7.81E-12 1.27E-04 3.75E-03 - - 

Control (G) 56 Pons Lipoprotein/ immune response 

/GTPase regulator activity 

207 1.97E-05 2.44E-04 7.72E-03 - - 

HD 28 CB Immune response 209 3.11E-05 1.07E-02 8.70E-03 - - 

Control (B) 505 Putamen Ether lipid metabolism 500 6.28E-05 3.16E-03 6.43E-02 - - 

Control (B) 911 White 

Matter 

Inflammatory response 159 3.00E-05 8.42E-04 7.75E-02 - - 

HD 124 FC_BA9 NA 1176 2.91E-03 1.19E-02 9.14E-02 - - 

Control (B) 110 FCTX  Inflammatory response 173 8.94E-07 1.04E-03 1.34E-01 - - 

HD 33 CB Immune response 255 4.34E-05 1.08E-02 1.52E-01 - - 

Control (B) 610 Substantia 

Nigra 

Inflammatory response 178 1.21E-05 8.56E-04 2.00E-01 - - 
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HD 64 

(CNpos6) 

CN Inflammatory response 114 3.13E-04 1.18E-02 2.22E-01 0.46 2.28E-

04 

Control (B) 811 Thalamus Inflammatory response 142 1.61E-05 3.94E-03 2.28E-01 - - 

Control (B) 712 TCTX Inflammatory response 213 1.41E-07 3.40E-05 2.35E-01 - - 

Control (B) 516 Putamen Cellular response to cytokine 

stimulus 

133 3.07E-04 1.44E-02 4.16E-01 - - 

HD 69 

(FC4pos1) 

FC_BA4 Inflammatory response 712 3.77E-08 3.05E-05 5.22E-01 0.61 3.77E-

03 

HD* 48 

(CNpos2) 

CN Lipid metabolism/regulation of 

transcription 

1785 2.03E-07 3.85E-03 6.14E-01 0.72 2.21E-

11 

Downregulat

ed 

Control (B) 304 Medulla mRNA metabolic process 1811 2.91E-08 5.00E-15 6.11E-16 - - 

Control (B) 702 TCTX Antigen processing: 

ubiquitination and proteasome 

degradation 

4602 3.87E-04 1.22E-03 2.04E-13 - - 

Control (B) 202 Hippocamp

us 

Mitochondrial membrane 2737 4.75E-04 1.16E-07 1.44E-09 - - 

Control (G) 28 FC  Intra-cellular 

transport/mitochondrion 

3178 2.10E-08 6.30E-04 4.16E-09 - - 

HD* 66 

(CNneg1) 

CN Synapse/ion channels 2645 2.71E-07 1.51E-04 1.05E-07 -0.80 6.03E-

15 
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Control (G) 52 Pons Acetylation/fatty acid metabolism 1590 3.28E-03 2.23E-02 1.30E-07 - - 

Control (G) 74 Pons Transcription/acetylation/protein 

transport 

1183 9.22E-06 3.85E-08 1.19E-05 - - 

Control (G) 22 CB Pro-rich region 831 1.83E-08 2.49E-03 7.72E-05 - - 

Control (B) 804 Thalamus Regulation of cell morphogenesis 857 1.31E-06 4.03E-02 8.29E-05 - - 

Control (B) 706 TCTX Microtubule organising center 481 1.93E-03 3.70E-05 3.00E-04 - - 

Control (G) 48 FC Transcription corepressor/cell 

morphogenesis 

648 4.65E-04 7.83E-03 7.14E-04 - - 

HD 102 FC_BA9 Cytoplasm 1908 1.47E-03 7.57E-03 9.26E-03 - - 

Control (B) 906 White 

Matter 

Uridyltransferase activity  416 1.12E-03 2.53E-02 1.34E-02 - - 

Control (B) 812 Thalamus Transport of mature transcript to 

cytoplasm 

114 1.42E-03 1.99E-02 1.36E-02 - - 

HD 19 CB Protein binding 155 7.44E-04 2.66E-02 2.18E-02 - - 

HD 3 (CBneg2) CB mitochondrion 1164 3.19E-02 2.56E-02 6.17E-02 -0.45 1.66E-

03 

Control (G) 93 Pons Mitochondrion/nuclear lumen 317 1.30E-03 9.85E-03 1.24E-01 - - 

Control (B) 522 Putamen Regulation of RNA splicing 64 4.44E-06 6.26E-03 2.52E-01 - - 

Control (G) 25 CB RNA binding 648 8.02E-01 1.72E-04 9.99E-01 - - 
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Table 7.16: Enrichment of modules from HD vs control blood (Table S9) with TMS in the combined Track- HD and Leiden cohort. Table is sorted by p (TRACK-TMS). 

p(combined-diffexp) – enrichment p-value for downregulated genes in the combined Track-HD and Leiden sample. p(TRACK-diffexp) - enrichment p-value for 

downregulated genes in the Track-HD sample alone. p(TRACK-TMS) - enrichment p-value for genes negatively correlated with TMS in the TRACK-HD sample. BH 

(HD) the Benjamini Hochberg significance value of correlation with HD in Neueder and Bates (Neueder and Bates, 2014)  brain expression analysis, corrected for 

multiple comparisons; Cor (HD) the direction and size of correlation of the module with HD in Neueder and Bates.  
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Mastrokolias and colleagues (Mastrokolias et al., 2015) listed 170 genes significantly 

associated with TMS, of which 142 passed quality control in our RNA-Seq data. We tested for 

correlation between these genes and TMS in gene positive subjects from the Track-HD cohort 

(Table 7.17, and extended version published in Supplementary table S20 

https://www.nature.com/articles/srep44849#supplementary-information (Hensman Moss et 

al., 2017a)). 14 genes were nominally significant (p<0.05), which is significantly higher than 

expected by chance (p=7.89x10-3). Using the same method as for concordance with Labadorf 

et al. (2015a) (see 7.2.9), we compared fold changes in expression of individual genes 

between Track-HD and Mastrokolias (Mastrokolias et al., 2015). Strikingly, 101 genes showed 

consistent direction of effect, as measured by log(FC), significantly greater than expected by 

chance (p=4.78x10-7). 

 

Entrez 

gene ID 

Gene 

name 

log(FC)-

Mastrokolias 

p 

(Mastrokolias) 

log(FC)-TRACK p 

(TRACK) 

84263 HSDL2 7.00E-03 4.86E-02 6.00E-03 7.01E-05 

10114 HIPK3 7.00E-03 3.77E-02 -6.00E-03 9.52E-03 

79751 SLC25A22 -7.00E-03 3.58E-02 -3.00E-03 1.14E-02 

366 AQP9 1.20E-02 4.68E-02 7.00E-03 1.41E-02 

79581 SLC52A2 -8.00E-03 4.60E-02 -3.00E-03 1.50E-02 

388228 SBK1 -7.00E-03 4.54E-02 -5.00E-03 1.56E-02 

4773 NFATC2 -1.10E-02 1.69E-02 -8.00E-03 1.83E-02 

2357 FPR1 9.00E-03 2.77E-02 6.00E-03 2.39E-02 

23195 MDN1 -6.00E-03 9.10E-03 -5.00E-03 2.45E-02 

54497 HEATR5B -7.00E-03 4.68E-02 -3.00E-03 2.69E-02 

84181 CHD6 -5.00E-03 4.93E-02 -4.00E-03 3.30E-02 

729230 CCR2 7.00E-03 3.24E-02 -6.00E-03 4.82E-02 

440503 PLIN5 1.20E-02 1.98E-02 9.00E-03 4.88E-02 

4552 MTRR 2.20E-02 4.54E-02 -3.00E-03 6.22E-02 

Table 7.17: Correlation between genes differentially expressed in HD from Mastrokolias et al 

(Mastrokolias et al., 2015) and TMS in the Track-HD gene positive subjects. p(Mastrokolias) – 

p-value for correlation between expression and TMS in Mastrokolias et al. p(TRACK) – p-value 

for correlation between expression and TMS in TRACK. Log2(FC) – the change in log2 

(expression) per unit increase of TMS. 
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7.3.7 The Alzheimer’s disease brain transcriptional signature is significantly 

dysregulated in HD blood 

In Alzheimer’s disease, an early inflammatory response involving microglia contributes to 

pathogenesis (Gomez-Nicola et al., 2013, Olmos-Alonso et al., 2016, Hong et al., 2016a). Given 

the upregulation of immune-related gene sets in HD, we next asked whether co-expression 

modules dysregulated in Alzheimer’s disease (AD) brain were also disrupted in HD blood. 

Recently the International Genomics of Alzheimer’s Disease Consortium (IGAP) identified four 

modules from the Gibbs et al. (2010) brain co-expression network that showed enrichment of 

signal in the GWAS of >70,000 late-onset Alzheimer’s disease (LOAD) and control subjects 

(International Genomics of Alzheimer's Disease, 2015). These four modules, each derived 

from a different brain region, are all involved in the immune response and also significantly 

enrich for upregulation in our combined HD blood dataset (Table 7.18). The module derived 

from pontine data was also significantly enriched in both Track-HD and Leiden datasets 

independently. IGAP identified 151 genes that were present in two or more of these modules 

and showed the most significant enrichment with LOAD GWAS signal (International Genomics 

of Alzheimer's Disease, 2015). These 151 genes were also significantly enriched for 

upregulation in the combined HD blood dataset (p = 2.50 x 10-4).  

 

Modu

le 

Brain 

Region 

Number 

of genes 

p 

(IGAP) 

p 

(Comb) 

p 

(Track-

HD) 

p 

(Leiden) 

Module Description 

34 Frontal 

Cortex 

109 1.00E-

05 

1.45E-

03 

7.06E-

03 

9.48E-

02 

GO:0006955 

immune response 

99 Temporal 

Cortex 

145 4.00E-

05 

2.22E-

04 

5.25E-

03 

9.13E-

02 

GO:0006955 

immune response 

56 Pons 207 6.00E-

05 

1.97E-

05 

2.44E-

04 

4.19E-

02 

GO:0006955 

immune response 

5 Cerebellu

m 

135 6.80E-

04 

1.09E-

03 

4.24E-

02 

8.15E-

02 

GO:0006955 

immune response 

Table 7.18: WGCNA co-expression modules from the Gibbs et al. (2010) control brain 

expression dataset significantly associated with late-onset Alzheimer’s disease (LOAD) in the 

IGAP GWAS are upregulated in HD blood. The four immune-related modules that were the 

most significantly enriched modules in LOAD are also significantly enriched for upregulation in 

the combined Track-HD and Leiden HD blood dataset. p (IGAP) – p value for enrichment of the 

gene set between LOAD and controls in the IGAP GWAS; p (Combined/Track-HD/Leiden) – p 
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value for enrichment of the gene set between HD and controls in our HD blood expression 

dataset. 

 

Zhang et al. (2013) identified co-expression modules that were differentially connected 

between LOAD and controls. Ten of these were also significantly enriched for upregulation in 

our HD blood expression dataset 

(https://www.nature.com/articles/srep44849#supplementary-information) after correction 

for multiple testing (q < 0.05), with their most significant module, yellow, being particularly 

highly enriched (combined Track-HD and Leiden p < 1x10-16). Notably, this module  

has immune and microglia-specific functions (Zhang et al., 2013). This enrichment for modules 

from the IGAP GWAS (International Genomics of Alzheimer's Disease, 2015) and Zhang et al. 

(2013) in the HD blood transcriptome suggests a shared immune-related mechanism between 

different neurodegenerative diseases, at least including HD and Alzheimer’s disease. 

7.4 Results: Relationship between rate of HD progression and the 

transcriptome 

7.4.1 No differential expression of individual transcripts in HD whole blood with 

changing rate of disease progression 

In order to investigate whether the rate at which an individual with HD progresses is 

associated with any differences in gene expression in whole blood we first looked at the 

relationship between our unified Huntington’s disease progression score (described in 

General Methods, Chapter 2) and transcript levels in the TRACK-HD samples; progression 

score was used as continuous variables in this analysis.  There was no association between 

individual transcripts and rate of progression that remained significant once corrected for 

multiple comparisons, however it is apparent when looking at the function of the most 

significant proteins that many are involved in the cell cycle (Table 7.19).  
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Gene ID log2 Fold 

Change 

Lfc SE stat p-value Adjusted 

p-value 

Selected information from Genecards about protein function (accessed 

02/06/2015) (GeneCards) 

MSH4 -0.40704 0.102704 19.64606 9.32E-06 0.16819 This gene encodes a member of the DNA mismatch repair mutS family. This 

member is a meiosis-specific protein that is not involved in DNA mismatch 

correction, but is required for reciprocal recombination and proper segregation of 

homologous chromosomes at meiosis I.  GO annotations related to this gene 

include mismatched DNA binding and DNA-dependent ATPase activity. 

RRM2 -0.22329 0.060098 17.14964 3.45E-05 0.311739 Subunit for a ribonucleotide reductase, which catalyses the formation of 

deoxyribonucleotides from ribonucleotides.  Paralog of RRM2B which has been 

implicated in HD elsewhere(Consortium, 2015a) 

PBK -0.37372 0.097875 16.35145 5.26E-05 0.31652 Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play 

a role in the activation of lymphoid cells. When phosphorylated, forms a complex 

with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint 

during doxorubicin-induced DNA damage 

ANLN -0.21363 0.056665 15.57077 7.95E-05 0.358565 GO annotations related to this gene include actin binding and phospholipid 

binding. 

REN 1.556558 0.421303 14.67092 0.000128 0.436492 Renin catalyzes the first step in the activation pathway of angiotensinogen--a 

cascade that can result in aldosterone release, vasoconstriction, and increase in 

blood pressure. 

PKDCC 0.356707 0.106007 14.36259 0.000151 0.436492 Protein kinase which is required for longitudinal bone growth through regulation 
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of chondrocyte differentiation. Involved in protein transport from the Golgi 

apparatus to the plasma membrane (By similarity) 

NCAPG -0.18097 0.052443 14.14435 0.000169 0.436492 Regulatory subunit of the condensin complex, a complex required for conversion 

of interphase chromatin into mitotic-like condense chromosomes. The condensin 

complex probably introduces positive supercoils into relaxed DNA in the presence 

of type I topoisomerases and converts nicked DNA into positive knotted forms in 

the presence of type II topoisomerases 

SKA3 -0.23214 0.06639 13.72807 0.000211 0.476607 A microtubule-binding subcomplex of the outer kinetochore that is essential for 

proper chromosome segregation 

DTL -0.19848 0.060308 12.88651 0.000331 0.653314 E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage 

response and translesion DNA synthesis 

CCNB1 -0.10543 0.031051 12.71875 0.000362 0.653314 The protein encoded by this gene is a regulatory protein involved in mitosis. 

BUB1 -0.15348 0.047313 12.00116 0.000532 0.77395 This gene encodes a serine/threonine-protein kinase that play a central role in 

mitosis 

DLGAP5 -0.19198 0.061511 11.93955 0.00055 0.77395 Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. 

Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. 

CRYZ -0.14291 0.041116 11.80478 0.000591 0.77395 Binds NADP and acts through a one-electron transfer process. 

CCDC152 -0.20601 0.056894 11.77476 0.0006 0.77395 CCDC152 (coiled-coil domain containing 152) is a protein-coding gene. 

ZNF684 -0.12772 0.037985 11.3534 0.000753 0.897588 May be involved in transcriptional regulation 

 Table 7.19: Differential expression analysis with rate of HD progression in gene positive members of the TRACK-HD cohort. Log2(FC) – log2 of the ratio of the mean 

counts in HD and controls. Lfc SE – standard error of the log2(FC). Stat – test statistic.   
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7.4.2 Pathways are dysregulated in HD subjects with faster vs slower rates of 

disease progression 

We then tested whether transcripts sharing similar functional annotation were dysregulated 

in relation to rate of progression.  Positive and negative directions of correlation were tested 

separately using GSEA.  The same pathway annotations as used for the HD vs control analysis, 

described above, were used.  With a false discovery rate (q-value) threshold of q < 0.05 to 

correct for multiple testing, there was a significant negative correlation between 119 

pathways and rate of HD progression (top 20 pathways shown in Table 7.20).  Many of these 

pathways relate to the cell cycle: faster progressors were found to have lower levels of cell 

cycle related gene expression in blood compared to slower progressors.  Looking at the top 

genes in the cell cycle related pathways many of the most significant genes overall are seen 

including MSH4, RRM2, PBK (data not shown).  Comparing with the gene set enrichment 

analysis of the TRACK-HD GWAS (Chapter 3), the pathways which are significantly 

downregulated in faster progressors are not pathways associated with differential rate of 

disease progression genetically (Table 7.20).   

 

In contrast, there were no biological pathways with a positive correlation with disease 

progression, ie no pathways significantly more expressed in faster vs slower progressors 

(Table 7.20).
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Direction of 

effect 

Pathway #genes Enrichment p-

value (directional) 

q-value 

(directional) 

p (TRACK) 

GWAS 

Description 

Negative 

correlation 

with HD 

progression 

GO:  280 137 1.11E-15 7.99E-12 6.19E-01 nuclear division                                                                                                                                                                                         

GO: 7067 7 1.11E-15 7.99E-12 6.19E-01 mitosis                                                                                                                                                                                                  

GO: 48285 150 2.83E-15 1.36E-11 7.95E-01 organelle fission                                                                                                                                                                                        

GO: 793 481 4.55E-15 1.64E-11 1.51E-01 condensed chromosome                                                                                                                                                                                     

GO:  51301 211 4.03E-13 1.16E-09 8.07E-01 cell division                                                                                                                                                                                            

REACTOME  694 3 2.77E-12 6.64E-09 2.64E-01 REACTOME: MITOTIC_M-M_G1_PHASES                                                                                                                                                                              

GO:  10564 62 8.48E-12 1.74E-08 9.89E-01 regulation of cell cycle process                                                                                                                                                                         

GO:  7059 391 4.12E-11 7.42E-08 9.18E-01 chromosome segregation                                                                                                                                                                                   

REACTOME  642 25 5.74E-11 9.18E-08 3.20E-01 REACT:M_PHASE                                                                                                                                                                                            

GO: 775 32 1.11E-10 1.60E-07 3.17E-01 chromosome, centromeric region                                                                                                                                                                           

GO:  7346 37 4.31E-10 5.44E-07 9.99E-01 regulation of mitotic cell cycle                                                                                                                                                                         

GO:  779 110 4.53E-10 5.44E-07 4.02E-01 condensed chromosome, centromeric region                                                                                                                                                                 

GO:  5813 123 8.10E-10 8.53E-07 6.62E-01 centrosome                                                                                                                                                                                               

GO:1901987 22 8.30E-10 8.53E-07 9.86E-01 regulation of cell cycle phase transition                                                                                                                                                                

GO:  777 130 2.44E-09 2.34E-06 3.35E-01 condensed chromosome kinetochore                                                                                                                                                                         

REACTOME 695 169 3.63E-09 3.26E-06 2.34E-01 REACTOME: MITOTIC PROMETAPHASE                                                                                                                                                                               

GO: 901988 53 4.33E-09 3.67E-06 9.37E-01 negative regulation of cell cycle phase transition                                                                                                                                                       

GO: 776 24 6.20E-09 4.96E-06 2.02E-01 kinetochore                                                                                                                                                                                              
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 GO:  44772 29 7.84E-09 5.64E-06 4.12E-01 mitotic cell cycle phase transition                                                                                                                                                                      

 GO:  44770 29 7.84E-09 5.64E-06 4.12E-01 cell cycle phase transition                                                                                                                                                                              

Positive 

correlation 

with HD 

progression 

  NCI: 26 36 1.31E-04 0.844 6.85E-01 

NCI:_VALIDATED TARGETS OF C-MYC TRANSCRIPTIONAL 

ACTIVATION                                                                                                                                               

GO: 32320 8 1.54E-04 0.844 7.91E-01 positive regulation of Ras GTPase activity                                                                                                                                                               

GO:  5099 87 1.78E-04 0.844 6.62E-01 Ras GTPase activator activity                                                                                                                                                                            

GO:  3001 4 3.12E-04 0.844 9.78E-01 generation of a signal involved in cell-cell signalling                                                                                                                                                   

GO:  23061 4 3.12E-04 0.844 9.78E-01 signal release                                                                                                                                                                                           

GO:  71013 4 3.52E-04 0.844 4.02E-01 catalytic step 2 spliceosome                                                                                                                                                                             

GO: 5681 4 5.01E-04 0.912 2.66E-01 spliceosomal complex                                                                                                                                                                                     

GO: 32318 144 7.19E-04 0.912 5.99E-01 regulation of Ras GTPase activity                                                                                                                                                                        

GO: 71814 160 9.35E-04 0.912 1.12E-01 protein-lipid complex binding                                                                                                                                                                            

GO: 71813 113 9.35E-04 0.912 1.12E-01 lipoprotein particle binding                                                                                                                                                                             

Table 7.20: Relationship between generic pathways and rate of HD progression showing that while there are multiple pathways significantly downregulated with 

faster progression, but there are no pathways significantly upregulated with faster progression.  The 20 most negatively correlated pathways, and 10 most 

positively pathways are shown.  #genes: number of genes in the pathway; Enrichment p-value- p-value of the normalized enrichment score in the negative (top 20 

rows) and positive (bottom 10 rows) direction; p(TRACK): p-value of association of this pathway in the TRACK-HD GWAS (Chapter 3).  
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A similar pattern of cell cycle pathway enrichment is observed when I used the online 

software GOrilla for the pathway analysis, this program identifies and visualizes enriched GO 

terms in ranked lists of genes rather than using the fold change values (Eden et al., 2009).  100 

pathways were significantly associated with rate of progression (FDR q-value <0.05) (Figure 

7.5 and Table 7.21). 
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 Figure 7.5: Cell cycle pathways expression is associated with rate of HD progression.  Diagrammatic illustration of the GO terms enriched in the top vs 

bottom of the list of transcripts in which transcripts are ranked according to differential expression with rate of HD progression. P-value cut-off for 

GO terms set at 10^-7.  GOrilla accessed 22/11/2017. 
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GO term Description P-value FDR q-value 

GO:1903047 mitotic cell cycle process 3.72E-14 5.61E-10 

GO:0022402 cell cycle process 1.25E-13 9.41E-10 

GO:0007346 regulation of mitotic cell cycle 5.05E-11 2.54E-7 

GO:0051726 regulation of cell cycle 7.23E-11 2.72E-7 

GO:0007088 regulation of mitotic nuclear division 1.16E-10 3.5E-7 

GO:0051301 cell division 1.46E-10 3.67E-7 

GO:0000278 mitotic cell cycle 3.99E-10 8.59E-7 

GO:1901990 regulation of mitotic cell cycle phase transition 6.71E-10 1.26E-6 

GO:0051783 regulation of nuclear division 7.43E-10 1.24E-6 

GO:1901987 regulation of cell cycle phase transition 1.46E-9 2.2E-6 

GO:0010564 regulation of cell cycle process 1.73E-9 2.37E-6 

GO:0007049 cell cycle 2.55E-9 3.2E-6 

GO:0007059 chromosome segregation 2.51E-8 2.91E-5 

GO:0006260 DNA replication 2.86E-8 3.08E-5 

GO:0007052 mitotic spindle organization 3.28E-8 3.3E-5 

GO:0045786 negative regulation of cell cycle 7.45E-8 7.02E-5 

GO:0051276 chromosome organization 1.03E-7 9.16E-5 

GO:0090068 positive regulation of cell cycle process 1.5E-7 1.26E-4 

GO:0045787 positive regulation of cell cycle 1.97E-7 1.56E-4 

GO:0000075 cell cycle checkpoint 2.08E-7 1.57E-4 

GO:1902850 microtubule cytoskeleton organization 

involved in mitosis 

2.34E-7 1.68E-4 

GO:0033044 regulation of chromosome organization 2.67E-7 1.83E-4 

Table 7.21: Cell cycle pathways are enriched in GOrilla analysis of ranked transcripts from the 

TRACK-HD progression differential progression analysis. Transcripts with a FDR q-value < 2.0E-

4 are shown.  'P-value' is the enrichment p-value. 'FDR q-value' is the correction of the p-value 

for multiple testing using the Benjamini and Hochberg (1995) method.  
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7.4.3 Gene co-expression modules and rate of HD Progression 

GSEA for brain co-expression modules was applied to the HD progression differential 

expression dataset. Firstly we looked at HD modules from the Neueder and Bates paper 

(Neueder and Bates, 2014)  which applied WGCNA to obtain 124 modules from the Hodges et 

al(Hodges et al., 2006) HD and control brain dataset.  Slower progressors (negative correlation 

enrichment) have higher levels of transcripts from protein transport and folding modules.  

While in faster progressors (positive correlation enrichment) transcripts involved in ion 

channels, synapses and mitochondrial biology are enriched (Table 7.22).   

Directio

n of 

correlati

on 

enrichm

ent 

Mod

ule 

Brain 

Region 

#gen

es 

Enrichm

ent p-

value 

cor(H

D) 

BH 

(HD) 

Annotations 

Positive 

89 FC_BA

4 

390 4.14E-

06 

NA NA NA                                                 

119 FC_BA

9 

696 1.90E-

05 

NA NA NA                                                 

66 CN     2624 5.40E-

05 

-

0.800 

6.03

E-15 

Synapse / ion channels 

25 CB     362 6.86E-

05 

-

0.450 

1.66

E-03 

mitochondrion                  

46 CN     1016 5.71E-

04 

0.744 4.03

E-12 

Regulation of transcription/ 

mRNA/ chromatin 

modification 

26 CB     247 2.55E-

03 

NA NA NA                                                 

100 FC_BA

4 

78 2.66E-

03 

NA NA NA                                                 

44 CB     628 6.37E-

03 

0.336 2.90

E-02 

Zinc finger binding / 

chromatin modification 

98 FC_BA

4 

1350 1.82E-

02 

-

0.445 

3.35

E-02 

Glycolysis / protein transport 

75 FC_BA 44 3.75E- - 1.21 Fibronectin                          



247 
 

4 02 0.506 E-02 

Negativ

e 

110 

FC_BA

9 752 

6.38E-

11 NA NA  

76 

FC_BA

4 956 

1.18E-

06 

-

0.570 

3.77

E-03 Protein transport 

34 CB     336 

2.62E-

06 0.327 

3.30

E-02 

Protein folding/ mRNA/ 

chromatin assembly 

68 CN     1264 

2.44E-

05 0.540 

7.74

E-06 Cilium 

104 

FC_BA

9 186 

3.91E-

05 NA NA NA                                                 

111 

FC_BA

9 512 

6.28E-

05 NA NA Immune Response                                                 

49 CN     637 

2.12E-

04 

-

0.456 

2.66

E-04 

Mitochondrion / translation / 

proteosome / DNA repair 

116 

FC_BA

9 183 

2.91E-

04 NA NA NA                                                 

59 CN     100 

4.50E-

04 NA NA NA                                                 

16 CB     512 

2.42E-

03 NA NA NA                                                 

Table 7.22: Correlation enrichment between HD modules from Neueder & Bates (Neueder and 

Bates, 2014) and differential transcription according to progression. 

 

Next we looked for concordance with the Gibbs control brain modules.  Slower progressors 

have higher levels of proteasome, mRNA, transcription, protein modification and transport 

modules compared to faster progressors (Table 7.23).  Faster progressors have higher levels 

of transcripts from Proline-rich regions, and those involved with the golgi apparatus (Table 

7.23).  

Direction of 

correlation 

enrichment 

Module Brain 

region 

#genes Enrichment 

p 

Annotations 

Positive 

113 TCTX 619 <10-16 Proteasome/acetylation/mRNA 

metabolic process 

23 CB 788 3.16E-15 Protein 
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modification/KRAB/translation 

initiation factor activity 

45 FCTX 1001 1.07E-13 Membrane enclosed lumen 

74 Pons 1182 5.44E-13 Transcription/acetylation/protein 

folding/histone deacetylase 

26 CB 591 7.42E-13 Protein transport/Golgi 

apparatus/proteolysis 

115 TCTX 422 2.69E-09 Nucleus 

89 Pons 476 1.88E-08 KRAB/phosphoprotein/GTP 

binding 

47 FCTX 868 5.57E-08 Small conjugating protein 

ligase/golgi apparatus 

90 Pons 432 1.30E-05 Phosphoprotein/lytic vacuole 

105 TCTX 1135 7.84E-05 Vesicle-mediated 

transport/cytoplasm  

Negative 

22 CB 831 2.71E-12 Compositionally biased region: 

Pro-rich 

95 TCTX 361 1.57E-08 Golgi membrane/Compositionally 

biased region: Pro-rich 

48 FCTX 647 2.24E-08  Golgi cisterna/transcription 

corepressor  activity/Pro-rich 

85 Pons 556 1.18E-05 Lipid binding/nucleoside-

triphosphatase regulator activity 

66 Pons 136 1.23E-05 Phosphoprotein 

63 Pons 1542 1.40E-05 DNA binding/diencephalon 

development/protease 

111 TCTX 926 1.34E-04 MAPKinase signalling 

pathway/chromatin remodelling 

39 FCTX 1325 2.25E-04 DNA binding/hormone/disulphide 

bond 

103 TCTX 72 3.87E-04 nucleoplasm part 

112 TCTX 731 5.23E-04 Calcium binding/actin 

binding/tight junction/endocytosis 
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Table 7.23: Correlation enrichment between Gibbs modules(Gibbs et al., 2010) and differential 

transcription according to progression: top ten modules in each direction shown. FCTX – 

frontal cortex; CB – cerebellum; TCTX – temporal cortex. 

7.4.4 Comparison of HD progression results to the HD vs control WGCNA results 

Comparing the Neueder & Bates HD modules and progression results to the HD vs control 

results, Module 76 and 110 significantly enriched for control-manifest downregulated genes 

and Module 111 significantly enriched for control-manifest upregulated genes, however 

overall there was no consistent direction of association seen in either the positive or negative 

direction (Table 7.22).   

 

For the Gibbs modules, modules 23, 26, 45 and 115, which are among those with the 

strongest negative correlation enrichment, are also significantly enriched for control-manifest 

downregulated genes; by contrast there is no overlap in the positive correlation enrichment 

modules (Table 7.23). 

7.4.5 Attempted replication of TRACK-HD progression RNAseq results in the LUMC 

dataset 

Given that a subset of the individuals from the LUMC dataset had serial data we investigated 

whether we could replicate the result showing an enrichment of cell cycling related pathways 

in TRACK-HD slower progressors in the LUMC samples.  We therefore developed a progression 

score using the available data from LUMC as described in General Methods (Chapter 2.5.3).  

Results for TRACK-HD and LUMC were not meta-analysed for the progression RNAseq analysis 

due to concerns that the progression scoring methods were not sufficiently similar to justify it.  

7.4.6 No individual transcripts are differentially expressed according to rate of HD 

progression in the LUMC cohort 

We investigated whether any transcripts were differentially expressed with rate of 

progression according to the LUMC atypical severity score: no transcripts were significantly 

differentially expressed (Table 7.24). 

Gene 

ID 

log2FoldCh

ange 

Stand

ard 

error 

of LFC 

stat p-

value 

Brief function from GeneCards 

TME 0.2414876 0.058 17.72 2.55E- Enhances production of pro-inflammatory 
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M9 152 727 05 cytokines induced by TNF, IL1B, and TLR 

ligands. 

CHST2 -0.2747902 0.067

503 

17.32

021 

3.16E-

05 

Among its related pathways are Disease 

and Metabolism. GO annotations related to 

this gene include sulfotransferase activity 

and N-acetylglucosamine 6-O-

sulfotransferase activity. 

OCM 0.4134942

5 

0.102

005 

16.92

36 

3.89E-

05 

Oncomodulin is a high-affinity calcium ion-

binding protein. It belongs to the 

superfamily of calmodulin proteins, also 

known as the EF-hand proteins. 

PTPRS -0.3103974 0.074

553 

16.14

137 

5.88E-

05 

PTPs are known to be signalling molecules 

that regulate a variety of cellular processes 

including cell growth, differentiation, 

mitotic cycle, and oncogenic 

transformation. 

TRA2

A 

-0.1048107 0.025

705 

16.13

811 

5.89E-

05 

This gene is a member of the transformer 2 

homolog family and encodes a protein with 

several RRM (RNA recognition motif) 

domains. This phosphorylated nuclear 

protein binds to specific RNA sequences 

and plays a role in the regulation of pre-

mRNA splicing. 

NUAK

1 

-0.6623118 0.168

239 

15.65

251 

7.61E-

05 

Serine/threonine-protein kinase involved in 

various processes such as cell adhesion, 

regulation of cell ploidy and senescence, 

cell proliferation and tumour progression. 

LPCAT

1 

-0.1464862 0.037

763 

15.08

258 

0.000

103 

Lysophosphatidylcholine (LPC) 

acyltransferase (LPCAT; EC 2.3.1.23) 

catalyses the conversion of LPC to 

phosphatidylcholine (PC) 

PRDM

16 

-0.9408971 0.283

15 

15.05

61 

0.000

104 

Binds DNA and functions as a 

transcriptional regulator. 

ZSCA

N32 

-0.0716239 0.018

526 

14.88

124 

0.000

114 

GO annotations related to this gene include 

sequence-specific DNA binding RNA 
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polymerase II transcription factor activity. 

DTHD

1 

-0.4256999 0.111

386 

14.80

765 

0.000

119 

This gene encodes a protein which contains 

a death domain. Death domain-containing 

proteins function in signaling pathways and 

formation of signaling complexes, as well 

as the apoptosis pathway. 

Table 7.24: Differential transcription of transcripts according to atypical severity score from 

the LUMC cohort. Ten most significant transcripts are shown.   

7.4.7 Pathway analysis of LUMC progression data 

I performed pathway analysis using GOrilla using the ranked list of differentially transcribed 

genes.  The top pathway hit from the TRACK-HD GOrilla analysis, “mitotic cell cycle process” 

was not present in the list of transcripts with a basic p-value of <1x10-3; indeed no cell cycle 

pathways feature on this list (Table 7.25). 20 pathways were significant (FDR q-value <0.05), 

many of these relating to cellular response to stimuli (Table 7.25 and Figure 7.6).   

GO term 
Description 

P-value FDR q-

value 

GO:0043434 response to peptide hormone 4.75E-7 7.15E-3 

GO:0070887 cellular response to chemical stimulus 6.18E-7 4.66E-3 

GO:0034164 negative regulation of toll-like receptor 9 signalling 

pathway 
2.22E-6 1.12E-2 

GO:0032870 cellular response to hormone stimulus 5.3E-6 2E-2 

GO:1901698 response to nitrogen compound 7.53E-6 2.27E-2 

GO:0032687 negative regulation of interferon-alpha production 8.06E-6 2.02E-2 

GO:1901652 response to peptide 8.18E-6 1.76E-2 

GO:0071310 cellular response to organic substance 8.33E-6 1.57E-2 

GO:0006793 phosphorus metabolic process 8.86E-6 1.48E-2 

GO:0010243 response to organonitrogen compound 9.1E-6 1.37E-2 

Table 7.25: Ten pathways most enriched in a GOrilla pathway analysis of the differential 

transcription in the LUMC samples according to cross-sectional severity score.  'P-value' is the 

enrichment p-value.  'FDR q-value' is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method.  
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Figure 7.6: Pathways related to progression in the LUMC cohort.  Diagrammatic illustration 

using GOrilla(Eden et al., 2009) of the GO terms enriched in the top vs bottom of the list of 

transcripts in which transcripts are ranked according to differential expression with rate of HD 

progression in the LUMC cohort. P-value cutoff for GO terms set at 10^-6. GOrilla accessed 

22/11/2017. 

 

7.5 Discussion 

HD research has focused on the brain as the most conspicuous clinical features can be clearly 

linked to progressive degeneration of specific brain regions (van der Burg et al., 2009, Bates et 

al., 2015). However, HD is a systemic condition with peripheral expression of mutant 

huntingtin directly driving abnormalities such as immune dysfunction, metabolic derangement 

and transcriptional dysregulation that contribute to onset, progression, quality of life and 

mortality (van der Burg et al., 2009, Carroll et al., 2015, Aziz et al., 2018). 
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In this chapter I have discussed work in which we conducted RNA-Seq of whole blood in two 

independent cohorts of HD patients. Using gene set enrichment analysis (GSEA) with publicly-

available pathway databases and WGCNA modules from HD and control brain datasets, 

dysregulated gene sets were identified in HD blood that were replicated in both independent 

cohorts. These correspond to the most significantly dysregulated modules in caudate nucleus, 

the most prominently affected region in HD brain. This suggests mutant huntingtin drives a 

common pathogenic signature in both blood and brain. 

 

RNA-Seq more comprehensively and accurately quantifies mRNA than hybridisation-based 

microarrays or tag-based methods (Costa et al., 2010). However, it is perhaps unsurprising 

that there was no significant differential expression of individual transcripts by disease stage 

or state in either the independent or combined cohorts (Table 7.3) given that the major cell 

types known to contribute to symptoms are not present and the haematogenous cells known 

to be dysfunctional in HD, such as monocytes and macrophages (Bjorkqvist et al., 2008, Wild 

et al., 2011), constitute only a small proportion of circulating cells (Whitney et al., 2003). The 

variation of gene expression in blood with age, gender, cell type and time of day is also likely 

to add to the sample heterogeneity (Whitney et al., 2003, Horvath et al., 2012). Our results 

are consistent with previous studies that have shown weak correlation at the transcript level 

between blood and brain (Cai et al., 2010). 

 

Despite these limitations, in the disease status experiments, gene set enrichment analysis 

identified significantly overlapping dysregulated pathways in the Track-HD and Leiden HD 

blood datasets, even though they differed in age and disease severity. The observed 

upregulation of immune-related pathways in HD is consistent with that previously identified in 

transcriptional and functional studies (Mastrokolias et al., 2015, Carroll et al., 2015, van der 

Burg et al., 2009). HD patients are known to have immune dysfunction, both in the central 

nervous system (CNS) with microglial activation (Tai et al., 2007), and peripherally with 

elevated pro-inflammatory cytokines in premanifest carriers up to 16 years before predicted 

onset (Bjorkqvist et al., 2008, Wild et al., 2011). The migration of phagocytic cells is impaired 

in HD (Kwan et al., 2012b, Träger et al., 2015) and patient-derived monocytes are hyperactive 

on stimulation, an effect reduced by HTT lowering (Bjorkqvist et al., 2008). Modulation of the 

peripheral immune system with a type 2 cannabinoid receptor (CB2) agonist (Bouchard et al., 

2012) or bone marrow transplantation (Kwan et al., 2012a) can increase lifespan and reduce 

motor deficits and synaptic loss in HD mouse models. 
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RNA processing pathways were downregulated in HD, which is congruent with known 

decreases in miRNAs and altered expression of key miRNA processing enzymes in HD 

(Seredenina and Luthi-Carter, 2012, Langfelder et al., 2018). Consistent with effects we 

observe on pathways involved in energy metabolism, mitochondrial ATP is reduced in HD 

brain (Mochel et al., 2012) and blood (Seong, 2005), and PGC-1α, a member of the 

dysregulated ATP metabolic process pathway, is a key protective regulator of mitochondrial 

genes that is repressed in HD mouse models (Cui et al., 2006, Chaturvedi et al., 2010).  

 

Downregulation of genes involved in DNA repair is likely to be relevant to somatic expansion 

that may influence disease onset and progression (Jonson et al., 2013, Hensman Moss et al., 

2017b, Consortium, 2015a). The signature of pathway dysregulation we identified in HD whole 

blood significantly overlaps with that recently found in unstimulated HD monocytes (Miller et 

al., 2016a). This enrichment was driven primarily by upregulation of immune pathways, as 

might be expected given that Miller et al. (2016a) isolated myeloid cells. 

 

To overcome the annotation gap commonly observed with publicly-derived pathway 

databases and to investigate whether gene expression changes from HD brain are also present 

in blood, we performed GSEA using brain co-expression networks derived from HD (Neueder 

and Bates, 2014) and control (Gibbs et al., 2010, Braineac, 2016) subjects. Several HD brain 

modules were significantly dysregulated in HD blood, suggesting a common signature of 

transcriptional dysregulation between blood and brain. Brain modules upregulated in blood 

were enriched for immune-related genes, confirming the results of our pathway analysis. 

Strikingly, two of the modules most significantly dysregulated in HD caudate, 48 (CNpos2) and 

66 (CNneg1), were also significantly dysregulated in the same direction in both independent 

blood datasets. Compared with other brain regions, the caudate has the largest number of 

expression changes and the highest correlation with HD (Neueder and Bates, 2014). Module 

48 (CNpos2), the second most significantly upregulated module in caudate, is enriched for 

transcriptional regulators, chromatin modifiers and genes involved in mRNA processing 

(Neueder and Bates, 2014). We also find this module to be significantly enriched for immune 

response genes, giving further support to the pathway results. Module 66 (CNneg1), the most 

significantly downregulated module in caudate, contains genes involved in neuronal function, 

particularly synaptic function and plasticity, and ion channels. Around half of its hub genes are 

implicated in synaptic function and all were significantly downregulated in Hodges et al. 

(2006). Though synapses are not present in blood, synaptic genes may be dysregulated in 

circulating cells without significant pathogenic impact, or alternatively they may serve distinct 

functions in blood cells. Indeed, Cai et al. (2010) found that the synaptic module was well 
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preserved between brain and blood. We also found that gene expression and pathway 

dysregulation from HD prefrontal cortex (Labadorf et al., 2015a) was replicated in HD blood. 

The high degree of replication increases confidence in the shared signal between blood and 

brain.  This overlap is important for future studies: blood is a readily available tissue, our 

findings support the use of blood from people who have Huntington’s disease to give insights 

on HD brain.  

 

Mina et al. (2016) performed WGCNA on the Leiden blood sample, finding modules related to 

immune response that were associated with TFC and motor score. Furthermore, by comparing 

biological annotations of their HD blood modules with those they derived from the Hodges et 

al. (2006) brain expression data, they showed a common signature between blood and 

caudate related to immune response. These analyses, using different methodology to ours, 

give further support to our conclusions. 

 

Analysis of the impact of rate of disease progression on the transcriptome of HD gene positive 

individuals was investigated in 117 gene positive TRACK-HD, and interestingly suggested that 

cell cycle transcripts are markedly and significantly less expressed in faster progressors 

compared to slower progressors.  This is particularly intriguing given that circulating blood is 

largely a post-mitotic tissue, however, as we have established transcriptional dysregulation in 

blood reflects that occurring in brain. These results were not replicated in our progression 

analysis in the LUMC cohort, however there are several limitations of the study which could 

be responsible for this.  The progression statistic that we developed for the LUMC cohort was 

based on very limited phenotypic data, just TMS and TFC from two time points, in contrast to 

the TRACK-HD progression measure which was based on 24 variables over four time points.  

This means that the LUMC measure if likely to be much less robust and reproducible, such 

that much larger samples sizes would be needed to use it with reasonable study power.  

However, instead we had fewer samples in the LUMC cohort.  Thus our power to investigate 

progression related changes in transcription was very limited in the LUMC analysis. HD studies 

with both clinical and biosample data available were previously limited.  However Enroll-HD, a 

global study collecting annual phenotypic data, and including biosamples may be worth 

considering to further address this question in the future.  

 

Another limitation is that the faster progressors also tended to have more advanced stage 

disease at time of sampling that the slow progressors, thus disease stage could confound our 

result, though were this to be the case one would expect to find a similar result to the analysis 

looking at the effect of disease stage, which was not the case.  
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While any change in cell cycle transcripts could be a direct effect of transcriptional 

dysregulation, it could also be related to the downstream effects of huntingtin.  Expression of 

misfolded proteins such as HTT often leads to the formation of intracellular aggregates (Ross 

and Tabrizi, 2011).  When the capacity of the autophagy and ubiquitin-proteosome systems 

are exceeded a large juxtanuclear aggregate known as the aggresome forms (Lu et al., 2015).  

Lu and colleagues (Lu et al., 2015) have established that perinuclear aggresome accumulation 

is associated with abnormal nuclear morphology and DNA double-strand breaks resulting in 

cell-cycle arrest via the phosphorylated p53 dependent pathway.  Aggresomes can also have a 

detrimental effect on mitosis by steric interference with chromosome alignment, 

chromosome positioning and spindle formation.  It would be interesting to investigate 

whether cells from faster and slower progressing subjects have a difference in their cell 

turnover, and look at the levels of aggresomes as it would be plausible for faster progressors 

to have higher levels of aggresomes via an accelerated disease process, and that this could 

result in lower cell cycle gene expression and lower rates of mitosis.  Huntingtin has a highly 

conserved role in modulating mitotic spindle orientation through the dynein/dynactin 

complex (Godin et al., 2010).  However given that there was no significant difference in HTT 

expression with change in progression rate, the change in level of cell-cycle related transcripts 

does not seem likely to be driven by this.  

 

A particularly intriguing result presented in this chapter is the evidence of the shared immune 

transcriptomic signature between Alzheimer Disease (AD) and HD. Alzheimer Disease (AD) is 

the most common cause of dementia, typically presenting with a progressive loss of cognitive 

function and memory (Guerreiro et al., 2013).  Like HD, AD is associated with protein 

misfolding and aggregation: it is characterized by amyloid plaques and accumulations of tau 

called neurofibrillary tangles (Fitzpatrick et al., 2017).  In AD, amyloid plaques are surrounded 

by chronically activated microglia (Gomez-Nicola et al., 2013, Olmos-Alonso et al., 2016) and 

GWA studies have identified immune-related genes as risk factors for late onset Alzheimer 

Disease (LOAD) (Wyss-Coray and Rogers, 2012). Recently Hong et al. (2016a) showed that 

early in the disease process, before plaque formation, microglia and complement activation 

drive synaptic loss, a process that resembles and may reflect reactivation of developmental 

synaptic pruning (Hong et al., 2016b). In HD blood we found significant upregulation of 

immune modules associated with AD in the IGAP GWAS (International Genomics of 

Alzheimer's Disease, 2015), a subset of genes with shared membership of several of these 

modules, and the most significant immune and microglia-related modules from Zhang et al. 

(2013). In a co-expression network generated from prefrontal cortex of 194 HD patients, 
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Zhang et al. (2013) found that their most significant immune and microglia module was well 

conserved, though was not significantly dysregulated in HD and did not correlate with CAG 

repeat length. This may be because cortex shows less severe pathology and transcriptional 

dysregulation than caudate (Hodges, 2006). Overlapping immune upregulation in HD and AD 

suggests these two distinct neurodegenerative diseases share some common pathogenic 

mechanisms, with parallel signalling cascades initiated in macrophages upon pathogen 

phagocytosis and in microglia involved in synaptic pruning in the AD brain (Hong et al., 2016a). 

St-Amour and colleagues (St-Amour et al., 2017) recently showed that mixed proteinopathies 

occur in late-stage human HD brain: tau is abnormally phosphorylated and is aberrantly 

spliced, and there is increased aggregation of TDP-43, α-synuclein and phosphorylated-Tau as 

HD progresses, possibly pointing to common mechanisms leading to the abnormal 

accumulation of aggregation-prone proteins in neurodegenerative diseases.  

 

In this chapter I have shown that transcriptional analysis of deeply phenotyped subjects from 

the TRACK-HD cohort has yielded important insights about the effect of disease status and 

disease progression on the expression pattern in patients with HD.  
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Chapter 8: Conclusion and future directions 

It has been the aim of this thesis to better understand the genetic factors underpinning 

phenotypic diversity in neurodegenerative diseases, particularly those caused by repeat 

expansion mutations.  I used a variety of genetic strategies to look for variants, both genetic 

and transcriptomic, which are associated with rate of progression and age of disease onset in 

Huntington’s disease and the polyglutamine spinocerebellar ataxias.  In Chapter 3 I have 

presented work in which I successfully identified a locus in MSH3 as being associated with HD 

progression (1.58x10-8) (Hensman Moss et al., 2017b), and went on, in Chapter 5, to identify 

the likely causal variant underlying this genetic signal.  Further study of this variant I identified 

has already been done by members of the Tabrizi lab and collaborators and this work is the 

topic of a manuscript recently accepted for publication in Brain (Flower et al, 2019).  Work on 

the functional impact of this variant, and confirmation that it is the presence of the MSH3 

repeat, and not close-by variants in high linkage disequilibrium would be of interest.  

 

MSH3 is a DNA repair gene which is involved in the repair of DNA mismatches: loops of 

around 10 mispaired bases in the DNA (Figure 3.15).  The results from Chapters 3 and 4 show 

that DNA repair pathways more broadly are associated with the rate of progression and age at 

onset, in not only Huntington’s disease, but across a range of disorders caused by CAG repeat 

expansion mutations.  This suggests a common mechanism, acting at the level of the CAG 

repeat tract rather than being a protein/disease specific mechanism.  Because of their 

repetitive nature, CAG repeats are susceptible to forming unusual structures such as 

imperfect hairpins and slipped strand structures to which DNA repair proteins are recruited 

(Mirkin, 2007).  Through a process of aberrant repair at these repetitive regions additional 

bases are either added or removed, resulting in somatic instability of the CAG repeats.  Repeat 

expansion occurs in dividing and non-dividing cells, and is tissue specific, cell specific, and 

disease specific (Jones et al., 2017). Somatic expansion of the CAG repeat tract has been 

discussed in this thesis as the likely mechanism through which DNA repair variants modulate 

the course of disease: in fast progressing individuals aberrant DNA repair mechanisms result 

in expansion of the CAG repeat tract in susceptible tissues (Figure 3.16).   

 

Proteins with larger CAG repeat tracts are associated with higher disease-related toxicity, 

resulting in faster disease progression and slower onset (Bates et al., 2015).  While it is 

proteins of the DNA mismatch repair pathway which have been primarily implicated by the 

pathway analysis, DNA repair proteins other than those involved in mismatch repair are also 

involved.   The bidirectional associations at FAN1 (Chapter 3, Chapter 5, (Bettencourt et al., 
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2016, Hensman Moss et al., 2017b, GeM-HD-Consortium, 2015), which is involved in 

interstrand cross-link repair as well as interacting with mismatch repair proteins, 

demonstrates that members of various DNA repair pathways are implicated in somatic 

instability of CAG repeats.  Indeed, it seems that we should view the trinucleotide repeat 

expansion pathway as separate pathway, involving proteins associated with various DNA 

repair pathways, and likely having its own unique mechanism specific to repetitive DNA 

(Figure 8.1). 
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Figure 8.1: The main DNA damage response (DDR) pathways with the proteins suspected to be involved in each. The postulated role of the DDR in trinucleotide 

repeat instability is shown on the right, shaded in yellow, the proteins listed have been implicated by genetic data. Pathways of DSB repair are in blue-shaded area; 

pathways of SSB repair are in red-shaded area. Main targets of drug development are in red.  Figure prepared by me, after Brown et al, 2017. 
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The GeM-HD Consortium have been collecting many more samples for further genetic analysis 

of the determinants of AAO in HD.  Many of these new samples come from the ENROLL-HD 

study, a worldwide study with annual study visits collecting biosamples, cognitive, motor and 

psychiatric data (Landwehrmeyer et al., 2016).  Thus not only are larger studies looking into 

modifiers of AAO now possible and underway, but the greater clinical data in ENROLL may 

enable further analysis of modifiers of HD progression.  There were several peaks just under 

the genome-wide significance level in the published version of the GeM-HD study (GeM-HD-

Consortium, 2015), and further data in which more loci attain significance has been presented 

at conferences and meetings.  By conducting larger studies looking for genetic modifiers of 

onset and progression in HD it is hoped that greater knowledge of the genetics will improve 

our understanding of the key molecular events accelerating/ decelerating pathology.  

 

There is, quite correctly, caution about applying knowledge of an individual patients’ genotype 

in terms of genetic modifiers to the clinic as part of genetic counselling: given the residual 

variability it would not be possible to accurately predict how an individual patient’s HD will 

progress.  However, with a raft of therapeutic studies underway in HD, it may be of value for 

the genetic data to be used in these trials.  Polygenic scores, similar to those described in 

Chapter 4, could be used to predict which subjects are likely to progress faster/slower based 

on their genetics.  This may be particularly applicable to early phase studies in which sample 

sizes are low and thus results could be subject to bias if fast/slow progressing subjects were 

overrepresented on one arm of the study.   

 

There is considerable scope for further valuable work looking for genetic modifiers of the 

polyglutamine SCAs.  An unbiased genetic screen looking for modifiers of age of onset across 

the polyglutamine SCAs would be of great interest.  This would enable not only further 

analysis of the role of DNA repair pathway variants, but also to examine whether any other 

novel areas of biology are implicated.  Efforts to collect a much larger sample of cases is 

underway by collaborators.  The MSH3 repeat identified as a modifier of HD progression in 

this thesis was not tagged in the genetic analysis looking at whether DNA repair gene variants 

modify onset in the polyglutamine SCAs.  Sequencing of SCA subjects to look for this variant 

and determine its effect on AAO would further expand our understanding of the role of this 

variant in repeat disorders.   

 

The C9orf72 hexanucleotide repeat expansion is observed with much longer pathological 

repeats than the repeats associated with HD or the SCAs (repeat numbers of thousands rather 

than tens or hundreds), meaning that accurate sizing of these large repeats is challenging. In 
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Chapter 6 I show that intergenerational instability is observed in families with high-normal 

C9orf72 repeat lengths.   Somatic instability of the C9orf72 repeat has also been observed 

(Suh et al., 2015, McGoldrick et al., 2018), and length of repeat was inversely correlated with 

disease duration in those with an FTD phenotype in a small study (Suh et al., 2015).  In HD, 

intermediate alleles with 27–35 repeats are not associated with disease symptoms but can 

expand into the affected range upon (predominantly paternal) germline transmission and thus 

cause HD in offspring.  HTT CAG repeat expansions appear to occur before meiosis in dividing 

Spermatogonia, or after meiosis is complete in differentiating germ cells (McMurray, 2010). It 

is not fully established whether there are mechanistic differences between expansions of long 

and short repeats, or whether the same pathways for expansion are used in different cell 

types.  It would be interesting to investigate somatic instability in C9orf72 further, and look at 

whether the DNA repair variants which modulate progression/onset in polyglutamine repeat 

disorders have a similar phenotypic effect in C9orf72 associated ALS/FTD. 

  

The preliminary work I present in Chapter 7 looking for transcriptomic signatures associated 

with rate of disease progression suggested that cell cycle transcripts are significantly less 

expressed in fast compared to slow progressing subjects, which may be related to perinuclear 

aggresome accumulation and resultant DNA damage and cell cycle arrest as discussed in 

Chapter 7. It would be interesting to adapt the REGISTRY progression score for use in ENROLL-

HD, enabling the identification of fast progressing subjects using high quality phenotypic data 

who are still actively engaged in research studies.  A replication cohort for my work looking at 

the association between rate of disease progression and the transcriptome could be 

identified, and potentially biosamples collected to investigate cell cycle rates further.  Blood is 

largely a post-mitotic tissue, but using buccal swabs epithelial cells and leucocytes can be 

readily collected (Theda et al., 2018): cell turnover could be investigated in buccal endothelial 

cells in fast vs slow progressing HD subjects.  

 

A common theme underpinning this thesis has been the value of high quality phenotypic data 

to assist in genetic analysis of neurodegenerative diseases: conditions which cause 

progressive loss of brain functions and overlapping clinical syndromes.  The value of clinical 

phenotyping has been doubted by some, due to the availability of diagnostic tests, or because 

of overlapping presentations between conditions (Alexander et al., 2014).  However, the work 

presented in this thesis demonstrates the value of careful phenotyping in order to probe the 

complex genotype phenotype relationships seen in the neurodegenerative diseases.  Without 

high quality phenotypic data, I would not have had the power to detect association at MSH3 

in this thesis since this increased the power of the genetic analysis. This is illustrated by the 
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fact that, due to better phenotypic data, the association in REGISTRY (p = 1·39 x 10-5) was 

much lower than in TRACK-HD (p =5·8x10-8) despite a greater sample size (n=1773 vs 216 

respectively, Figure 3.1).   For the polyglutamine disease analysis, the age of onset data was 

essential to our study yet the phenotypic data available for the spinocerebellar ataxia cases 

was generally fairly limited.  The age at onset data was often recorded retrospectively from 

the notes, and I suspect that if more accurate data had been available we may have had a 

stronger signal.   

 

Although their clinical presentations vary, there are many features common to the 

neurodegenerative disorders including the accumulation of misfolded proteins or peptide 

fragments in the brain and spinal cord. Immune pathways have been implicated in both AD 

and Parkinson’s disease GWAS analysis, and as I showed in Chapter 7 there is an overlap in 

immune pathway expression upregulation in AD and HD.  Indeed, a maladaptive innate 

immune response has emerged as a critical driving force in the pathogeneis of many 

neurodegerative diseases (Figure 8.2).  Other neuronal pathways that are altered in various 

neurodegenerative diseases include protein folding and quality control, autophagy and 

lysosomal dysfunction, mitochondrial damage and homeostasis, protein seeding and 

propagation, stress granules, synaptic toxicity, nucleocytoplasmic transport and 

unconventional translation (Gan et al., 2018).   
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Figure 8.2: Innate immune pathways in neurodegenerative diseases. A maladaptive innate 

immune response has emerged as a critical driving force in the pathogenesis of many 

neurodegenerative diseases. SNPs on many disease-associated genes induce maladaptive 

innate immune responses that are also associated with aging and epigenetic changes. 

Microglia, the resident immune cells in the brain, engage in cross-talk with astroglia and are 

modulated by peripheral immune system. Maladaptive microglia could damage neuronal 

circuits due to dysfunction in their detection or response to homeostasis imbalance, resulting 

in accumulation of protein aggregates, in concert with astroglia and possibly the peripheral 

immune system. Microglia could also cause neuronal and network dysfunction by altering 

cytokine signaling and synaptic pruning, independently of their effects on protein aggregates. 

Figure from (Gan et al., 2018) image reproduced with permission of the rights holder, Nature 

Publishing Group. 

 

 

As considered in this thesis, particularly in my work on C9orf72 repeat expansion associated 

disease (Chapter 6), and the phenotypic analysis in Huntington’s disease (Chapters 2 and 3), 

neurodegenerative diseases can have diverse clinical manifestations.  The clinical 

manifestation of a particular neurodegenerative disease reflects the region of the brain and 

the specific population of cells and synapses within it that are affected (Gan et al., 2018, Fu et 

al., 2018).  However the variable penetrance and broad range of presentations from ALS to 

FTD to HD phenocopy to Parkinsonism seen in people with expanded C9orf72 repeats is a 

particular conundrum.  The factors underlying selective neuronal vulnerability have been 

difficult to dissect, but expression levels of risk proteins, lysosomal and ubiquitin proteasome 

system function, calcium and energy homeostasis, neurotransmitters and neurotransmitter 

receptors, and aging have all been proposed as having a role (Fu et al., 2018).   

 

In Huntington’s disease, high levels of somatic instability are observed in the striatum, the 

tissue particularly vulnerable in this condition.  By contrast low levels of somatic instability are 

seen in the cerebellum, and the difference in levels of somatic instability have been linked to 

the expression of DNA repair proteins (Goula et al., 2009). It is hard to see how these data are 

compatible with a similar mechanism of DNA repair protein mediated somatic expansion of 

the CAG repeat operating in the polyglutamine SCAs, since they are primarily disorders of the 

cerebellum: further in vitro analysis would be illuminating. 

 

As I have discussed, I have made important advances in the understanding of what genetic 

factors underpin phenotypic diversity in HD and other repeat disorders.  Arguably the most 
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exciting of these is the identification of a variant in MSH3 associated with HD progression.  

Given that MSH3 is not constrained by selection pressures and variants within it are not 

closely associated with malignancy it is an attractive therapeutic target, not only in HD but in 

other repeat disorders.  A small molecule inhibitor of MSH3 may have the potential to slow 

the progression of HD in patients, and work is now underway by several pharmaceutical 

companies studying MSH3 as a therapeutic target for HD and potentially other triplet repeat 

diseases.  While there are many hurdles to be crossed to better understand the mechanisms 

through which this variant acts and assessing efficacy, further work on this potential 

therapeutic avenue has to be the most important future direction arising from this thesis.  
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Appendix 1:  

General PCR and Sequencing protocol 

Stage 1 - PCR:  

1) Prepare premix: 25µl MegaMix Blue per well; add stock primer so that final concentration of primer is 

0.5µM 

2) Pipette 24μl of premix per well of a 96-well plate 

3) Add 1µl DNA to each well.   

4) Cover the plate and spin down 

5) Transfer plate to Tetrad2 thermal cycler and run PCR program with the following cycling conditions: 

a) 95ºC for 1 min  

b) 95ºC for 30 secs 

c) 58ºC for 30 secs  

d) 72ºC for 1 min 

e) Go to step b) for an additional 34 cycles 

6) Assess PCR by electrophoresis of 5µl product on a 2% agarose gel stained with Red Safe (20µl Redsafe to 

400ml gel).  Load 5μl HyperLadder IV size standard. View gel using the Biorad transilluminator and 

Quantity One software. 

Stage 2 - PCR Product Clean-up 

1) Add an equal volume of Microclean to the PCR product, cover and mix well by vortexing. 

2) Leave at room temperature for 5 minutes. 

3) Spin the plate at 3000G for 40 minutes at RT. 

4) Invert plate onto tissue paper and spin at 40G for 30 seconds. 

5) Resuspend pellets by adding 200μl 18MΩ H2O to amplicons giving a strong singal on gel.  (Resuspend in 

less H2O if PCRs are weaker.)  Vortex plate.  Leave for 5 mins.   

6) Votex again and spin down.  PCR products are now ready to use.   

Stage 3 - Sequencing Reactions  

1) For each sequencing reaction prepare a premix of 1µl BigDye, 5µl BetterBuffer and 7.25μl 18MΩ ddH20.   

2) Mix and pipette 13.25μl of premix into each well of a 96 well plate. 

3) Pipette 0.75μl sequencing primer (at 5µM concentration) into their respective wells.   

4) Pipette 1μl of PCR product into well.   

5) Cover plate, spin down and run program ‘BD2’ (or BD23 or BD22; the last digit referes to the extension 

time) in the Diagnostics folder on a Tetrad2 thermal cycler in room 4.09b.  Cycling is as follows: 

a) 96ºC for 1 min 

b) 96ºC for 10 secs 

c) 50ºC for 5 secs 

d) 60ºC for 3 mins 

e) Go to step b) for an additional 24 cycles 

Stage 4 - Sequencing Product Clean-up  
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1) To each sequencing reaction add 3.75µl 125mM EDTA ensuring the solution is pipetted into the bottom 

of the well. 

2) Add 45µl 100% EtOH to each reaction and mix by pipetting up and down. 

3) Leave plate at room temperature for 15 minutes 

4) Spin plate at 3000G for 30 minutes at 4C 

5) Remove cover, invert plate onto tissue paper and spin up to 185G. 

6) Add 60µl 70% EtOH. 

7) Spin plate at 1650G for 15 minutes at 4C. 

8) Remove cover, invert plate onto tissue paper and spin at 185g for 1 minute. 

9) Place plate on PCR block, uncovered, held at 37C for 5 minutes to remove final traces of EtOH.   

Stage 5 - Electrophoresis on the 3730XL DNA Analyzer  

1) Add 10µl Hi-Di formamide loading solution to each well of the plate containing dry sequencing product 

pellets. (Caution!! Wear appropriate protective eyewear, clothing, and gloves). 

2) Cover plate and spin down.  Denature samples by placing on PCR block held at 95C for 2 minutes, and 

transfer to ice/4C tetrad block immediately for 2 mins. 

3) Set-up a new sample sheet by opening the Plate Manager and clicking on ‘Find All’.  Use the next run 

number in the sequence, ‘3730Runx’, where x is the run number.  Click on ‘New’.  Fill in the plate name 

with the run number in the format as described and choose Sequencing Analysis for the application.  

Write the run number on the ‘sequencing reaction set-up and sample sheet’.  Fill in the Sample Name 

column using the following format: [PDGnumber]_[primer number/name]. i.e. 12345_122.  This is 

important for analysis using ‘Seqscape’.  For the Results Group column, choose 

‘Sequencing_HumanGenetics’.   

4) For the Instrument Protocol choose ‘BD1_LongSeq50_POP7’.  (This is a 15 second injection run for BigDye 

Version 1.1 using 50cm capillaries and POP-7 polymer).  For the analysis protocol choose ‘BD1’ 

5) Remove the plate from ice/Tetrad and place in a black plate base and remove cover; make sure the plate 

is orientated correctly.  Seal the plate by placing a clean septa on top of the plate, aligning with the wells 

and pressing firmly down.  Snap a white plate retainer on top of this. 

6) Place the assembled cassette into the input stack of the sequencer. 

7) Link the plate by selecting the plate in ‘Run Scheduler’ which will add it to the input stack.  Close the 

instrument doors and wait for the light on the front of the machine to turn green.  The run can now be 

started by clicking on the green arrow at the top left of the screen.  The run takes 2 hours per plate. 

8) Data is automatically saved to the storage drive: ‘Z:\3730XL_Runs\Human Genetics Group’ 

9) Once the run is complete, view the raw data by opening up the run in ‘Run History’: signal strength and 

general run quality can be quickly assessed.   

10) Both raw and analysed data can also be viewed using the Sequence Analysis Software V5.2 which is 

installed on the instrument computer.  This is done as follows: double click on program icon to open, fill 

in password, ‘sequence’, click on ‘add samples’.  Select the run folder, click on ‘add selected samples’ and 

press ‘OK’.  Data  for each sample can now be viewed as raw data, base-called electropherogram, 

sequence data and annotation data (run parameters, signal strengths etc.).  
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Published papers and book chapters 
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